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Abstract

In this paper, we show how the Gordin martingale approximation method
fits into the anisotropic Banach space framework. In particular, for the time-
one map of a finite horizon planar periodic Lorentz gas, we prove that Hölder
observables satisfy statistical limit laws such as the central limit theorem and
associated invariance principles. Previously, these properties were known only
for a restricted class of observables, excluding for instance velocity.

1 Introduction

The traditional approach to proving decay of correlations and statistical limit laws
for deterministic dynamical systems, following [7, 44, 45] and continuing with
Young [50, 51], involves symbolic coding. In particular, by quotienting along sta-
ble leaves one passes from an invertible dynamical system to a one-sided shift. Decay
of correlations is then a consequence of the contracting properties of the associated
transfer operator. In addition, Nagaev perturbation arguments [24, 25] and the mar-
tingale approximation method of Gordin [22] are available in this setting, leading to
numerous statistical limit laws. These results on decay of correlations and statistical
limit laws are then readily passed back to the original dynamical system.

A downside to this approach is that geometric and smooth structures associated to
the underlying dynamical system are typically destroyed by symbolic coding. In recent
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years, a method proposed by [6] and developed extensively by numerous authors (for
recent articles with up-to-date references see [2, 19]) uses anisotropic Banach spaces
of distributions to study the underlying dynamical system directly. In particular, the
method does not involve quotienting along stable manifolds. This leads to results
on rates of decay of correlations and also to various statistical limit laws via Nagaev
perturbation arguments, see especially Gouëzel [23].

However, so far Gordin’s martingale approximation argument has been absent
from the anisotropic Banach space framework. This is the topic of the current paper.
The utility of such an approach is illustrated by the following example.

Example 1.1 The landmark result of Young [50] established exponential decay of
correlations for the collision map corresponding to planar periodic dispersing billiards
with finite horizon. The method, which involves symbolic coding, also yields the
central limit theorem (CLT) for Hölder observables, recovering results of [8].

Turning to the corresponding flow, known as the finite horizon planar periodic
Lorentz gas, the CLT follows straightforwardly from the result for billiards [8, 40].
However, decay of correlations for the Lorentz gas and the CLT for the time-one
map of the Lorentz gas are much harder. Superpolynomial decay of correlations was
established for sufficiently regular observables in [35] (see also [36]) using symbolic
coding and Dolgopyat-type estimates [20]. This method also yields the CLT for
the time-one map [1, 39], but again only for sufficiently regular observables. Here,
“regular” means smooth along the flow direction, so this excludes many physically
relevant observables such as velocity. The rate of decay of correlations was improved
to subexponential decay [11] and finally in a recent major breakthrough to exponential
decay [3]. Both references handle Hölder observables, suggesting that statistical limit
laws such as the CLT for the time-one map should hold for general Hölder observables.

Currently the Nagaev method is unavailable for Lorentz gases, and as a conse-
quence the CLT for the time-one map was previously unavailable except for a re-
stricted class of observables. We show that the Gordin approach is applicable and
hence the CLT and related limit laws are indeed satisfied by Hölder observables for
these examples. In particular, observables such as velocity are covered for the first
time.

In the remainder of the introduction, we describe some of the limit laws that follow
from the methods in this paper. For definiteness, we focus on Example 1.1. Let X be
the three-dimensional phase space corresponding to a finite horizon planar periodic
Lorentz gas, with invariant volume measure µ, and let T : X → X be the time-one
map of the Lorentz flow. Let φ : X → R be a Hölder observable with mean zero and
define the Birkhoff sum φn =

∑n−1
j=0 φ ◦ T j. It follows from [3, 11] that we can define

σ2 = lim
n→∞

n−1

∫
X

φ2
n dµ =

∞∑
n=−∞

∫
X

φφ ◦ T n dµ.
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By [1, Theorem B and Remark 1.1], typically σ2 > 0 (the case σ2 = 0 is of infinite
codimension). We obtain the following results.1

CLT: n−1/2φn →d N(0, σ2) as n→∞. That is

lim
n→∞

µ(x ∈ X : n−1/2φn(x) ≤ c) = (2πσ2)−1/2

∫ c

−∞
e−y

2/(2σ2) dy for all c ∈ R.

Weak invariance principle (WIP): Define Wn(t) = n−1/2φnt for t = 0, 1
n
, 2
n
, . . .

and linearly interpolate to obtain Wn ∈ C[0, 1]. Then Wn →w W where W denotes
Brownian motion with variance σ2.

Moment estimates: For every p ≥ 1 there exists Cp > 0 such that |φn|p ≤ Cpn
1/2.

Consequently, limn→∞ n
−p/2‖φn‖pp = E|Y |p where Y =d N(0, σ2).

Homogenization: Now suppose that φ : X → Rk. We continue to suppose that φ
is Cη for some η ∈ (0, 1] and that

∫
X
φ dµ = 0. Consider the fast-slow system

x(n+ 1) = x(n) + ε2a(x(n)) + εb(x(n))φ(y(n)),

y(n+ 1) = Ty(n), (1.1)

where x(0) = ξ ∈ Rd and y(0) is drawn randomly from (X,µ). We suppose that
a : Rd → Rd lies in C1+η and b : Rd → Rd×k lies in C2+η. Solve (1.1) to obtain

xε(n) = ξ + ε2
n−1∑
j=0

a(xε(j)) + ε
n−1∑
j=0

b(xε(j))φ(y(j)), y(n) = T ny(0),

and let x̂ε(t) = xε([t/ε
2]). This defines a random process on the probability space

(X,µ) depending on y(0) ∈ X. Then x̂ε →w Z as ε → 0, where Z satisfies an Itô
stochastic differential equation dZ = ã(Z)dt + b(Z) dW , Z(0) = ξ, where W is a
k-dimensional Brownian motion with covariance matrix Σ and

ã(x) = a(x) +
d∑

α=1

k∑
β,γ=1

Eγβ ∂b
β

∂xα
(x)bαγ(x). (1.2)

Here, bβ is the β’th column of b and the matrices Σ, E ∈ Rk×k are given by

Σβγ =
∞∑

n=−∞

∫
X

φβ φγ ◦ T n dµ, Eβγ =
∞∑
n=1

∫
X

φβ φγ ◦ T n dµ.

The remainder of this paper is organized as follows. In Section 2, we recall back-
ground material on martingale-coboundary decompositions and statistical limit laws.
In Section 3, we state an abstract theorem on obtaining martingale-coboundary de-
compositions for invertible systems with stable directions. In Section 4, we apply our
results to the time-one map of the Lorentz gas.

