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Abstract

Intermittent maps of Pomeau-Manneville type are well-studied in one-
dimension, and also in higher dimensions if the map happens to be Markov.
In general, the nonconformality of multidimensional intermittent maps repre-
sents a challenge that up to now is only partially addressed. We show how to
prove sharp polynomial bounds on decay of correlations for a class of multidi-
mensional intermittent maps. In addition we show that the optimal results on
statistical limit laws for one-dimensional intermittent maps hold also for the
maps considered here. This includes the (functional) central limit theorem and
local limit theorem, Berry-Esseen estimates, large deviation estimates, conver-
gence to stable laws and Lévy processes, and infinite measure mixing.

1 Introduction

Intermittent maps were introduced by Pomeau & Manneville [56] as a model for
turbulence. These are maps that are uniformly expanding except for the presence
of neutral fixed points. In the smooth ergodic theory literature, they have provided
the archetypal examples of nonuniformly expanding dynamical systems. For one-
dimensional intermittent maps, [62] studied the invariant densities in the case when
the map is Markov with respect to a suitable partition, and the nonMarkovian case
was analysed in [66].
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The paper of Liverani, Saussol & Vaienti [47] set out to study the statistical
properties of one-dimensional intermittent maps by considering the simplest possible
example f : [0, 1] — [0, 1], namely

x(1+227), 0<ux
fx) = ]
20— 1, 5 <

— ol

(1.1)
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Here v > 0 is a real parameter. For v € (0, 1), there is a unique absolutely continuous
probability measure p. Let

Pow(n) :/vwof”du—/vdu/wdu. (1.2)

By [37, 65], pyuw(n) = O(nf(%fl)) for v Holder and w € L and this decay rate is
optimal [28, 58]. For v € (0,3), the central limit theorem (CLT) holds for Hélder
observables by [47, 65] as does the weak invariance principle (WIP) [50]. Berry-Esseen
estimates and local limit theorems were obtained in [30]. When ~ € [%, 1), the CLT
fails for Holder observables that are nonzero at x = 0; stable laws were proved in this
situation by [29] and the corresponding WIP holds by [55].

In addition, for v € (0, 1), sharp results on large deviations and convergence of
moments were obtained in [21, 34, 49, 51, 53].

For v > 1, there is a unique absolutely continuous invariant o-finite measure up
to scaling, but the measure is infinite. Results on mixing for infinite measure systems
were obtained in [33, 52]

Although [47] initially focused on the specific maps (1.1), the results described
above have by now been shown to hold for very general classes of one-dimensional
intermittent maps and extend to many multi-dimensional examples in cases when the
map f is Markov. In such cases, the standard approach is to construct an induced
map F' with infinitely many branches and to deduce quasicompactness properties of
the transfer operator for F' acting on a suitable function space. In the Markov case, it
is natural to consider observables that are Holder with respect to a symbolic metric;
in the one-dimensional case, one can consider observables of bounded variation.

Currently, multidimensional intermittent maps are poorly understood in general.
The aim of this paper is to approach the problem of multidimensional intermittent
maps in the same spirit that [47] approached one-dimensional intermittent maps,
focusing on some simple examples that exhibit all the problematic features: multidi-
mensional, intermittent, nonconformal, nonMarkovian.

1.1 Statement of the main results

Let M = [0,1] x T where T = R/Z. Our counterpart of the family (1.1) is the family
of maps f: M — M with f(x,0) = (fi(z,0), f2(0)), where f; : M — [0,1] is a (not



necessarily Markov) nonuniformly expanding map for each 6. Specifically, we assume

that
f(e.6) = {m +a7u(z,6)),

) = 46 mod 1 1.3
N R0 =40mod 1, (13)
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where v > 0, and w : [0, 3] x T — (0, 00) is a positive C? function satisfying u(0,0) =
¢o > 0. (Implicitly, it is assumed that z(1 + 27u(z,0)) < 1 for all z € [0,3], 6 € T.
In addition, we assume that |(Df)@ev| > |v] for all (z,0) € [0,3] x T, v € R%

In particular, as in [47], f is an everywhere expanding map with a neutral invariant
circle {z = 0}, and f is uniformly expanding on [§,1] x T for all § > 0. Also,
fl(%, 0) > % for # € T. For definiteness, we suppose that fl(%, 0) > % for € T. Our
final assumption is that u is sufficiently close to constant, in the sense that |x% o
and |24, are sufficiently small. (See Remarks 2.6 and 4.8.)

Note that f has 8 branches; again as in [47] half of the branches are linear.
However, typically the remaining branches are not full and there is no Markovian
structure. Moreover, the maps expand polynomially in z and exponentially in 6 and
hence are highly nonconformal.

For the maps (1.3), we obtain almost identical results to the ones described above
for the one-dimensional maps (1.1). Recall that v : M — R is Holder with exponent
n € (0,1), denoted v € C"(M), if |[v]l, = [v|eo + sUP, 4, [v(z) — v(y)|/|lz — y|" is
finite. Our results are formulated mainly for Holder observables, but occasionally for
observables in BV (M) = BV(M) N L>®(M). (The definition of bounded variation
on M is recalled in Section 4.) In particular, all of the results hold for C' observables.

Lemma 3.4 states that for v < 1, there is a unique absolutely continuous f-
invariant probability measure, denoted p, and this measure is mixing. Our main
result gives sharp polynomial upper and lower bounds on the rate of mixing. We set
a = 1/~ throughout. Define the correlation function p,,, as in (1.2).

Theorem 1.1 Suppose that v < 1.
(a) Letn € (0,1). There exists C' > 0 such that
[pew(m)] < Cllvllylwloen™™D for alln > 1,
for allve C"(M), we L>®(M).
n-“ o> 2

(b) Define E(n) =< n?logn a=2 . There exists C' > 0, ¢ > 0 such that
n2e") 1 <a<?

Pow(n) —en~ @D /Udu/wd,u‘ < CEMm)(||v]lgy + |v]eo)|wli  for alln > 1,

for allv € BVo(M), w € L'(M) supported in [2,1]xT. In particular, p,.,(n) ~
en~ @Y [wdu [wdp as n — oo.



(c) There exists C' > 0 such that
poaw()] < C(l[vllgy + [v]oo) [whn™  for alln =1,
for allv € BV (M), w € L'(M) supported in [3,1] x T with [vdu = 0.

For v < 3, L corresponding to summable decay of correlations in Theorem 1.1(a),
we obtain the CLT and related results. Define v, = Z s “vo fi. Also, define
W, (t) = n~H2v, fort = 0,2, 2 ... 1 and linearly interpolate to obtain W,, € C|0, 1].

Theorem 1.2 Suppose that v < % Let v: M — R be Holder with [vdu = 0.

(a) CLT n~Y2v, converges in distribution' to a normal distribution G =4 N(0, 0?).

The variance o2 is zero if and only if v = x o f — x for some x measurable.

(b) Berry-Esseen There exists C' > 0 such that
(v, <a) —P(G<a)| <Cn™® forallae R, n>1,

where ¢ = 1 for a >3 and g = (o — 2)/2 for o € (2,3) (Any q < 1 works for
a=3.)

(c) Local limit theorem Suppose that v is aperiodic>. For all a,b,x € R with
a <b, all k, € R with k, ~ kn*/?, and allu € C"(M), w : M — R measurable,

—K?/(207)
JLI{:onl/Qﬂ{x €M :vy(x) = kp —u(z) —w(f"r)} € [a, b]} =(b- G)W'

(d) WIP W, converges weakly in C0,1] to Brownian motion W with W (1) =4 G.

(e) Error rate in WIP For any q < (o — 2/(4a), there exists C' > 0 such that
T (Wo, W) < Cn™? for allm > 1.3

(f) Almost sure invariance principle For any € > 0, there is a probability space
supporting W and a sequence of random variables {v,; n > 1} with the same
joint distributions as {v,} such that v, = W(n) + O(n"(logn)’*¢) a.e.

For v € (3,1), the CLT with normalization n~'/? fails for general Holder observ-
ables, and we obtain results on anomalous diffusion. Let G, denote the totally skewed
a-stable law with characteristic function E(e“~) = exp{—[t|*(1 — isgnt¢tan %)}

'Here and elsewhere, convergence in distribution (or weak convergence) holds on the probabil-
ity space (M, u) and equivalently [67] on the probability space (M, Lebys) where Lebys denotes
normalised Lebesgue measure on the support of u.

2 Aperiodic means that it is not possible to write v = xy — x o T' + constant mod AZ for some Y
measurable and A > 0.

3Let A€ denote the e-neighborhood of A. The Prokhorov metric 7 is given by
m(X,Y)=inf{e > 0:P(X € A) <P(Y € A°) + € for all closed sets A C C[0,1]}.
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Theorem 1.3 Let v : M — R be Holder with [vdy = 0. Suppose that
Jpv(0,0)d0 # 0. Then there exists ¢ > 0 such that n~Y%, converges in distribu-
tion to cG,,.

Moreover the process defined by W, (t) = n=%v,y converges weakly in D[0,1]
with the M topology* to the a-stable Lévy process W with W (1) =4 cG.

Next, we consider large deviation estimates and moment estimates.

Theorem 1.4 Suppose that v < 1 and let v: M — R be Holder.

(a) Large deviation estimates For any a > 0, there exists C' > 0 such that
1
,u{‘—vn — /vdu‘ > a} <Cn~ @V foralln>1.
n

(b) Moment estimates For any p > 1, there ezists C' > 0 such that for alln > 1

nv/? o> 2

1 p/2 -9
/|U”’p dp < Cmax{g(n),n” '} where g(n) = (nlogn) o .
np/e l<a<2,p#a
nlogn l<a<2,p=a«a

(c) Convergence of moments If v < L. then [|n="?v,|Pdu — E|G|P for all
p<2(a-—1).

If v € (3,1), then [|n~You,|Pdu — ElcGul? for all p < « where c is the
constant in Theorem 1.5.

For v > 1, Lemma 3.4 states that up to scaling there is a unique absolutely con-
tinuous f-invariant o-finite measure p, but now p(M) = co. We prove the following
mixing property for infinite measure systems.

Theorem 1.5 (a) Suppose that v > 1. There exists ¢ > 0 such that

lim nl_a/vaf”du:c/vdu/wdu,

for all v € BV (M), w € L'(M) supported in [%, 1] x T.
For v =1, the same result holds with n*=* replaced by logn.

(b) For~y > 1, there ezists C > 0 such that
’/vw o f" d,u‘ < C(|vllgy + Vo) |win™  for alln > 1,

for allv € BVy(M), w € L*(M) supported in [2,1] x T with [vdu = 0.

4We refer to [60, 64] for background information on D0, 1] and the Skorohod M; topology.
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Remark 1.6 The constants ¢ in Theorems 1.1(b), 1.3 and 1.5(a) are given explicitly
in Sections 5 and 6.

