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Abstract
In this paper, we present a theoretical justification of the 0–1 test for chaos.

In particular, we show that with probability one, the test yields 0 for periodic
and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics.

1 Introduction

In [5], we introduced a new method of detecting chaos in deterministic dynamical
system in the form of a binary test. The method applies directly to the time series
data and does not require phase space reconstruction. As explained in [5], with
probability one the test gives the output K = 0 for quasiperiodic dynamics and
K = 1 for sufficiently chaotic dynamics.

In [6], we proposed a simplified version of the test that is more effective for sys-
tems with a moderate amount of noise. The effectiveness of the new method was
demonstrated for higher-dimensional systems in [6] and for experimental data [3].

The main aim of this paper is to put the simplified version of the test on a rigorous
footing, going far beyond the results indicated in [5] for the original test. In addition,
our analysis of the test leads to a significant improvement which was used in our
paper [7] detailing the implementation of the test.

We first recall the simplified form of the test proposed in [6]. Let f : X → X
be a map with invariant ergodic probability measure µ. Let v : X → R be a scalar
square-integrable observable. Choose c ∈ (0, 2π), x ∈ X, and define

pc(n) =
n−1∑
j=0

eijcv(f jx). (1.1)
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Next, define the mean-square displacement

Mc(n) = lim
N→∞

1

N

N∑
j=1

|pc(j + n)− pc(j)|2. (1.2)

Finally, let

Kc = lim
N→∞

log Mc(n)

log n
. (1.3)

The claim in [6], substantiated in this paper, is that typically (i) the limit Kc exists,
(ii) Kc ∈ {0, 1}, and (iii) Kc = 0 signifies regular dynamics while Kc = 1 signifies
chaotic dynamics.

Remark 1.1 (a) The definition of pc(n) in (1.1) is slightly different from in [3, 6, 7]
where pc(n) =

∑n−1
j=0 cos(jc)v(f jx). In the current paper it is natural to simplify

analytic calculations rather than numerical computations, but apart from that the
methods are equivalent.

(b) For fixed c, it follows from the ergodic theorem that the limit Mc(n) in (1.2)
exists for almost every initial condition x and the limit is independent of x. The
common limit is

Mc(n) =

∫
X

|pc(n)|2dµ = ‖pc(n)‖2
2.

To see this, compute that pc(j + n) − pc(j) = eijcpc(n) ◦ f j, and so Mc(n) =
limN→∞

1
N

∑N−1
j=0 |pc(n)|2 ◦ f j which converges to the space average

∫
X
|pc(n)|2dµ al-

most everywhere.
(c) Strictly speaking, the limit Kc in (1.3) need not be well-defined. Of course,

K+
c = lim supN→∞ log Mc(n)/ log n is well-defined, and it follows from Proposition 1.4

that K+
c ∈ [0, 2] for all c. (In the case of periodic dynamics, Kc = 2 for isolated values

of c.)

Example 1.2 Consider the logistic map f : [0, 1] → [0, 1] given by f(x) = ax(1− x)
for 0 ≤ a ≤ 4. This family of maps is particularly well-understood [12, 1]: we can
decompose the parameter interval according to [0, 4] = P ∪ C ∪ N where N has
Lebesgue measure zero and the asymptotic dynamics consists of a periodic attractor
(of period q ≥ 1) for a ∈ P and a strongly chaotic attractor consisting of q ≥ 1
disjoint intervals for a ∈ C (satisfying the Collet-Eckman condition).

We obtain the following result:

Proposition 1.3 Let v : [0, 1] → R be Hölder.

(a) If a ∈ P, then Kc = 0 for all c 6= 2πj/q.
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(b) If a ∈ C, then Kc = 1 for all c 6= 2πj/q unless v is infinitely degenerate1.

Hence, the test succeeds with probability one for logistic map dynamics.

Part (a) holds for general periodic dynamics (and all continuous observables). In
Section 2, we prove that the test yields Kc = 0, for almost all c, for quasiperiodic
dynamics, provided we make smoothness assumptions on v. This justifies our claim
that Kc = 0 for regular dynamics.

The chaotic case is discussed extensively in Section 3. In particular we obtain
Kc = 1 under various assumptions:

(i) Positivity of power spectra

(ii) Exponential decay of autocorrelations

(iii) Summable decay of autocorrelations plus hyperbolicity

(In fact, (ii) and (iii) are sufficient conditions for (i).)
In many situations, including the logistic map with µ ∈ C, it is necessary to

consider f q instead of f , and autocorrelations decay only up to a finite cycle (of
length q). As shown in Section 3, criteria (ii) and (iii) generalise to this situation.

Summable decay without hyperbolicity assumptions Without making hy-
perbolicity assumptions, we have no definitive results when autocorrelations decay
subexponentially. However, there is some partial information discussed in Section 4.
If the autocorrelation function is summable, then the power spectrum S(c) exists for
all c ∈ (0, 2π) by the Wiener-Khintchine Theorem [9], implying that

Mc(n) = S(c)n + o(n).

Under slightly stronger assumptions on the decay rate

Mc(n) = S(c)n + O(1).

In the former case, K+
c = lim supn→∞ log Mc(n)/ log n ∈ [0, 1]. In the latter case, Kc

exists and takes the value 0 or 1 depending on where S(c) = 0 or S(c) > 0 (but see
Remark 3.7).

Again, we obtain similar results if autocorrelations are summable up to a finite
cycle.

