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1 Introduction

The same symmetries may underly diverse contexts such as phase transitions of crys-
tals (Landau theory), fluid dynamics, and problems in biology and chemical engineer-
ing. Hence, seemingly unrelated systems may exhibit similar phenomena in regard
to symmetries of patterns and transitions between patterns (spontaneous symmetry
breaking). It is natural to focus attention on aspects of pattern formation that are
universal or model-independent — aspects depending on underlying symmetries rather
than model-specific details.

The general framework is that the underlying system is governed by an evolution

equation

i:f(x)a (1'1)

with symmetry group I'. To avoid technicalities, we assume that (1.1) is an ordinary
differential equation (ODE), the vector field f : R* — R™ is as smooth as desired,

and I is a compact Lie group acting linearly on R”. An inner product may be chosen



so that I" acts orthogonally. The vector field in (1.1) is I-equivariant if
f(yz) =vf(z) forallz e R*, v €T (1.2)

Equivalently, if z(¢) is a solution and v € I, then vz(¢) is a solution.

In this article, we are interested in the dynamics to be expected for equivariant
vector fields, and transitions that arise as parameters are varied. The symmetry group
[ is taken as given, whereas f is a general ['-equivariant vector field. (Other features
such as energy-conservation or time-reversibility must be built into the general setup,

but are excluded in this article.)

2 Isotropy subgroups and commuting linear maps

Let I" be a compact Lie group acting linearly on R". The isotropy subgroup of x € R"

is defined to be
Y, ={yel vz ==z}

Note that X, =X,y ' forallz € R*, vy € I.
Given an isotropy subgroup ¥ C I, define the fized-point subspace

Fix¥={yeR':0y=y forall o0 € ¥}.

If f: R* — R" is a I'-equivariant vector field, then f(Fix¥) C Fix 3 for each isotropy
subgroup Y. Hence Fix ¥ is flow-invariant.

The normalizer N(X) = {y € T : y%y~! = %} is the largest subgroup of T' that
acts on Fix ¥, and fx = flpixy is (V(X)/X)-equivariant.

An isotropy subgroup ¥ is azial if dimFix3 = 1, and then N(X)/¥ 2 Z, or 1.
More generally, 3 is mazimal if there are no isotropy subgroups 7" with X C T' C I
other than T =¥ and T'=T". Then N(X)/X acts fixed-point freely on Fix¥ and the
connected component of the identity (N(X/X)% = 1, SO(2) or SU(2). Correspond-
ingly ¥ is called real, complez or quaternionic. In the complex case dim Fix X is even;

in the quaternionic case dim Fix¥ = 0 mod 4.



The dihedral group I' = D,, of order m is the symmetry group of the regular

m-gon, m > 3. Its standard action on R? is generated by
cos2m/m —sin2w/m 1 0
p=( sin 27 /m cos?w/m>’ ﬁz(O —1>.
For m even, the isotropy subgroups up to conjugacy are
D, Zo(k), Zs(pr), 1,

where Z;(g) denotes the cyclic group of order j generated by g. The maximal isotropy
subgroups ¥ = Zs(k), Zo(kp) are axial with N(X)/X = Zy. For m odd, Zs(pk) is
conjugate to Zs(k) leaving three conjugacy classes of isotropy subgroups, and ¥ =
Zs(k) is axial with N(X)/X = 1.

The space of commuting linear maps
Homp(R") = {L : R* — R"linear : Ly = yL for all y € I'}

is completely described representation-theoretically. Recall that I' acts irreducibly on
R™ if the only T'-invariant subspaces of R” are R" and {0}. Then Homp(R") is a
real division ring (skew field) D = R, C or H. The representation is called absolutely
irreducible when D = R and nonabsolutely irreducible when D = C or H.

