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Abstract

Gouëzel and Sarig introduced operator renewal theory as a method to prove
sharp results on polynomial decay of correlations for certain classes of nonuni-
formly expanding maps. In this paper, we apply the method to planar dispers-
ing billiards and multidimensional nonMarkovian intermittent maps.

1 Introduction

In two seminal papers, Young [53, 54] obtained results on exponential and subexpo-
nential decay of correlations for nonuniformly hyperbolic dynamical systems. In the
case of subexponential decay, a natural question is to establish that the decay rates
obtained in this way are optimal. The first progress in this direction was by Sarig [47]
who introduced the method of operator renewal theory. This method was extended
and refined by Gouëzel [24] and gives optimal results for one-dimensional intermittent
maps of Pomeau-Manneville type [46, 51].

A challenge has been to extend the applicability of operator renewal theory to
higher-dimensional examples. Two specific directions have required attention: (i)
planar dispersing billiards, (ii) multidimensional nonMarkovian intermittent maps.
For results in these directions, we mention [31, 52].

In this paper, we extend the operator renewal theory of Gouëzel and Sarig [24, 47]
to provide lower bounds in general situations where the Young tower method [54]
provides upper bounds. This includes directions (i) and (ii) above. In the case of
lower bounds for dispersing billiards, these are the first results using operator renewal
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theory, and the first results by any methods for billiards with decay rates other than
n−1. For multidimensional intermittent maps, we obtain essentially optimal upper
and lower bounds on decay of correlations.

Roughly speaking the result of Gouëzel and Sarig takes the following form. Let
f : M →M be an ergodic measure-preserving transformation defined on a probability
space (M,µ). The correlation function ρv,w(n) is given by

ρv,w(n) =
∫
M
v w ◦ fn dµ−

∫
M
v dµ

∫
M
w dµ (1.1)

for L2 observables v, w : M → R. For definiteness, as in [24, 47] we consider one-
dimensional Markovian intermittent maps such as in [37] with f(x) ≈ x1+1/β for
x near zero, where β > 1, and unique absolutely continuous invariant probability
measure µ. Fix η ∈ (0, 1). By [54], there is a constant C > 0 such that

|ρv,w(n)| ≤ C‖v‖Cη |w|∞ n
−(β−1)

for all v ∈ Cη(M), w ∈ L∞(M), n ≥ 1. Now fix a closed subset X ⊂ M with 0 6∈ X
and let h : X → Z+ denote the first return time to X. By [24, 47], there exists a
constant C > 0 such that∣∣ρv,w(n)−

∑
j>n µ(h > j)

∫
M
v dµ

∫
M
w dµ

∣∣ ≤ C‖v‖Cη |w|∞ζβ(n) (1.2)

for all v ∈ Cη(M) supported in X, w ∈ L∞(X), n ≥ 1, where

ζβ(n) =


n−β β > 2

n−2 log n β = 2

n−2(β−1) 1 < β < 2

. (1.3)

Since µ(h > n) ∼ cn−β for some c > 0, this shows that the results in [54] are sharp.
If in addition

∫
v dµ = 0, then ρv,w(n) = O(n−β) for all β > 1. (One consequence

of the main result in this paper is that the latter estimate holds for all w ∈ L∞(M);
this is not shown in previous papers. See Remark 3.3.)

Abstract theorems for nonuniformly expanding and nonuniformly hyperbolic dy-
namical systems are stated in Sections 3 and 7 respectively. In common with the
method of [24, 47], we induce on a convenient subset Y ⊂ M with induced map
F : Y → Y that is Gibbs-Markov for nonuniformly expanding maps and Gibbs-
Markov after quotienting along local stable leaves for nonuniformly hyperbolic maps.
A key difference from [24, 47] is that F need not be a first return map. As in [10],
we are able to control the adverse effects associated with not being a first return and
to obtain results that are essentially the same as those in [24, 47].

Remark 1.1 We note that the setting in [52] is currently restricted to planar time-
reversible systems.

In the remainder of the introduction, we focus on the applications to billiards and
multidimensional intermittent systems.
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1.1 Billiard examples

Markarian [38] and Chernov & Zhang [17] considered a general framework for
analysing decay of correlations for diffeomorphisms with singularities, with special
emphasis on slowly mixing planar dispersing billiards. All known results on upper
bounds for decay of correlations for dispersing billiards fall within this framework.
Within this framework, we obtain lower bounds.

The specific examples are described in more detail in Section 8. Here we summarize
the results. All integrals are with respect to Liouville measure. Upper bounds are for
general dynamically Hölder observables v and w. Lower bounds are for dynamically
defined Hölder observables with nonzero mean supported in a suitable subset X of
phase space.

• Bunimovich stadia, semidispersing billiards, billiards with cusps. In these
examples, the correlation decay rate O(n−1) was established by [15, 17, 18, 38]. By
the argument in [7, Corollary 1.3] (see also [6, Corollary 1.1]), the result is essentially
optimal in the sense that if v = w and if v is Hölder and satisfies a nondegeneracy
condition, then nρv,w(n) 6→ 0 as n → ∞. However, for several years it remained an
open question to obtain an asymptotic rate of the type (1.2).

We prove that for all three types of billiard there is a constant c > 0 such that
ρv,w(n) ∼ cn−1

∫
v
∫
w. The constant c is given explicitly in terms of the billiard

configuration space. For example, in the case of a Bunimovich stadium with straight
sides of length `,

c =
4 + 3 log 3

4− 3 log 3

`2

4(π + `)
.

(Throughout, log means logarithm to base e.)
A similar result for semidispersing billiards and billiards with cusps (but not

stadia) can be found in [52], though it is not clear that the asymptotic ρv,w(n) ∼
const. n−1 is established there.

• Billiards with cusps at flat points. Correlation decay rates O(n−(β−1)) with
β any prescribed value in (1, 2) were obtained in [56]. Here, β corresponds to the
flatness at the cusp. We obtain the asymptotic ρv,w(n) ∼ cn−(β−1)

∫
v
∫
w. Again,

the constant c is given explicitly.

• Bunimovich flowers. The correlation decay rate ρv,w(n) = O((log n)3n−2) was
obtained in [17]. It is conjectured that the optimal rate is const. n−2. We obtain the
lower bound ρv,w(n)� (log n)−1n−2

∫
v
∫
w.

• Dispersing billiards with vanishing curvature. Correlation decay rates
O((log n)βn−(β−1)) with β any prescribed value in (2,∞) were obtained in [56] for
Hölder observables. Here, β corresponds to the flatness at the points of vanishing
curvature. We obtain the lower bound ρv,w(n)� (log n)−1n−(β−1)

∫
v
∫
w.
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1.2 Hu-Vaienti maps

We consider a class of piecewise smooth multidimensional nonuniformly expanding
intermittent maps f : M → M , M ⊂ Rk compact, with a neutral fixed point.
The case k = 1 is very well-understood. Upper bounds on decay of correlations were
obtained by [29, 54] and the results were shown to be sharp by [24, 29, 47]. Extending
to multidimensional examples is relatively straightforward in the Markov case, but
the nonMarkov case is very challenging because the standard symbolically Hölder
spaces are unavailable for nonMarkov maps and there are difficulties using spaces of
bounded variation in higher dimensions. Also, as shown in [30], such maps often have
poor bounded distortion properties.

Hu & Vaienti [30] obtained results on existence of absolutely continuous ergodic
invariant measures (both finite and infinite) for various classes of multidimensional
nonMarkovian intermittent maps. In a subsequent paper [31], first results on upper
and lower bounds on decay of correlations were obtained. As an application of the
results in this paper, we obtain essentially optimal upper and lower bounds.

To fix ideas, we focus on [31, Example 5.1] as described in detail in Section 6.4.
The neutral fixed point is taken to be at 0 and f(x) = x(1 + |x|γ + O(|x|γ′)) for
x close to 0 where γ ∈ (0, k) and γ′ > γ. Using results of [1, 30], we show that
ρv,w(n) = O(n−((k/γ)−1−ε)) for v Hölder and w ∈ L∞, where ε is arbitrarily small. This
is in marked contrast to [31] who obtain results no better than ρv,w(n) = O(n−((1/γ)−1))
in the multidimensional case k ≥ 2 and only for observables with support bounded
away from 0.

Moreover, our decay rate is essentially optimal. For v Hölder and w ∈ L∞ with
supports bounded away from 0 and nonzero mean, we show that for any ε > 0

n−((k/γ)−1+ε) � ρv,w(n)� n−((k/γ)−1−ε). (1.4)

The remainder of the paper is organized as follows. In Section 2, we recall
background material on inducing, Gibbs-Markov maps, Young towers, and Chernov-
Markarian-Zhang structures. Our main result for nonuniformly expanding maps is
stated in Section 3 and proved in Section 4. In Section 5, we relate tail estimates
for different return times. In Section 6, we apply our results to multidimensional
nonuniformly expanding maps including those mentioned in Subsection 1.2.

In Section 7, we extend our main result to nonuniformly hyperbolic systems,
including solenoidal versions of the maps in Section 6. Finally, in Section 8, we
consider the examples from billiards mentioned in Subsection 1.1.

Notation We use the “big O” and� notation interchangeably, writing an = O(bn)
or an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Also,
we write an ≈ bn if an � bn � an. As usual, an ∼ bn as n → ∞ means that
limn→∞ an/bn = 1.
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Convolution of sequences an, bn (n ≥ 0) is denoted (a ? b)n =
∑n

j=0 ajbn−j. Often

we use the abuse of notation an ?bn. If a0 is undefined (as for example an = n−2 log n)
then we redefine a0 = 1 without mentioning it. With these conventions we have the
standard facts n−p ? n−q = O(n−q) and n−p ? n−q log n = O(n−q log n) for all p > 1,
q ∈ (0, p].

2 Preliminaries

In this section, we recall background material on (one-sided) Chernov-Markarian-
Zhang structures.

Gibbs-Markov maps Let (Y, µY ) be a probability space with an at most count-
able measurable partition α, and let F : Y → Y be an ergodic measure-preserving
transformation. For θ ∈ (0, 1), define the separation time s(y, y′) to be the least
integer n ≥ 0 such that F ny and F ny′ lie in distinct partition elements in α. It is
assumed that the partition α separates trajectories, so s(y, y′) = ∞ if and only if
y = y′; then θs is a metric.

Let ξ = dµY
dµY ◦F

: Y → R. We say that F is a (full-branch) Gibbs-Markov map if

• F |a : a→ Y is a measurable bijection for each a ∈ α, and

• There are constants C > 0, θ ∈ (0, 1) such that | log ξ(y)− log ξ(y′)| ≤ Cθs(y,y
′)

for all y, y′ ∈ a, a ∈ α.

A consequence is that there is a constant C > 0 such that

ξ(y) ≤ CµY (a) and |ξ(y)− ξ(y′)| ≤ CµY (a)θs(y,y
′), (2.1)

for all y, y′ ∈ a, a ∈ α.

Return maps Suppose that (M,µ) is a probability space and that f : M → M is
an ergodic measure-preserving transformation. Fix a measurable subset X ⊂M with
µ(X) > 0 and h : X → Z+ integrable such that fh(x)x ∈ X for all x ∈ X. Then h is
called a return time and fh : X → X is called a return map.

If h is the first return time to X under f (i.e. h(x) = inf{n ≥ 1 : fnx ∈ X}),
then fh : X → X is called the first return map and µX = (µ|X)/µ(X) is an ergodic
fh-invariant probability measure on X.

Young towers Let F : Y → Y be a full-branch Gibbs-Markov map on (Y, µY )
with partition α and let ϕ : Y → Z+ be an integrable function constant on partition
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elements. We define the (one-sided) Young tower ∆ = Y ϕ and tower map f∆ : ∆→ ∆
as follows:

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` ≤ ϕ(y)− 1}, f∆(y, `) =

{
(y, `+ 1) ` ≤ ϕ(y)− 2

(Fy, 0) ` = ϕ(y)− 1
.

Let ϕ̄ =
∫
Y
ϕdµY . Then µ∆ = (µY × counting)/ϕ̄ is an ergodic f∆-invariant prob-

ability measure on ∆, and it is mixing if and only if gcd{ϕ(a) : a ∈ α} = 1.
The tower has exponential tails if µY (ϕ > n) = O(e−cn) for some c > 0, polyno-
mial tails if µY (ϕ > n) = O(n−β) for some β > 1, and superpolynomial tails if
µY (ϕ > n) = O(n−β) for all β > 1.

Now suppose that f : M →M is an ergodic measure-preserving transformation on
a probability space (M,µ), and that Y ⊂ M is measurable with µ(Y ) > 0. Suppose
that F : Y → Y is a full-branch Gibbs-Markov map with respect to a probability
measure µY on Y , and that ϕ : Y → Z+ is a return time, constant on partition
elements, such that F = fϕ. Form the tower ∆ = Y ϕ and tower map f∆ : ∆ → ∆.
The map πM : ∆ → M , πM(y, `) = f `y defines a semiconjugacy between f∆ and f .
We require moreover that (πM)∗µ∆ = µ. Then we say that f is modelled by a Young
tower.

Chernov-Markarian-Zhang structure Suppose that (M,µ) is a probability
space and let f : M →M be an ergodic and mixing measure-preserving transforma-
tion. Roughly speaking, the map f admits a Chernov-Markarian-Zhang structure if
there is an integrable first return time h : X → Z+ such that the first return map
fX = fh : X → X is modelled by a Young tower Y σ. The full map f : M →M is also
modelled by a Young tower Y ϕ. We denote these towers by ∆ = Y ϕ and ∆rapid = Y σ

since in the applications that we have in mind either the tower ∆rapid is exponential
or for any q > 1 the subset Y ⊂ X can be chosen such that fX is modelled by a
Young tower Y σ with µY (σ > n) = O(n−q). In the latter case, we say that fX is
modelled by Young towers with superpolynomial tails.

In more detail, suppose Y ⊂ X ⊂ M are Borel sets with µ(Y ) > 0. Define the
first return time h : X → Z+ and first return map fX = fh : X → X.

We assume that fX : X → X is modelled by a Young tower ∆rapid = Y σ with
return time σ : Y → Z+ and return map F = fσX : Y → Y . In particular, F =
fσX : Y → Y is a full-branch Gibbs-Markov map with ergodic invariant probability
measure µY and partition α such that σ is constant on partition elements. We require
in addition that h is constant on f `Xa for all a ∈ α, 0 ≤ ` ≤ σ(a)− 1.

Define the induced return time

ϕ = hσ : Y → Z+, ϕ(y) =
∑σ(y)−1

`=0 h(f `y). (2.2)

Then ϕ is integrable with respect to µY and constant on partition elements. In
particular, f : M → M is modelled by a Young tower ∆ = Y ϕ with the same
Gibbs-Markov map F = fσX = fϕ.
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We say that f : M → M satisfying these assumptions possesses a Chernov-
Markarian-Zhang structure.

