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Abstract

We study a codimension two steady-state/steady-state mode interaction
with D4 symmetry, where the centre manifold is three-dimensional. Primary
branches of equilibria undergo secondary Hopf bifurcation to periodic solutions
which undergo tertiary bifurcations leading to chaotic dynamics. This is not an
exponentially small effect, and the chaos obtained in simulations using DsTool
is large-scale, in contrast to the ‘weak’ chaos associated with Shilnikov theory.

Moreover, there is an abundance of symmetric chaotic attractors and
symmetry-increasing bifurcations. Numerical investigations demonstrate that
the symmetric chaos is part of the local codimension two bifurcation. The
two-dimensional parameter space is mapped out in detail for a specific choice
of Taylor coefficients for the centre manifold vector field. We use AUTO to
compute the transitions involving periodic solutions, Lyapunov exponents to
determine the chaotic region, and symmetry detectives to determine the sym-
metries of the various attractors.
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1 Introduction

In dynamical systems with symmetry, it is possible to obtain chaotic attractors with
symmetry on average, where the symmetry of the attractor as a set is greater than
the symmetry of the individual points in the attractor. Such symmetric attractors
were studied by Chossat & Golubitsky [7] who also identified a mechanism called
symmetry-increasing bifurcation where distinct but symmetrically related chaotic at-
tractors collide to produce an attractor with greater symmetry. (This is related to
the notion of crises [17].) Subsequent work on numerical and theoretical aspects of
symmetric attractors includes [21, 9, 23, 2, 11, 14, 20].

Hitherto, the notions of symmetric chaos and symmetry increasing bifurcation
have been seen as part of global, rather than local, bifurcation theory. In this paper,
we show that a variety of symmetry increasing bifurcations between chaotic attractors
occur in an (at first sight, simple) example in low-codimension, low-dimensional bifur-
cation theory. In contrast to codimension two bifurcations for nonsymmetric vector
fields [18, Chapter 7], the chaotic dynamics is determined at finite order in the Taylor
series of the vector field. (For alternative examples of low-codimension bifurcations
with chaotic dynamics determined at finite order, we refer to [1, 19, 13, 24, 8].)

Specifically, we study a codimension two bifurcation with D, symmetry. The
bifurcation is a steady-state/steady-state mode interaction where two independent
families of real eigenvalues pass simultaneously through zero. One family of eigen-
values is simple, and the other has multiplicity two corresponding to the standard
representation of ID,. Hence, centre manifold reduction leads to a three-dimensional
vector field.

In the mode-interaction that we study, the action of I, on the centre manifold R?
is defined by

p:(z,y,w) = (—y,z,w), k:(z,y,w) — (T, -y, —w).

Thus (z,y) transforms under the standard action of Dy, while rotations act trivially
on w. It follows from standard arguments that there are three primary branches of
equilibria with maximal isotropy which we label Z4, D and DY. (These are cyclic
subgroups generated by p, k and kp respectively. The superscripts e and v stand for
‘edge’ and ‘vertex’, distinguishing the two different types of reflection symmetry of a
square — axes through opposite edges and axes through opposite vertices.)

In a mode-interaction, the primary branches may undergo secondary bifurcations
to branches of mizred-mode solutions. It turns out that all three of the primary
branches above may undergo secondary Hopf bifurcations leading to periodic solutions
with trivial spatial isotropy and nontrivial spatiotemporal symmetry.

In the sequel, we disregard the D} branch, and focus on secondary bifurcations
from the Z4 and Df branches. There is a scenario where both the Z, and Df branches
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lose stability to supercritical Hopf bifurcations. The resulting periodic solutions have
i and % phase shift symmetries respectively. Since these periodic solutions have

different phase-shift symmetry, they cannot coalesce and further tertiary bifurcations
are required if the branches are to connect.

__—--~ 7" Z,equilibria

Figure 1: Schematic bifurcation diagrams for mode-interactions in steady-
state/steady-state bifurcations with (a) Zg X Zg symmetry, and (b) D, symmetry.
Solid lines denote asymptotically stable solutions and dashed lines denote unstable
solutions.