1In what follows, →d denotes convergence in distribution while →w denotes weak convergence.

3



2 Martingale approximations

In this section, we review the approach going back to Gordin [22]. This method yields
martingale approximations for observables of dynamical systems leading to various
limit theorems. Related references include [4, 5, 17, 18, 26, 31, 47, 48, 49]. Let (X,µ)
be a probability space, and let T : X → X be an invertible ergodic measure-preserving
transformation. Let F0 be a sub-σ-algebra of the underlying σ-algebra on X such
that T−1F0 ⊆ F0. Consider an observable2 φ ∈ L1(X) with

∫
X
φ dµ = 0.

Definition 2.1 We say that φ admits a martingale-coboundary decomposition if

φ = m+ χ ◦ T − χ,

where m,χ ∈ L1(X), m is F0-measurable, and E[m|T−1F0] = 0.

The conditions on m in Definition 2.1 mean that {m ◦ T−n : n ∈ Z} is a sequence
of martingale differences with respect to the filtration {T nF0 : n ∈ Z}.

Proposition 2.2 Let φ ∈ Lp(X) for some p ≥ 1. Suppose that∑
n≥1 |E[φ ◦ T−n|F0]|p <∞,

∑
n≥0

∣∣E[φ ◦ T n|F0]− φ ◦ T n
∣∣
p
<∞. (2.1)

Then φ admits a martingale-coboundary decomposition with m, χ ∈ Lp(X).

Proof This is a standard argument [26, 48]. We give the details for completeness.
By (2.1),

χ =
∑

n≥0(E[φ ◦ T n|F0]− φ ◦ T n) +
∑

n≥1 E[φ ◦ T−n|F0]

converges in Lp(X). Define m = φ+ χ− χ ◦ T ∈ Lp(X). Then

m =
∑∞

n=−∞(gn − gn ◦ T ) =
∑∞

n=−∞(gn+1 − gn ◦ T ), (2.2)

where gn = E[φ ◦ T n|F0].
Clearly, gn = E[φ ◦ T n|F0] is F0-measurable. Also, gn ◦ T is measurable with

respect to T−1F0 ⊆ F0. Hence m is F0-measurable.
Next, note that gn ◦ T = E[φ ◦ T n|F0] ◦ T = E[φ ◦ T n+1|T−1F0]. Hence

E[gn ◦ T |T−1F0] = E[φ ◦ T n+1|T−1F0] = E[E[φ ◦ T n+1|F0]|T−1F0] = E[gn+1|T−1F0],

where we used that T−1F0 ⊆ F0. Substituting into (2.2), we obtain E[m|T−1F0] = 0
as required.

2Most observables in this paper are real-valued, but occasionally in this section we consider
observables with values in Rk. We write L1(X,Rk) to denote vector-valued observables and write
L1(X) instead of L1(X,R).
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Central limit theorem and invariance principles

Corollary 2.3 Assume that φ ∈ L2(X) and conditions (2.1) hold with p = 2. Then
the CLT and WIP hold with σ2 =

∫
X
m2 dµ = limn→∞ n

−1|φn|22.

Proof This is a standard application of martingale limit theorems [22].

Somewhat surprisingly, by the results of [18], if φ ∈ L∞(X) and conditions (2.1)
hold for p = 1, then automatically m ∈ L2(X) even though Proposition 2.2 only gives
m,χ ∈ L1(X). This suffices for the CLT. Related references for this phenomenon
whereby m has extra regularity include [29, 31, 34, 43, 46, 49]. In particular, the
following result holds:

Theorem 2.4 Assume that φ ∈ L∞(X) and conditions (2.1) hold with p = 1. Then
the CLT and WIP hold.

Proof The CLT and WIP in reverse time (as n→ −∞) is an immediate consequence
of [18, Corollary 4]. Passing from reverse time to forward time is standard (see for
example [27, Section 4.2]).

Now let φ be vector-valued with values in Rk. Define càdlàg processes Wn in Rk

and Wn ∈ Rk×k:

Wn(t) = n−1/2
∑

0≤j<nt

φ ◦ T j, Wβγ
n (t) = n−1

∑
0≤i<j<nt

φβ ◦ T iφγ ◦ T j.

Proposition 2.5 (Iterated WIP) Suppose that T is mixing. Assume that φ ∈
L2(X,Rk) and conditions (2.1) hold with p = 2. Then

(i) The series Σβγ =
∑∞

n=−∞
∫
X
φβ φγ ◦ T n dµ, Eβγ =

∑∞
n=1

∫
X
φβ φγ ◦ T n dµ, con-

verge.

(ii) (Wn,Wn) →w (W,W), where W is a k-dimensional Brownian motion with
covariance matrix Σ and Wβγ(t) =

∫ t
0
W β dW γ + Eβγt.

Proof By Proposition 2.2, φ admits a martingale-coboundary decomposition with
m, χ ∈ L2(X,Rk), so the result holds by [27, Theorem 4.3].

Moments

For optimal moment estimates, the following projective version of conditions (2.1)
are better suited:∑

n≥1 n
−1/2|E[φ◦T−n|F0]|p <∞,

∑
n≥0 n

−1/2
∣∣E[φ◦T n|F0]−φ◦T n

∣∣
p
<∞. (2.3)
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Proposition 2.6 Assume φ ∈ Lp(X) and conditions (2.3) hold for some p > 2.
Then

∣∣maxk≤n |φk|
∣∣
p

= O(n1/2).

If in addition n−1/2φn →d Y for some Lp random variable Y , then
limn→∞ n

−q/2|φn|qq = E|Y |q for all q < p.

Proof Let An =
∑n

j=1 φ ◦ T−j. Then3 for r ≥ 1,

r−1∑
k=0

2−k/2|E(A2k |F0)|p ≤
r−1∑
k=0

2−k/2
2k∑
j=1

|E(φ ◦ T−j|F0)|p

=
2r−1∑
j=1

r−1∑
k=dlog2 je

2−k/2|E(φ ◦ T−j|F0)|p �
2r−1∑
j=1

j−1/2|E(φ ◦ T−j|F0)|p.

By condition (2.3),
∑∞

k=0 2−k/2|E(A2k |F0)|p < ∞. Similarly,
∑∞

k=1 2−k/2|A2k −
E(A2k |T 2kF0)|p <∞. Recalling that T−1F0 ⊆ F0, it follows from [17, Corollary 3.9]
that

∣∣maxk≤2r |Ak|
∣∣
p
� 2r/2.