Remark 2.1 The method of choosing a first return map modelled by a Young tower
with exponential tails arises in various contexts in the literature, see for example [9, 10]
in the noninvertible context. However, the method plays a special role in the context
of billiards [17, 38], see Remark 7.1 below.

Remark 2.2 It is part of our set up that µ is mixing, but in general the tower map
f∆ : ∆ → ∆ is mixing only up to a finite cycle d ≥ 1 where d is often unknown.
As in [13, Theorem 2.1, Proposition 10.1], the a priori knowledge that µ is mixing
ensures that for many purposes the value of d is irrelevant (in fact it suffices that µ
is ergodic for all powers of f).

Dynamically Hölder observables Suppose that f : M → M possesses a
Chernov-Markarian-Zhang structure as above. Fix θ ∈ (0, 1). For v : M → R,
define

‖v‖H = |v|∞ + |v|H, |v|H = sup
y,y′∈Y, y 6=y′

sup
0≤`≤ϕ(y)−1

|v(f `y)− v(f `y′)|
θs(y,y′)

. (2.3)

We say that v is dynamically Hölder if ‖v‖H <∞ and denote by H(M) the space of
such observables.

Of particular interest are observables supported in X. We identify L∞(X) with
{w ∈ L∞(M) : w|M\X ≡ 0}. Also, we write H(X) = {v ∈ H(M) : supp v ⊂ X}.

It is standard that Hölder observables are dynamically Hölder for the classes of
dynamical systems of interest in this paper, as we now recall. Given η ∈ (0, 1] and a
metric d on M , define

|v|Cη = sup
x,x′∈M,x6=x′

|v(x)− v(x)|/d(x, x′)η.

Let Cη(M) be the space of bounded observables v : M → R for which |v|Cη <∞.

Proposition 2.3 Let η ∈ (0, 1]. Suppose that there exist K > 0, θ0 ∈ (0, 1) such that

d(f `y, f `y′) ≤ Kθ
s(y,y′)
0 for all y, y′ ∈ Y , 0 ≤ ` ≤ ϕ(y)− 1.

Then Cη(M) ⊂ H(M) where we may choose any θ ∈ [θη0 , 1).

Proof Let v ∈ Cη(M), y, y′ ∈ Y , 0 ≤ ` < ϕ(y)− 1. Then

|v(f `y)− v(f `y′)| ≤ |v|Cηd(f `y, f `y′)η ≤ Kη|v|Cηθ
s(y,y′).

Hence |v|H ≤ Kη|v|Cη and it follows that v ∈ H(M).
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3 Statement of the main result

In this section, we state our main abstract result for maps f : M → M with a
Chernov-Markarian-Zhang structure. Let Y ⊂ X ⊂ M denote the corresponding
return map sets and recall that ϕ = hσ : Y → Z+ is the induced return time.
Throughout, we suppose that µY (ϕ > n) = O(n−β

′
) for some β′ > 1. (As discussed in

Section 5, in our main examples any β′ < β is permitted where µX(h > n) = O(n−β),
and often we can take β′ = β. However, h and β play no role in this section.)

Define the correlation function ρv,w(n) as in (1.1). It follows from Young [54] that
ρv,w(n) = O(‖v‖H|w|∞ n−(β′−1)) for all v ∈ H(M), w ∈ L∞(M), n ≥ 1. We can now
state our main theorem. Let

σn =
∫
Y
σ1{ϕ>n}dµY , γn = n−β

′
? σn. (3.1)

Define ζβ′ as in (1.3).

Theorem 3.1 Let f : M →M be a map with a Chernov-Markarian-Zhang structure,
and suppose that µY (ϕ > n) = O(n−β

′
) for some β′ > 1. Then there is a constant

C > 0 such that for all n ≥ 1,

(a)
∣∣∣ρv,w(n)− ϕ̄−1

∑
j>n

µY (ϕ > j)

∫
M

v dµ

∫
M

w dµ
∣∣∣ ≤ C‖v‖H|w|∞(γn + ζβ′(n))

for all v ∈ H(X), w ∈ L∞(X),

(b) |ρv,w(n)| ≤ C‖v‖H|w|∞γn for all v ∈ H(X) with
∫
M
v dµ = 0, w ∈ L∞(M).

Clearly n−β
′ ≤ σn ≤ γn. The sequences are readily estimated from above:

Proposition 3.2 • If σ is bounded, then γn = O(n−β
′
).

• If σ has exponential tails, then γn = O(n−β
′
log n).

• Let ε > 0. If µY (σ > n) = O(n−q) with q sufficiently large (depending on ε),
then γn = O(n−(β′−ε)).

Proof Suppose that σ has exponential tails, and fix K > 0. Then

σn =

∫
Y

σ1{ϕ>n}µY ≤ KµY (ϕ > n) +

∫
Y

1{σ>K}σ dµY � Kn−β
′
+O(e−cK),

for some c > 0. Choosing K = (β′/c) log n, we obtain σn = O(n−β
′
log n). Also

n−β
′
? n−β

′
log n = O(n−β

′
log n).

The other cases are similar and hence omitted.
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Remark 3.3 In particular, if σ is bounded, then we are back in the situation of [24,
47] and our estimates reduce to theirs. Note that we have the slight improvement in
Theorem 3.1(b) that w is an arbitrary L∞ function, not necessarily supported in X.
Such a result does not seem to have been noted before.

When σ is unbounded, [24, 47] does not apply directly since the estimates required
for applying operator renewal theory are problematic on X, while the dynamics on
Y is not given by a first return map, so it is necessary to incorporate arguments
from [10].

Remark 3.4 As in [10], we can incorporate observables supported on the whole of
M that decay sufficiently quickly off X. Let σ̃ : Y → R. Suppose that v, w : M → R
are such that

∑ϕ−1
`=0 |v ◦ f `| ≤ σ̃,

∑ϕ−1
`=0 |w ◦ f `| ≤ σ̃ on Y . Then Theorem 3.1 holds

with σn defined using σ̃ instead of σ.
In contrast to [10], we do not require that the Hölder constants of v decay off X.

4 Proof of the main theorem

In this section we prove Theorem 3.1. We continue to suppose that f : M → M
possesses a Chernov-Markarian-Zhang structure and that µY (ϕ > n) = O(n−β

′
) for

some β′ > 1. In Subsection 4.1, we state an analogous result, Theorem 4.2, for ob-
servables defined on ∆ and deduce Theorem 3.1 as a consequence. In Subsection 4.2,
we recall some results from operator renewal theory for the Gibbs-Markov map on Y .
In Subsection 4.3, we prove Theorem 4.2.

4.1 Tower reformulation

Recall that M is modelled by a Young tower ∆ = Y ϕ and that F = fϕ : Y → Y
is a full-branch Gibbs-Markov map. Let d = gcd{ϕ(a) : a ∈ α}. The tower map
f∆ : ∆ → ∆ is mixing if and only if d = 1. To deal with the cases d = 1 and
d ≥ 2 uniformly, we set Φ = d−1ϕ. Replace ∆ by ∆ = Y Φ and redefine f∆ : ∆→ ∆
accordingly. Also, define µ∆ = (µY × counting)/Φ̄. Then f∆ is mixing.

Define
πM : ∆→M, πM(y, `) = fd`y.

Then πM is a semiconjugacy between f∆ and g = fd, and (πM)∗µ∆ is an ergodic g-
invariant probability measure on M . It is an easy consequence of the definitions that
(πM)∗µ∆ is absolutely continuous with respect to the original measure µ. Moreover,
µ is mixing for f by assumption and so is also ergodic for g. Hence πM is a measure-
preserving semiconjugacy between (∆, f∆, µ∆) and (M, g, µ).

Observables v : M → R supported in X lift to observables ṽ = v ◦ πM : ∆ → R
supported in π−1

M (X) ⊂ ∆. More generally, we consider observables v supported in
Xd = X ∪ f−1X ∪ · · · ∪ f−(d−1)X. Such observables lift to observables ṽ : ∆ → R
supported in X̂ = π−1

M (Xd) ⊂ ∆.
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Proposition 4.1
∑Φ(y)−1

`=0 1X̂(y, `) ≤ σ(y) for y ∈ Y .

Proof Let y ∈ Y . Set hj(y) =
∑j−1

i=0 h(f iXx). Since h : X → Z+ is the first return
time to X under the map f : M →M we have that f `y ∈ X for some ` ≥ 0 precisely
when ` = hj(y) for some j ≥ 0. Since ϕ(y) = hσ(y)(y), there are precisely σ(y) returns

of y to X under f by time ϕ(y). Hence
∑ϕ(y)−1

`=0 1{f`y∈X} = σ(y) for y ∈ Y .
Finally,

Φ(y)−1∑
`=0

1X̂(y, `) =

Φ(y)−1∑
`=0

1{f`dy∈Xd} ≤
Φ(y)−1∑
`=0

d−1∑
i=0

1{f`d+iy∈X} =

ϕ(y)−1∑
`=0

1{f`y∈X},

and the result follows.

Fix θ ∈ (0, 1) and define

‖ṽ‖θ = |ṽ|∞ + |ṽ|θ, |ṽ|θ = sup
y,y′∈Y, y 6=y′

sup
0≤`≤Φ(y)−1

|ṽ(y, `)− ṽ(y′, `)|
θs(y,y′)

. (4.1)

Let Fθ(X̂) denote the space of observables ṽ supported in X̂ with ‖ṽ‖θ <∞.
Given ṽ, w̃ ∈ L∞(∆), we define

ρ∗ṽ,w̃(n) =
∫

∆
ṽ w̃ ◦ fn∆ dµ∆.

Theorem 4.2 There is a constant C > 0 such that for all n ≥ 1,

(a)
∣∣∣ρ∗ṽ,w̃(n) − (1 + Φ̄−1

∑
j>n µY (Φ > j))

∫
∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣ ≤ C‖ṽ‖θ|w̃|∞(γnd +

ζβ′(n)) for all ṽ ∈ Fθ(X̂), w̃ ∈ L∞(X̂),

(b) |ρ∗ṽ,w̃(n)| ≤ C‖ṽ‖θ|w̃|∞γnd for all ṽ ∈ Fθ(X̂) with
∫

∆
ṽ dµ∆ = 0, w̃ ∈ L∞(∆).

We conclude this subsection by showing that Theorem 3.1 is a direct consequence
of Theorem 4.2.

Proof of Theorem 3.1 Recall that g = fd. Write n = md− r for m ≥ 1, 0 ≤ r ≤
d− 1. Using the measure-preserving semiconjugacy πM : ∆→M , πM(y, `) = g`y, we
can write

ρv,w(n) =
∫
M
v ◦ f r w ◦ gm dµ−

∫
M
v dµ

∫
M
w dµ

= ρ∗
ṽ◦fr,w̃

(m)−
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆. (4.2)

Suppose as in part (a) that v ∈ H(X) and w ∈ L∞(X). Then supp ṽ ◦ f r ⊂
π−1
M f−rX ⊂ π−1

M Xd = X̂ and supp w̃ ⊂ π−1
M X ⊂ Xd. Moreover,

|ṽ ◦ f r|θ = sup
y,y′∈Y, y 6=y′

sup
0≤`≤Φ(y)−1

|v(fd`+ry)− v(fd`+ry′)|/θs(y,y′)

≤ sup
y,y′∈Y, y 6=y′

sup
0≤`≤ϕ(y)−1

|v(f `y)− v(f `y′)|/θs(y,y′) = |v|H.

10



Hence it follows from (4.2) and Theorem 4.2(a) that∣∣∣ρv,w(n)− Φ̄−1
∑

j>m µY (Φ > j)
∫
M
v dµ

∫
M
w dµ

∣∣∣
=
∣∣∣ρ∗
ṽ◦fr,w̃

(m)− (1 + Φ̄−1
∑

j>m µY (Φ > j))
∫

∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣
� ‖ṽ ◦ f r‖θ|w̃|∞(γmd + ζβ′(m)) ≤ ‖v‖H|w|∞(γmd + ζβ′(m)).

Now γmd = γn+r ≤ γn and ζβ′(m)� ζβ′(n). Moreover,

Φ̄−1
∑
j>m

µY (Φ > j) = ϕ̄−1d
∑

j>(n+r)/d

µY (ϕ > jd) = ϕ̄−1d
∑

j>[n/d]

µY (ϕ > jd) +O(n−β
′
).

By monotonicity of µY (ϕ > k),

jd+d−1∑
k=jd

µY (ϕ > k) ≤ dµY (ϕ > jd) ≤
jd−1∑

k=jd−d

µY (ϕ > k).

Summing over j yields∑
k≥([n/d]+1)d

µY (ϕ > k) ≤ d
∑

j>[n/d]

µY (ϕ > jd) ≤
∑

k≥[n/d]d

µY (ϕ > k),

and hence d
∑

j>[n/d] µY (ϕ > jd) =
∑

k>n µY (ϕ > k) + O(n−β
′
). This completes the

proof of part (a).
Similarly, in the context of part (b),

|ρv,w(n)| = |ρ∗
ṽ◦fr,w̃(m)| � ‖ṽ ◦ f r‖θ|w̃|∞γmd ≤ ‖v‖H|w|∞γn

by Theorem 4.2(b).

4.2 Operator renewal theory on Y

Set D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}. Let R : L1(Y ) → L1(Y ) and
L : L1(∆) → L1(∆) denote the transfer operators for F : Y → Y and f∆ : ∆ → ∆
respectively. Define the renewal operators R(n), T (n) : L1(Y )→ L1(Y ),

R(n)v = R(1{Φ=n}v), n ≥ 1, T (n)v = 1YL
n(1Y v), n ≥ 0,

and the corresponding Fourier series R̂(z), T̂ (z) : L1(Y )→ L1(Y ), for z ∈ D,

R̂(z) =
∞∑
n=1

R(n)zn, T̂ (z) =
∞∑
n=0

T (n)zn.

11



A calculation shows that

R̂(z)v = R(zΦv) for z ∈ D and T̂ = (I − R̂)−1 on D.

Also, for z ∈ D, we define

B̂(z) : L1(Y )→ L1(Y ), B̂(z) = (z − 1)T̂ (z),

with Fourier coefficients B(n), n ≥ 0.
Given v : Y → R, define |v|θ = supy 6=y′ |v(y)−v(y′)|/θs(y,y′) and ‖v‖θ = |v|∞+ |v|θ.

Let Fθ(Y ) be the Banach space of observables v with ‖v‖θ < ∞. Since F : Y → Y
is a Gibbs-Markov map and Φ : Y → Z+ is constant on partition elements, the
operators R, R(n), T (n), R̂(z) and T̂ (z) are bounded operators on Fθ(Y ). Define
Pv = Φ̄−1

∫
Y
v dµY .

Define ζβ′ as in the introduction. Since F is mixing and gcd{Φ(a) : a ∈ α} = 1,
it follows from [24] that on Fθ(Y ):

Lemma 4.3 (a) T (n) = b(n)P +H(n) where b(n) = 1 + Φ̄−1
∑

j>n µY (Φ > j) and
‖H(n)‖θ = O(ζβ′(n)).