Remark 1.7 It is an easy but tedious exercise to extend to cases where 6 is of general
dimension and f, : T9"! — T9"! is a general smooth uniformly expanding map with
worst expansion sufficiently large (strictly larger than 3 suffices when d = 2), but we
restrict to the current situation for readability.

A notationally simpler example would have f,(0) = 20 mod 1, but it is well-known
that the extra expansion is useful in higher dimensions. Our assumption that u is
sufficiently close to constant is of the same flavour and can be relaxed by assuming
sufficient expansivity of f, see Remark 4.8.

1.2 Comparison with other results and methods

There is a considerable amount of work on uniformly expanding maps in higher di-
mensions. In the analytic setting, see [11, 63]. For C? maps, still with finitely many
branches, see [19, 20, 26]. The paper [46] sets out a general approach to multidi-
mensional uniformly expanding maps with infinitely many branches. This method
could in principle be applied to the first return maps F' mentioned in Subsection 1.3.
However, the assumptions therein do not hold for the examples in [38, 39] nor the
examples (1.3). (Condition 4 in [46] fails due to the lack of conformality; the condi-
tion has the form lim. ,y A. = 0 but in our examples A, = oo for € > 0.) Another
approach in [59] uses quasi-Holder spaces, but these also have drawbacks as discussed
below.

Turning to multidimensional intermittent maps, we mention the work of [5, 6, 7,
31] which treats examples like those in (1.3) with v depending on 6. However, these
papers require that f is Markovian and hence do not encounter the issues treated
here.

In contrast, there are has been very little work on multidimensional nonMarkovian
nonuniformly expanding maps. We now list all papers on this topic that we know of.
A large class of multidimensional intermittent maps was considered in [38, 39] using
the quasi-Holder spaces from [59]. In particular, [38] obtained results on existence
of absolutely continuous invariant measures, but it was convenient to consider maps
that were close to conformal. For statistical limit laws, it seems that quasi-Holder
spaces handle nonconformality of multidimensional maps quite poorly. A more recent
paper [10] obtains almost optimal, but still nonoptimal, results on decay of correla-
tions for the maps in [38, 39]. Moreover, the methods in [10] do not seem to apply to
the maps (1.3) considered here.

1.3 Structure of the paper

The method in this paper starts off, as usual, by constructing a convenient first re-
turn map F : Y — Y, and from then on is a hybrid of two standard methods.



Reinducing enables us to model f by a Young tower with polynomial tails, leading to
existence of absolutely continuous invariant measures and a spectral decomposition.
For v € (0, %), this already yields sharp upper bounds on decay of correlations as
well as a number of statistical limit laws. Combining the information on invariant
measures with bounded variation methods for F', we obtain sharp lower bounds on
decay of correlations, as well as convergence to stable laws and Lévy processes, and
results on infinite measure mixing. This hybrid method bypasses many of the prob-
lems associated with multi-dimensional bounded variation (namely, that the function
space is not contained in L°°; supports of invariant densities need not a priori have
nonempty interior; certain aperiodicity assumptions are hard to verify).

The reinducing step, Lemma 3.1 below, makes use of recent work [23] based on the
method of standard pairs [12, 22], and gives precise joint control on the first return
time to Y and the reinducing return time (denoted respectively as ¢ and p below).
As already noted, the reinducing approach adopted in [10] seems not applicable for
the examples in this paper and in any case gives much less control on return times.

The remainder of this paper is organised as follows. In Section 2, we construct
a convenient first return map F and obtain estimates for the first return time and
distortion bounds for F'. In Section 3, we derive mixing properties of f and F' and
results on aperiodicity. In the process of doing this, we show that f can be mod-
elled by a Young tower with polynomial decay of correlations. We use this to prove
Theorems 1.1(a), 1.2 and 1.4.

Section 4 contains functional analytic estimates in bounded variation. In Section 5,
we prove Theorems 1.1(b,c) and 1.5. Finally, we prove Theorem 1.3 in Section 6.

Notation We use the “big O” and < notation interchangeably, writing a,, = O(b,,)
or a, < b, if there is a constant C' > 0 such that a, < Cb, for all n > 1. Also,
a, = o(b,) as n — oo means that lim,_, a,/b, = 0 and a,, ~ b, as n — oo means
that lim,, o a, /b, = 1.

We set D = {w € C : |w| < 1}. Throughout, | - | denotes Euclidean distance.

2 Estimates for the first return map F

2.1 Construction of F

Let f: M — M, M =10,1] x T, belong to the class of maps (1.3).
Define

Xi={(z,0) e M:0<z < f1(3,29)} = f([0,3] x [£,2L]), i=0,1,2,3.

174
Then X = J._, X; is an invariant set for f and f(X) = X.
We induce on the set Y = ([3,1] x T) N X. Let ¢ : Y — Z* be the first return
time, with first return map F' = f¥: Y — Y. The sets

Yoj={W,0) €Y :9(y,0) =n:(j-1)/4" <0 <j/4"}, n=>1,1<7<4%,
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Figure 1: The maps f and F for fixed . The letter b denotes f;(3,6)

form a (mod 0) partition oY of Y. Note that F' : a — Fa is a diffeomorphism for
each a € a¥. We have

Vig= {0 €Y 2 <y< fi(3), (- 1)/4<0< i/} (2.1)

Also, FY,; € {([2,1] x T) N X;}2, for n > 2. In particular, F' has finitely many
images, i.e. {Fa:a € a¥} is finite.

Figure 1 is a sketch of f(-,0) and F(-,0) for 0 fixed. Figure 2 is a schematic picture
of the partition o = {Y¥,,;:n>1,1<j <4"}.

Proposition 2.1 [(DF),gv| > 4|v| for all (y,0) € Y, v € R%

4 0

Proof We have Df = < 0 4

) onY and |(Df)v| > |v| on X. |

Proposition 2.2 f : X — X is topologically exact: for any nonempty open subset
U C X, there exists n > 0 such that f"U D X \ {z = 0}.

Proof It suffices to consider rectangles U = U; x Uy where Uy C [0,1], Uy C T are
intervals. Let m: M — [0, 1] be projection onto the first coordinate. Note that

For any (z,6) € (0,3) x T, there exists n > 1 such that = f"(z,6) > 2. (2.2)

If % € nU, then 0 € 7 fU. Since 0 is a fixed point and f; is continuous on [0, %] x T,
it follows from (2.2) that (0,3] C wf"U for all n sufficiently large. Also fo : T — T
is continuous and uniformly expanding, so it is immediate that (0, %] x T C f*U for
some n and hence that f"™U > X \ {z = 0}.
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Figure 2: The partition a¥ = {Y,,;, n >1,1<j <4"}

0

[N[eY

For a general rectangle U, it remains to show that % € nf"U for some n > 0.
Suppose this is not the case. Since f; is continuous on [0, %) x T and (%, 1] x T, it
follows that mf"U is an interval for all n. By (2.2), mf"U C (2,1] infinitely often.
On each such occasion, diam 7 f"*'U = 4diam 7 f"U, so diam 7 f"U — oo which is

impossible. |

Proposition 2.3 F : Y — Y is topologically ezact.

Proof Let U C Y be a nonempty open rectangle. If U intersects the boundary of
the strip {¢ = n} for some n, then FU N ({32} x T) # 0. But then FU contains a
partition element Y, ;. It follows that F 2UDF Y,,;, =Y N X, for some 7 and hence
that F?U =Y.

Again, let m denote projection onto the first coordinate. If F*U does not intersect
the boundary of {¢ = n} for all n and all k > 0, then diam 7 F*U > 4% diam 7U for
all k£, which is impossible. |



2.2 Estimates for the partition

Recall that u : [0,2] x T — (0,00) is C? and u(0,60) = ¢y > 0. In fact, we only use
the following consequences of this property:
0 0?
u(z,0) — co = o(1), xa—Z(aﬁ,G) =o(1), and :1:28—;;(:1:,9) = o(1),

as x — 0 uniformly in 6.

Proposition 2.4 Suppose that (z,,6,), n > 1, is a sequence in [0, %] x T such that
(20, 0,) = (3,0) where 0 € T. Then

—(14«)

Ty ~con ® and T, — Tpi ~n as n — 0o,

: ‘ _ 1
uniformly in 0, where ¢, = (cyy)™® and ¢ = ¢} ey.

In addition, the curve 0 — x,(0) is C' and there erists a constant C' > 0 inde-
pendent of n, 0 such that |z’ (6)| < Cn~0+e),

Proof By construction, for each choice of inverse sequence 6,,, the sequence x,, is
unique and monotonically decreasing to zero. We do the computation for 6,, = 6/4™,
but the result is independent of this choice. Write 8y = 6.
The inverse branch ¢ : M — [0, 2] x [0, 1] has the form ¥ (z,0) = (¢1(z,0), 10).
Compute that
U(z,0) =2(1 — 27u(z,0)) = [z (1 — 27a(z,0)) 7]
= [x77 +~yu(x,0)],

where u(x,0) = ¢y + o(1) as  — 0 uniformly in 6. Inductively,
n—1 A —a
(@, 0) = [+ 49 Y a(w (@, 0)]

=0

In particular,

ro = [0 00) = [ 49 Yt 6)] "= [ i) + 0] L (23)

Since x, — 0, we have 4(z;,0;) — ¢y and hence Z;:& W (z,0)) = ncy + o(n).
Substituting this into (2.3) yields the desired expression for x,.
Since (zy,,6,) = f(Tnt1,0n41), we have , = i1 (1 + 2] u(Tpy1, Ony1)) and so

1 _
1y (H—oc)co

_ Aty 1+a
Ln — Tntl = xn+1u(xn+1> Ons1) ~ ¢ ),

= 'n~(

10



Differentiating the formula for x, in (2.3),

/ A n—1 R —(14a) n—1 o , 1 o4l »
2(0) = =3+ Yl 0)] (D0 T @ )5 0) + D G 0)477).
=0 §=0 0
: : .. : . 0u ol ,
It is easy to verify that @ inherits the properties Too = o(1) and — = O(1) imposed
T
on u. Hence, there is a constant K > 0 such that

n—1 n—1
|, ()] < K~ 4 Kn=(0Fel = 5171/ () < Kn ) 4 K="y~ | (6)].
j=0 j=0

The discrete version of Gronwall’s inequality states that if |b,| < Cy + Cy Z;:S b5,
then |b,| < C1(1 + Cy)™. Hence |2/, (0)] < Kn~=(+2)(1 4 Kn~)» « n~(+),

For each n > 1, we have established smoothness of the curve z,(f) and the
estimate |2/ ()] < Cn~0%®) except at finitely many points related to the partition
into inverse branches of f". Since z,,(0) = {(z,0) € [0,3] x T* : f"(z,0) € {2} x T} is
defined intrinsically on the cylindrical domain [0, %] x T!, independent of any choice
of partition, these smoothness properties are uniform in 6 € T. |

Remark 2.5 Tt follows from Proposition 2.4 that if 6,6 € [(j —1)4™", j4™"] for some
j=1,...,4" then 2,(0) — 2,11(0") ~ ¢n~+%) uniformly in j.