If the action of I' is not irreducible, write R* = V; @ --- @& Vi (nonuniquely) as
a sum of irreducible subspaces. Summing together irreducible subspaces that are
isomorphic to form isotypic components W, gives the (unique) isotypic decomposition
R* =W & ---&W, If L € Homp(R"), then L(W;) C W; for each j, hence
Homp (R") = Homp(W;) & - - - @ Homp (W,). Each W; consists of k; isomorphic copies
of an irreducible representation with division ring D,. Let M (D) denote the space

of k X k matrices with entries in D. Then
Homp(R") =2 My, (D1) ® - - - @ My, (Dy). (2.1)

Spectral properties of commuting linear maps can be recovered from the decomposi-

tion (2.1), paying due attention to multiplicity and complex conjugates of eigenvalues.



3 Equivariant dynamics

The dynamics of equivariant systems includes (relative) equilibria and periodic solu-

tions, robust heteroclinic cycles/networks, and symmetric chaotic attractors.

3.1 Equilibria

Consider the ODE (1.1) with I'-equivariant vector field f satisfying (1.2). If z(t) = =z
is an equilibrium, f(zo) = 0, then there is a group orbit 'z of equilibria.

Let ¥ = ¥,, be the isotropy subgroup of zy. If dim¥ = dimTI", then generically
(for an open dense set of I'-equivariant vector fields), the eigenvalues of (df),, have
nonzero real part, hence z is hyperbolic. If the eigenvalues all have negative real part,
then z, is asymptotically stable. If at least one eigenvalue has positive real part, then
xo is unstable. Hyperbolic equilibria are isolated and persist under perturbations of
f; the perturbed equilibria continue to have isotropy . Since (df),, € Homg(R"),
decomposition (2.1) for the action of ¥ on R" facilitates stability computations for
Zg-

If dim¥ < dimT', then I'z( is a continuous group orbit of equilibria. Generically
dimker(df);, = dimI" — dim ¥ and ker(df)o = {£xo : £ € LT’} where LT is the Lie
algebra of I'. The remaining £ = n — dimI' 4+ dim ¥ eigenvalues generically have
nonzero real part so ['zq is normally hyperbolic. If all £ eigenvalues have nonzero real
part, then ['zy is asymptotically stable. If at least one has positive real part, then
[z is unstable. When N(X)/X is finite, generically o is an isolated equilibrium in

Fix(X) and persists as an equilibrium with isotropy ¥ under perturbation.

3.2 Relative equilibria and skew products

A point 2o € R (or the corresponding group orbit I'zg) is a relative equilibrium if
f(zo) € Tp;Tzg = LTxzy. If 2o has isotropy X, then z is a relative equilibrium if
f(x0) € LDy, zy, where Dy, = (N(2)/x)".

Write f(zo) = £xo where £ € LDys. The closure of the one-parameter subgroup

exp(t€) is a maximal torus in Dy, for almost every £. All maximal tori are conjugate



with common dimension d = rank Dy. The solution z(t) = exp(tf)zy is typically a
d-dimensional quasi-periodic motion. “Typically” holds in both the topological and
probabilistic sense and there is no phase-locking. When d = 1, z(t) is periodic, often
called a rotating wave.

Choose a Y-invariant local cross-section X to the group orbit I'zy at zy. There is a
[-invariant neighborhood of 'z, that is I'-equivariantly diffeomorphic to (I' x X) /X,
where ¥ acts freely on I' x X by

o (,2) = (yo~", 0u),

and ' acts by left multiplication on the first factor. The I'-equivariant ODE on
(I' x X)/3 lifts to a (I" x X)-equivariant skew product on I' x X

Y= fyé-(x)a T = h(.’l)’), (31)
where £ : X — LI', h : X — X satisfy the Y-equivariance conditions
E(0x) = Ado€(2) = o€(2)o™",  h(oz) = oh(z),

and h(zy) = 0.

Thus, dynamics near the relative equilibrium I'zy C R” reduces to dynamics near
the ordinary equilibrium zy € X for the Y-equivariant vector h : X — X, coupled
with I drifts. In particular, the stability of I'zq is determined by (dh),.