(b) There is a sequence b̃(n) > 0 such that T (n) = b̃(n)P + H̃(n) where ‖H̃(n)‖θ =
O(n−β

′
).

(c) ‖B(n)‖θ = O(n−β
′
).

4.3 Proof of Theorem 4.2

Let ṽ, w̃ ∈ L∞(∆). Define V (n), W (n) : Y → R,

V (n)(y) = 1{Φ(y)≥n}ṽ(y,Φ(y)− n), n ≥ 1, W (n)(y) = 1{Φ(y)>n}w̃(y, n), n ≥ 0,

as well as

J0(n) =

∫
∆

1{n+`<Φ(y)}ṽ(y, `)w̃(y, n+ `) dµ∆.

The following formula is a discrete time analogue of a formula in [45]. (The proof is
in the Appendix.)

Proposition 4.4 ρ∗ṽ,w̃(n) = J0(n) + Φ̄−1
∫
Y

(T (n) ?RV (n)) ?W (n) dµY for all ṽ, w̃ ∈
L∞(∆), n ≥ 1. 1

Proposition 4.5 |V (n)|1 ≤ |ṽ|∞ µY (Φ ≥ n) and |W (n)|1 ≤ |w̃|∞ µY (Φ > n) for all
ṽ, w̃ ∈ L∞(∆), n ≥ 1. Moreover, there is a constant C > 0 such that ‖RV (n)‖θ ≤
C‖ṽ‖θ µY (Φ ≥ n) for all ṽ ∈ Fθ(∆), n ≥ 1.

1Extending the convention mentioned in the introduction, T (n)?RV (n) =
∑n

j=0 T (j)RV (n− j).

Similarly, (T (n) ? RV (n)) ? W (n) =
∑n

j=0 G(j)W (n− j) where G(n) = T (n) ? RV (n).
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Proof The estimates for |V (n)|1 and |W (n)|1 are immediate. Let y, y′ ∈ a, a ∈ α.
Then |V (n)(y)| ≤ 1{Φ(a)≥n}|ṽ|∞ and

|V (n)(y)− V (n)(y′)| = 1{Φ(a)≥n}|ṽ(y,Φ(a)− n)− ṽ(y′,Φ(a)− n)|
≤ 1{Φ(a)≥n}|ṽ|θ θs(y,y

′).

Given y ∈ Y , set ya = F−1(y) ∩ a. Then (RV (n))(y) =
∑

aξ(ya)V (n)(ya) so

|RV (n)|∞ �
∑

aµY (a)|ṽ|∞ 1{Φ(a)≥n} = |ṽ|∞µY (Φ ≥ n),

by (2.1). Also, for y, y′ ∈ Y ,

|(RV (n))(y)−(RV (n))(y′)|
≤
∑

a

{
ξ(ya)|V (n)(ya)− V (n)(y′a)|+ |ξ(ya)− ξ(y′a)||V (n)(y′a)|

}
� θs(y,y

′)‖ṽ‖θ
∑

aµY (a)1{Φ(a)≥n} = θs(y,y
′)‖ṽ‖θ µY (Φ ≥ n).

Hence |RV (n)|θ � ‖ṽ‖θ µY (Φ ≥ n) and the estimate for ‖RV (n)‖θ follows.

Corollary 4.6 Let H(n), H̃(n) : Fθ(Y ) → Fθ(Y ) be as Lemma 4.3. There is a
constant C > 0 such that

(a) |
∫
Y

(H(n) ? RV (n)) ? W (n) dµY | ≤ C‖ṽ‖θ|w̃|∞ ζβ′(n),

(b) |
∫
Y

(H̃(n) ? RV (n)) ? W (n) dµY | ≤ C‖ṽ‖θ|w̃|∞ n−β
′
,

for all ṽ ∈ Fθ(∆), w̃ ∈ L∞(∆), n ≥ 1.

Proof By Proposition 4.5 and the estimate for H(n) in Lemma 4.3(a), the first
integral is estimated by

|H(n) ? RV (n)|∞ ? |W (n)|1 ≤ ‖H(n)‖θ ? ‖RV (n)‖θ ? |W (n)|1
� ζβ′(n) ? ‖ṽ‖θ n−β

′
? |w̃|∞ n−β

′ � ‖ṽ‖θ|w̃|∞ ζβ′(n).

The second integral is estimated in the same way using Lemma 4.3(b).

For n ≥ 0, define

A1(n)(y) = 1{Φ(y)>n}

Φ(y)−n−1∑
`=0

ṽ(y, `), A2(n)(y) =

Φ(y)−1∑
`=0

1{n<`}w̃(y, `).

Lemma 4.7 (a) |J0(n)| ≤ Φ̄−1|ṽ|∞|w̃|∞ σnd for all ṽ ∈ L∞(X̂), w̃ ∈ L∞(∆),
n ≥ 1.

(b) |A1(n)|1 ≤ |ṽ|∞ σnd for all ṽ ∈ L∞(X̂), n ≥ 1.
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(c) |A2(n)|1 ≤ |w̃|∞ σnd for all w̃ ∈ L∞(X̂), n ≥ 1.

Proof Since ṽ is supported in X̂,

|J0(n)| ≤ |ṽ|∞|w̃|∞
∫

∆

1{n<Φ(y)}1X̂(y, `) dµ∆

= Φ̄−1|ṽ|∞|w̃|∞
∫
Y

1{ϕ(y)>nd}

Φ(y)−1∑
`=0

1X̂(y, `) dµY

≤ Φ̄−1|ṽ|∞|w̃|∞
∫
Y

1{ϕ>nd}σ dµY = Φ̄−1|ṽ|∞|w̃|∞σnd,

by Proposition 4.1.
Next, |A1(n)(y)| ≤ 1{Φ(y)>n}

∑Φ(y)−1
`=0 |ṽ(y, `)| and it again follows that∫

Y
|A1(n)| dµY ≤ |ṽ|∞

∫
Y

1{Φ>n}σ dµY = |ṽ|∞ σnd. Similarly for A2(n).

The Fourier series for V (n), W (n) are given by

V̂ (z)(y) =

Φ(y)−1∑
`=0

zΦ(y)−`ṽ(y, `), Ŵ (z)(y) =

Φ(y)−1∑
`=0

z`w̃(y, `), z ∈ D.

Proposition 4.8 Â1(z) = (z − 1)−1(V̂ (z) − V̂ (1)), and Â2(z) = (z − 1)−1(Ŵ (z) −
Ŵ (1)) for z ∈ D.

Proof We have

Â1(z)(y) =
∞∑
n=0

znA1(n)(y) =

Φ(y)−1∑
n=0

zn
Φ(y)−n−1∑

`=0

ṽ(y, `) =

Φ(y)−1∑
`=0

( Φ(y)−`−1∑
n=0

zn
)
ṽ(y, `)

= (z − 1)−1

Φ(y)−1∑
`=0

(zΦ(y)−` − 1)ṽ(y, `) = (z − 1)−1(V̂ (z)(y)− V̂ (1)(y)).

The calculation for A2 is similar.

Proof of Theorem 4.2 By Lemma 4.3(a) and Proposition 4.4,

ρ∗ṽ,w̃(n) = J0(n) + E(n) + Φ̄−1

∫
Y

(H(n) ? RV (n)) ? W (n) dµY ,

where

E(n) = Φ̄−1

∫
Y

(b(n)P ? RV (n)) ? W (n) dµY , b(n) = 1 + Φ̄−1
∑
j>n

µY (Φ > j).

By Corollary 4.6(a) and Lemma 4.7(a),

ρ∗ṽ,w̃(n) = E(n) +O
(
‖ṽ‖θ|w̃|∞(σnd + ζβ′(n))

)
. (4.3)
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Now, E(n) = b(n) ? PV (n) ? PW (n) so

Ê(z) = b̂(z)PV̂ (z)PŴ (z)

= b̂(z)
{
PV̂ (1)PŴ (1) + PV̂ (1)P (Ŵ (z)− Ŵ (1)) + P (V̂ (z)− V̂ (1))PŴ (z)

}
= b̂(z)PV̂ (1)PŴ (1) + (z − 1)b̂(z)

{
PV̂ (1)PÂ2(z) + PÂ1(z)PŴ (z)

}
.

Moreover, (z − 1)b̂(z) = −b(1)z +
∑∞

n=2(b(n − 1) − b(n))zn with Fourier coefficients
that are O(µY (Φ > n)). Hence it follows from Proposition 4.5 and Lemma 4.7 that

E(n) = b(n)PV̂ (1)PŴ (1) +O(|ṽ|∞|w̃|∞ n−β
′
? σnd),

and we obtain

ρ∗ṽ,w̃(n) = b(n)PV̂ (1)PŴ (1) +O
(
‖ṽ‖θ|w̃|∞(γnd + ζβ′(n))

)
.

Also,

PV̂ (1) = Φ̄−1

∫
Y

V̂ (1) dµY = Φ̄−1

∫
Y

Φ(y)−1∑
`=0

ṽ(y, `) dµY (y) =

∫
∆

ṽ dµ∆,

and similarly PŴ (1) =
∫

∆
w̃ dµ∆. This completes the proof of part (a).

The proof of part (b) proceeds in much the same way but with b(n) and H(n)

replaced by b̃(n) and H̃(n) from Lemma 4.3(b). Using Corollary 4.6(b) instead of
Corollary 4.6(a), we obtain

ρ∗ṽ,w̃(n) = Ẽ(n) +O(‖ṽ‖θ|w̃|∞ σnd),

where Ẽ(n) = b̃(n)?PV (n)?PW (n). Calculating as in part (a) and using PV̂ (1) = 0,

̂̃
E(z) = (z − 1)̂b̃(z)PÂ1(z)PŴ (z).

By Lemma 4.3(b), (z−1)̂b̃(z)P = B̂(z)−(z−1)
̂̃
H(z) and hence has Fourier coefficients

h(n) that satisfy |h(n)| = O(n−β
′
) by Lemma 4.3(b,c). It follows that

Ẽ(n) = h(n) ? PA1(n) ? PW (n) = O(|ṽ|∞|w̃|∞γnd),

yielding the desired estimate in part (b). Note also that the terms involving A2(n)
are no longer present. The estimate for A2(n) in Lemma 4.7(c) was the only one that

required w̃ to be supported in X̂, so part (b) holds for all w̃ ∈ L∞(∆).
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5 Tail estimates

In applications, we are often given information about the first return time h : X →
Z+. To apply Theorem 3.1, it is necessary to translate this into information about
the tails µY (ϕ > n) of the induced return time ϕ : Y → Z+.

We begin with a rough estimate of this type.

Proposition 5.1 Fix β, ε > 0.
Suppose that f : M → M possesses a Chernov-Markarian-Zhang structure and

that ∆rapid = Y σ has exponential tails.

(a) If µX(h > n) = O(n−β), then µY (ϕ > n) = O((log n)βn−β).

(b) If µX(h > n) ≥ cn−β for some c > 0, then there exists c′ > 0 such that
µY (ϕ > n) ≥ c′(log n)−1n−β.

Now suppose that ∆rapid has polynomial tails with µY (σ > n) = O(n−q) for q
sufficiently large (depending on β and ε).

(c) If µX(h > n) = O(n−β), then µY (ϕ > n) = O(n−(β−ε)).

(d) If µX(h > n) ≥ cn−β for some c > 0, then there exists c′ > 0 such that
µY (ϕ > n) ≥ c′n−(β+ε).

Proof (a) This is proved in [17, 38].
(b) Let h̃ = h ◦ πX : ∆rapid → Z+ where ∆rapid = Y σ and πX : ∆rapid → X is the
semiconjugacy πX(y, `) = f `Xy. Then for any K > 0,

σ̄µX(h > n) = σ̄µ∆rapid
(h̃ > n) =

∫
Y

σ(y)−1∑
`=0

1{h̃(y,`)>n} dµY (y)

≤
∫
Y

σ1{ϕ>n} dµY =

∫
Y

σ1{σ≤K logn}1{ϕ>n} dµY +

∫
Y

σ1{σ>K logn}1{ϕ>n} dµY

≤ (K log n)µY (ϕ > n) + |σ|2(µY (σ > K log n))1/2.

We have µY (σ > n) = O(e−an) for some a > 0. Fixing K sufficiently large,

(log n)µY (ϕ > n)� µX(h > n) +O(n−Kd/2)� n−β,

so µY (ϕ > n)� (log n)−1n−β.
(c,d) These arguments are similar and hence omitted.

Next, we consider a sharper estimate following [44]. First we collect some special
cases of existing results about limit laws. Assume that fX : X → X is modelled by a
Young tower ∆rapid = Y σ with σ ∈ L2(Y ). In particular, F : Y → Y is Gibbs-Markov.
Let σ̄ =

∫
Y
σ dµY .
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Lemma 5.2 Let ψ : X → R be integrable with
∫
X
ψ dµX = 0, and define ψσ :

Y → R, ψσ(y) =
∑σ(y)−1

`=0 ψ(f `Xy). Let G denote a nonconstant random variable. Let
bn = n1/β, 1 < β < 2, or bn = (n log n)1/2. (In the latter case, set β = 2.)

(a) b−1
n

∑n−1
j=0 ψ ◦ f

j
X →d G if and only if b−1

n

∑n−1
j=0 ψσ ◦ F j →d σ̄

1/βG.

(b) Suppose that ψσ is constant on elements of the partition α for the Gibbs-Markov
map F . If b−1

n

∑n−1
j=0 ψσ ◦ F j →d σ̄

1/βG, then µY (|ψσ| > n) ∼ σ̄c0n
−β where

c0 > 0 is a constant given explicitly in terms of G.

Proof (a) Since F is Gibbs-Markov, the condition σ ∈ L2 ensures that n−1/2(σn−nσ̄)
converges in distribution (to a possibly degenerate normal distribution) and hence
that b−1

n (σn − nσ̄) converges in probability to zero. The result now follows from [44,
Theorem A.1]. (See [26, 48] for related results.)

(b) Again using that F is Gibbs-Markov, this follows from [27, Theorem 1.5].

Corollary 5.3 Let G, bn, β and c0 be as in Lemma 5.2. Suppose that (
∑n−1

j=0 h◦f
j
X−

n
∫
X
h dµX)/bn →d G. Then µY (ϕ > n) ∼ σ̄c0n

−β.

Proof Since ϕ = hσ, it follows from Lemma 5.2(a) that (
∑n−1

j=0 ϕ ◦ F j −
n
∫
Y
ϕdµY )/bn →d σ̄

1/βG. By Lemma 5.2(b), µY (ϕ > n) ∼ σ̄c0n
−β.

6 Piecewise smooth multidimensional nonMarko-

vian nonuniformly expanding maps

In this section, we show how to combine the methods in this paper with a result of
Alves et al. [1] to treat a large class of multidimensional examples. In particular,
we obtain essentially optimal upper and lower bounds, as well as strong statistical
properties, for Hu-Vaienti maps [30].