The partition elements Y; j, 1 < j < 4, are as in (2.1). The remaining partition
elements Y, j, n > 2,1 < j < 4" are given by

Yo ={(.0) 1y € (yn(0),yn-1(0)), 0 € ((j — 1)/4",/4")},

where y,(0) = %(mn,l(fg(e)) + 3). Note that ¢/, (0) = z!,_,(0).
By Remark 2.5, Y, ; is almost rectangular for n large, and y,(0) — yn+1(6) ~

L 142) yniformly in 6.

Lo —(
cn

Remark 2.6 By choosing u sufficiently close to constant, in the sense that |az% 00

and |2%|. are sufficiently small, we can arrange that |z/,(6)| is uniformly small in n

and 0. In fact, we require that |2/ (0)] < 7/+/72 for all n and 6. This turns out to be
convenient for technical reasons, see Remark 4.8.

«

Corollary 2.7 Leb(p > n) ~ }Lcln_ as n — oo. In particular, ¢ € L' if and only
if v < 1. In addition, Leb(p = n) ~ 1/ (=019,

Proof Let C, = {z,(0)}, n > 0, be the smooth curve defined in Proposition 2.4 and

let X,,.1 be the region in [0, %] X T to the left of C),. Then X, consists of precisely
those points in [0, %] x T that require at least n + 1 iterates of f to enter Y for the

first time. By Proposition 2.4, Leb(X,,) ~ ¢;n™® and Leb(X,_1 \ X,,) ~ ¢n~(F),
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Now, f maps {¢ = n} onto X,,_1 \ X,, for n > 2, and the mapping is 4 to 1. Each
branch is linear and scales areas by a factor of 4%, so Leb({¢ = n}) = 1 Leb(X,_1\X,,).
Hence Leb(p = n) ~ 1¢n~(** and Leb(p > n) = 1 Leb(X,,) ~ tcin™. |
Remark 2.8 Suppose further that u(z,0) = co+O(z") uniformly in 6. This property
is inherited by @ and @ in the above calculations and we obtain that x, = c;n=*(1 +
O(n~'logn)) uniformly in 6.

2.3 Distortion estimates

Lemma 2.9 Let (y,0) € Y, ;. Then

k n—/{
[15, e~

n—m

14+«
) as n — Q.

This estimate holds uniformly in (y,0) € Yy, ;, in j, and in 1 < <m <n—1.

Proof Let (yx,0k) = f¥(y,0), k =0,...,n — 1 and recall from Proposition 2.4 that
Yn_i ~ (covk)™® as k — oo uniformly in the initial choice of 6. Now,

on
ox

Ou

(2,0) =1+ (14 v)2"u(z,0) + =" o

(,0) =1+ co(L+7v)2"(1+0(1)), (2.4)

as x — 0 uniformly in 6, so

of

log 8—;(1‘”"“(% 0)) ~ co(L+ 7))~ L+ a)k™".

It follows that

m n—~¢ n—~4
o5 [T 22 (740 = Y log S (f Hw.0) = (1+.0) 3 bs(6),

k={ k=n—m k=n—m

where by (0) ~ k' as k — oo uniformly in 6. Hence log ]}, %(fk(yﬂ)) ~ (1+

a)(log(n — £) —log(n —m)) and the result follows. |

Corollary 2.10 Let (y,0) € Y,, ;. Then

(DF)y,0) = ( A(‘%’ g B(ZZ o) ) :

where A(y,0) ~ 4n*™ as n — oo and B(y,0) = O(4"™). These estimates hold uni-
formly in (y,0) € Y, ; and in j.
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Proof Let z, = f*(y,0), k=0,...,n— 1 and write

(DF)(y,G) = (Df)znﬂ T (Df)21(Df)20
Clearly, (Df),, is upper triangular with diagonal entries %(zk) and 4. Hence
(DF)(y,0) has the required form with

n—1

The required asymptotics for A(y, €) follows from Lemma 2.9.
Ofi .

Next,
off™, . 0h [3fk] 3

so by induction,

a[fk]l B k—1 k-1 8f1

By Lemma 2.9, [[1, %(2,) < [(n — £)/(n — k)]"** and so

oLf" :
[ge]—l (y,6) < (n — k)~ ;(n — )t

< (n . k)—(l-&-a) Z €1+a4n—é < (n _ k)—(1+a)4n7
l=n—k

yielding the required estimate for B(y,0). |
Let JF = det DF. By Corollary 2.10, JF ~ 4" p'** on Y, ;.

Lemma 2.11 There is a constant C > 0 such that

1+a)

-1 -n
o <C4T,

’a_y(‘]F ‘39 v0)

for all (y,0) € Y, ; and alln, j.

Proof By Corollary 2.10, JF(y,0) = 4" A(y, ) where A(y,0) ~ 4n'*® uniformly on
Y, ;. We have

O IP(y.0))" = 4 (A(y, )

5 0

dy
0 0

=47 A(y, 0) " =log A(y, 0) ~ 4~ Dp=0+) 100 A(y, 6).

(1:6)"' 5 108 A(y.) o108 A0

13



Similarly, Z(JF(y,0))™" ~ 4~ (Up=(+e) S log A(y,0). Hence, it suffices to show
that

a 1+« a n
oy log A(y,0) < n' ™, 50 log A(y, 6) < 4". (2.5)
Writing 2, = f*(y,6),
9 -9 afl ~(Of, N\ f Ol
gy o8 A0 =3 Gulo () = 3 () o ()T )

By ( ) and Proposition 2.4, 8f1( k)
Moreover, it follows from Lemma 2.9 that

olf*h
dy

Oh(z) < 270 < (n— k)"0,

—(y,0) < (n/(n — k).

Hence

a n—1
™ log A(y,0) < Z(n — k)" Amoptta(y — p)-(+e) — plta Z k2 < n't
Y k=1
establishing the first estimate in (2.5).
Proceeding similarly for the second estimate

fi,  Olf*]s

020090

922 ) "5

a0 =3 ()[4

(y,0) + (y,0)].

(2.6)
Our assumptions on f; imply in particular that g gle is bounded, so the second

term in (2 6) is O(4™). The calculation at the end of the proof of Corollary 2.10 shows

that d[f Li(y,0) < (n — k)~F®)4" Hence the first term in (2.6) is bounded up to a
constant by

—_

n—1
(n . k,)—(l—a)(n . k)—(1+a)4n — 4" Z k—2 < 4717

1 k=1

3

T

establishing the second estimate in (2.5). n

Corollary 2.12 There is a constant C > 0 such that
1/ TF(y.6) — 1/JF(y . 6))| < Cinf(1/JF)|F(y,6) — F(y/. 6]

for all (y,0), (v,0') €a=Y,; and alln,j.

14



Proof First, we prove the result under the simplifying assumption that a is a rect-
angle. In particular, the line segments [(y, 0), (v/,0)] and [(v/,0), (v/,0')] lie in a. By
Lemma 2.11 and the mean value theorem, |1/JF(y,0)—1/JF(y',0)] < 4 "|ly—y'|. By
Corollary 2.10, 4|y — /| < 4™"n~ U+ |F(y,0) — F(y',0)| < inf,(1/JF)|F(y,0) —
F(y',0)|. Hence [1/JF(y,0) —1/JF(y',0)| < inf,(1/JF)|F(y,0) — F(y',0)|. Sim-
ilarly, |1/JF(y,0) — 1/JF(y,¢)| < inf,(1/JF)|F(y,0) — F(y',0")]. The desired
estimate follows.

In general, Proposition 2.4 ensures that there is a constant co > 0 such that the
line segments lie in the union of partition elements Y, ; with m > con, and the
argument above is unaffected. |

Let o) denote the refinement of ¥ into k-cylinders.

Corollary 2.13 There erists a constant C' > 0 such that sup, JF* < C'inf, JF* for
allanzk,Y,kZL

Proof Write x = (y,0), 2 = (v/,0'). First suppose that z,2' € a, a € a¥. By
Corollary 2.12, there is a constant C; > 0 such that

JF(x) 1/JF(x') —1/JF(x) 1/JF(x)—1/JF ()|
=14+ <1+ -
JF(z") 1/JF(x) inf,1/JF
<14 C|Fx—Fa| < eC1lFa—Fa'|

Hence |log JF(z) — log JF(2')| < C1|Fz — F2'|.
Now suppose that z,2’ € a, a € o) for some k > 1. Then

k-1
|log JF*(2)—log JF*(2')| < Z\logJF(F] ) —log JF(F’2")|
7=0
< 012|FJ“1: Fitly!| < ¢ 24 IFre — Fra'| < 5 Cr diam Y.

The result follows with ' = ¢3C1 diamY" ]

Corollary 2.14 (Bounded distortion) There is a constant C' > 0 such that

sup [V(JF) ™ )WDF) YJF <C forallaca.

Proof Let a =Y, ;. By Corollary 2.10,
4" _RB —(14a) —(14a)
(DF)t =44 < 0 4 ) < (" 0 e ) (2.7)
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uniformly on a. By Lemma 2.11,

(1+a) ,,—(1+a)

n

(VF)HDF] < (a0 et (77

) < 4—nn—(1+a)

on a. Finally, apply Corollary 2.10. |

3 Mixing properties of f and F

In this section, we show that the first return map F' : Y — Y has a unique absolutely
continuous invariant probability measure py and that F'is mixing. We also show that
the underlying map f : X — X has a unique (up to scaling) absolutely continuous
invariant o-finite measure p. When v < 1, this is a finite measure and it is mixing.
These results are obtained in Subsection 3.1. In the process of obtaining these results
we show that f is modelled by a Young tower with polynomial tails. A logarithmic
factor in this tail rate is removed in Subsection 3.2. This is already sufficient to obtain
many of the results announced in the Introduction, as explained in Subsection 3.3.
In Subsection 3.4, we obtain an aperiodicity property for F.

Recall that the first return map F' : Y — Y is topologically mixing with finite
images, and has bounded distortion. If in addition F' were Markov, then the results
in this section would be easier to deduce from standard results. Our strategy is
to further induce F', with exponential tails, to a full-branched Gibbs-Markov map
G: Z — Z as follows:

Lemma 3.1 There exists a refinement o) of the partition o for F : Y — Y, an
open set Z C'Y consisting of a union of elements of of and a map p : 7 — Z*
constant on elements of o = {a € af :a C Z} such that

(a) G=F*:Z — Z is a full-branched Gibbs-Markov map with partition o”.
(b) Leb(p > k) = O(6%) for some § € (0,1).

(¢)ged{n=1:{p=n,p=1}#0} =1.
(d) There exists n > 1 such that F(Z NInt{y =n}) =Y.

We postpone the proof of Lemma 3.1 to Appendix A. Parts (a) and (b) can be
proven in the general setting of piecewise expanding maps, but parts (c) and (d)
are specific to our map F. Part (c) is used to prove that F' and f are mixing in
Lemmas 3.2 and 3.4 respectively. Part (d) is used in the proof of Lemma 3.2 to prove
that the invariant density for F' is bounded below.