The situation up to this point is summarised in Figure 1. In Figure 1(a), we show
the “classical” bifurcation diagram for codimension two mode interactions, where
there are nonhysteretic transitions between two primary branches of “pure mode”
solutions via a secondary branch of “mixed mode” solutions. This particular diagram
occurs in a steady-state/steady-state bifurcation with Zy X Zo symmetry [15, Figure
4.3(c), Chapter X]. (All branches here consist of equilibria and, in the usual way,
solid lines denote asymptotically stable solutions and dashed lines denote unstable
solutions.)

In contrast, Figure 1(b) shows the bifurcation diagram for the steady-state/steady-
state bifurcation with D, symmetry studied in this paper. The mixed-mode branches
now consist, of periodic solutions, but more significantly their spatiotemporal symme-
tries are different, and so the bifurcation diagram cannot be complete.

Surprisingly, we find that the missing portion of the bifurcation diagram in Fig-
ure 1(b) takes the form of symmetric chaos. Indeed, we compute the existence of
attractors with symmetry on average D and Dy, as well as asymmetric chaotic attrac-
tors, and we compute transitions between these different types of chaotic attractor.
(We also find chaotic attractors with symmetry D¢ and DS, but we do not focus on
these here.)

As far as we know, this is the simplest situation in local bifurcation theory for
which symmetry-increasing bifurcations have been documented. We note however
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that symmetric chaos has been previously seen in D4-symmetric Takens-Bogdanov
bifurcations (codimension two bifurcation, four-dimensional centre manifold) [1, 25].
Armbruster et al. [1] found a ‘weakly chaotic’ symmetric attractor, though the sym-
metry was not mentioned explicitly. In the same situation, Rucklidge [25] made an
extensive study of symmetric chaos and symmetry-increasing bifurcations, though
the analysis was restricted to parameters near to an O(2)-symmetric limit, so the
effective codimension is three.

The mode-interaction that we study has been partially analysed in previous work
of Lari-Lavassani el al. [22, Section 4.2], In particular, [22] pointed out that the
existence of secondary periodic solutions bifurcating from the Z, equilibria should be
expected on representation-theoretic grounds. There are no general principles that
predict the nature of secondary bifurcations from the remaining primary branches, but
concrete calculations show that both secondary steady-state and Hopf bifurcations
can occur depending on the details of the bifurcation problem. These bifurcations
and the existence of symmetric chaos and symmetry-increasing bifurcations were not
studied in [22].

Our study is a combination of analytic and numerical computations. The analytic
computations, which suffice for the primary and secondary bifurcations, are carried
out in Section 2. Tertiary bifurcations are analysed using AUTO [12] and DsTool [3]
in Section 3. In Sections 4 and 5, the existence of symmetric chaotic attractors is
established by computing Lyapunov exponents and symmetry detectives [4, 10]. In
Section 6, we summarise our results and describe possible future directions.

2 Primary and secondary bifurcations
We begin by writing down the general form of the vector field on the centre manifold.

Proposition 2.1 The general smooth Dy -equivariant mapping f : R® — R has the
form

fi(@,y,w) = hi (2%, 9%, w?)z — ho(2®, y*, w?)wy
fQ(xa Y, UJ) = hl (y27 .’172, w2)y + h2(y25 xza ’LUQ)U}LE
fa(a,y,w) = ha(a® + y*, 2°y%, w*)w + ha (2 + 4, 2%y*, w?)wy (2 — y°)

where hy, ha, hs, hy are smooth real-valued functions.

Proof This is standard, as in [16]. |



In this paper, we consider the truncated vector field

)
7= (\—y?+bx? + dw?)y + wx
W= (p+ c(z? + y?) — w?)w + exy(z? — y?)

T =(\—2%+by? + dw?)z —wy
} (2.1)

In the usual way, certain (generically nonzero) coefficients can be normalised to +1
and we have chosen —1 to ensure that certain primary branches are supercritical.

Remark 2.2 For computations of equilibria, it is possible to use singularity theory
to find a suitable truncation of these equations. Recent techniques [6] make the
application of singularity theory more tractable. For our situation, a computation [5]
shows that the bifurcating equilibria are determined by the vector field (2.1) with d =
e = 0. However, this leads to degenerate secondary Hopf bifurcations, necessitating
nonzero values for d and e.