6.1 Existence of Chernov-Markarian-Zhang structures in ar-
bitrary dimensions

Let M ⊂ Rk be compact. We consider local diffeomorphisms f : M → M with
finitely many branches. That is, there are disjoint open subsets U1, . . . , UK ⊂ M
with M =

⋃K
i=1 U i, and there exists η ∈ (0, 1) and for i = 1, . . . , K there exist

U ′i ⊂ Rk open with Ui ⊂ U ′i such that f |Ui extends to a C1+η-diffeomorphism from U ′i
onto its range.

Next we specify a compact first return set X ⊂M with intX = X. (We could take
X to be the closure of one of the Ui but this need not be the case.) For simplicity, we
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suppose that the boundaries of U1, . . . , UK and X are piecewise smooth (with finitely
many pieces). Let S0 ⊂M denote the singularity set S0 = ∂X ∪

⋃K
i=1 ∂Ui for f .

Now define the first return time h : X → Z+ and first return map fX = fh :
X \ S → X \ S with singularity set

S = {x ∈ X : f jx ∈ S0 for some j = 0, . . . , h(x)− 1} ∪ {h =∞}.

A result of Alves et al. [1] guarantees under very mild conditions that fX is modelled
by Young towers with superpolynomial tails if and only if fX has superpolynomial
decay of correlations. We verify these conditions for a large class of nonuniformly
expanding maps.

Define Xm = {x ∈ X \ S : h(x) = m}. Let ‖ ‖ denote the Euclidean norm on Rk

and on k × k matrices. We suppose that there are constants λ ∈ (0, 1), δ > 0 and
C, q > 1 such that

(i) Leb(x ∈ X : dist(x,S) ≤ ε)� ε for all ε ∈ (0, 1).

(ii) ‖(DfX(x))−1‖ ≤ min{λ,Cm−δ} and ‖DfX(x)‖ ≤ Cmq for all x ∈ Xm, m ≥ 1.

(iii) ‖(D(f i)(f jx))−1‖ ≤ Cmq for all x ∈ Xm, m ≥ 1, and i, j ≥ 0 with i+ j ≤ m.

(iv) ‖f jx − f jy‖ ≤ C‖x − y‖δmq for all x, y ∈ Xm with dist(x, y) < dist(x,S)/2,
m ≥ 1, 0 ≤ j < m.

Remark 6.1 If f is noncontracting (‖Df(x)v‖ ≥ ‖v‖ for all x ∈ M , v ∈ Rd),
then (iii) is automatic with Cmq replaced by 1 and (iv) is automatic by (ii) with
δ = 1.

Lemma 6.2 Suppose that f : M → M is a nonuniformly expanding map satisfying
conditions (i)–(iv). Let µ be an absolutely continuous mixing f -invariant probability
measure on M and define µX = µ(X)−1µ|X . Suppose further that

(v) dµX/dLeb ∈ Lr(X) for some r > 1,

(vi) For all Cη observables v : X → R, all w ∈ L∞(X), and all p > 0, there is a
constant C > 0 such that

∣∣ ∫
X
v w ◦ fnX dµX −

∫
X
v dµX

∫
X
w dµX

∣∣ ≤ Cn−p for
all n ≥ 1, and

(vii)
∑

m(logm)µX(Xm) <∞.

Then f possesses a Chernov-Markarian-Zhang structure and the map fX : X → X
is modelled by Young towers with superpolynomial tails.

Proof To prove that fX is modelled by Young towers with superpolynomial tails,
we apply [1, Theorem C]. Since there are some small inaccuracies in the statement
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there, we refer to [5, Theorem A.1] for a corrected version. It suffices to verify that
µX is an expanding measure and to verify conditions (C0)–(C3) in [5, Appendix A].

By condition (ii), log ‖(DfX)−1‖ ≤ log λ < 0 and

‖DfX(x)−1v‖ ≥ C−1m−q for all x ∈ Xm, v ∈ TxX with ‖v‖ = 1, (6.1)

so | log ‖DfX(x)−1‖ | ≤ logC + q logm on Xm. By (vii), log ‖(DfX)−1‖ is integrable
with respect to µX and

∫
X

log ‖(DfX)−1‖ dµX ≤ log λ < 0. This is the definition for
µX to be an expanding measure.

Assumption (i) is precisely condition (C0).
By (ii) and definition of S,

dist(x,S) ≤ Cm−δ diamM for all x ∈ Xm, m ≥ 1. (6.2)

By (6.2) and (ii),

dist(x,S)� λ−1 ≤ ‖DfX(x)v‖ � Cmq � dist(x,S)−q/δ,

for x ∈ Xm, v ∈ TxX with ‖v‖ = 1, verifying (C1).
For conditions (C2) and (C3), we consider a pair of points x, y ∈ M \ S with

dist(x, y) < dist(x,S)/2. in particular, x, y ∈ Xm for some m ≥ 1 and f jx, f jy lie in
common open sets Ui(j) for each 0 ≤ j ≤ m− 1.

On Xm, we have log | detDfX | = log | detD(fm)| =
∑m−1

j=0 log | det(Df)| ◦ f j, so
for x, y ∈ Xm with d(x, y) < d(x,S)/2,∣∣ log | detDfX(x)| − log | detDfX(y)|

∣∣
≤

m−1∑
j=0

∣∣ log | det(Df)(f jx)| − log | det(Df)(f jy)|
∣∣

�
m−1∑
j=0

‖f jx− f jy‖η � ‖x− y‖δηm1+qη � ‖x− y‖δη dist(x,S)−(1+qη)/δ,

by (6.2) and (iv). This verifies (C3). Also,∣∣ log ‖DfX(x)−1‖ − log ‖DfX(y)−1‖
∣∣ ≤ ‖DfX(x)−1 −DfX(y)−1‖/‖DfX(x)−1‖
� mq‖DfX(x)−1 −DfX(y)−1‖

by (6.1). On Xm we have (DfX)−1 = (D(fm))−1 = Am−1 · · ·A0 where Aj(x) =
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(Df)(f jx)−1. Hence,

‖DfX(x)−1−DfX(y)−1‖ = ‖Am−1(x) · · ·A0(x)− Am−1(y) · · ·A0(y)‖

≤
m−1∑
i=0

‖Am−1(x) · · ·Ai+1(x)‖‖Ai(x)− Ai(y)‖‖Ai−1(y) · · ·A0(y)‖

≤
m−1∑
i=0

‖(Dfm−i−1)(f i+1x)−1‖‖Ai(x)− Ai(y)‖‖(Df i)(y)−1‖

≤ m2q

m−1∑
i=0

‖Ai(x)− Ai(y)‖,

by (iii). By (iv),

‖Ai(x)− Ai(y)‖ = ‖Df(f ix)−1 −Df(f iy)−1‖ � ‖f ix− f iy‖η � ‖x− y‖ηδmηq.

Hence by (ii),∣∣ log ‖DfX(x)−1‖ − log ‖DfX(y)−1‖
∣∣� m3q+ηq+1‖x− y‖ηδ.
� ‖DfX(x)−1‖−(3q+ηq+1)/δ‖x− y‖ηδ.

This verifies condition (C2).
Hence we conclude from [5, Theorem A.1] that for any q > 1 the map fX : X → X

is modelled by a Young tower ∆rapid = Y σ with µY (σ > n) = O(n−q).
Finally, we note that the construction in [1] uses [2, Main Theorem 1] where it is

made explicit that Y together with its partition elements a ∈ α are diffeomorphic to
open balls in Rk with the property that fσX maps each a diffeomorphically onto Y .
In particular, the connected set f `Xa lies in one of the subsets Xm for each 0 ≤ ` <
σ(a) − 1, so h is constant on f `Xa. Hence f possesses a Chernov-Markarian-Zhang
structure.

Remark 6.3 In the situation of Lemma 6.2, suppose in addition that condition (vi)
is improved to stretched exponential decay of correlations and that dµX/dLeb is
bounded below. Then part (2) of [1, Theorem C] yields Young towers ∆rapid with
stretched exponential tails. In particular, if the rate of decay of correlations is ex-
ponential and dµX/dLeb is bounded below, then for every γ ∈ (0, 1

9
), there exists

Y ⊂ X and c > 0 such that fX : X → X is modelled by a Young tower Y σ with
µY (σ > n) = O(e−cn

γ
).

A standard argument (see for example [30, Theorem A and p. 1210]) shows that
dµX/dLeb is bounded below whenever f is noncontracting and topologically exact.
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6.2 Upper bounds and limit laws

Although the emphasis in this paper is on lower bounds, we obtain essentially optimal
upper bounds and many strong statistical properties as a consequence of Lemma 6.2.

Suppose that in the situation of Lemma 6.2, µX(h > n) = O(n−β) for some β > 1.
Then µY (ϕ > n) = O(n−(β−ε)) by Proposition 5.1(c) where ε > 0 is arbitrarily small.
Hence by [54], we have the upper bound

ρv,w(n) = O(‖v‖H|w|∞ n−(β−1−ε)) for all v ∈ H(M), w ∈ L∞(M), n ≥ 1.

By [22, 28, 41], large deviation estimates and moment bounds follow from this
upper bound for all β > 1. For β > 2, we obtain the following properties. The
central limit theorem (CLT) and weak invariance principle (WIP) follow from [40].
For error rates (Berry-Esseen estimates) in the CLT, and the local CLT, see [25]. The
almost sure invariance principle with rates follows by [20, 21, 35].

Homogenization (convergence of fast-slow systems to a stochastic differential equa-
tion) when the fast dynamics is one of these maps f : M →M follows from [19, 23, 34].
Convergence rates in the WIP and homogenization are obtained in [4].

6.3 Lower bounds

We continue to suppose that we are in the situation of Lemma 6.2 and that µX(h >
n) = O(n−β) for some β > 1. Let ε > 0. Again µY (ϕ > n) = O(n−(β−ε)) and also
γn = O(n−(β−ε)) by Proposition 3.2. Hence it follows from Theorem 3.1(a) that

ρv,w(n) = ϕ̄−1d
∑

j>n/d µY (ϕ > jd)

∫
M

v dµ

∫
M

w dµ+O(n−(s−ε))

for all v ∈ H(X), w ∈ L∞(X), where s = min{2(β − 1), β}. By Theorem 3.1)(b),
ρv,w(n) = O(n−(β−ε)) for all v ∈ H(X) with

∫
M
v dµ = 0 and all w ∈ L∞(M).

If moreover, µX(h > n) ≈ n−β, then by Proposition 5.1(c,d),

n−(β−1+ε) � ρv,w(n)� n−(β−1−ε),

for all v ∈ H(X), w ∈ L∞(X) with nonzero mean.

6.4 Application to Hu-Vaienti maps

We continue to consider local diffeomorphisms f : M → M , where M ⊂ Rk is
compact, with finitely many branches as in Subsection 6.1. We now specialize to
intermittent maps with a neutral fixed point at 0 as described in Section 1.2. These
maps are piecewise C1+η for some η ∈ (0, 1) with finitely many branches, noncon-
tracting everywhere (so ‖Df(x)v‖ ≥ ‖v‖ for all x ∈ Rk, v ∈ Rk), and expanding
everywhere except at 0 (so ‖Df(x)v‖ > ‖v‖ for all v ∈ Rk if and only if x 6= 0).
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The existence of absolutely continuous invariant probability measures for one-
dimensional intermittent maps was studied by [51] when the maps are Markov and
by [57] in the nonMarkov case. In [30], a Banach space of quasi-Hölder observables
studied by [33, 49] was used to establish existence of σ-finite absolutely continuous
ergodic f -invariant measures µ on M for multidimensional nonMarkov nonuniformly
expanding maps. The cases µ(M) < ∞ and µ(M) = ∞ are considered equally
in [30]; here we focus on the case of finite measures. The results in [30] require a
delicate analysis taking into account poor distortion properties of multidimensional
nonuniformly expanding maps. In [31], the quasi-Hölder space was used further to
analyze upper and lower bounds on decay of correlations. Here we show how to
combine [30] and Lemma 6.2 to obtain the essentially optimal results mentioned in
Section 1.2.

To fix ideas, we focus on [31, Example 5.1], setting

f(x) = x(1 + |x|γ +O(|x|γ′))

for x close to 0 where γ ∈ (0, k) and γ′ > γ. Recall that the domains of the branches
are denoted U1, . . . , UK and have piecewise smooth boundaries; we assume that 0 ∈
intU1 and f−10∩

⋃
∂Uj = ∅. This means that Assumptions 1 and 2 of [30, Theorem A]

are satisfied. Also, we assume that f : M → M is topologically exact. Our final
assumption is a growth of complexity condition, Assumption 3 in [30, Theorem A],
which is too technical to reproduce here. As pointed out in [31, Remark 5.2] it follows
from [49, Lemma 2.1] that we can arrange for Assumption 3 to be satisfied by choosing
f to be sufficiently expanding outside of a suitable neighborhood of 0.

Choose an open ball R with 0 ∈ R ⊂ U1 such that R̄ ⊂ fR and fR ⊂ U1. Set
X = M \R.

Proposition 6.4 There is a unique absolutely continuous invariant probability mea-
sure µX on X. The assumptions of Lemma 6.2 are satisfied and µX(h > n) ≈ n−β

where β = k/γ.

Proof The singular set ∂S is a countable union of piecewise smooth submanifolds
limiting on finitely many piecewise smooth submanifolds, so condition (i) is satisfied.

Since the first return set X is bounded away from 0, it is immediate from non-
contractivity on M and uniform expansion on X that ‖(DfX)−1‖ ≤ λ < 1. The
remaining estimates in (ii) are established in [30, 31]. (A big advantage here is that δ
can be taken arbitrarily small and q arbitrarily large, so the fine details in [30, 31] such
as unbounded distortion are not an issue.) Since f is noncontracting, conditions (iii)
and (iv) hold by Remark 6.1.

A key step in [30] is to establish quasicompactness of the transfer operator for
the first return map fX : X → X. Assumptions 1–3 of [30, Theorem A] are men-
tioned explicitly above. As noted in [31, Example 5.1], Assumption 4 is automatic.
Hence [30, Theorem A] guarantees the existence of an absolutely continuous invariant
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probability measure µX on X. The density is quasi-Hölder and hence lies in L∞(X)
verifying condition (v) of Lemma 6.2. By Remark 6.3, the density is also bounded
below and hence µX is unique.

Moreover, [30, Theorem A] establishes quasicompactness in the quasi-Hölder space
and hence µX is mixing up to a finite cycle. Since the support of a nonvanishing quasi-
Hölder function has nonempty interior [49, Lemma 3.1], it follows from topological
exactness that µX is mixing. Condition (vi) is now an immediate consequence of
quasicompactness.