3.3 Periodic solutions

A nonequilibrium solution z(t) is periodic if z(¢t + T) = z(t) for some T > 0. The
least such T is the (absolute) period. The spatial symmetry group A is the isotropy
subgroup of z(t) for some, and hence all, t € R. The periodic solution P = {z(t) :
0 <t < T} lies inside Fix A. Define the spatiotemporal symmetry group X = {y €
[ : vP = P}. Note that A is a normal subgroup of ¥ and either ©/A = S (P is a
rotating wave) or /A = Z, and P is called a standing wave or a discrete rotating
wave. For each o € X, there exists T, € [0,7) such that ox(t) = x(t + T,). The
relative period of z(t) is the least T' > 0 such that z(T") € Xx.
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If dim¥ = dim [, then generically P is hyperbolic, hence isolated, the stability
of P is determined by its Floquet exponents, and P persists under perturbation as a
periodic solution with spatial symmetry A and spatiotemporal symmetry ¥. For I’
infinite and N(A)/A finite, generically P is isolated in Fix A and the neutral Floquet
exponent has multiplicity dimI' — dim X + 1.

3.4 Relative periodic solutions

A solution z(t) is a relative periodic solution if it is not a relative equilibrium and
z(T) € T'z(0) for some T > 0. The least such T is the relative period. The spatial
symmetry group A = Y, for some, hence all, £. The spatiotemporal symmetry
group X is the closed subgroup of I' generated by A and o, where z(7T) = 0z(0), and
generically /A = T¢ x Z, is a maximal topologically cyclic (Cartan) subgroup of
N(A)/A containing o A. Then z(t) is a (d + 1)-dimensional quasiperiodic motion.

The dynamics near the relative periodic solution is again governed by a skew
product. There exists n > 1 such that o™ = exp(n¢) where £ € LZ(X) and Z(X) C T
is the centralizer of . Define a = exp(—§)o. Form a semidirect product A x Zy, by
adjoining to A an element @ of order 2n such that Q6Q~! = odo~! for § € A.

In a comoving frame with velocity &, a neighborhood of the relative periodic orbit
is T-equivariantly diffeomorphic to (I' x X x S')/A X Zy, where X is a A X Zy,-

invariant cross-section, S' = R/2nZ and A X Zy, acts on I' x X x S! as

5 (v,2,0) = (v67",62,0), Q-(v,,0)=(ya ", Qz,0+1).

The I'equivariant ODE on (I’ x X X S')/A X Zsy, lifts to a I x (A X Zs,)-equivariant

skew product
¥ =9€(z,6), &=h(z,0), §=1, (3.2)

where £ : X x S' — LT, h : X x St — X satisfy appropriate A x Zq,-equivariance

conditions.



3.5 Robust heteroclinic cycles

Heteroclinic cycles, degenerate in systems without symmetry, arise robustly in equiv-
ariant systems. Let zi,...,x, € R" be saddles with W*%(x;) — {z;} C TW*(zi31)
(where m+1=1). If ¥y,..., %, C T are isotropy subgroups, W*(x;) C Fix¥;, and
Z;y1 18 a sink in Fix ¥;, then saddle-sink connections from x; to ;.1 persist for nearby
I'-equivariant flows. The union (JI-, I'TW*(z;) forms a robust heteroclinic cycle. (See
Subsection 4.6 for an example.) Such cycles, when asymptotically stable, are a mech-
anism for intermittency or bursting, notably in rotating Rayleigh-Bénard convection
(where rolls disappear and reorient themselves at approximately 60°), and provide a
possible intrinsic explanation for irregular reversals of the Earth’s magnetic field.

Asymmetric perturbations (deterministic or noisy) destroy the cycles, but the
perturbed attractors inherit the bursting behavior.

Establishing the existence of heteroclinic connections is often straightforward
when dim Fix ¥, = 2 and nontrivial with dim Fix}; > 3. Criteria for asymptotic
stability of heteroclinic cycles are given in terms of real parts of eigenvalues of (df).,,
and depend on the geometry of the representation of I'.

Robust cycles exist also between more complicated dynamical states such as pe-
riodic solutions or chaotic sets (cycling chaos). When W"(z;) connects to two or
more distinct states, the collection of unstable manifolds forms a heteroclinic network

leading to competition between various subnetworks.