For general n ≥ 1 choose r ≥ 1 so that 2r−1 < n ≤ 2r. Then∣∣max
k≤n
|Ak|

∣∣
p
≤
∣∣max
k≤2r
|Ak|

∣∣
p
� 2r/2 ≤ (2n)1/2.

Finally, φk = (An − An−k) ◦ T n so∣∣max
k≤n
|φk|
∣∣
p

=
∣∣max
k≤n
|An − An−k|

∣∣
p
≤ 2
∣∣max
k≤n
|Ak|

∣∣
p
� n1/2,

proving the first statement.
The second statement is an immediate consequence of the first, see for example [41,

Lemma 2.1(e)].

Now let φ be vector-valued with values in Rk and define Sβγn =
∑

0≤i<j<n φ
β ◦

T i φγ ◦ T j.

Proposition 2.7 Assume that φ ∈ Lp(X,Rk) and conditions (2.1) hold for some
p ≥ 4. Then

∣∣maxk≤n |Sβγk |
∣∣
p/2

= O(n).

Proof By Proposition 2.2, we have a martingale-coboundary decomposition φ =
m+ χ ◦ T − χ with m, χ ∈ Lp(X,Rk). Write

Sβγn =
∑

0≤i<j<n

mβ ◦ T i φγ ◦ T j +
∑

1≤j<n

(χβ ◦ T j − χβ)φγ ◦ T j = In + Jn

3We use the notation A � B to denote A ≤ const.B, where the constant is independent of the
other parameters present.
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where In =
∑

0≤i<j<nm
β ◦ T imγ ◦ T j and

Jn =
∑

0≤i<n−1

mβ ◦ T i (χγ ◦ T n − χγ ◦ T i+1) +
∑

1≤j<n

(χβ ◦ T j − χβ)φγ ◦ T j.

Now,

max
k≤n
|Jk| ≤

∑
0≤i<n−1

|mβ| ◦ T i (|χγ| ◦ T n + |χγ| ◦ T i+1) +
∑

1≤j<n

(|χβ| ◦ T j + |χβ|)|φγ| ◦ T j.

Hence
∣∣maxk≤n |Jk|

∣∣
p/2
≤ 2n

(
|mβ|p|χγ|p + |χβ|p|φγ|p

)
.

Next, we recall the identity

Ik = In − In−k ◦ T k − (mβ
n −m

β
n−k ◦ T

k)(mγ
n−k ◦ T

k), 0 ≤ k ≤ n,

where mβ
n =

∑n−1
i=0 m

β ◦ T i. Set

mβ,−
n =

∑
1≤i≤n

mβ ◦ T−i, I−n =
∑

1≤j<i≤n

mβ ◦ T−imγ ◦ T−j.

Then mβ
n−k ◦ T k = mβ,−

n−k ◦ T n and In−k ◦ T k = I−n−k ◦ T n for all k ≤ n. Hence

Ik =
(
I−n − I−n−k − (mβ,−

n −mβ,−
n−k)m

γ,−
n−k

)
◦ T n

and so ∣∣max
k≤n
|Ik|
∣∣
p/2
≤ 2
∣∣max
k≤n
|I−k |

∣∣
p/2

+ 2
∣∣max
k≤n
|mβ,−

k |
∣∣
p

∣∣max
k≤n
|mγ,−

k |
∣∣
p
. (2.4)

Now

I−k =
k∑
i=2

Xi where Xi = mβ ◦ T−i
( i−1∑
j=1

mγ ◦ T−j
)

= mβ ◦ T−imγ,−
i−1.

Since {m◦T−n; n ≥ 0} is a sequence of Lp martingale differences, {Xi; i ≥ 1} is a se-
quence of Lp/2 martingale differences. By the inequalities of Doob and Burkholder [9],∣∣max

k≤n
|I−k |

∣∣2
p/2
� |(

∑n
i=1X

2
i )1/2|2p/2 = |

∑n
i=1X

2
i |p/4.

(The implied constant depends only on p and is in particular independent of n.)
Hence, using that p ≥ 4,∣∣max

k≤n
|I−k |

∣∣2
p/2
�
∑n

i=1|X
2
i |p/4 =

∑n
i=1|Xi|2p/2 ≤ |mβ|2p

∑n
i=1|m

γ,−
i−1|2p.

Applying Burkholder once more,
∣∣maxk≤n |mγ,−

k |
∣∣
p
� n1/2|mγ|p ; in particular∣∣maxk≤n |I−k |

∣∣
p/2
� n|mβ|p|mγ|p. Substituting these estimates into (2.4) yields∣∣maxk≤n |Ik|

∣∣
p/2
� n|mβ|p|mγ|p and the result follows.
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Remark 2.8 There is an error in [27, Proposition 7.1] due to an inaccurate appli-
cation of a (correct) result of [38]. (The argument in [27] is fine for nonuniformly
expanding maps but false for nonuniformly hyperbolic maps since the observable φ is
not adapted to the filtration for the martingale.)

This error was repeated in the first version of the current paper and was spotted
by the referee. As pointed out to us by the referee, the reference [17] can be used
for the ordinary moments φn and this argument is now employed in the proof of
Proposition 2.6. (Indeed, Proposition 2.6 is an improvement on the previous result [38,
Eq. (3.1)] since it is no longer required that φ ∈ L∞(X).) However, it remains an
interesting open problem to obtain optimal control of the iterated moments Sn.

Homogenization As shown in [27, 28], rough path theory yields homogenization
of fast-slow systems (1.1) provided the iterated WIP and suitable iterated moment
estimates hold. The iterated moment estimates have been relaxed in [15, 16]. We
now apply these results to the fast-slow system (1.1).

Define the càdlàg process x̂ε and the stochastic process Z as in the introduction.
We continue to assume that a ∈ C1+η and b ∈ C2+η for some η > 0.

Theorem 2.9 Suppose that T is mixing. Assume that φ ∈ Lp(X,Rk) and condi-
tions (2.1) hold with p = 4. Then x̂ε →w Z as ε→ 0.

Proof The iterated WIP holds by Proposition 2.5. By [15, Theorem 4.10], it now
suffices to show that

∣∣maxk≤n |φk|
∣∣
2q

= O(n1/2) and
∣∣maxk≤n |Sk|

∣∣
q

= O(n) for some

q > 1. This and more follows from Propositions 2.6 and 2.7.