Isotropy subgroups The isotropy subgroups are given up to conjugacy by Dy, Zy4,
DS, DY and 1, with the following lattice of inclusions:

PARN

T
4\11/1

The proper isotropy subgroups Z,, Df and DY have one-dimensional fixed-point sub-
spaces:

FixZs = {(0,0,w)},  FixDf = {(z,0,0)}  FixD? = {(z,,0)}.

Primary bifurcations

Table 1 lists the three primary branches of equilibria, showing the branching equations
and the eigenvalues for the equilibria.

Proposition 2.3 The Z4 equilibria exist for > 0. They are asymptotically stable
if A+ dp < 0 and unstable if X+ dp > 0.
The DS equilibria exist for A > 0. They are asymptotically stable if

p+(14+b+c)A <0, 1+bpu+ ((1+b)c—e)A >0,



Isotropy | Fix X Branching Eigenvalues
by equation

Z4 (Oa Oa w) = ’U)2 _2N'a A+ du + Z\/.1_'1'

D¢ (2,0,0) | A = 22 —2), eigenvalues of 2 x 2 matrix with
tr=p+ (14b+ )\
det = AM{(1+b)u+ ((1+0b)c—e)A}

DY (z,2,0) | A= (1 —b)x? | =2, eigenvalues of 2 X 2 matrix with
tr=p—2(1+b—c)z?
det = —222{(1 4+ b)u + 2((1 + b)c — e)2?}

Table 1: Branching equations and stability assignments for the primary branches of
equilibria.

and are unstable if one or both of these inequalities is reversed.
The DY equilibria exist for A > 0 provided b < 1, in which case they are asymptot-
ically stable if

(1—=bpu—21+b—c)A <0, (6> — D+ 2(e — (1 +b)e)A > 0,

and are unstable if one or both of these inequalities is reversed.

Secondary bifurcations

Next, we describe the secondary bifurcations of equilibria and periodic solutions that
bifurcate from the three primary branches of equilibria.

Table 1 gives information on the eigenvalues associated to the three primary
branches of equilibria. Secondary bifurcations occur when the real parts of the
eigenvalues vanish. Zero eigenvalues signify steady-state bifurcation to secondary
branches of equilibria, and imaginary eigenvalues signify Hopf bifurcation to sec-
ondary branches of periodic solutions.

Proposition 2.4 (a) Secondary branches of equilibria bifurcate from the primary
branches of equilibria as follows:

Zy None.
Df  At(Q+bpu+ ((1+bc—e)A=0.
D¢ At (0*— Dpu+2(e— (1 +b)c)A=0.
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These secondary bifurcations are pitchfork bifurcations and the bifurcating equilibria
have trivial isotropy.

(b) Secondary branches of periodic solutions bifurcate from the primary branches
of equilibria as follows:

D¢ At p+ (1+b+c)A =0 provided (1 + b)? + e < 0.
DY At (1 =b)p—2(1+b—c)A =0 provided —(1 + b)* + e > 0.

The resulting periodic solutions have trivial spatial symmetry and spatiotemporal sym-
metry Zg, D, and DY respectively. For example, the Z4 branch has quarter-period
phase shift symmetry coupled with the action of p.

Proof The eigenvalues for Z, are given explicitly in Table 1, so the secondary
bifurcations are immediate. The results for Df and D are obtained by noting that for
a 2 X 2 matrix, zero eigenvalues are signified by det A = 0 and imaginary eigenvalues
are signified by tr A = 0, det A > 0.

Finally, the results on spatiotemporal symmetry are a consequence of the equiv-
ariant Hopf theorem [16]. |

It follows from general principles that the secondary branches of equilibria and
periodic solutions in Proposition 2.4 satisfy “exchange of stability”, so their stability
is governed by the stability of the primary branch together with the branching direc-
tion. Computing the direction of branching is elementary but tedious. We focus on
asymptotically stable periodic solutions bifurcating from the Z, and Df branches.

Lemma 2.5 If b+ 4cd < 3, then the Z4 periodic solutions bifurcate supercritically
(for A+ dp > 0) and are asymptotically stable. If

(1+b)*+e<0, and (1+b)(2b° + 3b* — 3b + 2be + 3bc + 2ce + 2b*c) > 0,

then the D¢ periodic solutions bifurcate supercritically (for p+ (1 +b+ c)A > 0) and
are asymptotically stable.