By [30], each Xm is a finite union of approximately spherical shells bounded by
hypersurfaces Sm and Sm+1 where Sm is approximately a sphere of radius ≈ m−1/γ.
It follows that µX(Xm)� Leb(Xm)� m−k/γ so condition (vii) is satisfied.

By Remark 6.3, topological exactness ensures that µX(h > n) ≈ Leb(h > n).
Moreover, {h > n} =

⋃
m>nXm is a finite union of balls of radius ≈ n−1/γ so µX(h >

n) ≈ n−β.

Hence for γ ∈ (0, k), we can apply the results in Subsections 6.2 and 6.3 to obtain
the upper and lower bounds in (1.4), as well as the limit laws mentioned in Section 6.2.

7 Two-sided version of the main result

In this section, we extend Theorem 3.1 to invertible maps. A two-sided analogue
of the Chernov-Markarian-Zhang structure is described in Subsection 7.1. The main
result of this section, Theorem 7.4, is stated in Subsection 7.2 and reformulated for
towers in Subsection 7.3. In Subsection 7.4, we show how to approximate two-sided
observables by one-sided observables. In Subsection 7.5, we complete the proofs.

7.1 Preliminaries

We describe a two-sided (invertible) analogue of the structures discussed in Section 2.
Throughout, f : M → M , fX : X → X, f∆ : ∆ → ∆ and F : Y → Y are all two-
sided versions of the maps from Section 2, and the one-sided versions are denoted
F̄ : Ȳ → Ȳ and so on. We continue to write ϕ̄ =

∫
Y
ϕdµY but as will become clear

this does not cause any confusion.

Two-sided Gibbs-Markov maps Let (Y, d) be a bounded metric space with Borel
probability measure µY and let F : Y → Y be an ergodic measure-preserving trans-
formation. Let F̄ : Ȳ → Ȳ be a full-branch Gibbs-Markov map with partition α and
ergodic invariant probability measure µ̄Y .

We suppose that there is a measure-preserving semiconjugacy π̄ : Y → Ȳ , so
π̄ ◦ F = F̄ ◦ π̄ and π̄∗µY = µ̄Y . The separation time on Ȳ lifts to a separation time
on Y given by s(y, y′) = s(π̄y, π̄y′) for y, y′ ∈ Y . Suppose that there exist constants
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C > 0, θ ∈ (0, 1) such that

d(F ny, F ny′) ≤ C(θn + θs(y,y
′)−n) for all y, y′ ∈ Y , n ≥ 1. (7.1)

Then we call F : Y → Y a two-sided Gibbs-Markov map.

Two-sided Young towers Let F : Y → Y be a two-sided Gibbs-Markov map on
(Y, µY ) and let ϕ : Y → Z+ be an integrable function that is constant on π̄−1a for
each a ∈ α. In particular, such a return time ϕ is well-defined on Ȳ . Define the
one-sided Young tower ∆̄ = Ȳ ϕ and tower map f̄∆ : ∆̄ → ∆̄ as in Section 2. Using
F : Y → Y instead of F̄ : Ȳ → Ȳ , we also define the two-sided Young tower ∆ = Y ϕ

and tower map f∆ : ∆ → ∆. We obtain ergodic invariant probability measures
µ∆ = (µY × counting)/ϕ̄ and µ̄∆ = (µ̄Y × counting)/ϕ̄ on ∆ and ∆̄.

The projection π̄ : Y → Ȳ extends to π̄ : ∆ → ∆̄ with π̄(y, `) = (π̄y, `). This
defines a measure-preserving semiconjugacy between f∆ and f̄∆.

Now suppose that f : M →M is an ergodic measure-preserving transformation on
a probability space (M,µ), and that Y ⊂ M is measurable with µ(Y ) > 0. Suppose
that F : Y → Y is a two-sided Gibbs-Markov map with respect to a probability µY
on Y , and that ϕ : Y → Z+ is a return time as above. Form the tower ∆ = Y ϕ

and tower map f∆ : ∆ → ∆. The map πM : ∆ → M , πM(y, `) = f `y defines a
semiconjugacy between f∆ and f . We require moreover that (πM)∗µ∆ = µ. Then we
say that f is modelled by a two-sided Young tower.

Two-sided Chernov-Markarian-Zhang structure Let (M,d) be a bounded
metric space with Borel probability measure µ and let f : M → M be an ergodic
and mixing measure-preserving transformation. Suppose that Y ⊂ X ⊂M are Borel
sets with µ(Y ) > 0. Define the first return time h : X → Z+ and first return map
fX = fh : X → X.

We require that fX : X → X is modelled by a two-sided Young tower ∆rapid = Y σ

with return time σ : Y → Z+ and return map F = fσX : Y → Y . Here, F = fσX : Y →
Y is a two-sided Gibbs-Markov map with ergodic invariant probability measure µY
and partition α such that σ is constant on partition elements. We require in addition
that h is constant on f `X π̄

−1a for all a ∈ α, 0 ≤ ` ≤ σ(a)− 1.
Define the induced return time ϕ = hσ : Y → Z+ as in (2.2). Then ϕ is an

integrable return time (constant on π̄−1a for a ∈ α). In particular, f : M → M is
modelled by a Young tower ∆ = Y ϕ with the same two-sided Gibbs-Markov map
F = fσX = fϕ.

We say that f : M → M satisfying these assumptions possesses a two-sided
Chernov-Markarian-Zhang structure.

Remark 7.1 Young [53] introduced Young towers with exponential tails as a gen-
eral method for dealing with diffeomorphisms with singularities; the initial landmark
application was to prove exponential decay of correlations for planar finite horizon

24



dispersing billiards. Chernov [13] simplified the construction of exponential Young
towers and used this to prove exponential decay of correlations for planar dispersing
billiards with infinite horizon. Then Young [54] studied examples with subexponential
decay of correlations using Young towers with subexponential tails. Markarian [38],
noting that Chernov’s simplification no longer applies in the subexponential case,
devised the method outlined in this section: namely to construct a first return map
for which Chernov [13] applies. This was used to prove the decay of correlations
bound O(1/n) for Bunimovich stadia. The method was extended and simplified by
Chernov & Zhang [17] who applied it to a large class of billiard examples. Subsequent
applications of the method include [15, 16, 56].

Remark 7.2 We have omitted much of the structure often associated with Young
towers, mentioning only those properties required in the sequel. For instance, we
have not made any explicit mention of a product structure, though we make use of
condition (7.1) which is a consequence. Similarly, we have not made explicit the
quotienting procedure (along local stable leaves) that passes from F to F̄ .

Two-sided dynamically Hölder observables Suppose that f : M →M admits
a two-sided Chernov-Markarian-Zhang structure as above. Fix θ ∈ (0, 1). For v :
M → R, define

‖v‖H = |v|∞ + |v|H, |v|H = sup
y,y′∈Y, y 6=y′

sup
0≤`<ϕ(y)

|v(f `y)− v(f `y′)|
d(y, y′) + θs(y,y′)

.

We say that v is dynamically Hölder if ‖v‖H <∞ and denote by H(M) the space of
such observables. Write H(X) = {v ∈ H(M) : supp v ⊂ X}.

Again, it is standard that Hölder observables are dynamically Hölder for the classes
of dynamical systems of interest in this paper:

Proposition 7.3 Let η ∈ (0, 1] and let d0 be a bounded metric on M . Let Cη(M) be
the space of observables that are η-Hölder with respect to d0. Suppose that there exist

K > 0, γ0 ∈ (0, 1) such that d0(f `y, f `y′) ≤ K(d0(y, y′) + γ
s(y,y′)
0 ) for all y, y′ ∈ Y ,

0 ≤ ` ≤ ϕ(y)− 1.

Then Cη(M) ⊂ H(M) where we may choose any θ ∈ [γη0 , 1) and d = dη
′

0 for any
η′ ∈ (0, η].

Proof Let v ∈ Cη(M), y, y′ ∈ Y , 0 ≤ ` < ϕ(y)− 1. Then

|v(f `y)− v(f `y′)| ≤ |v|Cηd0(f `y, f `y′)η ≤ Kη|v|Cη(d0(y, y′)η + γ
ηs(y,y′)
0 )

� |v|Cη(d(y, y′) + θs(y,y
′)).

Hence |v|H � |v|Cη and it follows that v ∈ H(M).
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7.2 Statement of the main result

As in Section 3, we provide an abstract result for maps f : M →M with a Chernov-
Markarian-Zhang structure under the assumption that µY (ϕ > n) = O(n−β

′
) for

some β′ > 1. In this situation it follows from Young [54] that ρv,w(n) = O(n−(β′−1))
for dynamically Hölder observables. (The result in [54] is formulated for one-sided
systems; see [36, Theorem 2.10] or [42, Appendix B] for the two-sided case.) We
obtain a lower bound for dynamically Hölder observables supported in X.

Define σn, γn as in (3.1) and ζβ′ as in (1.3).

Theorem 7.4 Let f : M →M be a map with a two-sided Chernov-Markarian-Zhang
structure, and suppose that µY (ϕ > n) = O(n−β

′
) for some β′ > 1. Then there is a

constant C > 0 such that for all n ≥ 1,

(a)
∣∣∣ρv,w(n) − ϕ̄−1

∑
j>n

µY (ϕ > j)

∫
M

v dµ

∫
M

w dµ
∣∣∣ ≤ C‖v‖H‖w‖H(γ[n/3] + ζβ′(n))

for all v, w ∈ H(X),

(b) |ρv,w(n)| ≤ C‖v‖H‖w‖Hγ[n/3] for all v, w ∈ H(X) with
∫
M
v dµ = 0.

Remark 7.5 The classical Smale-Williams solenoid construction can be adapted (see
for example [3, Section 5] and [43, Example 4.2]) to construct intermittent maps that
are the invertible analogue of the Hu-Vaienti maps in Section 6.4. (The constructions
in [3, 43] are written down for one-dimensional maps but apply equally to multidi-
mensional maps.) The resulting solenoidal intermittent maps fall within the two-sided
Chernov-Markarian-Zhang framework and have stable and unstable directions of any
specified dimension. Our results yield essentially optimal upper and lower bounds
on decay of correlations for these examples. Again, the lower bounds are realized by
Hölder observables that are supported away from the neutral fixed point.

7.3 Tower reformulation

Let d = gcd{ϕ(a) : a ∈ α}. As in Section 4.1, we replace the tower ∆ = Y ϕ by
a mixing tower ∆ = Y Φ where Φ = d−1ϕ. Again we have a measure-preserving
semiconjugacy πM(y, `) = g`y between (∆, f∆, µ∆) and (M, g, µ) where g = fd. We
consider observables v : M → R supported on Xd = X ∪ · · · ∪ f−(d−1)X and the
corresponding lifted observables ṽ = v ◦ πM : ∆→ R supported in X̂ = π−1

M X.
Fix θ ∈ (0, 1) and define

‖ṽ‖θ = |ṽ|∞ + |ṽ|θ, |ṽ|θ = sup
y,y′∈Y, y 6=y′

sup
0≤`≤Φ(y)−1

|ṽ(y, `)− ṽ(y′, `)|
d(y, y′) + θs(y,y′)

. (7.2)

Let Fθ(X̂) denote the space of observables ṽ supported in X̂ with ‖ṽ‖θ <∞.
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Given ṽ, w̃ ∈ L∞(∆), define

ρ∗ṽ,w̃(n) =

∫
∆

ṽ w̃ ◦ fn∆ dµ∆.

The counterpart of Theorem 4.2 is:

Theorem 7.6 There is a constant C > 0 such that for all n ≥ 1,

(a)
∣∣∣ρ∗ṽ,w̃(n)− (1 + Φ̄−1

∑
j>n µY (Φ > j))

∫
∆
ṽ dµ∆

∫
∆
w̃ dµ∆

∣∣∣ ≤ C‖ṽ‖θ‖w̃‖θ(γ[n/2]d +

ζβ′(n)) for all ṽ, w̃ ∈ Fθ(X̂),

(b) |ρ∗ṽ,w̃(n)| ≤ C‖ṽ‖θ‖w̃‖θ γ[n/2]d for all ṽ, w̃ ∈ Fθ(X̂) with
∫

∆
ṽ dµ∆ = 0.

Theorem 7.4 is a direct consequence of Theorem 7.6 in exactly the same way that
Theorem 3.1 was a direct consequence of Theorem 4.2. Hence we omit the details
except to mention that we make use of the estimate γ[n/(2d)]d � γ[n/3].

The key steps in the proof of Theorem 7.6 are contained in the following result.

Lemma 7.7 There is a constant C > 0 such that for all n ≥ 1:

(a) |ρ∗1
X̂
,w̃(n)| ≤ C‖w̃‖θ(σ[n/2]d + ζβ′(n)) for all w̃ ∈ Fθ(X̂) with

∫
∆
w̃ dµ∆ = 0,

(b) |ρ∗ṽ,w̃(n)| ≤ C‖ṽ‖θ‖w̃‖θ γ[n/2]d for all ṽ, w̃ ∈ Fθ(X̂) with
∫

∆
ṽ dµ∆ = 0.

The proof of Lemma 7.7 takes up most of the remainder of this section. Assuming
this result, we can complete the proof of Theorem 7.6.

Proof of Theorem 7.6 Let a = µ∆(X̂)−1
∫

∆
ṽ dµ∆, b = µ∆(X̂)−1

∫
∆
w̃ dµ∆ and

define v0 = ṽ − a1X̂ and w0 = w̃ − b1X̂ . Then
∫

∆
v0 dµ∆ =

∫
∆
w0 dµ∆ = 0 and

ρ∗ṽ,w̃ = ρ∗a1
X̂
,b1

X̂
+ ρ∗a1

X̂
,w0

+ ρ∗v0,w̃
.

Note that

ρ∗a1
X̂
,b1

X̂
(n) =

∫
∆

a1X̂ b1X̂ ◦ f
n
∆ dµ∆ =

∫
∆̄

a1Z̄ b1Z̄ ◦ f̄n∆ dµ̄∆

so by Theorem 4.2(a),∣∣∣ρ∗a1
X̂
,b1

X̂
(n)−

(
1+Φ̄−1

∑
j>n

µY (Φ > j)
)∫

∆

ṽ dµ∆

∫
∆

w̃ dµ∆

∣∣∣� |ṽ|∞|w̃|∞(γnd+ζβ′(n)).

By Lemma 7.7, |ρ∗a1
X̂
,w0

(n)| � |ṽ|∞‖w̃‖θ(σ[n/2]d + ζβ′(n)) and |ρ∗v0,w̃
(n)| �

‖ṽ‖θ‖w̃‖θγ[n/2]d. Part (a) follows from these combined estimates.
If in addition,

∫
∆
ṽ dµ∆ = 0, then ρ∗ṽ,w̃(n) = ρ∗v0,w̃

(n) yielding part (b).
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Proposition 7.8 Let p, p′ ∈ ∆ with π̄p = π̄p′. Then p ∈ X̂ if and only if p′ ∈ X̂.