1Lying in a closed subspace of infinite codimension in the space of Hölder functions
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Improved diagnostic in the test for chaos The o(n) and O(1) terms above are
nonuniform in c but in Section 4 we show that the source of nonuniformity is easily
dealt with. Define

Dc(n) = Mc(n)− (Ev)2 1− cos nc

1− cos c
.

Here Ev =
∫

X
v dµ denotes expectation with respect to µ. Under the above conditions

we obtain Dc(n) = S(c)n + o(n) (hence K+
c = lim supn→∞ log Mc(n)/ log n ∈ [0, 1])

for summable autocorrelation functions and Dc(n) = S(c)n + O(1) (hence Kc takes
the values either 0 or 1) under slightly stronger conditions on the decay of the au-
tocorrelation function as before, but the o(n) and O(1) terms are now uniform in c
(see Section 4). In [7], we proposed using Dc(n) instead of Mc(n) in the numerical
implementation of the 0–1 test, and demonstrated the improved performance of the
test.

Nonsummable decay The summability condition in the Wiener-Khintchine Theo-
rem can be weakened considerably. For example, if autocorrelations decay at a square
summable rate (including k−d for any d > 1

2
), then the power spectrum exists almost

everywhere and so Mc(n) = S(c)n + o(n) for almost every c. (In this generality there
is no uniformity in the error term for Dc(n.) This and related results is discussed in
Section 5.

Correlation method Our emphasis in this paper is on understanding the proper-
ties of the limit Kc as defined in (1.3). However, in [7], we proposed computing Kc

as the correlation of the mean-square displacement Mc(n) (or Dc(n)) with n. The
advantages of this approach were demonstrated in [7]. In Section 6, we verify that the
theoretical value of Kc remains 0 for regular dynamics and 1 for chaotic dynamics.

The paper concludes with a discussion section (Section 7). We end the introduction
by proving that K+

c ∈ [0, 2] as claimed in Remark 1.1(c).

Proposition 1.4 Let K+
c = lim supn→∞ log Mc(n)/ log n. If v is not identically zero,

then K+(c) ∈ [0, 2] for all c.

Proof By definition, ‖pc(n)‖2 ≤ n‖v‖2 so that 0 ≤ Mc(n) ≤ n2‖v‖2
2. Hence K+

c ≤ 2.
To prove the lower bound, we use the fact that ‖v‖2 > 0. It suffices to show that

lim supn→∞ Mc(n) > 0 for each fixed c. Observe that pc(n + 1) = eincv ◦ fn + pc(n)
so that

‖pc(n + 1)‖2 ≥ ‖eincv ◦ fn‖2 − ‖pc(n)‖2 = ‖v‖2 − ‖pc(n)‖2.

Hence 0 < ‖v‖2 ≤ ‖pc(n)‖2 + ‖pc(n + 1)‖2. It follows that ‖pc(n)‖2 6→ 0, and so
lim supn→∞ Mc(n) > 0 as required.
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2 The case of regular dynamics

Part (a) of Proposition 1.3 is a simple direct calculation. If f : X → X is a map with
a periodic orbit of period q and v : X → R is continuous, then we obtain Kc = 0 for
all c 6= 2πj/q. (For isolated resonant values c = 2πj/q a simple argument using the
Fourier series for v shows that typically pc(n) will grow linearly implying Kc = 2.)
In the case of quasiperiodic dynamics, we require additional smoothness assumptions
on the observable v. The test then succeeds with probability one.

Theorem 2.1 Suppose that X = Tm = Rm/Zm and that f : X → X is given by
f(x) = x + ω mod 1. If v : X → R is Cr with r > m, then Kc = 0 for almost every
c ∈ [0, 2π].

Proof Recall that X = Tm. Write v : X → R as a m-dimensional Fourier series
v(x) =

∑
`∈Zm v`e

i`·x where v−` = v̄`. Then

Mc(n) =

∫
X

|
n−1∑
j=0

eijcv ◦ f j|2 dx =
n−1∑

p,q=0

ei(p−q)c

∫
X

v ◦ fp v ◦ f q dx

=
n−1∑

k=−(n−1)

(n− |k|)eikc

∫
X

v ◦ f |k| v dx = s1 + · · ·+ sn, (2.1)

where

sm =
m−1∑

j=−(m−1)

eijc

∫
X

v ◦ f |j| v dx.

We show that Mc(n) is bounded (as a function of n) for almost all c. Compute
(formally) that

sn =
n−1∑

j=−(n−1)

eijc
∑

`

|v`|2eij(`·ω)

=
∑

`

|v`|2(ei(c+`·ω) − 1)−1(ein(c+`·ω) − e−i(n−1)(c+`·ω)). (2.2)

Hence

s1 + · · ·+ sn =
∑

`

|v`|2
1− cos n(c + ` · ω)

1− cos(c + ` · ω)
. (2.3)

It remains to show that the series (2.2), (2.3) converge. We may ignore the ` = 0
term in these series (these terms are obviously bounded in n). The smoothness
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assumption on v implies that |v`| = O(|`|−r). Let ε > 0. For almost every c ∈ (0, 2π)
there is a constant d0 > 0 such that

dist |c + ` · ω, 2πZ| ≥ d0|`|−(m+ε), (2.4)

for all ` ∈ Zm − {0} (cf. [15]). Hence |ei(c+`·ω) − 1| ≥ d1|`|−(m+ε) and so

∑
`∈Zm−{0}

|v`|2|ei(c+`·ω) − 1|−1 ≤
∞∑

k=1

∑
|`|=k

k−2rd−1
1 km+ε ≤ C

∞∑
k=1

km−1k−2rkm+ε

= C
∞∑

k=1

k−(1+2(r−m−ε/2)) < ∞,

provided we choose ε > 0 so small that r > m + ε/2. This shows that (2.2) converges
and is bounded independent of n, and similarly for (2.3).