If the appropriate inequality is reversed, then the corresponding periodic solutions
exist subcritically and are unstable.

The proof is given in an appendix.



3 Tertiary bifurcations

To compute the loss of stability of the secondary branches of periodic solutions, and
the corresponding onset of symmetric chaos, it is necessary to use numerical methods.
From now on, we specify the values of the constants b, ¢, d, e in the vector field (2.1)
as follows:

b=0.9 c=-21 d=—0.05 e=—19.2

We concentrate on the positive quadrant A, > 0 of parameter space. Applying
the results of Section 2 with these values, we find that the primary branches of
equilibria with Z, and Df symmetry are initially asymptotically stable, and each
undergo supercritical Hopf bifurcation to secondary branches of periodic solutions
with spatiotemporal Z, and Df symmetry. The Hopf bifurcations occur at p = 20\
and p = 0.2 respectively. Primary branches of DY equilibria exist but are unstable.

In this section, we use AUTO and DsTool to study the dynamics that occurs when
the secondary branches of Z, and Df symmetric periodic solutions lose stability.

Loss of stability of the secondary periodic solutions

In this subsection, we use AUTO [12] to determine curves in \-y parameter space
where tertiary bifurcations take place from the secondary branches of periodic solu-
tions. At the same time, we determine the manner in which the periodic solutions
lose stability.

The use of AUTO is slightly nonstandard due to the spatiotemporal symmetry of
the periodic solutions. Standard implementation of AUTO leads to bifurcations that
AUTO cannot recognise, and so the approach must be modified as described below.

Z, periodic solutions The Z, periodic solutions have spatiotemporal symmetry

(z,y,w)t+T/4) = p- (z,y,w)(t) = (—y,z,w)(t),

where T is the period of the periodic solution.

Solutions with this symmetry type can be computed numerically by constructing
a modified Poincaré map P. Let X be a local two-dimensional cross-section (we
chose X contained in the plane {w = ¢} for some constant ¢). Let g : X — pX be
the first hit map and define P = p~!'g : X — X. Then periodic solutions with Z,4
spatiotemporal symmetry correspond to fixed points of P. Working with P is more
efficient numerically than working with the usual Poincaré map since it is sufficient
to compute only one quarter of the solution. More significantly, the bifurcations for
P are the generic ones, see Remark 3.1 below.



To compute the solutions, we used AUTO to find fixed points of P, starting with
a solution near to the Hopf bifurcation point. By increasing A, a path of periodic
solutions was computed and it was found that the solutions on this path lost stability
at a turning point. Two parameter continuation was used to follow the path of turning
points in the two parameter (A, 1) space, shown in Figure 2.

D! periodic solutions The Df periodic solutions have spatiotemporal symmetry

(xayaw)(t+T/2) =k (x,y,w)(t) = ('7;7 Y, —’(U)(t)

We again consider a local cross-section X ({w = ¢} suffices) and let g : X — kX
denote the first hit map. Periodic solutions with D{ symmetry correspond to fixed
points for the modified Poincaré map P = kg : X — X.

Using AUTO, we found that the path of stable fixed points for P loses stability
via a period-doubling bifurcation. For the underlying flow, this corresponds to a
symmetry-breaking pitchfork bifurcation to nonsymmetric periodic solutions. The
path of bifurcations is shown in the (), x) plane in Figure 2.

Remark 3.1 We note that this is not a period-doubling bifurcation for the flow
and is an example of “suppression of period-doubling” [26]. In fact, the bifurcating
nonsymmetric periodic solutions are approximately of the same period as the Df
periodic solutions near the bifurcation point.

If we had ignored the spatiotemporal symmetry, then the ordinary Poincaré map
obtained by integrating around the full periodic solution would have an eigenvalue 1
at the bifurcation point, but the bifurcation is a pitchfork rather than a turning

point. This is a highly degenerate bifurcation in systems without symmetry and is
not recognised by AUTO.

The pitchfork bifurcation to nonsymmetric periodic solutions turns out to be sub-
critical, resulting in unstable solutions initially. However, there is almost immediately
a turning point at which they regain stability. The corresponding hysteretic region
of bistability is extremely thin. The turning point is quickly followed by a period-
doubling cascade. We computed the first period-doubling bifurcation, and the path
of bifurcation points is shown as a dashed curve in Figure 2.