By [1, Theorem 4.7.4], there exists a unique absolutely continuous G-invariant
probability measure iz on Z. Moreover, jiz is mixing and the density hy = duy/d Leb
is bounded above and below on Z.
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3.1 Densities and mixing

In this subsection, we study the mixing properties of f and F', the existence and
uniqueness of absolutely continuous invariant measures, and the boundedness prop-
erties of the corresponding densities.

Lemma 3.2 There exists a unique absolutely continuous F'-invariant probability mea-
sure py. The density hy = duy /d Leb is bounded above and below and F' is mizing.

Proof Let G = Fr : Z — Z be the full-branched Gibbs-Markov map on
Z C Y obtained in Lemma 3.1, with ergodic invariant probability measure puz. By
Lemma 3.1(b), p = [, pdpz < cc.

Form the Young tower g : A — A where

(z,0+1) (<p(z)—2
A={(z,0) e ZXZ:0<{<p(z)—1}, g(z,0) {(G’z,()) (= p)—1"
The measure pua = (puz X counting)/p is an ergodic g-invariant probability measure
on A. The projection 7 : A — Y, 7(z,{) = F'z defines a semiconjugacy between g
and F', and py = m.ua is an absolutely continuous F-invariant probability measure
on Y. Since G is full-branch and ged(p(a) : a € a?) = 1 by Lemma 3.1(c), it follows
from [65, Theorem 1] that py is mixing.
Next, for £ C Z measurable,

py(E) = pa(n ' E) = (1/p) ZlEOFed,uZ (3.1)
Z 1=0

> (1/p) / Lpdpz = (1/p)pz(E).

It follows that hy > (1/p)hz on Z. Moreover, letting n > 1 be as in Lemma 3.1(d),
for any y € Y there exists z € Z N Int{p = n} with Fz = y. Since f™ has finitely
many continuous branches, M = |J f"|,, < co. We obtain

= Y JF(Y) hy(y) = JF(2) ' hy(2)

Fy'=y

= Jf"(2) thy(2) > p *M tinf hy > 0.

Hence hy is bounded below. Uniqueness of hy follows.
It remains to show that hy is bounded above. This follows from a result of Rychlik
[57, Theorem 1] once we check three conditions:

1. There exists a constant C' > 0 such that sup, JF* < C'inf, JF* for all a € o},
k> 1.
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2. There exists ¢ > 0, r € (0,1) such that if a € ) for some k > 1 and
Leb(F*a) < e, then > {a'caY Leb(anFray>0y WP 1/ JF < 1.

3. Y acay SUp, 1/JF < o0,

By [57, Theorem 1], there exists an F-invariant density h; € L>°(Y). Since hy is the
unique F-invariant density, we have hy = h; bounded.

Now, condition 1 holds by Corollary 2.13. Condition 2 is trivially satisfied since
the set {F*a : a € af , k > 1} is finite. By Corollary 2.10, 1/JF ~ 47+ip=01+a)
uniformly ona =Y, ;, j =1,...,4" as n — oo, and the third condition follows. &

Define 7 = ¢, = §;3¢OF£:Z—>Z+.

Proposition 3.3 7 is Lebesque integrable (equivalently fZTduZ < o) if and only if
v <1

Proof A standard argument, see for instance [13, 48|, shows that 7 = ¢, satisfies
pz(T >n) = 0O((logn)*n~%). Integrability for v < 1 follows.
Similarly, pz(7 > n) > (logn) 'n™® (see for example [10, Proposition 5.1(b)])

proving nonintegrability for v > 1.

Lemma 3.4 There exists a unique (up to scaling) absolutely continuous f-invariant
o-finite measure . Moreover, the density hx = du/dLeb is bounded below.
The measure j is finite if and only if v < 1, in which case f is mixing.

Proof Since F = f?:Y Y and G=Fr:7Z — Z, it followsthat G = f7: Z — Z.
We proceed similarly to the proof of Lemma 3.2 but with p replaced by 7 and F'
replaced by f. Form the new Young tower §: A — A,

(y, 0+1) £<7(y)—2
(Gy,0) L=7(y)—1

A={(y,0) e ZxZ:0<t<71(y)—1}, Q(y,f):{

The ergodic g¢-invariant measure puz X counting is finite if and only if
7= [,7duy < oo. Equivalently [, 7dLeb < oo, and by Proposition 3.3, this holds
if and only if v < 1.

When v < 1, the measure fin = (pz X counting)/7 is an ergodic g-invariant
probability measure on A. The projection 7# : A — X, 7(y,0) = f'y defines a
semiconjugacy between g and f, and u = 7, jia is an absolutely continuous f-invariant
probability measure. Lemma 3.1(c) implies that ged{7(a), a € a?} = 1. Since G is
a full-branch Gibbs-Markov map, it follows from [65, Theorem 1] that fia, and hence
4, 1S mixing.

Again, as in the proof of Lemma 3.2, hx > (1/7)hz on Z. By Lemma 3.1, Z is
open, so by Proposition 2.2 there exists n > 1 such that f"Z = X. Since f" has
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finitely many branches, M = |Jf"|,, < co. Given x € X, choose z € Z such that
f"z =x. Then

h(w)= 3 Jf() thx(a) 2 Tf7(2) hx(z) 2 (1/7)M it hy > 0.
fra'=x

Hence hx is bounded below, and uniqueness of y follows.
When v > 1, we proceed in the same way but without normalising by 7. |

3.2 Tail estimate for 7 = ¢,

As noted in the proof of Proposition 3.3, the induced return time 7 = ¢, satisfies the
tail estimate u(7 > n) = O((logn)*n~?). In this subsection, we show how to remove
the logarithmic factor using ideas from Szdsz and Varja [61].
Lemma 3.5 pz(7 >n)=0(n"%).

Following [14, Lemma 5.1] and [61, Lemma 16|, the crucial ingredient for proving
Lemma 3.5 is the following estimate. Fix p,q € (0,1) satisfying p < (1 — ¢)a. Let

Y(k,n)={po=nand po F* > n'"1} C Y.

Proposition 3.6 There exists C' > 0 such that

py (Y (k,n)) < Cn~ et for gl kyn > 1.

Proof For k > 1, denote by H* the set of inverse branches h : F¥a" — a” of F*.
Define S, = {¢ > n'~?}, and notice that

Y (k,n) = (CHJYM) NEF*S,) = O U n(S.) N,

Jj=1 J=1 heHk

But /(S,,) is contained in the k-cylinder a” € o) while Y,, ; € . Therefore, if h(S,)N
Y, ; # 0 then a" C Y, ;. It follows that Unesr R(Sn) MY, C Uhe?—[’“:ahCYnj h(S,) and
SO

4’)1
Ykn)clJ) J  hSw).
J=1 heHk: ahCYnyj

Hence

(Y (k)< S (h(Sa).

{a€aY :p(a)=n} {heH* :ahCa}
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If a* C a, then h = h, 0 h, where h, € H! and h € H*~! are inverse branches with
hy, : Fa — a. By Lemma 3.2, the density duy /dLeb is bounded above and below.
Using this and F-invariance of py,

S (h(S)) < hdw S v (A(S,))

{heHk :ahCa} heHk-1

= |Thaloo iy (F~579(S5)) = [T haloo iy (Sh)-
By Corollaries 2.7 and 2.10,
py (Y(k,n)) < puy(Sy) Z | Tha|ee & n~UDap-04e) «p~(tatp)
{aca¥ :p(a)=n}
by the choice of p and q. |

Lemma 3.5 now holds by standard arguments. We follow the exposition in [9].
Define
— 01
Zy(n) = {p < blogn and gggg}gpoF <inandr>n}cCZ

Corollary 3.7 Let b > 0. Then puz(Zy(n)) = o(n™).
Proof Define
Yy(n) = {p=nand po F* > n'"? for some 1 < k < 2blogn} C Y.
By Proposition 3.6,
iy (Yy(n)) < C(2blog n)n~(1+a+p) « p=(+atp/2),

Let z € Zy(n). Define ¢1(z) = maxocicp) ¢(F'2) and choose
(1(z) € {0,...,p(z) — 1} such that o(z) = @(F1®)z).  Define po(z) =
MaXo<r<p(z) , t21(z) P(F2).

Now, n <7 < @1+ (p— 1)p2 < sn+ (blogn)g,. Hence

n

IN

< <1 <

|3

2blogn

In particular, ¢y > @5 ¢ and @y > 1 ? for n large.

Choose f5(2) € {0,...,p(z) — 1} such that £y(z) # £1(2) and py(2) = @(F*2*),
Suppose for definiteness that ¢1(z) < ¢5(z) (the other case is similar). Let m = ¢1(2),
k ={ly(z) — £1(2). Then

o o(F"P2) = p1(2) = m;

o po FHFAD2) = p(F2R)z) = pa(2) > pi(2)' 1 =m! %

o 1 <k </l(z)<blogn <2blogp;(z) =2blogm for n large.
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Hence, F(3)z € Yj(m) for n large. We have shown that
Zy(n) C F~%Y,(m) for some £ < blogn, m > n/(2blogn),
and so

pz(Zo(n)) < pv(Zy(n)) <logn Y py(Yy(m))
m>n/(2blogn)
< logn Z m~1retP/2) «Nogn(n/logn)~ P/ = o(n~?)
m>n/(2blogn)

as required. |

Proof of Lemma 3.5 Let A ={(z,{) € ZxZ:0</{ < p(z)} be the Young tower
from the proof of Lemma 3.2 with probability measure puax = (puz X counting)/p.
Recall that py = m.ua where m(z, () = Fz.

Write maxo<s<(z) p(F'2) = @(F4®)z) where ¢1(z) € {0,...,p(z) — 1}. Then

pz(z € Z: O<n£1a>% )gp(Fez) >n/2) = pua{(z,0) € A: O(F9@2) > n/2}
<E<p(z

= puaf{(z, 61(2)) 1 p(F192) > n/2} = pua{(z,(1(2)) : p o (2, 41(2)) > n/2}
<pus{p € A:pom(p) >n/2} =puy{y €Y 1 ¢ >n/2} = O0(n™).

Hence, by Corollary 3.7,
pz(p <blogn and 7 >n)=0(n"%).

Finally, by Lemma 3.1(a), uz(p > blogn) = O(8*18™) = O(nb'°8%) = o(n=%) for any
b fixed sufficiently large. Hence pz(7 > n) = O(n~?) as required. |

3.3 Proof of upper bounds for decay of correlations, and var-
ious statistical properties

We suppose throughout this subsection that v < 1, and set &« = 1/+. In the proof of
Lemma 3.4, we showed that the intermittent map f : X — X is modelled by a Young
tower § : A — A with first return G = f7 : Z — Z. By Lemma 3.5, the return time
tails satisfy uz(7 > n) = O(n=*). Accordingly we can read off numerous statistical
properties that hold for all Holder (and dynamically Hélder) observables v : X — R.