Proof Write p = (y, `), p′ = (y′, `) where π̄y = π̄y′ and ` ∈ {0, . . . ,Φ(y) − 1}.
Since h is the first return time under f to X, we have g`y ∈ Xd if and only if
`d ≤

∑k−1
j=0 h(f jXy) < (` + 1)d for some k = 0, . . . , σ(a) − 1. Now use that h is

constant on f jX π̄
−1(π̄y).

By Proposition 7.8, we can write X̂ = π̄−1Z̄ where Z̄ = π̄X̂ ⊂ ∆̄. By Proposition 4.1,

Φ(ȳ)−1∑
`=0

1Z̄(ȳ, `) ≤ σ(ȳ) for all ȳ ∈ Ȳ . (7.3)

7.4 Approximation by one-sided observables

In this subsection, we show how to approximate two-sided observables by one-sided
observables, broadly following the method used in [42, Appendix B] which was in turn
based on a private communication by Gouëzel. Using this we prove Lemma 7.7(b).

Extend the separation time s on Y to ∆ by setting s((y, `), (y′, `′)) = s(y, y′) when
` = `′ and 0 otherwise. Let ψn =

∑n−1
j=0 1Y ◦ f j∆ be the number of entries to Y . For

ṽ ∈ L∞(∆), we approximate ṽ ◦ fn∆ by

ṽn : ∆→ R, ṽn(p) = inf{ṽ ◦ fn∆(q) : s(p, q) ≥ 2ψn(p)}, n ≥ 1.

Let L : L1(∆̄)→ L1(∆̄) denote the transfer operator for f̄∆.

Proposition 7.9 The function ṽn lies in L∞(∆) and projects down to an observable
v̄n ∈ L∞(∆̄). Moreover, there exists C > 0 such that for all ṽ ∈ H(∆), n ≥ 1,

(a) |v̄n|∞ = |ṽn|∞ ≤ |ṽ|∞.

(b) If supp ṽ ⊂ X̂, then supp ṽn ⊂ f−n∆ X̂ and suppLnv̄n ⊂ Z̄.

(c) |ṽ ◦ fn∆ − ṽn| ≤ C|ṽ|θ θψn.

(d) |(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2)| ≤ C‖ṽ‖θ θs(p̄1,p̄2) for all p̄1, p̄2 ∈ ∆̄.

Proof If s(p, p′) ≥ 2ψn(p), then ṽn(p) = ṽn(p′). It follows that ṽn is piecewise
constant on a measurable partition of ∆, and hence is measurable, and that v̄n is
well-defined. Parts (a) and (b) are immediate.

Let p = (y, `) ∈ ∆. Then

|ṽ ◦ fn∆(p)− ṽn(p)| = |ṽ ◦ fn∆(p)− ṽ ◦ fn∆(q)|
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where q = (z, `) is such that s(p, q) ≥ 2ψn(p). Now, fn∆p = (Fψn(p)y, `1) where
`1 = ` + n− Φψn(p)(p) and similarly fn∆q = (Fψn(p)z, `1). (Here, Ψk =

∑k−1
j=0 Ψ ◦ F j.)

By definition of |ṽ|θ and (7.1),

|ṽ ◦ fn∆(p)− ṽn(p)| = |ṽ(Fψn(p)y, `1)− ṽ(Fψn(p)z, `1)|

≤ |ṽ|θ(d(Fψn(p)y, Fψn(p)z) + θs(F
ψn(p)y,Fψn(p)z))

� |ṽ|θ(θψn(p) + θs(y,z)−ψn(p))� |ṽ|θθψn(p).

This proves part (c).
To prove (d), recall that (Lnv̄n)(p̄) =

∑
f̄n∆q̄=p̄

ξn(q̄)v̄n(q̄) where ξ is the weight

function. Write

(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2) = I1 + I2

where

I1 =
∑

f̄n∆q̄1=p̄1

(ξn(q̄1)− ξn(q̄2))v̄n(q̄2), I2 =
∑

f̄n∆q̄1=p̄1

ξn(q̄1)(v̄n(q̄1)− v̄n(q̄2)).

As usual, we pair up preimages so that

s(q̄1, q̄2) = ψn(q̄1) + s(p̄1, p̄2). (7.4)

A standard argument shows that |ξn(q̄1)− ξn(q̄2)| � ξn(q̄1)θs(p̄1,p̄2). Hence,

|I1| � |ṽ|∞ θs(p̄1,p̄2).

Next, choose qj ∈ ∆ that project to q̄j and write

v̄n(q̄1)− v̄n(q̄2) = ṽ ◦ fn∆(q̂1)− ṽ ◦ fn∆(q̂2),

where q̂1, q̂2 ∈ ∆ satisfy

s(q̂j, qj) ≥ 2ψn(q̄j) = 2ψn(q̂j). (7.5)

As in part (c),

|ṽ ◦ fn∆(q̂1)− ṽ ◦ fn∆(q̂2)| � |ṽ|θ(θψn(q̂1) + θs(q̂1,q̂2)−ψn(q̂1)). (7.6)

Since v̄n(q̄1) = v̄n(q̄2) if s(q1, q2) ≥ 2ψn(q̄1), we may suppose without loss that

s(q1, q2) ≤ 2ψn(q̄1) = 2ψn(q̂1).

Then it follows from (7.4) that

ψn(q̂1) ≥ s(q1, q2)− ψn(q̄1) = s(p̄1, p̄2). (7.7)
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By (7.4), (7.5) and (7.7),

s(q̂1, q̂2) ≥ min{s(q1, q2), s(q̂1, q1), s(q̂2, q2)} ≥ min{ψn(q̄1) + s(p̄1, p̄2), 2ψn(q̄1)}
≥ ψn(q̄1) + s(p̄1, p̄2).

Substituting this and (7.7) into (7.6), |v̄n(q̄1)− v̄n(q̄2)| � |ṽ|θθs(p̄1,p̄2). Hence

|I2| � |ṽ|θ θs(p̄1,p̄2)

completing the proof.

We continue to suppose that µY (ϕ > n) = O(n−β
′
) for some β′ > 1 with σn

defined as in (3.1). Define the operators R(n) : L∞(Ȳ )→ L∞(Ȳ ),

R(n)u = Ln(1{Φ=n}u) = R(1{Φ=n}u), n ≥ 1.

Using (2.1), a standard calculation [24, 47] yields:

Proposition 7.10 There exists C > 0 such that

|R(n)|L∞(Ȳ ) ≤ CµY (Φ = n)

and
|(R(n)1Ȳ )(y)− (R(n)1Ȳ )(y′)| ≤ CµY (Φ = n)θs(y,y

′)

for all y, y′ ∈ Ȳ , n ≥ 1.

Lemma 7.11 There exists C > 0 such that |
∫

∆̄
θψn1Z̄ ◦ f̄n∆ dµ̄∆| ≤ Cσnd and

|
∫

∆̄
1Ȳ θ

ψn dµ̄∆| ≤ Cn−β
′

for all n ≥ 1.

Proof Define Lθ : L1(∆̄)→ L1(∆̄) by Lθu = L(θ1Y u). Then Lnθu = Ln(θψnu) and

|θψn 1Z̄ ◦ fn∆|1 =

∫
∆̄

Lnθψn 1Z̄ dµ̄∆ =

∫
∆̄

1Z̄L
n
θ1 dµ̄∆.

Similarly, |1Y θψn|1 =
∫

∆̄
Lnθ1Ȳ dµ̄∆. Hence it suffices to show that |1Z̄Lnθ1|1 � σnd

and |Lnθ1Ȳ |1 � n−β
′
.

In analogy with Section 4.2, we define the renewal operators Rθ(n), Tθ(n) :
L∞(Ȳ )→ L∞(Ȳ ),

Rθ(n)u = Lnθ (1{Φ=n}u) = θR(n)u, n ≥ 1, Tθ(n)u = 1YL
n
θ (1Y u), n ≥ 0,

and the corresponding Fourier series R̂θ(z), T̂θ(z) : L∞(Ȳ )→ L∞(Ȳ ), for z ∈ D,

R̂θ(z) = θ
∞∑
n=1

R(n)zn, T̂θ(z) =
∞∑
n=0

Tθ(n)zn.
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Again, T̂θ = (I − R̂θ)
−1 on D. Moreover, the spectral radius of R̂θ(z) on L∞(Ȳ ) is at

most θ for z ∈ D, so I − R̂θ(z) is invertible as an operator on L∞(Ȳ ) for all z ∈ D.
By Proposition 7.10, |R(n)|L∞(Ȳ ) � n−β

′
. It follows from [25, Theorem A.3] that

|Tθ(n)|L∞(Ȳ ) � n−β
′
.

Next, as in [25, Eq. (11)], we have the decomposition2

Lnθ = C(n) +Dθ(n), Dθ(n) = A(n) ? Tθ(n) ? Bθ(n),

where

A(n) : L∞(Ȳ )→ L1(∆̄), Bθ(n) : L∞(∆̄)→ L∞(Ȳ ), C(n) : L∞(∆̄)→ L1(∆̄),

are given by

(A(n)u)(y, `) =

{
u(y) ` = n

0 else
, (C(n)u)(y, `) =

{
u(y, `− n) ` > n

0 else
,

and
(Bθ(n)u)(y) = θ

∑
a∈α

ξ(ya)1{Φ(a)>n}u(ya,Φ(a)− n).

Here ξ satisfies (2.1). Hence∫
∆̄

|A(n)u| dµ̄∆ ≤ |u|∞µ̄∆{(y, n) : y ∈ Y } = Φ̄−1|u|∞µY (Φ > n),

and
|Bθ(n)u|∞ � |u|∞

∑
a∈α

µY (a)1{Φ(a)>n} = |u|∞ µY (Φ > n).

In other words,

|A(n)|L∞(Ȳ )7→L1(∆̄) ≤ µY (Φ > n), |Bθ(n)|L∞(∆̄) 7→L∞(Ȳ ) � µY (Φ > n).

Combining this with the estimate for Tθ(n) we obtain |Dθ(n)1|1 � n−β
′
. In particular,

|1Z̄Dθ(n)1|1 � n−β
′

and |Dθ(n)1Ȳ |1 � n−β
′
.

Finally,
|(C(n)u)(y, `)| = 1{`>n}|u(y, `− n)| ≤ 1{Φ(y)>n}|u|∞,

so

|1Z̄C(n)1|1 ≤ Φ̄−1

∫
Ȳ

1{Φ(y)>n}

Φ(y)−1∑
`=0

1Z̄(y, `) dµ̄Y ≤ Φ̄−1

∫
Ȳ

1{Φ>n}σ dµ̄Y = Φ̄−1σnd

by (7.3). Also C(n)1Ȳ ≡ 0. This completes the proof.

2The notation here, which is chosen to mimic that in [25], is local to the proof of this Lemma
and should not be confused with similar notation elsewhere in the paper.
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Corollary 7.12 There exists C > 0 such that

|ṽ ◦ fn∆ − ṽn|1 ≤ C|ṽ|θσnd for all ṽ ∈ Fθ(X̂), n ≥ 1.

Proof Note that θψn is well-defined on ∆̄. By Proposition 7.9(b,c),∫
∆

|ṽ ◦ fn∆ − ṽn| dµ∆ � |ṽ|θ
∫

∆

θψn 1X̂ ◦ f
n
∆ dµ∆ = |ṽ|θ

∫
∆̄

θψn 1Z̄ ◦ f̄n∆ dµ̄∆.

Hence the result follows from Lemma 7.11.

Proof of Lemma 7.7(b) For k ≥ 1, let ak = µ∆(X̂)−1
∫

∆
ṽk dµ∆. Write ρ∗ṽ,w̃(n) =∫

∆
ṽ ◦ fk∆ w̃ ◦ fk+n

∆ dµ∆ = I1(k, n) + I2(k, n) + I3(k, n) + I4(k, n), where

I1(k, n) =

∫
∆

(ṽ ◦ fk∆ − ṽk) w̃ ◦ fk+n
∆ dµ∆,

I2(k, n) =

∫
∆

ṽk (w̃ ◦ fk∆ − w̃k) ◦ fn∆ dµ∆,

I3(k, n) = µ∆(X̂)−1

∫
∆

ṽk dµ∆

∫
∆

1X̂ ◦ f
k w̃k ◦ fn∆ dµ∆,

I4(k, n) =

∫
∆

(ṽk − ak1X̂ ◦ f
k
∆) w̃k ◦ fn∆ dµ∆.

By assumption,
∫

∆
ṽ dµ∆ = 0. Hence

∫
∆
ṽk dµ∆ =

∫
∆

(ṽk − ṽ ◦ fk∆) dµ∆. By
Corollary 7.12,

|I1(k, n)| � |ṽ|θ|w̃|∞σkd, |I2(k, n)| � |ṽ|∞|w̃|θσkd, |I3(k, n)| � |ṽ|θ|w̃|∞σkd.

Now,

I4(k, n) =

∫
∆̄

(v̄k − ak1Z̄ ◦ f̄k∆) w̄k ◦ f̄n∆ dµ̄∆ =

∫
∆̄

uk w̄k ◦ f̄n−k∆ dµ̄∆ (7.8)

where
uk = Lk(v̄k − ak1Z̄ ◦ f̄k∆) = Lkv̄k − ak1Z̄ .

Note that I4 is defined on ∆̄ and uk is supported in Z̄ (by Proposition 7.9(b)) with∫
∆̄
uk dµ̄∆ = 0. Hence in the notation of Section 4.1, I4(k, n) = ρ∗uk,w̄k(n− k), and by

Theorem 4.2(b),
|I4(k, n)| � ‖uk‖θ|w̄k|∞γ(n−k)d.

By Proposition 7.9(a), |uk|∞ ≤ 2|ṽ|∞ and |w̄k|∞ ≤ |w̃|∞. The same argument as
in the proof of Proposition 7.8 shows that 1Z̄(y, `) = 1Z̄(y′, `) whenever s(y, y′) ≥ 1
(so y, y′ lie in the same partition element). Hence |1Z̄ |θ ≤ 2. By Proposition 7.9(d),
|uk|θ ≤ |Lkv̄k|θ + |ak||1Z̄ |θ � ‖ṽ‖θ. Hence |I4(k, n)| � ‖ṽ‖θ|w̃|∞γ(n−k)d.

The combined estimates for I1, I2, I3, I4 give |ρ∗ṽ,w̃(n)| � ‖ṽ‖θ‖w̃‖θ(σkd+γ(n−k)d).
Taking k = [n/2] yields the desired result.
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7.5 Completion of the proof of Theorem 7.4

It remains to prove Lemma 7.7(a). There is the complication that approximation

of observables w̃ supported on X̂ leads to one-sided observables w̃n that are not
supported on X̂. Hence Theorem 4.2(a) is not directly applicable. The main new
idea for dealing with this is the following:

Lemma 7.13 There is a constant C > 0 such that∣∣∣ ∫
Ȳ

Φ(y)−1∑
`=0

1{`>n}w̄k(y, `) dµ̄Y

∣∣∣ ≤ C‖w̃‖θ(σkd + n−β
′
kβ
′
ζβ′(k))

for all w̃ ∈ Fθ(X̂) with
∫

∆
w̃ dµ∆ = 0, n ≥ k ≥ 1.