Remark 2.2 The extra smoothness of v is required to circumvent the small divisor
problems associated with quasiperiodic dynamics. We also require a Diophantine
condition on c, satisfied by almost every c ∈ [0, 2π]. However, there is no restriction
on ω.

3 The case of chaotic dynamics

It is our intention to show that Kc = 1 for all almost all c (and reasonable observables
v) for sufficiently chaotic dynamical systems. We proceed along three distinct but
related avenues, all of which extend Example 1.2 of the logistic map: (i) positivity
of power spectra; (ii) decay of autocorrelation functions; (iii) hyperbolicity of the
dynamical system.

Recall that for a square-integrable observable v : X → R the power spectrum
S : [0, 2π] → [0,∞) is defined (assuming it exists) to be the square of the Fourier
amplitudes of v ◦ f j per unit time2, and is given by

S(c) = lim
n→∞

1

n

∫
X

|
n−1∑
j=0

eijcv ◦ f j|2 dµ = lim
n→∞

1

n
Mc(n).

In other words, Mc(n) = S(c)n + o(n). The following result is immediate:

Proposition 3.1 Let c ∈ [0, 2π]. Suppose that S(c) is well-defined and strictly posi-
tive. Then Kc = 1.

2Often eijω is replaced by e2πijω/n in the literature, but this is just a rescaling of the domain.
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In particular, if the power spectrum is well-defined and positive almost everywhere,
then we obtain Kc = 1 with probability one.

Next, we consider the autocorrelation function ρ : N → R given by

ρ(k) =

∫
X

v ◦ fk v dµ−
(∫

X

v dµ
)2

.

This is well-defined for all L2 observables v.
If ρ(k) is summable (i.e.

∑∞
k=0 ρ(k) < ∞), then it follows from the Wiener-

Khintchine theorem [9] that for c ∈ (0, 2π),

S(c) =
∞∑

k=−∞

eikcρ(|k|).

Note that the right-hand-side defines a continuous function on [0, 2π].

Proposition 3.2 Suppose that v : X → R lies in L2(X) and v is not constant
(almost everywhere). If the autocorrelation function ρ(k) decays exponentially3, then
Kc = 1 except for at most finitely many choices of c ∈ [0, 2π].

Proof Since ρ(k) decays exponentially, g(c) =
∑∞

k∈−∞ eikcρ(|k|) is analytic on [0, 2π].
Since v is not constant, ρ(0) =

∫
X

v2 dµ − (
∫

X
v dµ)2 =

∫
X

(v −
∫

X
v)2 dµ > 0, and

hence g is not the zero function. By analyticity, S(c) = g(c) > 0 except for at most
finitely many values of c and hence Kc = 1 except for these values of c.

Decay of autocorrelations up to a finite cycle Recall that f : X → X is mixing
if limk→∞ ρ(k) → 0 for every L2 observable v : X → R. The system is mixing up to a
finite cycle (of length q ≥ 1) if X = X1 ∪ · · · ∪Xq where f(Xj) ⊂ Xj+1 (computing
indices mod q) and f q : Xj → Xj is mixing (with respect to µq = qµ|Xj) for each
j = 1, . . . , q.

If q ≥ 2, then exponential decay of autocorrelations holds only for degenerate
observables. The natural property to require is exponential decay for f q. Given an
L2 observable v : X → R, define for j = 1, . . . , q and m = 0, . . . , q − 1,

ρv◦fm,v,Xj
(kq) =

∫
Xj

v ◦ fm ◦ fkq v dµj −
∫

Xj

v ◦ fm dµj

∫
Xj

v dµj.

Definition 3.3 The autocorrelations of v are summable up to a q cycle if for each
j = 1, . . . , q and m = 0, . . . , q − 1, the series

∑∞
k=0 |ρv◦fm,v,Xj

(kq)| is convergent.
The autocorrelations of v decay exponentially up to a q cycle if ρv◦fm,v,Xj

(kq)
decays exponentially as k →∞ for each j = 1, . . . , q and m = 0, . . . , q − 1.

3There exist constants C ≥ 1, τ ∈ (0, 1) such that |ρ(k)| ≤ Cτk
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Theorem 3.4 If the autocorrelations of v are summable up to a q cycle, then

S(c) =
∞∑

r=−∞

eircgr, for all c 6= 2πj/q,

where writing r = kq + m with k ∈ Z and m ∈ {0, 1, . . . , q − 1},

gr = gkq+m =

q∑
j=1

ρv◦fm,v,Xj
(kq).

Proof Define

vq,c =

q−1∑
`=0

ei`cv ◦ f `, ρq,c(k) =
1

q

q∑
j=1

(∫
Xj

vq,c ◦ fkqv̄q,c dµj −
∣∣∣∫

Xj

vq,c dµj

∣∣∣2).