3.6 Symmetric attractors

Suppose that I' is a finite group acting linearly on R*. A closed subset A C R™ has
symmetry groups A ={y €l :yzx=x forallz € A}, ¥ ={y€T':vA = A}. Here,
A is an isotropy subgroup and A C ¥ C N(A). In applications, A corresponds to
instantaneous symmetry and X to symmetry on average.

If A is an attractor (a Lyapunov stable w-limit set) for a I'-equivariant vector field
f:R* - R", then X fixes a connected component of Fix A — L where L is the union
of proper fixed-point spaces in Fix A.

Provided dim Fix A > 3, all pairs A, ¥ satisfying the above restrictions arise as



symmetry groups of a nonperiodic attractor A. If dimFix A > 5, then A is realized
by a uniformly hyperbolic (Axiom A) attractor.

If dmFixA > 3 and ¥ fixes a connected component of Fix A — L, then A is
realized by a periodic sink provided ¥/A is cyclic. If dim Fix A = 2, then in addition
either ¥ = A or ¥ = N(A).

Suppose A is an attractor and v € I' = 3. Then yAN A = (). Varying a parameter,
A may undergo a symmetry-increasing bifurcation: A grows until it collides with yA
producing a larger attractor with symmetry on average generated by X and 7.

Determining symmetries of an attractor by inspection is often infeasible. A de-
tective is a [-equivariant polynomial ¢ : R* — V where every subgroup of ' is an
isotropy subgroup for the action on V', and each component of ¢ is nonzero. Suppose
that A C R" is an attractor with physical (SRB) measure . By ergodicity, the time
average ¥4 = limy_, o % fOT d(x(t))dt € V is well-defined for almost every trajectory
z(t) in supp p. Generically, ¥, = X4 so computing the symmetry of A reduces to
computing the symmetry of a point.

If T' is an infinite compact Lie group, and A is an w-limit set containing points
of trivial isotropy, then A cannot be uniformly hyperbolic. Hence partially hyper-
bolic flows arise naturally in systems with continuous symmetry. Consider the skew
product (3.1) where ¥ = 1 and h : X — X possesses a hyperbolic basic set A C X
with equilibrium measure p (for a Holder potential). Let v denote Haar measure on
I'. Then A x T is partially hyperbolic, and p X v is ergodic (even Bernoulli) for an
open dense set of equivariant flows. Such stably ergodic flows possess strong statistical
properties (rapid decay of correlations, central limit theorem); a possible explanation

for hypermeander (Brownian-like motion) of spiral waves in planar excitable media.

3.7 Forced symmetry breaking

In applications, symmetry is not perfect and account should be taken of ['-equivariant
perturbations of (1.1) for I a subgroup of I" (including I = 1). This topic is not

discussed in this article, except in Subsections 3.5 and 4.5.



4 Equivariant bifurcation theory

Consider families of ODEs & = f(x, A), with bifurcation parameter A € R and vector
field f : R* x R — R” satisfying f(0,0) = 0 and the I'-equivariance condition

f(yz,\) =~vf(z,\) forallz e R*, A e R, vy €T.

A local bifurcation from the equilibrium = = 0 occurs if (df)o is nonhyperbolic. The
center subspace E€ is the sum of generalized eigenspaces corresponding to eigenvalues
on the imaginary axis, and is I'-invariant. By center manifold theory, local dynamics
((xz,A\) near (0,0)) are captured by the center manifold W¢. After center manifold
reduction (or Lyapunov-Schmidt reduction if the focus is on equilibria), it may be
assumed that R* = E°.

If (df )o,0 possesses zero eigenvalues, then there is a steady-state bifurcation. Gener-
ically, (df)o0 = 0 and E€ is absolutely irreducible. There are two subcases.

If T acts trivially on R", then n = 1 and generically there is a saddle-node (or limit
point) bifurcation where the zero sets of f(x,)\) and +x? + )\ are diffeomorphic for
(xz,A\) near (0,0). Higher order degeneracies can be treated using singularity theory.
The equilibria and their stability determines the local dynamics. All bifurcating
equilibria have isotropy I', so there is no symmetry-breaking.