Recall that # : A — X, given by #(z,¢) = f'z is a semiconjugacy between §
and f. Moreover, we have invariant ergodic probability measures jin on A and & on
X where fin = (uz % counting) /7 and p = T.pua.

Recall from Lemma 3.1 that G : Z — Z is a full-branched Gibbs-Markov map
with partition a?. Define the separation time s(z,2’) on Z to be the least integer
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n > 0 such that G"z, G"2’ lie in distinct partition elements in o?. For # € (0,1) and
v: X — R, define

v(ff2) —v(f
follg = ol + [0y oy = sup  sup ID TN
z,2'€Z:z#2 0<U<T(2) fs(z,

An observable v : X — R is said to be dynamically-Hélder if ||v]|3, < oo for some
choice of 6.

Proposition 3.8 Holder observables are dynamically Holder. Moreover, for v &€
C(X), n € (0,1), we have ||v||y, < 27207 ||v|, where § = 477,

Proof Let z,2’ € Z with s(z,2') = n. Then
V2 =diam M > |G"z — G| > 4"z — 2|

so |z =2 < V24752 for all 2,2 € Z.
Now, let z,2" € Z,0 < { < 7(2). Then

(% = o(f) < Jolly %= = P < ol G2 = G
< HanQﬂ/Z 5(G2,Gz") < HUHnQn/Qe,l PRER)

yielding the desired estimate. n

Proof of Theorems 1.1(a), 1.2 and 1.4 (The proof of Theorem 1.4(c) for v €
(%,1) is momentarily contingent on Theorem 1.3.)

3

Given v : X — R, we define the lifted observable © = vo & : A — R. Since 7
is a measure-preserving semiconjugacy, the desired statistical properties for v follow
from those for 0. Also, |v|y, = SUD, e 7.222 SUPo<t<r(2) W, so dynamically
Holder observables lie in the standard function space O@(A) considered on one-sided
Young towers [65]. The upper bound on decay of correlations in Theorem 1.1(a) now
follows from [65, Theorem 3].

Next, we turn to Theorem 1.2. Part (a) holds by [65, Theorem 4]. Parts (b)
and (c) follow respectively from [30, Theorems 1.3 and 1.2]. Part (f) is proved in [17,
Theorem 5.3] and part (d) is a standard consequence. Part (e) is proved in [4,
Theorem 2.2].

Finally, we consider Theorem 1.4. Part (a) follows from Theorem 1.1(a) by [49,
Theorem 1.2]. Part (b) is proved in [34, Theorem 1.4]. Part (c) is an immediate

1

consequence of part (b) together with the CLT for v < 5 and Theorem 1.3 for

7€ (5,1). u

Remark 3.9 Alternative references for some of the results in the above proof in-
clude [18, 21, 43, 44, 50, 51, 53].
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For brevity, we have omitted various other statistical properties that follow from
the existence of the Young tower A such as concentration inequalities [34]. Also, for
v < %, homogenization (convergence of fast-slow systems to a stochastic differential
equation) holds when the fast dynamics is given by f, see [15, 16, 27, 41, 42, 45].

3.4 Aperiodicity

Let S' = {w € C: |w| = 1} and consider the cohomological equation
vo F = w?y, (3.2)

where v : Y — S! is measurable and w € S*. If w = 1, then since F is ergodic, the
measurable solutions to equation (3.2) are precisely the constant solutions. Absence
of solutions for w # 1 is called aperiodicity. In this subsection, we prove:

Lemma 3.10 For each w € S*\ {1} there are no measurable solutions v : Y — S*
to equation (3.2).

Aperiodicity is useful for ruling out peripheral spectra for certain twisted transfer
operators. Instances of this are seen in Corollaries 4.10(e) and 5.2(ii) below.

For the moment, consider an arbitrary ergodic measure-preserving transformations
F :Y — Y defined on a probability space (Y, uy). Let U : L}(Y) — L'(Y) denote the
Koopman operator Uv = v o F and define the transfer operator R : L'(Y) — LY(Y),
where [, Rvwdpy = [, v Uwdpy for all v e L'(Y), w € L®(Y).

For w € S', we define the twisted Koopman and transfer operators U(w)v =
wPUv = @¥v o F and R(w)v = R(w%v). Note that R(w) is the L? adjoint of U(w)
but that R(w) : L' — L' is the dual of U(w) : L> — L*. (This discrepancy between
adjoints and duals over the complex numbers is standard.)

Proposition 3.11 Suppose that F .Y — Y is ergodic. Letw € S* and letv:Y — C
be L'. Then U(w)v = v if and only if R(w)v = v, in which case |v| is constant.

Proof First, note that if U(w)v = v, then |v] o ' = |v| and so |v| is constant by
ergodicity.

Next, recall that RU = I and hence R(w)U(w) = I for all w. If U(w)v = v, then
v = R(w)U(w)v = R(w)v, proving one direction.

Conversely, suppose that R(w)v = v. By duality, [, vU(0)"wduy = [, vwdpy
for every w € L™ and n > 1. We claim that v is bounded and |v|s < |v|;. Suppose
the claim is false. Then there is a set E of positive measure and ¢ > |v|; such that
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|v| > ¢ on E. Choose w = 1gv/|v| on {v # 0} and w = 1g elsewhere. Then
1 n—1
n(B) < [ olduy = [ vwdpy = [ 003" U@ w dy
E Y y N =0

n—1 n—1
1 , 1 .
= [ v=>) wiwoFduy < / [v|— ) |w|o F? duy.

The last integrand is dominated by |w|s|v| € L' and converges a.e. to |v| [, |w| duy
by the pointwise ergodic theorem. By the dominated convergence theorem,

n—1

1 .
lim v|— woF’d,uy:/vduy,uyE.
Ll > ol diy ()

Hence ¢ < [, |v| dpy which is a contradiction.

This proves the claim, so v is bounded. In particular, v € L? and a computation
using that R(w) = U(w)* and R(w)v = v shows that (U(w)v — v, U(w)v —v) =0 so
that U(w)v = v as required. |

Returning to the intermittent maps (1.3), we obtain

Corollary 3.12 For each w € S*\ {1} there are no L' functions v : Y — S such
that R(w)v = v.

Proof This is immediate from Lemma 3.10 and Proposition 3.11. |

To prove Lemma 3.10, we make use of two Young towers ¢ : A — A and §: A —
A. The second of these coincides with the tower in the proof of Lemma 3.4. The
first tower is different from those considered so far in this paper (in particular, that
of Lemma 3.2), and is defined as follows:

(y, 0 +1) £<p(y) —2

A={(y, ) eY XZ:0<0<o(y)—1}, g(y,@:{(Fy 0) f=p)—1

As in Lemma 3.4, we have ergodic g-invariant and g-invariant measures pua =
piy X counting and jia = (17 X counting) /& on A and A. (When v < 1, it follows from
Corollary 2.7 and Lemma 3.2 that ¢ = [, ¢ duy < oo and hence we can normalize
further by ¢ to obtain probability measures pa and fia.)

Remark 3.13 A standard strategy, used below, to establish aperiodicity is to show
that g is weak mixing. This is made complicated by that fact that g is nonMarkov, so
we pass to the Markov extension §. (This is similar in spirit, though the notation is
more complicated, to the derivation of mixing properties for F' from mixing properties
for G in Subsection 3.1.)
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Recall that 7: Z — Z, 7 = ¢, = S0~  po F'. Write p; = S)_  po F'. Any
element of A can be written uniquely as (z,¢;(2) + £) where 0 < j < p(z) — 1 and
0<{<p(Fiz)—1, valid for z € Z.

Define

A=A, Ta(z,0(2) +£) = (F72,0).

Proposition 3.14 7w is a measure-preserving semiconjugacy from g to g.

Proof To verify that ma is a semiconjugacy (ma © § = g o ma), we show that ma o
G9(z,0i(2) +4) = gomal(z,pj(z) + £) for all z, 5, £.
Now,

(Fiz,0+1) (< (Fiz)—2

goma(z,¢(2) +0) = 9(Fz,0) = {(Fj“z,()) U= p(F7z) - 1.

Also,

ma(z,0i(z) +L+1) L
T © (2 95(2) +0) =  ma(2, 041(2)) {=p(F72) =1, j <p(z) =2
7TA<GZ,O) 14 ‘
CJFIz 1) < @(FIz) -2
O (FI20) 0= @(Fiz) —1.
Hence 7 is a semiconjugacy.
It remains to show that (7ma).fia = pa. It suffices to test this for sets E x {¢} where

E is a measurable subset of a partition element a C Z, a € o, and 0 < £ < p(a) — 1.
By (3.1), pua(E x {£}) = uy(E) = (1/p) [, ;?;(1) 1g o F7duyz. On the other hand

(ma)efia(E x {€}) = fia(mx (B x {€})) = fis{(w, 5(2) + 0) : F'2 € E, j < p(a)}

p—1
Z 50
This completes the proof. |

Proof of Lemma 3.10 Suppose that v : A — S' is measurable and v o § = wu
for some w € St. Define V : Z — S, V(2) = u(2,0). Then V(Gz) = u(Gz,0) =
uo g7 (2,0) = w®V(z). Since G is a full branch Gibbs-Markov map, for every
a € o there exists z, € a with Gz, = 2, and so V (z,) = w™ @V (z,). Hence w™® =1
for all a. By Lemma 3.1(c), ged{7(a), a € a?} = 1 and it follows that w = 1. In
other words, § : A — A is weak mixing.

By Proposition 3.14, g : A — A is weak mixing. Again this means that the
equation u o ¢ = wu has no measurable solutions u : A — S* for each w € S*\ {1}.
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Let w € S*\ {1} and suppose that v : ¥ — S! is a measurable solution to (3.2).
Define u(y,?) = w'v(y). Then u : A — St is measurable. If £ < ¢(y) — 2, then
uog(y,l) = u(y, l+1) = wto(y) = wul(y,f). If £ = p(y) — 1, then uo g(y,f) =
u(Fy,0) = v(Fy) = w?Wo(y) = wlv(y) = wu(y,f). This shows that uo g = wu
which is impossible since g is weak mixing. Hence there are no such measurable
solutions to (3.2). n

4 Estimates in two-dimensional BV

Let \,, denote m-dimensional Lebesgue measure. For v € L'(Y'), define the variation

Varov = sup/ vdivw dAg,
R2

w

where the supremum is taken over all compactly supported C? test functions w : R? —
R? such that |w|s < 1. Let BV(Y) consist of those functions v € L'(Y) such that
Varv < oo. This is a Banach space with norm |[v|lgy = [, |[v|dAs + Varv. Recall
that C' functions lie in BV(Y) and Varv = [, [Vo|d\; for such functions, where
V| = (|00 /Oyl + [0v/00)

We use the fact [25, Remark 2.14] that if w is continuous on a set U with Lipschitz
boundary and w is C' on Int U, then Var(lyw) = [, [Vw|dAz + [, |w]dA;. (The
measure will often be suppressed when the meaning is clear.)