By [14, Theorem A.2],

S(c) =
∞∑

k=−∞

eikqcρq,c(k),

for c 6= 2πj/q. Compute that

ρq,c(k) =
1

q

q∑
j=1

(∫
Xj

vq,c ◦ fkq v̄q,c dµj −
∣∣∣∫

Xj

vq,c dµj

∣∣∣2)
=

1

q

q∑
j=1

q−1∑
`,`′=0

ei(`−`′)c
(∫

Xj

v ◦ f ` ◦ fkq v ◦ f `′ dµj −
∫

Xj

v ◦ f ` dµj

∫
Xj

v ◦ f `′ dµj

)

=
1

q

q−1∑
`,`′=0

ei(`−`′)c

q∑
j=1

(∫
Xj+`′

v ◦ f `−`′ ◦ fkq v dµj+`′ −
∫

Xj+`′

v ◦ f `−`′ dµj+`′

∫
Xj+`′

v dµj+`′

)

=
1

q

q−1∑
`,`′=0

ei(`−`′)c

q∑
j=1

(∫
Xj

v ◦ f `−`′ ◦ fkq v dµj −
∫

Xj

v ◦ f `−`′ dµj

∫
Xj

v dµj

)

=
1

q

q∑
j=1

q−1∑
s=−(q−1)

(q − |s|)eisc
(∫

Xj

v ◦ f s ◦ fkq v dµj −
∫

Xj

v ◦ f s dµj

∫
Xj

v dµj

)

=
1

q

q∑
j=1

q−1∑
s=−(q−1)

(q − |s|)eiscρv◦fs,v,Xj
(kq).
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For r = kq +m we obtain at most two nonzero contributions to gr, namely s = m
in ρq,c(k) and s = −(q −m) in ρq,c(k + 1). Hence

gr =
1

q

q∑
j=1

(
(q −m)ρv◦fm,v,Xj

(kq) + mρv◦f−(q−m),v,Xj
(kq + q)

)
=

q∑
j=1

ρv◦fm,v,Xj
(kq)

as required.

Corollary 3.5 If the autocorrelations of v are summable up to a q cycle, then S(c)
exists and is continuous except for removable singularities at c = 2πj/q.

If the autocorrelations of v decay exponentially up to a q cycle, then S(c) is analytic
except for removable singularities at c = 2πj/q. If moreover v|Xj is not constant
(almost everywhere) for at least one j, then Kc = 1 except for at most finitely many
values of c.

Proof The statements about continuity and analyticity are immediate from Theo-
rem 3.4. In particular, if there is exponential decay up to a q cycle, then the function
g(c) =

∑∞
r=−∞ eircgr is analytic and hence nonzero except at finitely many points

provided g0 6= 0. If on the other hand, g0 = 0, then

0 = g0 =

q∑
j=1

ρv,v,Xj
(0) =

q∑
j=1

∫
Xj

v2 dµj −
(∫

Xj

v dµj

)2

=

q∑
j=1

var(v|Xj),

so var(v|Xj) = 0, and hence v|Xj is constant, for each j.

Remark 3.6 Definition 3.3 and Theorem 3.4 are significant improvements on the
corresponding material in [14, Appendix].

Remark 3.7 We have seen that exponential decay of autocorrelations (up to a q
cycle) guarantees that Kc = 1 with probability one. Surprisingly, it seems nontrivial
to weaken the exponential decay hypothesis. The proof of Proposition 3.2 relies
crucially on analyticity of the power spectrum. Even if we assume sufficiently rapid
decay that g(c) =

∑∞
k∈−∞ eikcρ(|k|) is C∞, then we face the difficulty that the only

restriction on the zero set of a C∞ function is that it is a closed set.
Suppose that summable decay of correlations holds for a large class of observables

B with the property that there is an interval I ⊂ (0, 2π) such that the Fourier series
g(c) is identically zero on I for all v ∈ B. The proof of Proposition 3.2 shows that
for every nonconstant observable v ∈ B, there is an interval J ⊂ (0, 2π) on which
g(c) > 0 on J . For such examples, where the power spectrum vanishes on an interval
I and is typically positive on an interval J , the 0–1 test is inconclusive: we obtain
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Kc = 1 with positive probability for nonconstant observables in B, but for all v ∈ B
there is a positive probability that Kc ∈ [0, 1) or that Kc does not even exist. This
situation seems highly pathological, but we do not see how to rule this out.

Hyperbolicity We can overcome the unsatisfactory aspects of Remark 3.7 by as-
suming some hyperbolicity. In the Collet-Eckmann case (a ∈ C) for the logistic map,
it is known that Hölder observables enjoy exponential decay of correlations up to a
finite cycle, so we can apply Theorem 3.4. Alternatively, [14] shows that the power
spectrum is bounded away from zero for all c 6= 2πj/q, so we can apply Proposi-
tion 3.1. These comments apply to all maps in the following classes:

• Uniformly expanding maps; Uniformly hyperbolic (Axiom A) diffeomorphisms.

• Nonuniformly expanding/hyperbolic systems in the sense of Young [17], mod-
elled by a Young tower with exponential tails. These enjoy exponential decay
of correlations (up to a finite cycle) for Hölder observables. This covers large
classes of dynamical systems, including Hénon-like maps, logistic maps and
more generally multimodal maps satisfying Collet-Eckmann conditions, and
one-dimensional maps with Lorenz-like singularities [2].

Young [18] weakens the decay rates assumed for tower models for nonuniformly
expanding/hyperbolic systems. Hölder observables now have subexponential decay
of correlations (up to a finite cycle). Provided the decay rate is summable, the
argument of [14] still applies, and S(c) is bounded away from zero (except for infinitely
degenerate observables).