To summarise, Figure 2 shows the paths of Hopf bifurcations from primary equi-
libria to secondary periodic solutions (solid straight lines), and the paths of initial
loss of stability of the secondary periodic solutions (solid curves). The thin hysteretic
region where stable Df-periodic solutions and asymmetric periodic solutions coexist is
not shown (the curve of turning points where the asymmetric periodic solutions gain
stability is omitted), but the dashed curve shows the path of first period-doubling
bifurcations for the asymmetric periodic solutions.
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Figure 2: Secondary and tertiary transitions for the vector field (2.1) with b = 0.9,
c=-21,d=-0.05, e = —19.2.

Chaotic transitions

In this subsection, we explore the nature of the tertiary transitions using DsTool [3].
Throughout, we fix A = .16 and vary pu.

Periodic solutions with spatiotemporal symmetry Df and Z, are shown in Figures 6
and 7. The parameter values are p = .68 and p = .82 respectively.

The turning point loss of stability for the Z, periodic solutions takes place near
u = .8186. Experiments with DsTool indicate that at the turning point there is a
nonhysteretic transition to a D, symmetric chaotic attractor which persists until near
u = .739. After this point, there is a collapse to a D} symmetric chaotic attractor.
Varying p in the other direction, it can be seen that this is a symmetry-increasing
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bifurcation from DY to Dy symmetric chaos. The Dy and DY symmetric attractors for
@ = .74 and p = .73 are shown in Figures 8 and 10. For contrast, an amalgamation of
the Df and Z, periodic solutions from Figure 6 and 7, together with their symmetry
related images, is shown in Figure 9.

Turning to the DY periodic solutions, the subcritical pitchfork bifurcation to un-
stable nonsymmetric periodic solutions occurs at p = .6835. Asymptotically stable
nonsymmetric periodic solutions exist for .6821 < p < .6869 with a period-doubling
bifurcation at y = .6869. Experiments with DsTool indicate that a sequence of period-
doubling bifurcations follows, leading to a nonsymmetric chaotic attractor at around
1 = .688. There is then a symmetry-increasing bifurcation at around p = .6891 to a
fully Dy symmetric chaotic attractor.

The ensuing region of parameter space seems to be extremely complicated with
numerous transitions between periodic/chaotic solutions with/without DY symmetry.
The transitions take the form of period-doubling sequences, gluing bifurcations and
symmetry-increasing bifurcations. Periodic solutions with no symmetry and with Df
symmetry are shown in Figure 11.

Eventually, a region of parameter space is reached (.720 < p < .738) where DY
symmetric chaotic attractors appear to dominate. This region terminates in the
afore-mentioned symmetry-increasing bifurcation to the D, symmetric attractor.

It is not entirely clear from Figure 8 that the chaotic attractor at A = 0.16,
u = 0.74 is fully Ds-symmetric as claimed. In fact, it is hard to plot a trajectory of
sufficient length to resolve this issue. (There are 200,000 data points, but our time
step is 0.01 so the total integration time is only 2000 time units.) In Figure 12, we
show the same attractor but now in terms of pixels hit by the trajectory. There is no
longer a data-storage difficulty, and we use 100, 000,000 data points (corresponding
to a total integration time of 1,000,000 time units). The symmetries are now clear.
Also, in Figure 13, we colour the pixels according to how often the pixel is hit. This
gives an idea of the density function for the invariant measure.

4 Lyapunov exponents

Our analytic calculations, and the computations using AUTO, leave a large region
of parameter space unexplored. The simulations using DsTool indicate that there
are chaotic attractors throughout much of this region. To confirm this we computed
the maximal Lyapunov exponent for a fixed initial condition (chosen arbitrarily to
be (z,y,w) = (0.008,0.044,0.005)) and a grid of values of A\ and u. Our results are
shown in Figure 3.

Most of Figure 3 was obtained by varying A from 0 to 0.2 in increments of 0.002,
and varying p from 0 to 1 in increments of 0.01. To obtain greater resolution near
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the origin, in the range 0 < A < 0.042, we used finer increments of 0.002 for pu.