The following standard result [25, Theorem 1.17] allows us to reduce to considering
C! functions v : R?> — R in many estimates.

Proposition 4.1 Letv € BV(Y). There exists a sequence of C' functions v, : R* —
R such that v, — v in L*(Y)) and lim,,_,,, Varv, = Varv. |

Corollary 4.2 Let A: LY(Y) — LY(Y) be a bounded linear operator. If Var(Av) <
Ci [, [v] + Cy Varw for all v € C', then Var(Av) < C [, |[v| + Cy Varv for all v €
BV(Y).

Proof Let v € BV(Y) and choose a sequence v,, as in Proposition 4.1. Let w be a
C" test function. Since Av, — Av in L'(Y),

/ Avdivw = lim Awv,, divw = lim sup / Av,, divw < lim sup Var(Av,)
R2 R2

n—oo [p2 n—oo n—oo

< lim sup (Cl/ |vn| + Ca Varvn> = C’l/ lv| + Cy Varv.
% %

n—oo

Taking the supremum over w yields the desired result. |

We make some additional observations that are used in Section 5.
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Remark 4.3 Returning to Proposition 4.1, suppose in addition that v € L*(Y).
Then the sequence v,, can be chosen to have the additional property that supy |v,| <
3|v|s- To see this we use the notation from the proof of [25, Theorem 1.17] where v
is denoted by f and the approximating sequence v, is denoted by f. = >, 1., x (fi)-
It is immediate from the definitions in [25] that supy |fe| < 3 max; supy |7, * (fi)] <

3max;( [y 1 |) supy [ f@i] < 3| f]ec-
Let BV, (Y) =BV (Y) N L>®(Y) with norm ||v|gyv,, = |v]e + Varv.

Corollary 4.4 BV (Y) is a Banach algebra.

Proof Let v,w € BV, (Y). By Remark 4.3, there exists a sequence of C'! functions
v, such that v, — v in LY(Y), supy |v,| < 3|v|s and Varv, — Varwv. Let w, be a
similar approximating sequence for w.

Note that v,w, is C' and hence lies in BV, while [, |v,w, — vw| <
supy [0l fy fn — ] + (fy fon — oDlwle < 3ol [ hwn — W] + [l fy fon —
v| — 0 as n— oo. Hence it follows from [25, Theorem 1.9] that Var(vw) <
liminf,, ., Var(v,w,).

Since v,, and w,, are C', we have Var(v,w,) < supy |v,| Var w,, +supy |w,| Var w,,.
Hence

Var(vw) < liminf 3(|v|e Var w, + |w|s Varv,) = 3(|v]e Varw + |w|s Varov).

n—oo

It follows that
[vwl| v, < [vw]oe + 3(|v]oe Var w + [w|o Varv) < 3|jv|[sv., [[w]| v,

as required. [

Throughout the remainder of this section, |v|; denotes [, [v] d)s.

4.1 Boundary terms

The primary difficulty in dealing with multidimensional BV is the occurrence of cer-
tain boundary terms. Let a € oY denote a partition element and consider the branch
F, :a — Fa. Let OF, denote F|s, : da — 0Fa with 1-dimensional derivative DOF,.
For the Lasota-Yorke inequality (Subsection 4.2 below) given v € C'!, we are required
to estimate terms of the form

/ w||DOF,/TF,
Oa

relative to the BV norm ||v||gy(y). In one dimension, BV(Y') is embedded in L*
which simplifies the estimates considerably. For higher dimensions, much more work
is required, see [19, 20, 26] and references therein.

Our main results in this subsection are:
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Lemma 4.5 Let v:R?> = R be C'. There is a constant C; > 0 such that

||| DOF,/JF,| < Ci(|1,v)y +n U9 1,Vu|y)  for all a € o with p(a) = n.
da

Lemma 4.6 Let v : R? = R be C*. Suppose that u is sufficiently close to constant
as in Remark 2.6. Then there exists ko € (0, %), and for any Ny > 1, there exists a
constant Cy > 0 such that

|v||DOF, ] JF,| < Cy|1,v|1 + Ko|1a Vvl
da

for all a € ¥ with ¢(a) < Np.

An immediate consequence is:

Corollary 4.7 Let v: R?* = R be C*. There ezists ko € (0,3) and C3 > 0 such that

Z/ (0l|DOF,/IF.| < Cs 3 [lavh + 50 3 [1Vols = Cyfoly + ko Varv. o
da

In the remainder of this subsectiortll, we prove Lemmas 4.5 and 4.6.

Recall from Section 2.2 that the partition elements form a ‘rectangular’ grid
{Y,;,n > 1,7 = 1...,4"} where there are infinitely many columns C,, n > 1,
bounded by ‘vertical’ curves ,(), 0 < # < 1. The column C, is divided into 4™
partition elements {Y,, ;} bounded by horizontal lines § = j4™", j = 0,...,4". In
particular, the partition element a =Y, ; is given by

Voj ={(,0):6(0) <y <&a(0), (j—14" <0< 4}

By Proposition 2.4,

(&n-1(0) = &) < n'™e, (4.1)
uniformly in 6. Also, by Proposition 2.4,
My, = max{[€],_; |oo, €|} <0 0F, (4.2)

We write da = H, UV, where H, is the union of the two horizontal edges and V,
is the union of the two ‘vertical’ edges.

Proof of Lemma 4.5 By Lemma B.5 and (4.1), (4.2),

/ 0] < (4" + M (a1 — &) 7H)[Lav]i + [1a8pv]1 + M |La0y0]s
< 4"|1av|1 + |1a89U|1 + |1ac9yv|1 < 4n|1a7j’1 + |1aVv|1.

On the horizontal edges, 0F,(y,6y) = Fi(y, 6p) since horizontal lines are mapped to
horizontal lines. By Corollary 2.10, DOF, = A and |DOF,/JF,| = 47". Hence

/ 0| DOF, ) JF, < |1av| + 471,V v];. (4.3)
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Similarly, it follows from Lemma B.4 that
/ lv] < n' T 10] + [1, V).
Va

On the ‘vertical’ edges, by Corollary 2.10, |DOF,| < 4™ and |DOF,/JF,| < n=(1+®),
Hence

/ || DOE, [T F)| < |1av]s + n= 91,V 0];. (4.4)
Va

Combining (4.3) and (4.4), we obtain the result. n

Proof of Lemma 4.6 We apply Theorem B.1. Since u is nearly constant as in
Remark 2.6, we have |M| < 7/v/72 by Remark 2.6 and hence

V2((L+ [MI2)Y2 + M |s) = dro,

where ko < 2. Hence [, |v] < K(a)|1,0]1 4 4ko|1,Vv|1 where K(a) is a constant.

The result follows since |[DOF,/JF,| < . |

Remark 4.8 We can relax the artificial condition in Remark 2.6 by increasing the
expansivity of f so that DOF,/JF, is sufficiently small.

Alternatively, we could consider higher iterates. But now we have to check that the
calculations in Lemma 4.5 remain intact. Note that Lemma 3.1 also requires a certain
amount of expansion for F' to overcome the complexity growth of discontinuities of F'.

4.2 Lasota-Yorke inequality

Let F : LY(Y) — L'(Y) be the transfer operator corresponding to F relative to
Lebesgue measure. (So [, Fowd, = Jyvwo FdX, forallv e L', w € L*.) Then
Fv = > o 1ra(gv) o Ft where g = 1/ det(DF)| = (JF)™ '

Also, for w € D, we consider the twisted transfer operator F(w) given by F(w)v =
F(w*v), so

~

Fw)v = Z 1pa(gw?v) o Ft = Zw“"(“)lpa(gv) o1,

We note that R R
|[F(w)v]i = [Flw?v)i < |[w?v]p < wlv]r. (4.5)

Lemma 4.9 There ezist constants C' > 0 and k1 € (0,1) such that

Var(F(w)v) < |w|(C|v]; + k1 Varv)  for allv € BV(Y), w € D.
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Proof By Corollary 4.2, it suffices to prove this for v € C*.
First we consider the case w = 1. Note that (gv) o F;' is C! on Fa, and so

Var(Fv) < Zvar(lFa(gU) o F, )

Z |V gv)o F. ! |d)\2+Z/ )o F M d);.

OFa

Now,

Vi(gv)o FM | = [ [V(gv)o Fyt- D(F,)

a
Fa Fa

IV(gv)o F; 1 (DF,) ' o F, 1|_/|V gv)(DF,)"'JF,

Fa

< / (Vo) (DE)IF, + [ 1alI9ell(DE) VI,
- / Wl[(Vg) (DE) ™ JF, + / Voll(DF) ™| < Cullavl + 21,70]1.

where C} = sup, |(Vg)(DF,) '|JF, < oo by Corollary 2.14 and we have used the
fact that |[DF| > 4. Also,

| e r = [ llpoR) = [ Wlipor./ iR
OFa da oa
We have shown that

~ 1
Var(Fo) < Culoly + SVl + 3 :/ w||DOF, /TF,|.
4 a Oa

Applying Corollary 4.7, we obtain Var(ﬁv) < Clvly + k1 Varv, with k1 = § + ko.
For general w, we have an extra factor of |w|¥(®) throughout. Since |w| < 1 and
¢ > 1, this is bounded by |w|. |

Corollary 4.10 (a) 1 is a simple eigenvalue for F : LN(Y) — L'(Y) with eigenfunc-
tion hy = duy /dLeb.

(b) F(w) : LN(Y) — LYY has spectral radius at most |w| for all w € D.

(c) Let k1 € (0,1) be as in Lemma 4.9. Then F(w) : BV(Y) = BV(Y) has essential
spectral radius at most k1|w| for all w € D.

(d) hy € BV (Y).

(e) Regarding ]/7\( ) as operators on BV(Y'), it holds that 1 is a simple isolated eigen-
value in spec F and 1 & spec F(w) for allw e D\ {1}.
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Proof (a) We have F hy = hy so 1 is an eigenvalue for F. Simplicity follows from
the fact that hy is the unique invariant density (Lemma 3.2).

(b) This is immediate by (4.5).

(c,d) By (4.5) and Lemma 4.9, |F(w)v|gy < |w|{(C + 1)|v]1 + #1]jv]lsv}. Since the
unit ball in BV(Y') is compact in L' (Y'), the estimate on the essential spectrum radius
follows from [35]. Moreover, 1 is an eigenvalue for F': BV(Y) — BV(Y') by [35]. By

Lemma 3.2, the corresponding density coincides with hy, so hy € BV(Y). Also,
hy € L*(Y) by Lemma 3.2.

(e) By part (c), it suffices to consider the multiplicity of 1 as an eigenvalue for F(w)

acting on L*(Y'). Hence the result follows from part (a) for w = 1 and part (b) for

lw| < 1. Finally, we note that ﬁ(w) = hyR(w)hy' where R(w) is the normalized
transfer operator corresponding to the invariant measure py. By Corollary 3.12, 1 is
not an eigenvalue for R(w) when w € S*\ {1}. Hence the same holds for F(w). 1

4.3 Tail of the return time function

Let ¢ > 0 be as in Proposition 2.4.