Example 3.8 A prototypical family of examples is the Pomeau-Manneville inter-

mittency maps f : [0, 1] → [0, 1] given by f(x) =

{
x(1 + 2αxα); 0 ≤ x ≤ 1

2

2x− 1; 1
2
≤ x ≤ 1

where

α ∈ [0, 1) is a parameter [16, 11]. When α = 0 this is the doubling map with expo-
nential decay of correlations for Hölder observables, so Proposition 3.2 applies. For
α > 0, let β = 1

α
− 1. Then decay of correlations for Hölder observables is at the rate

n−β [8]. By [14], the power spectrum is bounded below in the summable case (β > 1,
equivalently α < 1

2
) and so Kc = 1 for all c ∈ (0, 2π).

Remark 3.9 Numerical experiments for intermittency maps indicate that (i) Kc = 1
and (ii) the power spectrum exists and is bounded below, even in the nonsummable
case β ≤ 1, equivalently α ∈ [1

2
, 1). It remains an interesting problem to prove these

statements. By Corollary 5.3, we are at least assured that the power spectrum exists
(and hence Kc = 1 with positive probability) for β > 1

2
(α < 2

3
).
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4 Summable decay without hyperbolicity

If the autocorrelation function is absolutely summable (i.e.
∑∞

k=1 |ρ(k)| < ∞), then
the power spectrum S(c) exists and is continuous for all c ∈ (0, 2π). Indeed, S(c) =∑∞

k=−∞ eikcρ(|k|) on (0, 2π) by the Wiener-Khintchine Theorem [9]. It follows that
Mc(n) = S(c)n + o(n), and hence that Kc = 1 with positive probability.

In this section, we discuss the error term o(n) in more detail. As mentioned in
the introduction, this leads to the improved diagnostic Dc(n) for chaos used in [7].

We begin with a formal calculation to express the mean square displacement as
follows:

Proposition 4.1 Mc(n) =
∑n

k=−n(n− |k|)eikcρ(|k|) + (Ev)2 1−cos nc
1−cos c

.

Proof First, note that

Mc(n) =

∫
X

|pc(n)|2 dµ =
n−1∑

p,q=0

ei(p−q)c

∫
X

v ◦ fp v ◦ f q dµ

=
n−1∑

p,q=0

ei(p−q)c

∫
X

v ◦ f |p−q| v dµ

=
n−1∑

p,q=0

ei(p−q)c(ρ(|p− q|) + (Ev)2)

=
n∑

k=−n

(n− |k|)eikcρ(|k|) + (Ev)2

n−1∑
p=0

eipc

n−1∑
q=0

e−iqc

Finally

n−1∑
p=0

eipc

n−1∑
q=0

e−iqc =
1− einc

1− eic

1− e−inc

1− e−ic
=

1− cos nc

1− cos c
.

The second term in the expression for Mc(n) is bounded in n for fixed c, but is
nonuniform in c. Since the term is explicit, it is convenient to remove it. (As demon-
strated in [7], this is also greatly advantageous for the numerical implementation of
the test.) Hence we define

Dc(n) = Mc(n)− (Ev)2(1− cos nc)/(1− cos c) .

Then Mc(n) = Dc(n) + O(1), so it suffices to work with Dc(n) from now on. By
Proposition 4.1,

Dc(n) =
n∑

k=−n

(n− |k|)eikcρ(|k|). (4.1)
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Theorem 4.2 Suppose that ρ(k) is absolutely summable (i.e.
∑∞

k=1 |ρ(k)| < ∞).
Then for all c ∈ (0, 2π),

Dc(n) = S(c)n + e(c, n),

where

|e(c, n)| ≤ 2n
∞∑

k=n+1

|ρ(k)|+ 2
n∑

k=1

k|ρ(k)| = o(n).

In particular Dc(n) = S(c)n + o(n) uniformly in c.

Proof Write

Dc(n) =
n∑

k=−n

(n− |k|)eikcρ(|k|) = S(c)n + e(c, n),

where

e(c, n) = −n
∞∑

k=n+1

(eikc + e−ikc)ρ(k)−
n∑

k=1

k(eikc + e−ikc)ρ(k).

It remains to show that
∑n

k=1 k|ρ(k)| = o(n). Let sn =
∑n

k=1 |ρ(k)| and let L = lim sn.
Define the Cesàro average σn = 1

n

∑n
k=1 sk, so L = lim σn. Then 1

n

∑n
k=1 k|ρ(k)| =

n+1
n

sn − σn → L− L = 0.

Corollary 4.3 If |ρ(k)| ≤ Ck−d for k ≥ 1, where 1 < d < 2, then in Theorem 4.2,

|e(c, n)| ≤ 2C
1

(d− 1)(2− d)
n2−d.

Proof The first term of e(c, n) in Theorem 4.2 is dominated by

2Cn
∞∑

k=n+1

k−d ≤ 2Cn

∫ ∞

n

x−d dx ≤ 2Cn−(d−2)/(d− 1).

The second term is dominated by

2C
n∑

k=1

k1−d ≤ 2C
(
1 +

∫ n

1

x1−d dx
)

= 2Cn−(d−2)/(2− d)− 2C(d− 1)/(2− d)

≤ 2Cn−(d−2)/(2− d).

Combining these terms gives the result.

Under stronger assumptions on the decay rate of the autocorrelation function ρ(k),
improved estimates for the o(n) term are available.