Remark 2.10 The standard WIP and moments are insufficient to determine the
limiting stochastic process Z. By rough path theory [21, 32] the iterated process Wn

provides the extra information required to determine limiting stochastic integrals, and
thereby the modified drift term (1.2). The iterated moment estimate Sβγn provides
the required tightness.

Note that Wn and Sβγn involve summation over i < j. The behaviour of their
symmetrized versions (incorporating i > j terms, equivalently i ≥ j terms) follows
immediately from the ordinary WIP and moment estimate, and hence provides no
extra information. (Indeed the symmetrized version of Wβγ

n is W β
nW

γ
n which converges

weakly to W βW γ.)

3 Main abstract theorem

Let T : X → X be an invertible ergodic measure-preserving transformation on a
probability space (X,µ). We suppose that X is covered by a collectionWs of disjoint
measurable subsets, called “local stable leaves”, such that TW s(x) ⊆ W s(Tx) for all
x ∈ X, where W s(x) is the partition element containing x.
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Let F0 denote the σ-algebra generated by Ws. Note that W s(y) ⊆ T−1W s(x) for
all y ∈ T−1W s(x), so T−1W s(x) is a union of elements of Ws. Hence T−1F0 ⊆ F0.
We denote by L∞(F0) the set of functions in L∞(X) that are F0-measurable.

Theorem 3.1 Let φ ∈ L∞(X) be a mean zero observable. Assume that there exists
β > 1 and C > 0 such that for all n ≥ 1,

(a) |
∫
X
φψ ◦ T n dµ| ≤ C|ψ|∞n−β for all ψ ∈ L∞(F0).

(b)
∫
X

diam(φ(T nW s)) dµ ≤ Cn−β.

Then the conditions in (2.1) are satisfied for all 1 ≤ p < β, and the conditions
in (2.3) are satisfied for all 1 ≤ p < 2β.

Proof This is a standard argument. We again give the details for completeness.
Let

ξ = |E[φ|T−nF0]|p−1 sgnE[φ|T−nF0] = ψ ◦ T n,

where
ψ = |E[φ ◦ T−n|F0]|p−1 sgnE[φ ◦ T−n|F0] ∈ L∞(F0),

and |ψ|∞ ≤ |φ|p−1
∞ . Then

|E[φ ◦ T−n|F0]|pp = |E[φ|T−nF0]|pp =

∫
X

E[φ|T−nF0]ξ dµ

=

∫
X

E[φξ|T−nF0] dµ =

∫
X

φ ξ dµ =

∫
X

φψ ◦ T n dµ.

By assumption (a),

|E[φ ◦ T−n|F0]|pp =
∣∣∣ ∫

X

φψ ◦ T n dµ
∣∣∣ ≤ C|ψ|∞n−β ≤ C|φ|p−1

∞ n−β,

and the first part of conditions (2.1) and (2.3) follows by taking pth roots and using
the restriction on p.

Next, using the pointwise estimate |E[φ|T nF0] − φ| ≤ diam(φ(T nW s)) and as-
sumption (b),

|E[φ ◦ T n|F0]− φ ◦ T n|pp = |E[φ|T nF0]− φ|pp ≤ | diam(φ(T nW s))|pp
≤ (2|φ|∞)p−1| diam(φ(T nW s))|1 ≤ 2p−1C|φ|p−1

∞ n−β.

The second part of conditions (2.1) and (2.3) follows.

In the remainder of this section, we show that the conditions in Theorem 3.1 are
satisfied in many standard situations. (The verifications below are not needed for our
main example in Section 4.)
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3.1 Verifying condition (b) in Theorem 3.1

Suppose that T : X → X and Ws are as above. Let Y ⊆ X be a positive measure
subset that is a union of local stable leaves in Ws. Define the first return time
R : Y → Z+ and first return map F : Y → Y ,

R(y) = inf{n ≥ 1 : T ny ∈ Y }, F (y) = TR(y)y.

Let hn be the random variable on X given by hn(x) = #{0 ≤ j ≤ n : T jx ∈ Y }.

Lemma 3.2 Let φ : X → R be measurable. Suppose that µ(y ∈ Y : R(y) > n) =
O(n−(β+1)) for some β > 1 and that there are constants C ≥ 1, γ ∈ (0, 1) such that

| diam(φ(T nW s))| ≤ Cγhn(x) for all W s ∈ Ws, n ≥ 1.

Then condition (b) in Theorem 3.1 holds.

Proof We have∫
X

diam(φ(T nW s)) dµ ≤ C
n+1∑
k=0

γk
∫
X

1{hn=k}dµ ≤ C
n+1∑
k=1

γk
∫
Y

1{hn=k}Rdµ.

If y ∈ Y ∩{hn = k}, then
∑k−1

j=0 R◦F j > n, and so R◦F j > n
k

for some j = 0, . . . , k−1.
Hence ∫

Y

1{hn=k}Rdµ ≤
k−1∑
j=0

∫
Y

1{R◦F j≥n
k
}Rdµ.

It follows from the tail assumption on R that there is a constant C1 > 0 such
that µ(y ∈ Y : R(y) > n) ≤ C1n

−(β+1) and
∫
Y

1{R>n}Rdµ ≤ C1n
−β. Write R =

1{R≤n}R + 1{R>n}R. Then∫
Y

1{R◦F j≥n
k
}Rdµ ≤

∫
Y

n1{R◦F j≥n
k
}dµ+

∫
Y

1{R>n}Rdµ = nµ(R ≥ n
k
) +

∫
Y

1{R>n}Rdµ

≤ C1k
β+1n−β + C1n

−β ≤ 2C1k
β+1n−β.

Therefore,
∫
Y

1{hn=k}Rdµ ≤ 2C1k
β+2n−β, and∫

X

diam(φ(T nW s)) dµ ≤ 2CC1n
−β

∞∑
k=1

γkkβ+2 = O(n−β),

as required.
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3.2 Verifying condition (a) in Theorem 3.1

For completeness, we show that Theorem 3.1 includes examples that fit within the
Chernov-Markarian-Zhang setup [13, 14, 33] (in the summable decay of correlations
regime, so β > 1) for Hölder mean zero observables φ : X → R. In particular,
we recover limit theorems that have been obtained previously for such invertible
examples [27, 37, 41, 42]. Since there are no new results here, we only sketch the
construction from [13, 33].