For each point in the (A, ) grid, we allowed a transient of 20,000 time units and
then computed the maximal Lyapunov exponent over the next 10,000 time units,
using a time step of 0.01. There was a clear cutoff between “positive” and “zero”
values of the Lyapunov exponent, with the value 0.001 sufficing for our purposes. For
example, fixing A = 0.1 and letting p vary from 0.38 to 0.45 in increments of 0.01
yields the exponents

1.47x107* 717x107%2 5.85x107* 5.86x 1072
747 %1072 9.13x 1072 1.06 x 107" 2.26 x 107*

clearly indicating 5 chaotic parameter values p = 0.39, 0.41, 0.42, 0.43, 0.44.
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Figure 3: Region of (A, ) parameter space with positive Lyapunov exponent for the

vector field (2.1) with b = 0.9, ¢ = —2.1, d = —0.05, e = —19.2. The boundaries of
the regions studied analytically and using AUTO (cf. Figure 2) are also shown.



5 Symmetry detectives

Symmetry detectives [4, 10] are a method for numerically computing the symmetry
of an attractor. In general, there are two advantages to proceeding in this way:

(i) For high-dimensional dynamical systems and complicated symmetry groups, it
might be hard to determine the symmetries visually.

(ii) The approach can be automated, and so can deal with a large number of pa-
rameter values, producing a detailed map of parameter space.

In principle, it is not hard to determine the symmetry of a chaotic attractor for
the three-dimensional vector field (2.1) by looking at the projections into the (z,y)
plane. The detective approach is used here primarily because of advantage (ii).

The problem is to determine numerically the symmetries inside D, that preserve
a set A in R®. As shown in Barany et al. [4], this can be done by converting the
set, A into a point ¥4 in some higher-dimensional representation space V for Dy, and
then computing the symmetry of the point 1 4. The key property of V' is that every
subgroup of D, should be an isotropy subgroup for the action of D, on V.

We take the representation space V = R® with coordinates v = (vy, ..., vs) where
the action of Dy is defined by

p-v = (v, —vg, —U3, —Vs, V4), kv = (—v1, vy, —V3, Vg, —Vs)-

Note that V' splits up into three distinct nontrivial 1-dimensional representations
R{v1}, R{vo}, R{v3} and the standard 2-dimensional representation R{vy, vs}.
Up to conjugacy, there are 8 subgroups of D,. Six of these are normal subgroups
with fixed-point subspaces in V' given by
FixD, = {0}, FixDf =R{ve}, FixD§ =R{vs},
FiXZ4 = R{Ul}, FiXZQ = R{Ul,vg,vg,}, Fix1=V.

The remaining subgroups Df and DY each have two conjugate copies (conjugated by
p) and the union of fixed point spaces is a pair of planes in each case:

FlXDci = R{Ug, ’04} U R{’Ug, U5}, FlXDij = R{Ug,’l)4 + U5} U R{Ug,?)4 - ’05}.
These fixed point spaces are distinct, so each subgroup of D, is indeed an isotropy
subgroup for the action on V.

Next, we define the detective
¢(ZE, y’ w) = (w7 'Iywa "L'y’ '7"7 y)'
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It is easy to see that ¢ : R® — V is D4-equivariant with respect to the given actions
of Dy on R® and V. In addition, ¢ is a polynomial map and each component of ¢ is
nonzero. Hence ¢ satisfies the hypotheses of [4, Theorem 5.2].

At this point we switch to the numerically more efficient method developed by
Dellnitz et al. [10]. Given an attractor A with trajectory u(t), we define

1 (7
va=Jim 7 [ otuto)ar
It follows from the ergodic theorem that ¢4 € V is well-defined for almost every
initial condition u(0), and the point 14 inherits the symmetry of the set A (under
reasonable but technical hypotheses about the ergodic measures on A). Moreover, it
follows from the properties of ¢ (being a detective) that typically, the symmetry of
14 is identical to the symmetry of A.