From now on, consider the remaining subcase where I' acts absolutely irreducibly
and nontrivially on R*. Then FixI' = {0}, f(0,A) = 0, and (df)or = ¢(\)I, where
generically ¢/(0) # 0. Assume that ¢/(0) > 0, so the “trivial solution” z = 0 is asymp-
totically stable subcritically (A < 0) and unstable supercritically (A > 0). Bifurcating

solutions lie outside FixI' and hence there is spontaneous symmetry-breaking.

4.1 Axial isotropy subgroups

The Equivariant Branching Lemma guarantees branches of equilibria with isotropy X
for each axial isotropy subgroup. There are three associated branching patterns, see

Figure 1.

<Figure 1 near here>



If N(X)/% = Zy, then fy is odd. Generically 92 f=(0,0) # 0, since (2% +---+22)z
is I'-equivariant, and there are two branches of equilibria bifurcating supercritically
or subcritically together, and lying on the same group orbit. The branches form a
symmetric pitchfork whose direction of branching is determined by sgn 82 f5(0, 0).

If N(X)/X = 1, then generically fy is even. If all quadratic '-equivariant maps
vanish on Fix ¥, then the bifurcation is sub/supercritical depending on sgn 92 f5(0, 0)
but the branches lie on distinct group orbits. This is an asymmetric pitchfork.

If 2 f5(0,0) # 0, then the equilibria exist transcritically: for A < 0 and A > 0.

The natural actions of I,, on R? are absolutely irreducible. The axial branches
are symmetric pitchforks for m > 4 even, asymmetric pitchforks for m > 5 odd, and
transcritical for m = 3.

The actions of D,,, m > 5 odd, provide the simplest instances of hidden symme-
tries, where certain N(X)/Y-equivariant mappings on Fix ¥ do not extend to smooth

[-equivariant mappings on R".

4.2 Nonaxial maximal isotropy subgroups

For ¥ a real maximal isotropy subgroup, dim Fix 3 odd, there exist branches of equi-
libria with isotropy . When dim Fix ¥ is even, there are examples where equilibria
exist and examples where no equilibria exist. For ¥ complex or quaternionic, there ex-
ist branches of rotating waves with isotropy . In the quaternionic case, the rotating

waves foliate the SU(2) group orbits according to the Hopf fibration.

4.3 Submaximal isotropy subgroups

It has been conjectured falsely that steady-state bifurcation leads generically to equi-
libria only with maximal isotropy. The simplest counterexample is the 24 element

group I' = Z3 X Z3 generated by

010 10 0
p=loo0o1]|, k=|01 0
100 00 -1
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(Alternatively, I' = T & Zo(—1I3) where T C SO(3) is the tetrahedral group.)
The isotropy subgroup ¥ = Zy(k) has two-dimensional fixed-point subspace
Fix¥ = {(z,y,0)}. The only one-dimensional fixed-point spaces contained in Fix ¥

are the z- and y-axes. The general ['-equivariant vector field is
=gz’ 1y 22Nz, §=g0> 2% 2% Ny, =g 2% y% Nz
After scaling,
g%, 92, 22 0) = X — 2% — ay? — b2% + o(2?, 42, 2%, N). (4.1)

Restricting to Fix¥ and dividing out the axial solutions z = 0 and y = 0 yields at
lowest order the equations A = 2?2 + ay? = y? + bz?. Submaximal solutions exist
provided sgn(a — 1) = sgn(b — 1).

In general, the existence of equilibria with submaximal isotropy must be treated on
a case-by-case basis (for each absolutely irreducible representation of I" and isotropy

subgroup ¥).

4.4 Asymptotic stability

Subcritical and axial transcritical branches are automatically unstable. Moreover, the
existence of a quadratic ['-equivariant mapping ¢ : R® — R” and = € Fix X such that
(dq), has eigenvalues with nonzero real part guarantees that branches of equilibria
with axial isotropy X are generically unstable (even when ¢|pixs = 0).