Remark 3.3 When treating examples falling within the Chernov-Markarian-Zhang
setup, a significant (over)simplification is to suppose that there is exponential (or
rapid) contraction of stable leaves under the underlying dynamics. For billiards with
subexponential decay of correlations, such a condition fails since on average stable
directions contract as slowly as unstable directions expand. In general, one should
assume that there is an inducing set (called Y below) such that expansion and con-
traction occurs only on visits to Y . This general point of view is the one adopted
here, as codified by the random variable hn in Lemma 3.2.

It is part of the setup that X is a metric space and T : X → X is the canonical
billiard map corresponding to the first collision with the boundary of the billiard table.
It is assumed (and for many classes of billiards explicitly constructed) that there is
a set Y ⊂ X and a first return map F = TR : Y → Y such that F is uniformly
hyperbolic and the return time has tail bounds satisfying µ(R > n) = O(n−(β0+1)),
where we assume that β0 > 1 (see [13, Section 4]). Moreover, Y is modelled by a
Young tower with exponential tails [50]. A standard argument (see for example [13,
Theorem 4]) shows that T : X → X is modelled by a Young tower f : ∆ → ∆ with
polynomial tails [51], with tail rate O(n−(β+1)) for all β < β0. In particular, there is
a measure-preserving semiconjugacy π : ∆ → X, so we can work with f : ∆ → ∆
instead of T : X → X and observables φ̂ = φ◦π : ∆→ R where φ : X → R is Hölder.

The final part of the set up that we require is that ∆ is covered by stable leaves
Ws satisfying T (W (x)) ⊆ W (Tx), for all x ∈ ∆, where W (x) is the element of Ws

containing x. Due to the uniform hyperbolicity of F = TR, the contraction condition
in Lemma 3.2 holds [13, Section 4.2]. Hence f : ∆ → ∆ satisfies condition (b) of
Theorem 3.1 and it remains to verify condition (a).

Let f̄ : ∆̄ → ∆̄ denote the quotient (one-sided) Young tower obtained by quoti-
enting along stable leaves. Consider observables φ̄ : ∆̄ → R that are Lipschitz with
respect to a symbolic metric on ∆̄, with Lipschitz norm ‖φ̄‖. By [51, Theorem 3],
there is a constant C > 0 such that∣∣∣ ∫

∆̄

φ̄ ψ̄ ◦ f̄n dµ̄∆ −
∫

∆̄

φ̄ dµ̄∆

∫
∆̄

ψ̄ dµ̄∆

∣∣∣ ≤ C‖φ̄‖|ψ̄|∞n−β, (3.1)

for all φ̄ : ∆̄ → R Lipschitz, ψ̄ ∈ L∞(∆̄), n ≥ 1. (The dependence on ‖φ̄‖ and |ψ̄|∞
is not stated explicitly in [51, Theorem 3] but follows by a standard argument using
the uniform boundedness principle. Alternatively, see [30] for a direct argument.)
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Returning to the two-sided tower f : ∆→ ∆ and the lifted observable φ̂ = φ ◦ π :
∆ → R, it follows for instance from [30, Proposition 5.3] that there exists a choice
(depending only on the Hölder exponent of φ) of symbolic metric on ∆̄ and a sequence
of observables φ̃` ∈ L∞(∆), ` ≥ 1, such that

(i) φ̃` is F0-measurable and hence projects down to an observable φ̄` : ∆̄→ R.

(ii) sup`≥1 ‖L`φ̄`‖ <∞. (iii) lim`→∞ |φ ◦ f ` − φ̃`|1 = 0.

Here, F0 is the σ-algebra generated byWs and L is the transfer operator correspond-
ing to f̄ : ∆̄→ ∆̄.

Let ψ ∈ L∞(F0) with projection ψ̄ ∈ L∞(∆̄). Following [30, Proof of Corol-
lary 5.4], ∫

∆
φψ ◦ fn dµ∆ =

∫
∆
φ ◦ f ` ψ ◦ f `+n dµ∆ = I1 + I2 + I3,

where

I1 =

∫
∆

(φ ◦ f ` − φ̃`)ψ ◦ f `+n dµ∆, I2 =

∫
∆

φ̃` dµ∆

∫
∆

ψ dµ∆,

I3 =

∫
∆

φ̃` ψ ◦ f `+n dµ∆ −
∫

∆

φ̃` dµ∆

∫
∆

ψ dµ∆.

Now |I1| ≤ |φ ◦ f ` − φ̃`|1|ψ|∞. Also, I2 =
∫

∆
(φ̃` − φ ◦ f `) dµ∆

∫
∆
ψ dµ∆, so |I2| ≤

|φ ◦ f ` − φ̃`|1|ψ|1. By (iii), lim`→∞ Ij = 0 for j = 1, 2. By (i),

I3 =

∫
∆̄

φ̄` ψ̄ ◦ f̄ `+n dµ̄∆ −
∫

∆̄

φ̄` dµ̄∆

∫
∆̄

ψ̄ dµ̄∆

=

∫
∆̄

L`φ̄` ψ̄ ◦ f̄n dµ̄∆ −
∫

∆̄

L`φ̄` dµ̄∆

∫
∆̄

ψ̄ dµ̄∆,

so by (3.1) and (ii), |I3| ≤ C‖L`φ̄`‖|ψ̄|∞ n−β � |ψ|∞ n−β. Together, these estimates
establish condition (a) in Theorem 3.1.

4 Application to Lorentz gases

In this section, we use the results of [3] to show that the hypotheses of Theorem 3.1
(with β > 1 arbitrarily large) are satisfied for the time-one map corresponding to
a finite horizon planar periodic Lorentz gas for all Hölder observables φ. Hence the
results of Section 2 hold for all p ≥ 1, establishing the results listed in the introduction.

4.1 Setting and main result for Lorentz gases

Let T2 = R2/Z2 denote the two-torus, and let Bi ⊂ T2, i = 1, . . . , d, denote open
convex sets such that their closures are pairwise disjoint and their boundaries are C3
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curves with strictly positive curvature. We refer to the sets Bi as scatterers. The
billiard flow Φt is defined by the motion of a point particle in Q = T2 \

⋃d
i=1Bi

undergoing elastic collisions at the boundaries of the scatterers and moving at con-
stant velocity with unit speed between collisions. Hence Φt is defined on the three
dimensional phase space

X = Q× S1, S1 = [0, 2π]/ ∼ ,

where ∼ indicates that 0 and 2π are identified.
Between collisions, Φt(x1, x2, θ) = (x1 + t cos θ, x2 + t sin θ, θ), while at collisions

the point (x, θ−) becomes (x, θ+) where θ− and θ+ are the pre- and post-collisions
angles, respectively. Defining X0 = X/ ∼, where we identify (x, θ−) ∼ (x, θ+) at
collisions, we obtain a continuous flow Φt : X0 → X0.