Proof Write
∫
Ȳ

∑Φ(y)−1
`=0 1{`>n}w̄k(y, `) dµ̄Y = B1 +B2 where

B1 =

∫
Y

Φ−1∑
`=0

1{`>n}(w̃k − w̃ ◦ fk∆)(·, `) dµY , B2 =

∫
Y

Φ−1∑
`=0

1{`>n}w̃ ◦ fk∆(·, `) dµY .

By Corollary 7.12, |B1| ≤ Φ̄
∫

∆
|w̃k − w̃ ◦ fk∆| dµ∆ � |w̃|θ σkd.

Write B2 = B′2 +B′′2 where

B′2 =

∫
Y

1{Φ>n}

Φ−k−1∑
`=0

1{`>n}w̃ ◦ fk∆(·, `) dµY ,

B′′2 =

∫
Y

1{Φ>n}

Φ−1∑
`=Φ−k

1{`>n}w̃ ◦ fk∆(·, `) dµY .

Since w̃ = w̃1X̂ and using (7.3),

|B′2| ≤ |w̃|∞
∫
Ȳ

Φ−1∑
`=0

1{`>k+n}1Z̄(·, `) dµ̄Y ≤ |w̃|∞
∫
Ȳ

1{Φ>k}

Φ−1∑
`=0

1Z̄(·, `) dµ̄Y

≤ |w̃|∞
∫
Ȳ

1{Φ>k}σ dµ̄Y = |w̃|∞σkd.

Next,

B′′2 =

∫
Y

1{Φ>n}

Φ−1∑
`=Φ−k

1{`>n}w̃ ◦ f `+k∆ (·, 0) dµY =

∫
Y

1{Φ>n}

Φ+k−1∑
j=Φ

1{j>k+n}w̃ ◦ f j∆(·, 0) dµY

=

∫
Y

1{Φ>n}

k−1∑
j=0

1{j>k+n−Φ}w̃ ◦ f j∆(F ·, 0) dµY = E1 + E2
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where

E1 =

∫
Y

k−1∑
j=0

1{Φ>k+n−j}(w̃ ◦ f j∆ − w̃j)(F ·, 0) dµY ,

E2 =

∫
Y

k−1∑
j=0

1{Φ>k+n−j}w̃j(F ·, 0) dµY .

By Proposition 7.9(c),

|E1| � |w̃|θ
k−1∑
j=0

∫
Y

1{Φ>n}θ
ψj◦F dµY = |w̃|θ

k−1∑
j=0

∫
Ȳ

Ψn θ
ψj dµ̄Y ,

where Ψn = R1{Φ>n}. By Proposition 7.10 and Lemma 7.11,∫
Ȳ

Ψn θ
ψj dµ̄Y ≤ |Ψn|∞

∫
∆̄

1Ȳ θ
ψj dµ̄∆ � µY (Φ > n)j−β

′
.

Hence |E1| � |w̃|θµY (Φ > n).
It remains to deal with E2. Now∫

Y

1{Φ>k+n−j}w̃j(F ·, 0) dµY =

∫
Ȳ

1{Φ>k+n−j}w̄j(F̄ ·, 0) dµ̄Y =

∫
Ȳ

Ψk+n−jw̄j(·, 0) dµ̄Y .

Define ūn : ∆̄→ R, un : ∆→ R,

ūn(y, `) =

{
Ψn(y) ` = 0

0 ` > 0
, un = ūn ◦ π̄.

Then ∫
Ȳ

Ψk+n−jw̄j(·, 0) dµ̄Y = Φ̄

∫
∆̄

ūk+n−jw̄j dµ̄∆ = Φ̄

∫
∆

uk+n−jw̃j dµ∆

= Φ̄(G1(j, k + n) +G2(j, k + n))

where

G1(j, n) =

∫
∆

un−j(w̃j − w̃ ◦ f j∆) dµ∆, G2(j, n) =

∫
∆

un−jw̃ ◦ f j∆ dµ∆.

Applying Proposition 7.10 once more,

|Ψn|L∞(Ȳ ) � µY (Φ > n) and |Ψn(y)−Ψn(y′)| � µY (Φ > n)θs(y,y
′)

for all y, y′ ∈ Ȳ , n ≥ 1. Hence |un|∞ � µY (Φ > n) and |un(y, `)−un(y′, `)| � µY (Φ >
n)θs(y,y

′) for all y, y′ ∈ Y , 0 ≤ ` < Φ(y). That is, in the notation of Appendix B,
‖un‖θ � µY (Φ > n).
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It follows that

|G1(j, n)| ≤ |un−j|∞|1Y (w̃j − w̃ ◦ f j∆)|1 � |w̃|θ j−β
′
(n− j)−β′ .

Since w̃ has mean zero, we can apply Theorem B.1 to obtain

|G2(j, n)| � ‖un−j‖θ‖w̃‖θ j−(β′−1) � ‖w̃‖θ j−(β′−1)(n− j)−β′ .

We conclude that

|(G1 +G2)(j, k + n)| � ‖w̃‖θ j−(β′−1)(k + n− j)−β′ � ‖w̃‖θ j−(β′−1)n−β
′

for all j < k, and hence

|E2(k, n)| � ‖w̃‖θ n−β
′
k−1∑
j=0

j−(β′−1) � ‖w̃‖θ n−β
′
kβ
′
ζβ′(k)

completing the proof.

Proof of Lemma 7.7(a) Let k ≥ 1 and write ρ∗1
X̂
,w̃(n) = I2(k, n) + I4(k, n), where

I2(k, n) =

∫
∆

1X̂ (w̃ ◦ fk∆ − w̃k) ◦ fn−k∆ dµ∆,

I4(k, n) =

∫
∆

1X̂ w̃k ◦ f
n−k
∆ dµ∆ =

∫
∆̄

1Z̄ w̄k ◦ f̄n−k∆ dµ̄∆.

By Corollary 7.12, |I2(k, n)| � |w̃|θ σkd.
Note that I4(k, n) is defined on ∆̄ and in the notation of Section 4.1, I4(k, n) =

ρ∗1Z̄ ,w̄k(n−k). Hence we can proceed almost as in the proof of Theorem 4.2(a), with ṽ
and w̃ replaced by 1Z̄ and w̄k respectively. Let m = n−k. Following Proposition 4.4,
we write

I4(k, n) = J̄0,k(m) + Φ̄−1

∫
Ȳ

(T (m) ? RV (m)) ? W k(m) dµ̄Y , (7.9)

where

V (m)(y) = 1{Φ(y)≥m}1Z̄(y,Φ(y)−m), W k(m)(y) = 1{Φ(y)>m}w̄k(y,m),

and

J̄0,k(m) =

∫
∆̄

1{m+`<Φ(y)}1Z̄(y, `)w̄k(y,m+ `) dµ̄∆.

Also, define

Ā1(m)(y) = 1{Φ(y)>m}

Φ(y)−m−1∑
`=0

1Z̄(y, `), Ā2,k(m)(y) =

Φ(y)−1∑
`=0

1{m<`}w̄k(y, `).
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By Proposition 7.9(a), |w̄k|∞ ≤ |w̃|∞. Proceeding exactly as in Section 4.3, we
obtain the estimates

|V (m)|1 ≤ µY (Φ ≥ m), |W k(m)|1 ≤ |w̃|∞µY (Φ > m),

|J̄0,k(m)| ≤ Φ̄−1|w̃|∞ σmd, |Ā1(m)|1 ≤ σmd.

Moreover, V (m)(y) = V (m)(y′) for y, y′ ∈ a, a ∈ α. Hence following the proof of
Proposition 4.5, RV (m) ∈ Fθ(Ȳ ) with ‖RV (m)‖θ � µY (Φ > m).

By assumption,
∫

∆
w̃ dµ∆ = 0. Hence by Lemma 7.13, |PĀ2,k(m)| � ‖w̃‖θ(σkd +

m−β
′
kβ
′
ζβ′(k)).

We have now estimated all the expressions arising in the proof of Theorem 4.2(a).
Continuing as in that proof, we obtain (cf. (4.3))

|I4(k, n)| � Ek(m) + ‖w̃‖θ(σmd + ζβ′(m))

where Ek(m) = b(m) ? PV (m) ? PWk(m) and

Êk(z) = b̂(z)PV̂ (1)PŴk(1) + (z − 1)b̂(z)
{
PV̂ (z)PÂ2,k(z) + PÂ1(z)PŴk(1)

}
.

Recall that the Fourier coefficients of (z − 1)b̂(z) are O(m−β
′
). Also,

PŴk(1) =

∫
∆

w̃k dµ∆ =

∫
∆

(w̃k − w̃ ◦ fk∆) dµ∆ � |w̃|θ σkd

by Corollary 7.12. Hence

|Ek(m)| � ‖w̃‖θ
(
b(m)σkd +m−β

′
? {m−β′ ? (σkd +m−β

′
kβ
′
ζβ′(k)) + σmdσkd}

)
� ‖w̃‖θ(σkd +m−β

′
kβ
′
ζβ′(k)).

Hence

|I4(k, n)| � ‖w̃‖θ(σkd + σ(n−k)d + (n− k)−β
′
kβ
′
ζβ′(k) + ζβ′(n− k)).

Combining this with the estimate for I2(k, n) and taking k = [n/2] yields the desired
result.

8 Billiard examples

In this section, we provide details and proofs for the examples considered in Sec-
tion 1.1. For background material on billiards, we refer to [14]. The billiard domain,
denoted by Q, is a compact connected subset of R2 or T2 with piecewise smooth
boundary and the billiard flow is defined on Q × S1. Fix a point q ∈ Q and a unit
vector v ∈ S1. Then q moves in straight lines with unit speed in direction v un-
til reflecting (angle of reflection equalling the angle of incidence) off the boundary
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∂Q. This defines a volume-preserving flow. A natural Poincaré section is given by
M = ∂Q× [−π/2, π/2] corresponding to collisions with ∂Q (with outgoing velocities
in [−π/2, π/2]). The Poincaré map f : M → M is called the collision map or the
billiard map. It preserves a probability measure µ, equivalent to Lebesgue, called
Liouville measure.

Part of the framework in [17, 38] is that the billiard map f : M →M has a (two-
sided) Chernov-Markarian-Zhang structure as defined in Section 7. In particular, f
has a suitably chosen first return map fX = fh : X → X modelled by a Young tower
∆rapid = Y ϕ with exponential tails. Roughly speaking, X is chosen to be a subset of
phase space bounded away from the regions where hyperbolicity is expected to break
down, e.g. for billiards with cusps, X excludes a neighborhood of each cusp. Since
the specific choice of X involves notation which is not required for understanding the
results, we mainly point the reader to the original references for the precise definitions.
(An exception is Example 8.3 below, where no extra notation is needed.)

Example 8.1 (Bunimovich stadia [12]) These are convex billiard domains Q ⊂
R2 where ∂Q is a simple closed curve consisting of two parallel line segments and
two semicircles. By [38], the billiard map f : M → M falls within the Chernov-
Markarian-Zhang framework with µX(h > n) = O(n−2). By [18, Theorem 1.1],
µY (ϕ > n) = O(n−2) and hence ρv,w(n) = O(n−1) for dynamically Hölder observables.

Here, we improve the estimate on µY (ϕ > n) and use this to obtain lower bounds
on decay of correlations.

Proposition 8.2 For Bunimovich stadia, there exists c > 0 such that ϕ̄−1µY (ϕ >
n) ∼ cn−2 and ρv,w(n) ∼ cn−1

∫
M
v dµ

∫
M
w dµ for all v, w ∈ H(X) with nonzero

mean.
In addition ρv,w(n) = O(n−2 log n) for all v ∈ H(X) with

∫
v dµ = 0 and all

w ∈ H(X).

Proof In the proof of [7, Theorem 1.1] (see in particular [7, page 504, line 11])
it is shown for h : X → Z+ (denoted there by ϕ+) that (n log n)−1/2(

∑n−1
j=0 h ◦

f jX − n
∫
X
h dµX) converges to a nondegenerate normal distribution. Hence the first

statement follows from Corollary 5.3 and the second statement from Theorem 7.4(a).
Finally, γn = O(n−2 log n) by Proposition 3.2, so the final statement follows from

Theorem 7.4(b).

Example 8.3 (Semidispersing billiards) The billiard domain is given by Q =
R \
⋃
Sk where R is a rectangle and there are finitely many disjoint convex scatterers

Sk ⊂ R with C3 boundaries of nonvanishing curvature.
By [17, Theorem 1], the billiard map f : M → M falls within the Chernov-

Markarian-Zhang framework withX =
⋃
∂Sk×[−π/2, π/2] and µX(h > n) = O(n−2).

By [18, Theorem 1.1], µY (ϕ > n) = O(n−2) and hence ρv,w(n) = O(n−1) for dynami-
cally Hölder observables.
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Proposition 8.4 The conclusions of Proposition 8.2 hold for semidispersing bil-
liards.

Proof Note that h is precisely the free flight time considered in [8, 50]. By [50,
Theorem 1], (n log n)−1/2(

∑n−1
j=0 h ◦ f

j
X − n

∫
X
h dµX) converges to a nondegenerate

normal distribution. Now proceed as in the proof of Proposition 8.2.

Example 8.5 (Billiards with cusps) These are billiard domains Q ⊂ R2 where
∂Q is a simple closed curve consisting of finitely many convex inwards C3 curves with
nonvanishing curvature such that the interior angles at corner points are zero.

By [15, Theorem 1.1], the billiard map f : M → M falls within the Chernov-
Markarian-Zhang framework with µX(h > n) = O(n−2). By [18, Theorem 1.1],
µY (ϕ > n) = O(n−2) and hence ρv,w(n) = O(n−1) for dynamically Hölder observables.

Proposition 8.6 The conclusions of Proposition 8.2 hold for billiards with cusps.

Proof By [6, Theorem 4 and eq. (2.5)], (n log n)−1/2(
∑n−1

j=0 h ◦ f
j
X − n

∫
X
h dµX)

converges to a nondegenerate normal distribution. Now proceed as in the proof of
Proposition 8.2.

Example 8.7 (Billiards with cusps at flat points [55]) These are billiard do-
mains Q ⊂ R2 where ∂Q is a simple closed curve consisting of finitely many convex
inwards C3 curves such that the interior angles at one of the corner points is zero.
Moreover the curves have nonvanishing curvature except at this corner point where
∂Q has the form ±xb for some b > 2.

By [55], the billiard map f : M → M falls within the Chernov-Markarian-Zhang
framework with µX(h > n) = O(n−β) where β = b/(b − 1) ∈ (1, 2). Moreover,
by [55], µY (ϕ > n) = O(n−β) and hence ρv,w(n) = O(n−(β−1)) for dynamically Hölder
observables.