There are no general results for asymptotic stability, and calculations must be

done on a case-by-case basis. (The remarks in Subsection 3.1 are useful here.)

4.5 Branching patterns and finite determinacy

The following notion of finite determinacy is based on equivariant transversality the-
ory. Assume I' acts absolutely irreducibly. Consider the set F of ['-equivariant vector
fields f : R* x R — R" satisfying (df )op = 0. For an open dense subset of F, branches

of relative equilibria near (0, 0) are normally hyperbolic. The collection of branches
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of relative equilibria, together with their isotropy type, direction of branching, and
stability properties, is called a branching pattern. These persist under small perturba-
tions and are finitely determined: there exists ¢ = qr > 2, and an open dense subset
U(q) C F such that the branching patterns of f and f + g are identical for f € U(q),
g € F, provided g(z, \) = o(||z||?).

Furthermore, branching patterns are strongly finitely determined: there exists d >
2 and an open dense subset S(d) C F such that the branching patterns of f and
f + g are identical for f € S(d) and all (not necessarily equivariant) g satisfying
g(@,A) = o(|lz[|%).

For example, consider the hyperoctahedral group S, x Z3, n > 1. Here S, acts
by permutations of the coordinates (z1,...,x,) and Z} consists of diagonal matrices
with entries £1. Let I' = T" x Z3 where T' C S, is a transitive subgroup. Then I' acts
absolutely irreducibly on R” and is strongly 3-determined. Submaximal branches of
equilibria exist except when T'=S,,, T = A, and, if n = 6, T = PGLy(F5).

4.6 Dynamics

Absolutely irreducible representations have arbitrarily high dimension, so steady-state
bifurcation leads to rich dynamics. The group I' = Z3 x Z3 with sgn(a — 1) # (b—1)
and ¢ + b > 2 in (4.1) yields asymptotically stable heteroclinic cycles with planar
connections connecting equilibria in the z-, y- and z-axes. See Figure 2. In R?, there
is the possibility of instant chaos where chaotic dynamics bifurcates directly from the

equilibrium 0.

<Figure 2 near here>

In the absence of quadratic equivariants, the invariant sphere theorem gives an
open set of equivariant vector fields for which an attracting normally hyperbolic
flow-invariant (n — 1)-dimensional sphere bifurcates supercritically. This simplifies

computations of nontrivial dynamics.
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5 Hopf bifurcation and mode-interactions

5.1 Equivariant Hopf bifurcation

The setting is the same as in Section 4, except that L = (df)oo has imaginary eigen-
values +iw of algebraic and geometric multiplicity n/2. Generically, R* = E° is
['-simple: either the direct sum of two isomorphic absolutely irreducible subspaces,
or nonabsolutely irreducible.

By Birkhoff normal form theory (see below), for any k& > 1 there is a [-equivariant
change of coordinates after which f(z,\) = fi(z,\) + o(||z||*) where f; is (T' x S1)-
equivariant. Here S! = {exp(tL) : t € R} acts freely on R" and I x St acts complez

irreducibly (D = C). Hence dim Fix J is even for each isotropy subgroup J C I x S',
and N(J)/J = S' when J is maximal. The Equivariant Hopf Theorem guarantees,
generically, branches of rotating waves with absolute period approximately 27 /w for
each maximal isotropy subgroup J.

The notions of finite and strong finite determinacy extend to complex irreducible
representations and the rotating waves persist as periodic solutions for the original
[-equivariant vector field f. Define the spatial and spatiotemporal symmetry groups
A C ¥ C T asin Subsection 3.3. Then J = {(0,0(0)) : 0 € X} is a twisted subgroup,
with 6 : ¥ — S! a homomorphism and A = JN T = ker 6.

In the non-symmetry-breaking case, where I" acts trivially on R?, phase-amplitude
reduction leads to Zs-equivariant amplitude equations on R and higher order degen-
eracies are amenable to Zs-equivariant singularity theory. Similar comments apply to
O(2)-equivariant Hopf bifurcation where the amplitude equations are Dy-equivariant.

The technique fails for general groups I'.