12



Theorem 4.4 Suppose that
∑∞

k=1 k|ρ(k)| < ∞. Then

Dc(n) = S(c)n + S0(c) + e(c, n),

where S0(c) = −
∑∞

k=−∞ eick|k|ρ(|k|) is continuous on [0, 2π], S(c) is C1 on [0, 2π],
and

|e(c, n)| ≤ 2
∞∑

k=n+1

(k − n)|ρ(k)| = o(1).

In particular, Dc(n) = S(c)n + O(1) uniformly in c. (Hence Kc ∈ {0, 1} for all
c ∈ (0, 2π).)

Proof Compute that

Dc(n) =
n∑

k=−n

(n− |k|)eikcρ(|k|) = S(c) n + S0(c) + e(c, n),

where e(c, n) =
∑∞

k=n+1(k − n)(eikc + e−ikc)ρ(k).

Corollary 4.5 If |ρ(k)| ≤ Ck−d for k ≥ 1, where d > 2, then in Theorem 4.4

|e(c, n)| ≤ 2C
{ 1

(d− 1)(d− 2)
+

1

n

} 1

nd−2
.

Proof By Theorem 4.4,

|e(c, n)| ≤ 2C
∞∑

k=n+1

(k − n)k−d = 2C
∞∑

k=n+1

k1−d − 2Cn
∞∑

k=n+1

k−d

≤ 2C

∫ ∞

n

x1−d dx− 2Cn
(∫ ∞

n

x−d dx− n−d
)

= 2C
{( 1

d− 2
− 1

d− 1

) 1

nd−2
+

1

nd−1

}
.

5 Nonsummable decay of correlations

In this section, we reformulate the 0–1 test in terms of Cesàro averages, and give
surprisingly weak sufficient conditions under which S(c) = limn→∞

1
n

∫
X
|pc(n)|2dµ

exists (for typical values of c).

13



Let ak ∈ C be a sequence with partial sums sn =
∑n

k=−n ak and set σn =
1
n

∑n−1
k=0 sk. Recall that the sequence ak is Cesàro summable if limn→∞ σn exists.

If limn→∞ sn → L then limn→∞ σn = L (the converse is not true).
Defining sn and σn as above with ak = eikcρ(|k|), we obtain

σn =
1

n

n∑
k=−n

(n− |k|)ρ(|k|)eikc =
1

n
Dc(n),

the last equality following from (4.1). Since S(c) = limn→∞
1
n
Dc(n), we have proved

the following result.

Lemma 5.1 Let c ∈ (0, 2π). Suppose that the sequence ak = eikcρ(k) is Cesàro
summable with limit L(c). Then S(c) = L(c). In particular, if L(c) > 0, then
Kc = 1.

By Fejér’s theorem [10], a special case is provided when ρ(|k|) are Fourier coeffi-
cients of an integrable function.

Theorem 5.2 Suppose that ρ(|k|) are the Fourier coefficients of an L1 function
g : [0, 2π] → R≥0. Then the sequence eikcρ(k) is Cesàro summable to g(c) al-
most everywhere. In particular, Lemma 5.1 holds for almost every c ∈ (0, 2π), with
L(c) = g(c).

If g is continuous, then the convergence is uniform in c (and holds for every
c ∈ (0, 2π)). In particular, Dc(n) = S(c)n + o(n) uniformly in c.

Proof We have written σn = 1
n
Dc(n) =

∑n
k=−n(1− |k|

n
)eikcρ(|k|). This is σn−1(g, c)

in [10, p.12 (2.9)]).
If g is continuous, then by Fejér’s Theorem ([10, Theorem 2.12]), σn → g uniformly,

and so Dc(n) = nσn = ng(c) + o(n) uniformly in c.
For general g ∈ L1, it follows from the discussion in [10, pp. 19-20] that σn → g

almost everywhere, so that Dc(n) = nσn(g, c) = ng(c) + o(n) for almost every c.

Corollary 5.3 Suppose that
∑

k≥1 ρ(k)2 < ∞. Then the first statement of Theo-

rem 5.2 applies with g(c) =
∑∞

k=−∞ eikcρ(|k|).
In particular, S(c) exists almost everywhere, and Dc(n) = S(c)n + o(n).

Proof Since
∑

k≥1 ρ(k)2 < ∞, the function g(c) =
∑∞

k=−∞ eikcρ(|k|) lies in L2

and the Fourier coefficients of g are precisely ρ(|k|). Hence, we can apply the first
statement of Theorem 5.2.
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6 Correlation method

In [7], we proposed computing Kc as the correlation of the mean-square displace-
ment Mc(n) (or Dc(n)) with n, rather than computing the limit of log M(n)/ log n
as in (1.3). In this section we verify that the theoretical value of Kc remains 0 for
regular dynamics and 1 for chaotic dynamics.

Given vectors x, y of length n, we define

cov(x, y) =
1

n

n∑
j=1

(x(j)− x̄)(y(j)− ȳ), where x̄ =
1

n

n∑
j=1

x(j) ,

var(x) = cov(x, x) .

Form the vectors ξ = (1, 2, . . . , n) and ∆ = (Dc(1), Dc(2), . . . , Dc(n)). (In particular,
var(ξ) = 1

12
(n2 − 1).) Define the correlation coefficient

Kc = lim
n→∞

corr(ξ, ∆) =
cov(ξ, ∆)√
var(ξ)var(∆)

∈ [−1, 1] .

6.1 Quasiperiodic case

For quasiperiodic dynamics, we have the following analogue of Theorem 2.1. However,
we require stronger regularity for the observable v, and a Diophantine condition on
the frequency ω (in addition to the condition on c).