Proposition 4.11 There exists a constant C° > 0 such that f{@:n} |v|dLeb <
Cn~1+9|v||gy for all v € BV(Y). Moreover, for v € BV(Y),

/ vdLeb ~ %c’/v(%—i—,@) dfn~ (o), (4.6)
{¢=n} T

where the one-sided limit v(3+,60) = lim v(y,0) exists for almost every 0 and is
integrable.

Taking v to be the density hy, we obtain

3
Y=g+

py (o =n) ~ e where ¢y = 5 / hy (3+,0) df.
T

Proof By [25, p. 29], Varv = [VarYvdf = [ Var’ vdy where (Var’ v)(6) denotes
the one-dimensional variation of v(-,#) in the y-variable, and similarly for (Var? v)(y).

Recall from Section 2.2 that forn > 1, {¢ =n} = {(y,0) : y € [yn(0),yn_1(0)],0 €
T} and that y,—1 — y, ~ 1¢'n~1") uniformly in 6. Hence for a.e. 6,

yn—l(g)
nite / [o(y, 0)] dy = n* / 0y, 60)] dy
{¢(-,0)=n} yn(0)

< 1+ (y,_1(0) — yn(0))sup, v(y, 0)] < / lv(y, 0)| dy + (Var’ v)(0),
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SO
wie [ quwoldieb < [ ([ 1o6.0)]dy+ (Varr)6)) o = ol
{e=n} T

This completes the proof of the first statement.

Next, note that BV functions restrict to BV functions on almost all one-
dimensional slices (see [46, Lemma A.1, third statement] which is based on [24, Sec-
tion 5.10.2, Theorem 2]. Moreover, one-dimensional BV functions have one-sided
limits. Hence J(6) = lim,_o4 v(3 + y,0) exists a.c. and is measurable (being a limit
of measurable functions by Fubini’s theorem). For a.e. 6,

7(0)] < sup o(y.)] < / [0y, 0)| dy + (Var¥ v)(8).

Hence J is integrable and both sides of (4.6) are well-defined.
Let A, =n'™ [, __  vdLeb —1¢ [ J(0)d6. To prove validity of (4.6), we must
show that lim,, .., 4, = 0. Write

Yn—1 (9)

A, = / Ba(6)dd,  Bu(0) = '+ / oy, 0)dy — 1 ().
T yn(0)

We apply the dominated convergence theorem.
We have already seen that B, is dominated by the L' function [ |v(y,-)|dy +
Var? 4+1¢/|J|. Next,

Yn—1(0)
Bal0) = {0 (ua(0) (@) 2370 40 [ futy,0) — @)} ay

yn(0)

The first term converges to zero a.e. by the estimate for y,,_1 —y,,. Also, y, — %—i—, SO

yn(0)
w7 (o0 6) = O dy] <0 s (6) = (8) s Jo(w.0) - J(6)

n+1(9) ye[%,yn71(9)}

< sup  |u(y,0) — J(@)] = 0 a.e.
V(2 yn1(0)]

by the definition of J(#). Hence B, (8) — 0 a.e. completing the proof of (4.6).
The estimate for py (¢ > n) follows immediately. n

4.4 Estimates for ||F,||py
Define the family of operators F, : BV(Y) — BV(Y), n > 1, given by F,u =

~

F(l{@:n}v).
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Lemma 4.12 ||F,||py = O(n~(+).
Proof Recall that || Fv|[sy = |Fyv|y 4+ Var(F,v). Now,
Fuvly = [F(1pem)l1 < Mgmmyvh < n™ o] sy

by Proposition 4.11. R

Next, we estimate Var(F,v). By Corollary 4.2, it suffices to do this for v € C*.
Adapting the calculations in the proof of Lemma 4.9, we have Var(F,v) < I} + I, + I3,
where

= Y L(Vo)(DE) Il [ o]

e(a)=n

L= > y(DFa)1|OO/\vU|, =) / || DOF, | JF,|.
ola)=n a Oda

e(a)=n

We consider partition elements of the form a = Y, ;. By Corollary 2.14,
11,(Vg)(DF,)"'JF|, = O(1). Hence I, < f{wzn} lv| < n~ 0+ |jy||gy by Propo-
sition 4.11.

By (2.7), (DF,) o < n~ U+ Hence I, < n~ 0+ Jioemy VU] < n~ 19|y gy.

Finally, by Lemma 4.5 and Proposition 4.11, [ < f{wzn} lv| +

p~(1+a) f{go:n} (V| < n=0F)||v]||gy. ]

5 Lower bounds on decay of correlations and infi-
nite measure mixing

By Proposition 4.11, the return time ¢ is integrable if and only if v < 1. In this
section, we establish lower bounds on decay of correlations for a class of observables
supported on Y when v < 1. Also, for 7 > 1, we obtain results on mixing for the
infinite measure py for the same class of observables.

By Lemma 3.2, the invariant density hy = duy/dLeb is bounded above and
below, so the LP spaces with respect to uy and Leb are identical and we can just
write LP(Y"). We have BV(Y) C L*(Y) since the domain Y is two-dimensional.

The transfer operator R corresponding to the F-invariant measure py is given
by Rv = hy'F(hyv). Again, we consider the twisted transfer operators R(w)v =
R(w#v) = h;lﬁ(w)(hyv). These act naturally on the Banach space B(Y) =
hy'BV(Y) which consists of functions v : Y — R such that hyv € BV(Y) with
norm |[vl|g = ||hyv|py. Similarly we define R, : B — B, n > 1, given by
Ryv = R(1{penyv) = by F(hyv).

Recall that hy € BV, (Y) =BV(Y)NL>(Y).
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Proposition 5.1 BV, (Y) C B(Y) C L*(Y).

Proof Let v € B(Y). Then [v?dLeb < |hy?|a [(hyv)?dLeb < [|hyv|3y = |Jv]|3
establishing the second inclusion.

For the first inclusion, let v € BV (Y). By Corollary 4.4, hyv € BV (Y) C
BV(Y), sov e B(Y). |

Corollary 5.2 Consider the operators R(w) : B(Y) — B(Y).
(i) 1 is a simple isolated eigenvalue in the spectrum of R.
(ii) 1 & spec R(w) for allw € D\ {1}.

(iii) || Rulls = O(n=+).

Proof Multiplication by hy' is an isomorphism from BV(Y) — B(Y) that con-

~

jugates F(w) to R(w). Hence R(w) inherits properties of F(w) in Corollary 4.10.

Similarly, R, inherits properties of ﬁn in Lemma 4.12. |
For observables v, w supported in Y, we can write f vwo frdu = f T,vw dp where

T, = 1yL"1ly and L is the transfer operator for f. Defining T'(w) = > > T,,w", we

recall from [58, Proposition 1] the operator renewal equation T'(w) = (I — R(w))™!.

Proof of Theorem 1.1(b,c) Recall that F' is the first return map to Y so py =
ply /p(Y). By Corollary 5.2, we have verified the assumptions of Gouézel [28]. Let
ve B(Y)and w € L*(Y) °. By [28, Theorem 1.1],

pln) = 1Y) Yyl > ) [ vds [ w | < B olalul:

ji>n

But Ej>n py (p > j§) ~ y(a —1)"tegn™@"V with ¢y as given in Proposition 4.11.
Part (b) follows with ¢ = pu(Y)y(a — 1) tey.
Part (c) is a consequence of [28, Theorem 1.2]. |

Proof of Theorem 1.5 By Corollary 5.2 we have verified the assumptions in
Gouézel [33, Theorem 1.4] and Melbourne & Terhesiu [52, Theorem 2.1]. Let
d, = %sin am. Let ¢y be the constant in Proposition 4.11 and define ¢4 = u(Y')vyco.

For v > 1, we obtain

c4n1_o‘/vwof"d,u~dy/vdu/wd,u,

for all v € B(Y) and w € L*(Y). For v = 1 the asymptotic holds with d, = 1 and
n'~“ replaced by logn. Part (a) follows with ¢ = d,,/cy.
Part (b) is a consequence of [52, Theorem 2.2(c)]. |

5In general, we require w in L? since Proposition 5.1 only gives B C L?. For v € BV, we can
take w € L1.
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6 Convergence to stable laws and Lévy processes

In this section, we prove Theorem 1.3. Set o = £ € (1,2) and let G,, denote the totally

skewed a-stable law in Theorem 1.3. Define o = $¢y [ hy (3+,0) dIT(1 — o) cos &
where ¢’ is as in Proposition 2.4.

2

Proposition 6.1 n’l/o‘z s(po fi— [y eduy) —a 0V/°G,.

Proof We verify the conditions stated in Appendix C. Taking w = 1 in Corollary 5.2,
we see that R : B(Y) — B(Y') satisfies the required spectral gap condition.

Let ¢ = p— [, o dpy. Thisis an L' function with mean zero. Clearly ¢ is bounded
below. By Proposition 4.11, py (¢ > ) ~ oz~ where o1 = 3¢y Jr hy(%—l—,@) de.
Hence condition (C.1) is satisfied (with o9 = 0).

Define R, = R(e") for ¢t € R. By Section 5, R; is a bounded linear operator on
B(Y) for all t. Note that Ry = > 2| Rne™. It follows from Corollary 5.2(iii) that
S0 n||Rulls < 0o so t — Ry is C'. In particular, ||R|[s = O(|t|). The result now
follows from Theorem C.1 (with g = 1). |

Proposition 6. 2 Letv : X — R be Hélder. Suppose that v(0,0) = I for some I € R.
Define V=37, ‘vo fl. Then'V —Ip € LP(Y) for some p > a.

Proof Let n € (0,1) be the Holder exponent for v and suppose without loss that
n <. Set § = na € (0,1). Since p € LI(Y) for all ¢ < «, it suffices to show that
V—Ip=0("").

Let (y,0) € Y, ;. Then

3
,_.
,_.

n—

V(y,0) — Ip(y,0) = 'v(fe(y7 0)) —nl => (v(f(y.0) —v(f(0,6)).

2 0

Write f*(y,0) = (y¢,600). Then f4(0,0) = (0,6,), s0 [V (y,0)—Io(y, 0)] < [v], 75 v/
By Proposition 2.4, y, < (n—€)"*for £ =0,...,n—1,s0 |V —Ip| < |v],n! ™" < p17°
as required. [

I
=
~

I

Proof of Theorem 1.3 First we prove the result under the additional assumption
that v(0, 0) is independent of 6. Evidently this constant value is I,, so Proposition 6.2
implies that V' — I, € LP(Y) for some p > «. This is [54, condition (3.2)]. Also, [54
condition (3.1)] follows from Proposition 6.1. Hence convergence to the desired stable
law follows from [54, Theorem 3.1] with ¢ = g~V/*I,0.