5.2 Mode-interactions and Birkhoff normal form

Steady-state and Hopf bifurcations are codimension one: occurring generically in
one-parameter families of I'-equivariant vector fields. Multiparameter families may
undergo higher codimension bifurcations called mode-interactions. Suppressing pa-

rameters, steady-state/steady-state bifurcation occurs when R* = E¢ = V; &V, where
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V1 and V; are absolutely irreducible and L = (df), has zero eigenvalues. If V; and V5
are nonisomorphic then L = 0, otherwise L is nilpotent and there is an equivariant
Takens-Bogdanov bifurcation. Similarly, there are codimension two steady-state/Hopf
and Hopf/Hopf bifurcations.

Write L = S + N (uniquely) where S is semisimple, N is nilpotent, and SN =
NS. Then {exptS:te€ R} is a torus TP where p > 0 is the number of rationally

independent eigenvalues for L.

For each £ > 1, there is a ['-equivariant degree k£ polynomial change of coordinates
P:R* x R* — R” satisfying P(0) = 0, (dP)o = I transforming f to Birkhoff normal
form fr + o(||z||*) where f; is (' x TP)-equivariant.

If N #0, then {exptNT :t € R} =R and fi can be chosen so that the nonlinear

terms are (I' X TP x R)-equivariant. The linear terms are not R-equivariant.

The study of mode-interactions proceeds by first analyzing (I' x T?)-equivariant
normal forms, then considering exponentially small effects of the I'-equivariant tail.
Versions of the equivariant branching lemma and equivariant Hopf theorem establish
existence of certain solutions. There are numerous examples of robust heteroclinic
cycles connecting (relative) equilibria and periodic solutions, symmetric chaos, and

symmetry-increasing bifurcations.

6 Bifurcations from relative equilibria and peri-

odic solutions

Using the skew product (3.1), bifurcations from a relative equilibrium with isotropy
Y. for a I'-equivariant vector field reduce to bifurcations from a fully symmetric equi-
librium for a Y-equivariant vector field h coupled with T' drifts. If A possesses (rel-
ative) equilibria or periodic solutions, then the drift is determined generically as in
Subsections 3.2 and 3.4. Nevertheless, solving the drift equation can be useful for
understanding behavior in physical space. This is facilitated by making equivariant
polynomial changes of coordinates (yQ(z), P(z)) putting h into Birkhoff normal form
and simplifying &.
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Bifurcations from (relative) periodic solutions also reduce, mainly, to bifurcations
from equilibria (with enlarged symmetry group). By Subsection 3.4, it suffices to con-
sider bifurcations from isolated periodic solutions P = {z(¢)} with spatial symmetry
A and spatiotemporal symmetry 3. Write (7)) = ox(0) where T is the relative
period and o is chosen so that the automorphism § — o~'do, § € A, has finite order
k. Form the semidirect product A x Zy; by adjoining to A an element 7 of order 2k
such that 77167 = 010, for § € A. Codimension one bifurcations from P are in
one-to-one correspondence (modulo tail terms) with bifurcations from fully symmet-
ric equilibria for a (A X Zgy)-equivariant vector field. In particular, period-preserving
and period-doubling bifurcations from P reduce to steady-state bifurcations, and
Naimark-Sacker bifurcations reduce to Hopf bifurcations. This framework incorpo-
rates issues such as suppression of period-doubling. Similar results hold for higher
codimension bifurcations.

The skew products (3.1) and (3.2) are valid for proper actions of certain noncom-
pact Lie groups [' provided the spatial symmetries are compact, leading to explana-
tions of spiral and scroll wave phenomena in excitable media.

When the spatial symmetry group is noncompact, £¢ may be infinite-dimensional
and center manifold reduction may break down due to continuous spectrum issues.
For Euclidean symmetry, there is a theory of modulation or Ginzburg-Landau equa-

tions.
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Figure 1: Axial branches: (a) supercritical symmetric pitchfork, (b) supercritical

asymmetric pitchfork, (c) transcritical branches.

Figure 2: Robust heteroclinic cycle for the group I' = Z3 x Z3.
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