It remains to compute the distance of ¥4 from the various fixed-point spaces and
hence to determine the symmetry of A. Of many possible algorithms, we chose

(i
(ii

If v? + v2 + v2 + v + v2 = 0, then Dj.
Else, if v3 + v3 + v + v2 = 0, then Z,.
(iii) Else, if v? 4+ v3 + v? + v2 = 0, then Df.
(iv
(v

(vi

Else, if v? + v3 + v + v2 = 0, then D§.
Else, if v} + v2 = 0, then Z.
Else, if v? > 0, then 1.

(vii) Else, if v > 0, then DY.

)
)
)
)
)
)
)
(viii) Else, Df.
(In practice, we have to choose the range of values that numerically constitutes zero.)
Our results are shown in Figure 4. These are based on the same initial conditions
for (z,y,w) and the same values of (A, ) in parameter space that were used in
computing Lyapunov exponents in Figure 3. Again, we used time step 0.01 and
transient 20, 000 time units, but we integrate for the longer time of 100, 000 time units.
This is necessary to distinguish D, chaotic attractors from Df chaotic attractors near
the symmetry-increasing bifurcations. In numerical simulations, the chaos is seen

immediately, but it sometimes takes longer to see the fully symmetric attractor.
In Figure 5, we show a blown-up version of part of Figure 4.
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6 Conclusions and future directions

In this paper, we have studied a simple-looking codimension two mode interaction
with Iy symmetry. The codimension two point is the coalescence of two steady-state
bifurcation points, and the centre-manifold is three-dimensional.

We computed analytically primary branches of equilibria with maximal isotropy
giving rise through Hopf bifurcation to secondary branches of periodic solutions with
spatiotemporal symmetry.

Surprisingly, we found tertiary bifurcations to symmetric chaos. Using AUTO,
DsTool, Lyapunov exponents, and symmetry detectives, we obtained convincing nu-
merical evidence that the symmetric chaos is part of the local bifurcation, as is various
symmetry-increasing bifurcations between chaotic attractors of differing symmetry

types.
There are three natural directions that are worthy of further study:

e The corresponding bifurcations with D, symmetry for n # 4 are only partially
studied. From now on, we write I); as shorthand for DY and D when n is even,
and for the unique subgroup of order two (up to conjugacy) when 7 is odd.
The primary branches of equilibria with Z, and D; symmetry are essentially
unchanged and there is still a Hopf bifurcation to a secondary branch of periodic
solutions with Z,, spatiotemporal symmetry. However, a calculation for n > 5
shows that generically the D; equilibria loses stability only via a steady-state
bifurcation, hence producing a secondary branch of asymmetric equilibria. In
general, the cases n > 5 are likely to be simpler than the case n = 4 studied
in this paper, since various important terms are now at higher order. The case
n = 3 is potentially even more complicated than n = 4 since there are now
additional terms at cubic order.

We have not carried out the numerical simulations required to determine the
existence of large-scale symmetric chaos and symmetry-increasing bifurcations
when n = 3 and n > 5.

e It should be straightforward to write down a system of reaction-diffusion equa-
tions in a square domain undergoing the steady-state/steady-state mode inter-
action studied in this paper. Hence, it should be possible to realise symmetric
chaos and symmetry-increasing bifurcations in a local bifurcation in a system
of partial differential equations.

e One implication of our investigations is that symmetric chaos should be more
common near onset in real experiments than might previously have been antici-
pated. Likely situations include transitions from a square symmetric equilibrium
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in an experiment in a square domain, but also transitions from a four-fold sym-
metric equilibrium in an experiment in a circular domain (for example, cellular
flames in a circular burner). In the situation of a circular domain, the total
dynamics would consist of a rotational drift superimposed on the dynamics
described in this paper.

Appendix. Direction of branching for secondary
branches of periodic solutions

In this Appendix, we give the proof of Lemma 2.5 which establishes the conditions
under which the secondary branches of periodic solutions bifurcate supercritically,
and hence are asymptotically stable.

Direction of branching for Z, periodic solutions Setting v = A + du, w0 =
w — /1, and dropping the hat’s, we obtain

i=[v—2a®+by’ +2d\/pw + dw’lz — (Vi +w)y
y = [v—y®+ br* + 2d\/pw + dw?ly + (Vi + w)z
W = (c(z” + y?) — 2/pw — w?) (Vi + w) + exy(z® — y?).