Theorem 6.1 Suppose that X = Tm = Rm/Zm and that f : X → X is given by
f(x) = x+ω mod 1. Let v : X → R be a nonvanishing Cr observable with r > 3m/2.
If Kc is computed using the correlation method, then for almost every ω ∈ [0, 2π] we
obtain Kc = 0 for almost every c ∈ [0, 2π].

Proof The proof of Theorem 2.1 shows that Mc(n) (equivalently Dc(n)) is bounded
for almost every c provided r > m. We show for r > 3m/2 that var(∆) = O(1)
and cov(ξ, ∆) = O(1) for almost every ω and c. Moreover, we use the fact that v is
nonvanishing to show that var(∆) = a + O(1/n), where a > 0. It then follows that

corr(ξ, ∆) =
O(1)√

1
12

(n2 − 1)
√

a + O(1/n)
= O(1/n),

as required.
The starting point is the calculations (2.1) and (2.3) which gives

Mc(j) =
∑

`

|v`|2
1− cos j(c + ` · ω)

1− cos(c + ` · ω)
=

∑
`

w`(cos jθ` − 1),
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where θ` = c + ` · ω, w` = −|v`|2(1− cos θ`)
−1. Hence

Dc(j) =
∑

`

w`(cos jθ` − 1)− C(1− cos jc),

where C = (Ev)2/(1 − cos c). Adding a constant (independent of j) to Dc(j) does
not alter the value of corr(ξ, ∆) so we may replace Dc(j) by

D̂c(j) =
∑

`

w` cos jθ` + C cos jc,

when proving that cov(ξ, ∆) = O(1) and var(∆) = an + O(1) with a > 0. Hence it
suffices to show that for almost every ω and c there exists a > 0 such that

n∑
j=1

D̂c(j) = O(1),
n∑

j=1

jD̂c(j) = O(n),
n∑

j=1

D̂c(j)
2 = an + O(1).

Formally,

n∑
j=1

D̂c(j) =
∑

`

w`

n∑
j=1

cos jθ` + C
n∑

j=1

cos jc, (6.1)

n∑
j=1

jD̂c(j) =
∑

`

w`

n∑
j=1

j cos jθ` + C
n∑

j=1

j cos jc, (6.2)

n∑
j=1

D̂c(j)
2 =

∑
`,`′

w`w`′

n∑
j=1

cos jθ` cos jθ`′

+ 2C
∑

`

w`

n∑
j=1

cos jc cos jθ` + C2

n∑
j=1

cos2 jc. (6.3)

For ϕ ∈ (0, 2π), we have

n∑
j=1

eijϕ = eiϕ einϕ − 1

eiϕ − 1
,

n∑
j=1

jeijϕ =
nei(n+1)ϕ

eiϕ − 1
.

In particular,
∑n

j=1 cos jϕ = O(1) and
∑n

j=1 j cos jϕ = O(n). By (6.1) and (6.2),

formally we have
∑n

j=1 D̂c(j) = O(1) and
∑n

j=1 jD̂c(j) = O(n). Turning to (6.3),

n∑
j=1

cos2 jc =
1

2

n∑
j=1

(1 + cos 2jc) =
1

2
n + O(1),
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for c 6= π and formally∑
`

w`

n∑
j=1

cos jc cos jθ` =
1

2

∑
`

w`

n∑
j=1

(cos j(c + θ`) + cos j(c− θ`)) = O(1),

while∑
`,`′

w`w`′

n∑
j=1

cos jθ` cos jθ`′ =
1

2

∑
`,`′

w`w`′

n∑
j=1

{cos j(θ` + θ`′) + cos j(θ` − θ`′)}

=
1

2

∑
`

w2
`n +

1

2

∑
`

w2
`

n∑
j=1

cos 2jθ` +
1

2

∑
` 6=`′

w`w`′

n∑
j=1

{cos j(θ` + θ`′) + cos j(θ` − θ`′)}

=
1

2

∑
`

w2
`n + O(1).

Hence
∑n

j=1 D̂c(j)
2 = an + O(1), with a = 1

2
(
∑

` w2
` + C2). If v is nonvanishing, then

v`, and hence w`, is nonzero for at least one ` so that a > 0.
It remains to justify the formal calculations. We give the details for the first term

in (6.3) focusing on the most difficult expression

I =
∑
` 6=`′

w`w`′

n∑
j=1

{cos j(θ` + θ`′) + cos j(θ` − θ`′)}.

Let ε > 0. We assume the Diophantine conditions (2.4) and

dist |2c + ` · ω, 2πZ| ≥ d2|`|−(m+ε), dist |` · ω, 2πZ| ≥ d2|`|−(m+ε), (6.4)

which are satisfied by almost all c and ω for all nonzero `. Proceeding as in the proof
of Theorem 2.1,

|I| ≤ C
∑
` 6=`′

|v`|2|v`′|2(1− cos θ`)
−1(1− cos θ`′)

−1(|1− ei(2c+(`+`′)ω)|−1 + |1− ei(`−`′)ω|−1)

≤ C ′
∑
` 6=`′

|`|−2r|`′|−2r|`|m+ε|`′|m+ε(|` + `′|m+ε + |`− `′|m+ε)

≤ C ′′
∞∑

k1,k2=1

km−1
1 km−1

2 k−2r
1 k−2r

2 km+ε
1 km+ε

2 (k1 + k2)
m+ε

≤ C ′′′
∞∑

k1,k2=1

km−1
1 km−1

2 k−2r
1 k−2r

2 km+ε
1 km+ε

2 (km+ε
1 + km+ε

2 )

= 2C ′′′
∞∑

k1=1

k
−(1+2(r−3m/2−ε))
1

∞∑
k2=1

k
−(1+2(r−m−ε/2))
2 < ∞
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provided we choose ε > 0 so small that r > 3m/2 + ε.