Let M =
⋃d
i=1 ∂Bi × [−π/2, π/2]. The billiard map F : M → M is the discrete-

time map which maps one collision to the next. Parametrizing each ∂Bi by an ar-
clength coordinate r (oriented clockwise) and letting ϕ denote the angle that the
post-collision velocity vector makes with the normal to the scatterer (directed in-
wards in Q), we obtain the standard coordinates (r, ϕ) on M .

For x ∈ X, define the collision time τ(x) to be the first time t > 0 that Φt(x) ∈
M . Since the closures of the scatterers are disjoint, there exists τmin > 0 such that
τ(x) ≥ τmin for all x ∈M . In addition, we assume that the billiard has finite horizon
so that there exists τmax <∞ such that τ(x) ≤ τmax for all x ∈ X.

It is well known (see [12, Section 3.3]) that the flow preserves the contact form

ω = cos θ dx1 + sin θ dx2,

so that the contact volume is ω∧dω = dx1∧dθ∧dx2. We denote by µ the normalized
Lebesgue measure on X, which by the preceding calculation is preserved by the flow.

The main result of this section is the following.

Theorem 4.1 Let T be the time-one map corresponding to a finite horizon Lorentz
gas as described above, and let φ : X → R be a mean zero Hölder observable. Then
conditions (a) and (b) of Theorem 3.1 hold with n−β replaced by e−cn for some c > 0.

As a consequence, conditions (2.1) and (2.3) hold for all p ≥ 1, and all the results
described in Section 2 apply in this setting.

We remark that the observable φ is assumed to be Hölder continuous only on X,
not X0. Thus φ is allowed to be discontinuous at the boundary of X, i.e. at collisions.
In particular, Theorem 4.1 applies to the velocity.

4.2 Proof of Theorem 4.1

The remainder of this section is devoted to the proof of Theorem 4.1, which consists
of verifying the conditions of Theorem 3.1. First we recall some of the essential
properties and main constructions used in [3].
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Hyperbolicity and singularities The singularities for both the collision map and
the flow are created by tangential collisions with the scatterers. Let S0 = {(r, ϕ) ∈
M : ϕ = ±π

2
}. Away from the set S1 = S0 ∪ F−1S0 (resp. S−1 = S0 ∪ FS0) the map

F (resp. F−1) is uniformly hyperbolic: Letting

Λ = 1 + 2τminKmin, (4.1)

where Kmin denotes the minimum curvature of the scatterers, there exist stable C̄s and
unstable C̄u cones in the tangent space of M such that stable and unstable vectors in
these cones undergo uniform expansion and contraction at an exponential rate given
by Λ. Flowing C̄s backward and C̄u forward between collisions allows us to define
two families of stable Cs and unstable Cu cones for the flow that lie in the kernel of
the contact form. (Hence they are ‘flat’ two-dimensional cones in the tangent space
of the flow; see [3, Sect. 2.1] for an explicit definition of these cones.)

Let P± denote the projections from X onto M under the forward and backward
flow. Then Cu is continuous on X away from the surface S−−1 = {x ∈ X : P+(x) ∈
S−1}, and Cs is continuous on X away from the surface S+

1 = {x ∈ X : P−(x) ∈ S1}.
To maintain control of distortion, we define the standard homogeneity strips

Hk =
{

(r, ϕ) ∈M : π
2
− 1

k2
≤ ϕ ≤ π

2
− 1

(k+1)2

}
, k ≥ k0,

for some k0 ≥ 1 which is determined to ensure a one-step expansion condition. A
similar set of homogeneity strips H−k, k ≥ k0, is defined for ϕ near −π

2
.

Following [3], we define a set of admissible stable curves As for the flow. A C2

curve W belongs to As if the tangent vector at each point of W belongs to Cs, and W
has curvature bounded by B0 and length |W | bounded by δ0. Here, δ0 > 0 is chosen
to satisfy a complexity bound (see [3, Lemma 3.8]) and B0 is chosen large enough
that the family As is invariant under Φ−t, t ≥ 0 (once long pieces are subdivided
according to the length δ0). We call W ∈ As homogeneous if P+(W ) lies in a single
homogeneity strip.

We define Ws to be the family of maximal C2 connected homogeneous stable
manifolds for the flow. Note that Ws forms a partition of X (mod µ-measure 0).
Moreover, each element of Ws (up to subdivision due to the length δ0) belongs to
As. When we define a homogeneous stable manifold W ∈ Ws, we take into account
cuts introduced at the boundary of the extended singularity set, which includes the
boundaries of the homogeneity strips. Thus P+(ΦtW ) lies in a single homogeneity
strip for all t ≥ 0.4 Let F0 denote the sigma algebra generated by elements of Ws.
Since Ws forms a partition of X, it follows that F0 comprises countable unions of
elements of Ws.

4Due to our definition of Cs, if W ∈ As, then P+(W ) is a stable curve for the map; and if
W ∈ Ws, then P+(W ) is a local homogeneous stable manifold for the map.
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Norms and Banach spaces With the class of admissible stable curves defined,
we can now describe the Banach spaces used to prove decay of correlations in [3].

Let α ∈ (0, 1
3
]. For W ∈ As, let Cα(W ) denote the closure of C1 functions in the

Holder norm defined by

|ψ|Cα(W ) = sup
x∈W
|ψ(x)|+ sup

x,x′∈W
x 6=x′

|ψ(x)− ψ(x′)| dW (x, x′)−α,

where dW is arclength distance along W . Define the weak norm of φ ∈ C0(X) by

|φ|w = sup
W∈As

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W

φψ dmW ,

where mW denotes arclength measure on W . The weak space Bw is defined as the
completion of the set {φ ∈ C0(X0) : |φ|w <∞}.

The strong norm ‖φ‖B is defined as in [3, Section 2.3]. The space B is similarly
defined as the completion of a class of smooth functions on X0 in the ‖·‖B norm. Since
we do not need the precise definition of ‖ · ‖B here, we omit its definition; however,
the following lemma summarizes some of the important properties of these spaces.

Lemma 4.2 ([3, Lemmas 3.9 and 3.10]) We have the inclusions

C1(X) ∩ C0(X) ⊂ B ⊂ Bw ⊂ (Cα(X))∗,

where the first two inclusions are injective. Moreover, | · |w ≤ ‖ · ‖B ≤ C| · |C1(X) and
the unit ball of B is compactly embedded in Bw.