Proposition 8.8 For billiards with cusps at flat points, there exists c > 0 such that
µY (ϕ > n) ∼ cn−β and ρv,w(n) ∼ ϕ̄−1(β−1)−1cn−(β−1)

∫
M
v dµ

∫
M
w dµ for all v, w ∈

H(X) with nonzero mean.
In addition ρv,w(n) = O(n−β log n) for all v ∈ H(X) with

∫
v dµ = 0 and all

w ∈ H(X).

Proof By [32, Theorem 3.1], n−1/β(
∑n−1

j=0 h ◦ f
j
X − n

∫
X
h dµX) converges to a non-

degenerate β-stable law. Hence the first statement follows from Corollary 5.3 and the
second statement from Theorem 7.4(a).

Finally, γn = O(n−β log n) by Proposition 3.2, so the final statement follows from
Theorem 7.4(b).
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Explicit formulas for asymptotic constants In all the billiard examples consid-
ered above, the constant c can be made completely explicit. For brevity, we restrict
to the case of the stadium in Example 8.1. Let ` be the length of the parallel line
segments in ∂Q. The argument in [7, page 504, line 11] shows that

(c0n log n)−1/2
( n−1∑
j=0

h ◦ f jX − n
∫
X

h dµX

)
→d N(0, 1) where c0 =

4 + 3 log 3

4− 3 log 3

`2

8
.

Since ϕ = hσ, it follows from Lemma 5.2(a) that

B−1
n

( n−1∑
j=0

ϕ ◦ F j − n
∫
Y

ϕdµY

)
→d N(0, 1)

where Bn = (c1n log n)1/2 and c1 = σ̄c0. Define L(x) = 2c1 log x. Then nL(Bn) ∼ B2
n

and L(x) = 2
∫ x

1
c1u
−1du. Applying [27, Theorem 1.5], we obtain µY (ϕ > n) ∼ c1n

−2.
Next, ϕ̄ = σ̄

∫
X
h dµX = σ̄/µ(X) and µ(X) = 2/(π + `) by [7, Eq. (6)]. Hence

ϕ̄−1µY (ϕ > n) ∼ 2c0

π + `
n−2 =

4 + 3 log 3

4− 3 log 3

`2

4(π + `)
n−2.

By Theorem 7.4(a),

ρv,w(n) ∼ 4 + 3 log 3

4− 3 log 3

`2

4(π + `)
n−1

∫
M

v dµ

∫
M

w dµ

for v, w ∈ H(X) with nonzero mean.

Example 8.9 (Bunimovich flowers [11]) These are billiard domains Q ⊂ R2

where ∂Q is a simple closed piecewise C3 curve consisting of at least one arc with non-
vanishing curvature that is convex inwards and at least one convex outwards circular
arc that is strictly smaller than a semicircle. All corner points have nonzero angle,
and each convex outwards arc continues to a circle contained in Q. (The conditions
can be further relaxed to allow line segments in ∂Q, see [17].)

By [17, Theorem 2], the billiard map f : M → M falls within the Chernov-
Markarian-Zhang framework with µX(h > n) = O(n−3). Hence µY (ϕ > n) =
O((log n)3n−3) leading as in [54] to the upper bound on decay of correlations
ρv,w(n) = O((log n)3n−2) for dynamically Hölder observables.

It is also easily verified that µX(h > n) ≈ n−3. Only the more delicate upper
bound is explicit in [17], but the lower bound is much simpler. It suffices to estimate
the contribution from sliding along a single convex outwards circular arc S ⊂ ∂Q.
Let (r, φ) denote coordinates on S × [−π/2, π/2] where r ∈ [0, r0] is arclength along
S. Then µX is given by dµX = cosφ dφ dr. The set X is chosen to exclude points
that make at least two successive collisions with S. Hence {h > n} includes all points
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(r, φ) with r close to the beginning of S and φ close to π/2. Since S is circular, the
angles at successive collisions remain close to this initial value of φ so it is clear that
{h > n} contains a set of the form

En = {(r, φ) : 0 ≤ r ≤ a
n
, π

2
− b

n
≤ φ ≤ π

2
},

where a and b are constants independent of n. Hence

µX(h > n) ≥
∫ r0

0

∫ π/2
−π/2 1En cosφ dφ dr ∼ 1

2
ab2n−3.

By Proposition 5.1, it follows that µY (ϕ > n) � (log n)−1n−3. By Theorem 7.4,
ρv,w(n)� (log n)−1n−2

∫
M
v dµ

∫
M
w dµ for all v, w ∈ H(X), n ≥ 1.

Example 8.10 (Dispersing billiards with vanishing curvature [16]) These
are planar periodic dispersing billiards Q = T2 \

⋃
Sk where there are finitely many

disjoint strictly convex scatterers Sk with C3 boundaries of nonvanishing curvature,
except that the curvature vanishes at two points. Moreover, there is a periodic
orbit that runs between these two points and the boundary nearby has the form
±(1 + |x|b) for some b > 2. By [16, Theorem 1], the billiard map f : M → M falls
within the Chernov-Markarian-Zhang framework with µX(h > n) = O(n−β) where
β − 1 = (b + 2)/(b − 2) ∈ (1,∞). Hence µY (ϕ > n) = O((log n)βn−β) leading as
in [54] to the upper bound on decay of correlations ρv,w(n) = O((log n)βn−(β−1)) for
dynamically Hölder observables.

Moreover µX(h > n) � cn−β by [16, Proposition 2]. By Proposition 5.1,
it follows that µY (ϕ > n) � (log n)−1n−β. By Theorem 7.4, ρv,w(n) �
(log n)−1n(β−1)

∫
M
v dµ

∫
M
w dµ for all v, w ∈ H(X), n ≥ 1.

A Formula for the correlation function

In this appendix, we prove Proposition 4.4. One method would be to check equality of
coefficients directly, but we choose to convert all sequences into Fourier series. Recall
that V (n)(y) = 1{Φ≥n}ṽ(y,Φ(y)− n), W (n)(y) = 1{Φ>n}w̃(y, n), with Fourier series

V̂ (z)(y) =

Φ(y)−1∑
`=0

zΦ(y)−`ṽ(y, `), Ŵ (z)(y) =

Φ(y)−1∑
`=0

z`w̃(y, `).

Define Φk =
∑k−1

j=0 Φ ◦ F j. Arguing as in [39, Section 6.2] (with discrete time instead
of continuous time), write

ρ∗ṽ,w̃(n) =

∫
∆

1{n+`<Φ(y)}ṽ(y, `) w̃ ◦ fn∆(y, `) dµ∆

+
∞∑
k=1

∫
∆

1{Φk(y)≤n+`<Φk+1(y)}ṽ(y, `) w̃ ◦ fn∆(y, `) dµ∆ =
∞∑
k=0

Jk(n),
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where J0(n) was defined in Section 4.3 and

Jk(n) =

∫
∆

1{Φk(y)≤`+n<Φk+1(y)}ṽ(y, `)w̃(F ky, `+ n− Φk(y)) dµ∆, k ≥ 1.

For k ≥ 1,

Ĵk(z) =
∞∑
n=0

znJk(n) = Φ̄−1

∫
Y

Φ(y)−1∑
`=0

Φk+1(y)−`−1∑
n=Φk(y)−`

znṽ(y, `)w̃(F ky, `+ n− Φk(y)) dµY .

Making the substitution `′ = `+ n− Φk(y),

Ĵk(z) = Φ̄−1

∫
Y

(Φ(y)−1∑
`=0

z−`ṽ(y, `)
)(Φ(Fky)−1∑

`′=0

z`
′
w̃(F ky, `′)

)
zΦk(y) dµY

= Φ̄−1

∫
Y

zΦkvz Ŵ (z) ◦ F k dµY ,

where vz(y) =
∑Φ(y)−1

`=0 z−`ṽ(y, `). Note that zΦvz = V̂ (z). Hence

Rk(zΦkvz) = Rk−1R(zΦk−1◦F zΦvz) = Rk−1(zΦk−1R(zΦvz)) = R̂(z)k−1RV̂ (z),

and so

Ĵk(z) = Φ̄−1

∫
Y

Rk(zΦkvz) · Ŵ (z) dµY = Φ̄−1

∫
Y

R̂(z)k−1RV̂ (z) · Ŵ (z) dµY .

Hence,

ρ̂∗ṽ,w̃(z) =
∞∑
k=0

Ĵk(z) = Ĵ0(z) + Φ̄−1

∞∑
k=1

∫
Y

R̂(z)k−1RV̂ (z) · Ŵ (z) dµY

= Ĵ0(z) + Φ̄−1

∫
Y

T̂ (z)RV̂ (z) · Ŵ (z) dµY .

This completes the proof of Proposition 4.4.

B Upper bounds on Young towers

In this appendix, we recall a standard result giving an upper bound on decay of
correlations for two-sided Young towers. We could not find the result stated in the
form we require in the literature; hence we provide the details.

Let f∆ : ∆ → ∆ be a mixing two-sided Young tower with µ∆(Φ > n) = O(n−β
′
)

where β′ > 1. As in Section 7.1, ∆ = Y Φ is a tower over a two-sided Gibbs-Markov
map defined on a bounded metric space (Y, d). Fix θ ∈ (0, 1) and define Fθ(∆) to be
the space of observables ṽ : ∆→ R with ‖ṽ‖θ <∞ where ‖ṽ‖θ is defined as in (7.2).
Note that if v : M → R lies in H(M), then ṽ = v ◦ πM ∈ Fθ(∆) and ‖ṽ‖θ = ‖v‖H.
However, here we consider observables on ∆ that need not be lifts of observables
on M and the underlying metric space (M,d) plays no role.
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Theorem B.1 There exists a constant C > 0 such that∣∣∣ ∫
∆

ṽ w̃ ◦ fn∆ dµ∆ −
∫

∆

ṽ dµ∆

∫
∆

w̃ dµ∆

∣∣∣ ≤ C‖ṽ‖θ‖w̃‖θ n−(β′−1)

for all ṽ, w̃ ∈ Fθ(∆), n ≥ 1.

First, we mention some prerequisites. Define Fθ(∆̄) to consist of observables
v̄ : ∆̄→ R with ‖v̄‖θ <∞ where ‖v̄‖θ is defined as in (4.1). Note that if v̄ ∈ Fθ(∆̄),
then ṽ = v̄ ◦ π̄ ∈ Fθ(∆) and ‖ṽ‖θ = ‖v̄‖θ.

For ṽ ∈ Fθ(∆), define ṽn : ∆→ R and v̄n : ∆̄→ R as in Section 7.4.

Proposition B.2 There exists C > 0 such that for all ṽ ∈ Fθ(θ), n ≥ 1,

(a) |ṽ ◦ fn∆ − ṽn|1 ≤ C|ṽ|θ n−(β′−1),

(b) ‖Lnv̄n‖θ ≤ C‖ṽ‖θ.

Proof (a) Arguing as in the proof of Proposition 7.9, |ṽ ◦ fn∆ − ṽn| � |ṽ|θ θψn .
Proceeding as in the proof of Lemma 7.11, we can write∫

∆̄

θψn dµ̄∆ =

∫
∆̄

Lnθψn dµ̄∆ =

∫
∆̄

Lnθ1 dµ̄∆

and Lnθ = C(n) + D(n) where |D(n)1|1 � n−β
′
. Also, |C(n)1|1 ≤

Φ̄−1
∫
Ȳ

1{Φ>n}Φ dµ̄Y � n−(β′−1). Hence

|ṽ ◦ fn∆ − ṽn|1 � |ṽ|θ|θψn|1 � |ṽ|θ n−(β′−1).

(b) The same calculations as in Proposition 7.9(d), show that |Lnv̄n|∞ ≤ |ṽ|∞ and
|(Lnv̄n)(p̄1)− (Lnv̄n)(p̄2)| � ‖ṽ‖θ θs(p̄1,p̄2) for p̄1, p̄2 ∈ ∆̄, n ≥ 1.

Proof of Theorem B.1 First, recall that there is a constant C > 0 such that∣∣∣ ∫
∆̄

v̄ w̄ ◦ f̄n∆ dµ̄∆ −
∫

∆̄

v̄ dµ̄∆

∫
∆̄

w̄ dµ̄∆

∣∣∣ ≤ C‖v̄‖θ|w̄|∞ n−(β′−1) (B.1)

for all v̄ ∈ Fθ(∆̄), w̄ ∈ L∞(∆̄), n ≥ 1. (This follows from [54, Theorem 3], the specific
dependence on ‖v̄‖θ, |w̄|∞ being a standard consequence of the uniform boundedness
principle. Alternatively, see [36, Section 2.2].)

Suppose without loss of generality that
∫

∆
w̃ dµ∆ = 0. Write∫

∆

ṽ w̃ ◦ f 2n
∆ dµ∆ =

∫
∆

ṽ ◦ fn w̃ ◦ f 3n
∆ dµ∆ = I1(n) + I2(n) + I3(n)
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where

I1(n) =

∫
∆

(ṽ ◦ fn∆ − ṽn) w̃ ◦ f 3n
∆ dµ∆, I2(n) =

∫
∆

ṽn (w̃ ◦ fn∆ − w̃n) ◦ f 2n
∆ dµ∆

I3(n) =

∫
∆

ṽn w̃n ◦ f 2n
∆ dµ∆ =

∫
∆̄

v̄n w̄n ◦ f̄ 2n
∆ dµ̄∆ =

∫
∆̄

Lnv̄n w̄n ◦ f̄n∆ dµ̄∆.

By Proposition B.2(a),

|I1(n)| � |ṽ|θ|w̃|∞ n−(β′−1), |I2(n)| � |ṽ|∞|w̃|θ n−(β′−1).

By (B.1),

|I3(n)| �
∣∣∣ ∫

∆̄

Lnv̄n dµ̄∆

∣∣∣ ∣∣∣ ∫
∆̄

w̄n dµ̄∆

∣∣∣+ ‖Lnv̄n‖θ|w̄n|∞ n−(β′−1).

Since w̃ has mean zero, it follows from Proposition B.2(a) that |
∫

∆̄
w̄n dµ̄∆| =

|
∫

∆
(w̃n − w̃ ◦ fn∆) dµ∆| � |w̃|θ n−(β′−1) Hence using Proposition B.2(b),

|I3(n)| � ‖ṽ‖θ‖w̃‖θ n−(β′−1),

and the result follows.
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[7] P. Bálint and S. Gouëzel. Limit theorems in the stadium billiard. Comm. Math.
Phys. 263 (2006) 461–512.

[8] P. M. Bleher. Statistical properties of two-dimensional periodic Lorentz gas with
infinite horizon. J. Statist. Phys. 66 (1992) 315–373.

[9] H. Bruin, S. Luzzatto and S. van Strien. Decay of correlations in one-dimensional
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