6.2 Chaotic case

Recall that Kc = 1 in definition (1.3) if and only if Mc(n) = an + o(n) where a > 0.
Equivalently Dc(n) = an+o(n) with a > 0. We show that this is a sufficient condition
for Kc = 1 via the correlation method.

Theorem 6.2 Let c ∈ (0, 2π). Suppose that Dc(n) = an + o(n) for some a > 0 and
that Kc is computed using the correlation method. Then Kc = 1.

Proof We claim that cov(ξ, ∆) = 1
12

an2 + o(n2) and var(∆) = 1
12

a2n2 + o(n2). The
result is then immediate.

We verify the claim for cov(ξ, ∆). The verification for var(∆) is similar. Write
Dc(n) = an + e(n) where e(n) = o(n). Then

cov(ξ, ∆) =
1

n

n∑
j=1

j(aj + e(j))−
( 1

n

n∑
j=1

j
)( 1

n

n∑
j=1

(aj + e(j))
)

=
1

6
a(n + 1)(2n + 1) +

1

n

n∑
j=1

je(j)− 1

2n
(n + 1)

{1

2
an(n + 1) +

n∑
j=1

e(j)
}

=
1

12
an2 + O(n) +

1

n

n∑
j=1

je(j)− 1

2n
(n + 1)

n∑
j=1

e(j).

Hence it remains to show that
∑n

j=1 je(j) = o(n3) and
∑n

j=1 e(j) = o(n2).
Since e(n) = o(n), there is a constant C > 0 such that |e(n)| ≤ Cn for n ≥ 1.

Also, given ε > 0, there exists n0 ≥ 1 such that |e(n)| ≤ εn for all n ≥ n0. Choose n1

such that Cn2
0/n

2
1 ≤ ε. Then for all n ≥ n1,

| 1

n2

n∑
j=1

e(j)| ≤ 1

n2

( n0∑
j=1

|e(j)|+
n∑

j=n0+1

|e(j)|
)
≤ 1

n2
1

Cn2
0 +

1

n2
ε

n∑
j=1

j

≤ ε + ε = 2ε,

so that
∑n

j=1 e(j) = o(n2). Similarly
∑n

j=1 je(j) = o(n3).

7 Discussion

We have addressed the issue of validity of the 0–1 test as presented in [6, 7]. The
original 0–1 test [5] included an equation for a phase variable θ(n + 1) = θ(n) + c +
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v ◦ fn rather than a constant “frequency” c. The extra equation for the phase driven
by the observable made available theorems from ergodic theory on skew product
systems [4, 13, 15]. These theorems rely on the fact that for typical observables v the
augmented system with the phase variable is mixing.

In the modified version proposed in [6], the phase variable is not mixing, and the
results from ergodic theory are not applicable anymore. Nevertheless, the modified
test is more effective, particularly for systems with noise [6]. In this paper, we have
verified that the modified test can be rigorously justified. Moreover, our theoretical
results are stronger than the corresponding results mentioned in [5] for the original
test.

Our main results in this paper are that Kc = 0 with probability one in the case of
periodic or quasiperiodic dynamics, and that Kc = 1 with probability one for “suffi-
ciently chaotic” dynamics. The latter includes dynamical systems with hyperbolicity,
(including weakly mixing systems such as Pomeau-Manneville intermittency maps).
In particular, nonuniform hyperbolicity assumptions combined with summable auto-
correlations for the observable suffice to obtain Kc = 1. In the absence of hyperbol-
icity, we still obtain Kc = 1 (with probability one) for observables with exponentially
decaying autocorrelations. These results extend to systems that are mixing up to a
cycle of finite length.

We also made explicit the connection with power spectra: the test yields Kc = 1
with probability one if and only if the power spectrum is well-defined and positive
for almost all frequencies. The criteria above – exponential decay of autocorrelations
or summable correlations plus hyperbolicity (up to a finite cycle) – are sufficient
conditions for existence and positivity of the power spectrum.

There remains the question of whether typical smooth dynamical systems are
either quasiperiodic or have power spectra that are defined and positive almost ev-
erywhere. This is required for a complete justification of the test for chaos. Unfortu-
nately the current understanding of dynamical systems is inadequate to answer this
question, but all numerical studies so far indicate this to be the case. We leave it as a
challenge to the skeptical reader to concoct a robust smooth example where the test
fails! On the positive side, we showed in this paper that under a mild assumption on
autocorrelations, slightly stronger than summable but much weaker than exponen-
tial, we obtain either Kc = 0 or Kc = 1 for each choice of c, though without invoking
hyperbolicity we cannot rule out the possibility that both Kc = 0 and Kc = 1 occur
with positive probability.

Our investigations of the validity of the test for chaos enabled us to construct an
improved version of our test. The modification which amounts to using Dc(n) rather
than the mean square displacement Mc(n) was shown to significantly improve the
test in [7]. In addition, we showed in [7] that Kc is better computed by correlating
the mean square displacement with linear growth rather than computing the log-
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log slope. In this paper, we have shown that our rigorous results apply also to the
improved implementation of the test in [7].
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