When we refer to functions φ ∈ C0(X) as elements of B or Bw, we identify φ with
the measure φ dµ. With this identification, the two definitions of Ltφ given in the
next section are reconciled.

The following lemma is central to our verification of condition (a) in Theorem 3.1,
and is a strengthening of [3, Lemma 2.11]. Let Cα(Ws) denote those functions which
are in Cα(W ) for all W ∈ Ws with |ψ|Cα(Ws) = supW∈Ws |ψ|Cα(W ) finite.

Lemma 4.3 There exists C > 0 such that for φ ∈ Bw and ψ ∈ Cα(Ws),

|φ(ψ)| ≤ C|φ|w|ψ|Cα(Ws).

Again, due to our identification, when φ ∈ C0(X), we intend φ(ψ) =
∫
X
φψ dµ.

Lemma 4.3 is proved at the end of this section.
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Transfer operator We define the transfer operator Lt, for t ≥ 0, by Ltφ = φ◦Φ−t,
for φ ∈ C0(X0). This can be extended to any element of Bw, and more generally a
distribution of order α by

Ltφ(ψ) = φ(ψ ◦ Φt), for all ψ ∈ Cα(As), φ ∈ (Cα(As))∗.

By [3, Lemma 4.9], the map (t, φ) 7→ Ltφ from [0,∞)×B to B is jointly continuous,
so {Lt}t≥0 is a semi-group of bounded operators on B.

Define the generator of the semi-group by Zφ = limt↓0
Ltφ−φ

t
for φ ∈ C1(X). While

Z is not a bounded operator on B, the strong continuity of Lt implies that Z is closed
with domain dense in B. Indeed, by [3, Lemma 7.5] the domain of Z contains all
φ ∈ C2(X) ∩ C0(X0) such that ∇φ · η̂ ∈ C0(X0) where η̂ denotes the flow direction,
and there is a constant C > 0 such that

‖Zφ‖B ≤ C|φ|C2(X) for all such φ. (4.2)

Condition (b) of Theorem 3.1 Recall that T and F denote the time-one map
for the flow and the collision map, respectively. By the finite horizon condition,
any W ∈ Ws must undergo k ≥ bn/τmaxc collisions after n iterates by T . By [3,
Lemmas 3.3 and 3.4],

diam(T nW ) = |ΦnW | ≤ C|F k−1(P+(W ))| ≤ CΛ−(k−1)|P+(W )| ≤ C ′Λ−n/τmax |W |,

where Λ > 1 is the hyperbolicity constant defined in (4.1). We have used here that the
lengths of P+(W ) and W are bounded multiples of one another (indeed the Jacobian

of this map is C
1
2 , see [3, Lemma 3.4]).

Let φ : X → R be Cη. Then diam(φ(T nW )) ≤ |φ|η diam(T nW )η ≤ CΛ−nη/τmax .
Hence condition (b) holds with n−β replaced by Λ−nη/τmax .

Condition (a) of Theorem 3.1 By [3, Theorem 1.4], Z has a spectral gap on
B and, using results of [10], Lt admits the following decomposition: There exists
ν > 0, a finite rank projector Π : B → B and a family of bounded operators Pt
on B satisfying ΠPt = PtΠ = 0, and a matrix Ẑ : Π(B) → Π(B) with eigenvalues
0, z1, . . . , zN ∈ C satisfying Re zj < −ν for j = 1, . . . , N , such that

Lt = Pt + etẐΠ for all t ≥ 0. (4.3)

Moreover, there exists Cν > 0 such that for all φ in Dom(Z) ⊂ B,

|Ptφ|w ≤ Cνe
−νt‖Zφ‖B for all t ≥ 0. (4.4)

Now suppose φ ∈ C2(X) ∩ C0(X0) is of mean zero and ψ ∈ Cα(Ws). By (4.3),∫
X
φψ ◦ Φt dµ =

∫
X
Ltφψ dµ =

∫
X
Ptφψ dµ+

∫
X
etẐΠφψ dµ.

16



Hence by Lemma 4.3,∣∣∣ ∫
X

φψ ◦ Φt dµ
∣∣∣ ≤ C

{
|Ptφ|w + |etẐΠφ|w

}
|ψ|Cα(Ws). (4.5)

Letting Π0 denote the projector corresponding to the simple eigenvalue 0, we see
that Π0φ =

∫
φ dµ = 0 since µ is the conformal probability measure with respect to

Lt. Hence by Lemma 4.2,

|etẐΠφ|w = |etẐ(Π− Π0)φ|w ≤ Ce−νt|φ|w ≤ C ′e−νt|φ|C1(X).

By (4.2) and (4.4),

|Ptφ|w ≤ Cνe
−νt‖Zφ‖B ≤ C ′e−νt|φ|C2(X).

Substituting these estimates in (4.5),

|
∫
X
φψ ◦ T n dµ| = |

∫
X
φψ ◦ Φn dµ| ≤ Ce−νn|φ|C2(X)|ψ|Cα(Ws) for all n ≥ 0.

The result extends to φ ∈ Cη(X) as in [3] by a standard mollification argument.
(Exponential contraction persists with a rate dependent on η.) In particular, there
are constants c, C > 0 such that

|
∫
X
φψ ◦ T n dµ| ≤ Ce−cn|φ|Cη(X)|ψ|Cα(Ws) for all n ≥ 0,

for all φ ∈ Cη(X), ψ ∈ Cα(Ws).
Let K(Ws) denote the set of bounded functions on X that are constant on el-

ements of Ws, and let | · |C0(Ws) = supW∈Ws | · |C0(W ). Note that these functions
are F0-measurable. Moreover, K(Ws) ⊂ Cα(Ws) and |ψ|C0(Ws) = |ψ|Cα(Ws) for
ψ ∈ K(Ws). Hence

|
∫
X
φψ ◦ T n dµ| ≤ Ce−cn|φ|Cη(X)|ψ|C0(Ws) for all n ≥ 0,

for all φ ∈ Cη(X), ψ ∈ K(Ws).
Finally, let φ ∈ Cη(X), ψ ∈ L∞(F0). Recall that L∞(F0) is the set of functions

in L∞(µ) which are F0-measurable, so there exists a pointwise representative ψ′ in
the equivalence class of ψ in L∞(µ) that is constant on local stable manifolds and
such that sup |ψ′| = |ψ|∞. In particular, ψ′ ∈ K(Ws) with |ψ′|C0(Ws) = |ψ|∞ and∫
X
|ψ − ψ′| dµ = 0. Hence

|
∫
X
φψ ◦ T n dµ| = |

∫
X
φψ′ ◦ T n dµ| ≤ Ce−cn|φ|Cη(X)|ψ|∞ .