To obtain the centre manifold for the secondary bifurcation, write w = h(z,y)
where h is at least quadratic. In fact, h is Zg-invariant, so w = a(z®+y?)+- - - where

we have neglected terms of order 4 or higher. A calculation shows that oo = 2\°/ﬁ + -

and the centre manifold equations are given by

i=+(cd—1)2>+b+cd)y’+ -]z — (Vu+-)y
y=[v+(cd=1)y*+ (b +ed)z®+---|y+ (Vp+- )z

Next we put the equation into Birkhoff normal form. Abstractly, we can write the
system as

i=(v+az’+ By’)z —wy
v = (v+ay® + B2?)y + wz.

Making the near identity Z,-equivariant change of coordinates (z,y) = (X +4Y3, Y —
§X?) yields at lowest order

X =@+ (a+w)X?+ (8 -3wh)YH)X —wY
Y =+ (a+wd)Y?+ (8 — 3wd) X?)Y — wX.
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Setting § = (8 — a)/(4w) yields
X=@w+0X*+Y?))X —wY
Y =+ C(X2+Y?))Y —wX

where C' = 1(3a+ ) = 1(b+4cd — 3). Thus supercritical bifurcation corresponds to
C < 0 yielding the condition b + 4cd < 3 in Lemma 2.5.

Direction of branching for D¢ periodic solutions Setting v = p+ (1+b+c)A\,
Z =z — /X and dropping the hat’s, we obtain

i = (VA +2)(—2V Az — 22 + by? + dw?) — wy
7 =y((1 40X\ — 32+ 20V \x + bz + dw?) + Vw + wz
w=wv— (140X +2cVAx + cx? + e’ — w?) + e(x + VNy(a? + 2V Az + X —12).

To obtain the centre manifold equations, set x = ay® + Syw + yw?. Plugging this
in, and equating coeflicients at quadratic order, leaves the following system of linear
equations to be solved for a, 3, :

WA+ 208 +2eX 2y = -1, 22+ b)VAa+erS=b, VA —2bAy =dVA
We find

o = {2b% + 2be — de®\} /4N/2A

B={=2b(1+b) + (b+2)deA}/2)A

vy ={—2(1+b) +d(e — 2b — 4)A}/AN/2A,

where A = b? + 2b+ e < 0 (by the hypothesis in Proposition 2.4).
The equations on the centre manifold are given by

§=(1+b)Ay+ Vaw+ 2V ba — 1)y + 2V + a)y’w
+ 2V Ay + d + B)yw® + yu®
W =eXy+ (v — (1+b)Nw + e(3ra — VA1 + (2eVha + ¢ + 3eAB)y’w
+ (2eVAB + 3edy)yw? + (2eV/ Ny — 1)wb.
Linear algebra plus Birkhoff normal form leads to the normal form equations

z= v +iw)z+ClzfPz 4 -

Here, w = A\y/—((1 +b)*> +¢€) and C = 1(1 4+ b)kA/A + O(A\?) where
k = 2b* + 3b° — 3b + 2be + 3bc + 2ce + 2b°c.
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Figure 6: Projection into the (z,y)- and (z,w)-planes of the D¢ symmetric periodic
solution at A = 0.16, u = 0.68. The plot includes 7,000 data points gathered with
time step 0.01.
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Figure 7: Projection into the (z,y)- and (x,w)-planes of the Z, symmetric periodic
solution at A = 0.16, 4 = 0.82. The plot includes 7,000 data points gathered with
time step 0.01.
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Figure 8: Projection into the (z,y)- and (z,w)-planes of the Dy symmetric attractor
at A = 0.16, p = 0.74. The plot includes 200,000 data points gathered with time
step 0.01.

Figure 9: Amalgamation of the plots of the the Z, symmetric and Df symmetric
periodic solutions shown in Figures 6 and 7, together with their symmetric images.

25



05 a 1=

<
o
T

05+

Figure 10: Projection into the (z,y)- and (z,w)-planes of the DY symmetric attractor
at A = 0.16, p = 0.73. The plot includes 200,000 data points gathered with time
step 0.01.
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Figure 11: Projection into the (z,y)-plane of the asymmetric and DY symmetric
periodic solutions at A = 0.16, u = 0.70 and at A = 0.16, . = 0.71. Each plot
includes 7,000 data points.
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