Hence condition (a) holds with n−β replaced by e−cn.

As promised, we end this section by proving Lemma 4.3.
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Proof of Lemma 4.3 By density of C0(X0) in Bw, it suffices to prove the lemma
for φ ∈ C0(X0) and ψ ∈ Cα(Ws).

The normalized Lebesgue measure µ on X projects to the measure µ̄ =
(2|∂Q|)−1 cosϕdrdϕ on M ; this is the unique smooth invariant probability measure
for the billiard map F . Let Ws

denote the set of maximal connected homogeneous
stable manifolds for F . Note that P+(Ws) = Ws

. Indexing elements of Ws
, we

write Ws
= {Vξ}ξ∈Ξ, which defines a (mod 0) partition of M . We disintegrate µ̄ into

conditional measures µ̄ξ on Vξ, ξ ∈ Ξ, and a factor measure λ on Ξ. Indeed, the
conditional measures are smooth on each Vξ, and we can write

dµ̄ξ = ρ̄ξ dm̄ξ dλ(ξ),

where m̄ξ is arclength measure along Vξ (in M), and

| log ρ̄ξ|C 1
3 (Vξ)

≤ C, |ρ̄ξ|C0(Vξ) ≤ C|Vξ|−1, (4.6)

for some C > 0 depending only on the tableQ (see [12, Corollary 5.30]). The exponent
1
3

comes from the definition of the homogeneity strips. This is the standard decom-
position of µ̄ into a proper standard family5 (see [12, Example 7.21]). We further
subdivide Ξ =

⋃d
i=1 Ξi, where Ξi is the index set corresponding to each component

Mi = ∂Bi × [−π
2
, π

2
] of M .

Write X =
⋃d
i=1Xi where Xi = {x ∈ X : P+(x) ∈Mi}. On each Xi, we represent

Lebesgue measure as dµ = c cosϕdr dϕ ds, where c is a normalizing constant, (r, ϕ)
range over Mi, and s ranges from 0 to the maximum free flight time under the
backwards flow, which we denote by ti ≤ τmax.

Next, for each ξ ∈ Ξi, the flow surface V −ξ = {x ∈ Xi : P+(x) ∈ Vξ} is smoothly
foliated by elements ofWs, which are simply flow translates of one another. For each
s and Vξ, let Wξ,s = Φ−t(s)Vξ, where t(s, z) is defined for z ∈ Vξ so that Wξ,s lies in the
kernel of ω, i.e. it is an element of Ws. Note that for s < δ0, some points in Vξ may
not have lifted off of M . For such small times, Wξ,s denotes only those points that
have lifted off of M . Similarly, for s > τmin, some part of Φ−t(s)Vξ may have collided
with a scatterer. For such times, Wξ,s only denotes those points which have not yet
undergone a collision. Thus

⋃
s∈[0,ti]

Wξ,s = V −ξ .
Using this decomposition, we may represent Lebesgue measure on each Xi by

dµ(x) = ρξ(x) dmWξ,s
(x) dλ(ξ) ds,

where ρξ is smooth along each Wξ,s, satisfying analogous bounds to (4.6), since the
contact form is C∞ on Xi and the projection P+ is sufficiently smooth (see [3,
Lemma 3.4]), so that the arclength of Wξ,s varies smoothly with that of Vξ.

5Standard families in [12] are standard pairs defined on local unstable manifolds, while here we
use local stable manifolds. The decompositions of µ have equivalent properties due to the symmetry
of the map F under time reversal.
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Using the fact that each Wξ,s ∈ Ws can be subdivided into at most Cδ−1
0 elements

of As, we are ready to estimate

∣∣∣ ∫
X

φψ dµ
∣∣∣ ≤ d∑

i=1

∣∣∣ ∫
Xi

φψ dµ
∣∣∣ ≤∑

i

∣∣∣ ∫ ti

0

∫
Ξi

∫
Wξ,s

φψ ρξ dmWξ,s
dλ(ξ) ds

∣∣∣
≤
∑
i

∫ ti

0

∫
Ξi

Cδ−1
0 |φ|w|ψ|Cα(Wξ,s)

|ρξ|Cα(Wξ,s)
dλ(ξ) ds

≤ Cδ−1
0 τmax|φ|w|ψ|Cα(Ws)

∫
Ξ

|Vξ|−1dλ(ξ) .

This last integral is finite by [12, Exercise 7.15] since our decomposition of µ̄ consti-
tutes a proper standard family, yielding the desired estimate for φ(ψ).

For completeness, we finish by proving [12, Exercise 7.15]. For x ∈ Vξ, let rs(x)
denote the distance measured along Vξ from x to the nearest endpoint of Vξ. By [12,
Theorem 5.17], there exists C0 > 0 such that

sup
ε>0

µ̄(x ∈M : rs(x) < ε)

ε
≤ C0 .

We claim this quantity provides an upper bound on the relevant integral. To see this,
we use the decomposition (4.6) to write,

C0 = sup
ε>0

µ̄(x ∈M : rs(x) < ε)

ε
= sup

ε>0

∫
Ξ

µ̄ξ(r
s(x) < ε)

ε
dλ(ξ)

≥ sup
ε>0

∫
Ξ

C

|Vξ|
|Vξ ∩ {rs < ε}|

ε
dλ(ξ)

≥ sup
ε>0

2C

∫
{ξ:|Vξ|>2ε}

1

|Vξ|
dλ(ξ) = 2C

∫
Ξ

1

|Vξ|
dλ(ξ) ,

where we have used the fact that |Vξ| > 0 for λ-a.e. ξ, and the bound |Vξ ∩ {rs(x) <
ε}| = 2ε if |Vξ| > 2ε. (One can also prove a reverse inequality, but we do not need
this here.)
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[1] V. Araújo, I. Melbourne and P. Varandas. Rapid mixing for the Lorenz attractor
and statistical limit laws for their time-1 maps. Comm. Math. Phys. 340 (2015)
901–938.

[2] V. Baladi. The quest for the ultimate anisotropic Banach space. J. Stat. Phys.
166 (2017) 525–557.

[3] V. Baladi, M. F. Demers and C. Liverani. Exponential decay of correlations for
finite horizon Sinai billiard flows. Invent. Math. 211 (2018) 39–177.
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