Define My = maxi<p<¢<, (Ve — v¢) A maxy<p<p<,(ve — vpr) where vy = Zﬁ;é vo f.
Suppose for definiteness that I, > 0 (the case I, is treated similarly). The calculation
in Proposition 6.2 shows that v, = I,0 + O(¢'~°) for all 0 < ¢ < ¢. Hence

0< M < max (vp —v)) = max L0 =)+ O('°).

1<0/<t<p 1<0<t<p
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Since I, > 0 it follows that M; < ¢'~. By [54, Proposition 3.5, n=/%max;<, M; o
F7 —, 0 on (Y, uy). Hence convergence to the desired Lévy process follows from [54,
Theorem 3.2(a)].

Finally, we relax the additional assumption on v. Write v = v'4+v” where v”(y, ) =
v(0,0) — I,. We have W,, = W/ + W) where

W!(t) =n"Ye Znt] Yo £, W (t) = n- /o Znt] Lyt o )

Note that v”, and hence v/, is Holder and mean zero. Moreover, v'(0,6) = I, so
W! —.,, W in (D]0,00), My). Also, u(f) = v"(y, ) is a Hélder mean zero observable
for the uniformly expanding map f, : T — T, so n~ /2 ng(;l uo fi converges weakly
to Brownian motion in the uniform topology (see for example [36, Theorem 5] which
establishes the ASIP and hence the weak convergence). Hence n~'/2 Zgﬂfl v" o fI
converges weakly, so W —,, 0. The result follows. |

A Construction of the Gibbs-Markov map G

This section is devoted to the proof of Lemma 3.1. The main step is to verify the
hypotheses of Theorem 3 of [23]. This is done using Theorem A.1 below.

Recall that Y C R? is endowed with the Euclidean metric |(y1,61) — (y2,62)| =
((y1 — y2)? + (61 — 62)?)V/2. For x € R? and A C R?, let d(z, A) = inf ea |7 — y| (with
d(a:,A) oo if A=0). Given A C R?, ¢ > 0, define

0. A={zx e A:d(z,04) <e} C A,

where 0A is the boundary of A as a subset of R2.
We prove that the first return map F' : Y — Y satisfies the following properties:

Theorem A.1 Let A € (1,5). There ezists ¢g € (0,1) and C > 0 such that the
following hold:

Uniform expansion: |F, 'z —F 12| < A|zy—2o| for all 21, 20 € a with |21 — 2| < &g
and all a € oY .

Bounded distortion: (JF;1)(z) < e“1=2l(JEF 1) (22) for all 21,2, € a and all
a€a’.

Controlled complexity: For every open set I C'Y with diam I < egq and all € < g,

Leb o.F(INa Opl 1
> LUMENEPUNDNID oy

acaY

Set Z: For all § > 0 sufficiently small, there exist rectangles Z, 7' C'Y with Leb Z <
Leb Z' and diam Z’' < § such that
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F(ZNnInt{e =n}) =Y for sufficiently large n; (A.1)
and, there exists a,as € o such that a; C Z and Fa; D Z' fori=1,2 and

90|a2 - 90|a1 =L (AQ)

Proof of Lemma 3.1 Theorem A.l implies in particular that we have verified
the hypotheses of [23, Theorem 3|. This guarantees the existence of the desired
refinement o, the subset Z (as given in Theorem A.1), the return time p: Z — Z7T
constant on elements of a? = {a’ € o) : ' C Z} and the induced map G = F* :
Z — Z. Moreover, conditions (a) and (b) of Lemma 3.1 follow directly from [23,
Theorem 3](a),(c).

In addition, [23, Theorem 3](b) states that Leb({p = 1} Na;) > 0 for i = 1,2.
This combined with (A.2) guarantees that Lemma 3.1(c) holds. Finally, Lemma 3.1(d)
follows from (A.1).

In the next four subsections, we verify the four properties listed in Theorem A.1.

A.1 Uniform expansion
By Proposition 2.1, |DF,;!| < 1 on Fa for all a € o’

Lemma A.2 For every 6 > 0 there exists g > 0 such that for all z1, 29 € Fa with
|21 — 22| < g0 and all a € ¥, there exists a path v : [0,1] — R? contained in Fa,
joining z; and zy, and having length bounded by (1 + 0)|z1 — 29|

Proof The boundary of Fa is a rectangle except that its right boundary is a C*
curve which we denote by 1. Denote the line segment joining z; and 2z, by S. If S
lies in Fa, then take v to be the path corresponding to this line segment. If not, then
S intersects the boundary of Fa. Let py,ps be the points of intersection closest to
21, 22, respectively. Define v to be the path corresponding to starting at z;, travelling
on S until py, then travelling on the boundary of Fa until p, and then continuing on
S to zy. Since 1 is smooth, the length of v can be made arbitrarily close to the length
of S by choosing ¢ sufficiently small. (The path v may not be entirely contained in
Fa, but a small translation of it will be entirely inside Fa.) n

Choose ¢ so that $(1+6) < A, and fix €y as in Lemma A.2. Let 21, 2o € Fa with
|21 — 23] < g9 and choose v as in Lemma A.2.

Now, Fyley = 'z = (o )(1) = (o )(0) = fj
Lemma A.2,

Fols — Flol < / (DE) (1) 7 (8)| dt < sup |DE; (+(t)) / Iy (8)] dt

te(0,1]
< i(l +9)|z1 — 2] < Alz1 — 29|,

D(F; ' ov)(t)dt, so by

a

as required.
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A.2 Bounded distortion
By Corollary 2.12, there exists C' > 0 such that

1/ TE(yr, 61) = 1/ JF (y,605)| < Cinf(1/JF)|F(y1,61) — F(ys,65)|

for all (y1,6:1), (y2,02) € a and all a. Writing z; = F(y1,01), 22 = F(y2,0,), it follows

that
(JF, (=)

(JE;1)(22)
yielding the desired distortion condition.

<14 Clz — 2| < eClrm=2l)

A.3 Controlled Complexity

For the proof of this property we need a generalization of [8, Sublemma C.1], which
appears below as Proposition A.5.

Recall that 9.A is defined as a subset of A. We also define 9.4 = {r € R?:
d(z,0A) < e}. (Hence 9.A = D.AN A).

Let us recall [8, Sublemma C.1] in a form that suffices for our purposes. We refer
to its proof briefly at the end of the proof of Lemma A .4.

Lemma A.3 (Sublemma C.1 of [8]) Suppose I is a non-empty measurable
bounded subset of the plane and E is a straight line cutting I into left and right
parts I and I.. Then for alle >0, 0 < ¢ <1,

Leb{z € I;:d(z,F) <&} \{zx e :d(z,0]) <e}) <

¢Leb{z € I, : d(z,0I) < &} (A.3)

In Proposition A.5 we generalize to the case where E' is the graph of a Lipschitz
function, but first we prove a lemma which is similar in flavour but applies to segments
which may or may not intersect I. This lemma would follow from the one above if
0<¢<1andS (taking the place of E) were a hyperplane in R? cutting through I.

Given a straight line segment S € R? and x € R?, define d* as follows. Suppose
x € R?. If there exists a line that passes through z, intersects S and is perpendicular
to S, then d*(z,S) = d(x,S). If not, then d*(z,S) = co. If S is the graph of a

piecewise constant function, then one can define d*(z, S) similarly.

Lemma A.4 Suppose I is a measurable bounded subset of the plane and S is a
straight line segment in the plane. Then for all e > 0, £ > 0,

Leb({z € [ : d*(z,9) <ef}\{x €1 :d(x,0l) <¢}) <

¢Leb{z € I:d(x,0I) < &}. (A4)
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Proof Fixe >0,& > 0. Let
A={zel:d"(z,9) <e&}\ B, where B= {z €1 :d(x,0I) <e}.

We show that Leb A < & Leb B.

Let e, be the line perpendicular to S at the point z € S and let A, = AnNe,
and B, = BNe,. Given ¢ > 0 and an interval J.. of length ¢’ inside e,, denote
A.(¢') = A, N Jo. Points of A,(e) are by definition at least distance ¢ from 0I so
there exists a translate of A,(¢) along e, that lies in B,. It follows from translation
invariance of Lebesgue measure Leb, on e, that Leb, A,(¢) < Leb, B,.

Let us write & = |£] + {&}, where {£} denotes the fractional part of €. Since A,
can be partitioned by [£] sets of the form A,(e) plus one remainder set of the form
A.({&}e), it follows that

Leb, A, < €] Leb.(B.) + Leb, A.({€}). (A5)

Now we show that Leb, A,(e{{}) < {{} Leb, B, bounding the second term of (A.5).
If z € S\ I, then A,(¢{¢}) = 0 because {{¢} < 1, so we are done. Otherwise, if
z € SN, the claim follows directly from the proof of Lemma A.3 given in [8, p.1364]
because 0 < {£} < 1.

We have proved that Leb, A, < £ Leb, B.. Integrating over z € S with respect to
Lebesgue measure on S, we obtain Leb A < £ Leb B as required. |

Proposition A.5 Suppose I is a measurable bounded subset of the plane and E is
the graph of an L-Lipschitz function in the plane. Then for alle >0, 0 < ¢ <1

Leb({z € I :d(z,FE) <ef}\{r el :d(z,0]) <e}) <

E(1+ L)Leb{zx € I : d(z,0I) < &}.
In other words, Leb((I N igE) \0.I) < &(1+ L) Lebo. 1.

Proof Suppose F is the graph of the Lipschitz function ¢ : R — R. By a rotation
of I and F, we can suppose that the domain of 1 is the horizontal axis.

Fix e >0,0< &< 1. Fort >0, let {A;} be a partition of the horizontal axis R
into intervals of length te. Define g; : R = R, g;|a, = (Leb A;)7} fA]_ ¥, and denote

S = graph g;. Note that 1) — g;|oo < Lte.
We claim that

If d(z, E) < &€, then d*(z, F) < e£(1 + L).

Here d*(x, F) means the vertical distance from z to E. Since | — g¢|oo < Lte, it
follows from the claim that

{rel:d(x FE)<ef} c{rel d"(z,S5) <e&},
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where & = £(1 + L) + Lt.
Now applying Lemma A .4 with { = & on constant pieces graph(g|a,) of S sepa-
rately and adding the contributions, we get

Leb({z € I :d(z,E) < &£} \ 0.1) < Leb({x € I : d*(,S) < &)\ 0.1)
<&Lebd.d = (£(1+ L) + Lt) Leb 0.1
Since t > 0 is arbitrary, we obtain the desired result.
It remains to prove the claim. Write z = (z1,22) and choose z = (21,22) € E
with | — z| <. Let v = (v1,v) € E with v; = 21. Then
dt (2, E) = |1y — va| < |mg — 20| + |02 — 22| < |w9 — 20| + Ly — 2|
— | — 2l + Ly — 21| < (1+ D)ja — 2| < €(1+ L),

as required. [

Verification of controlled complexity Set A, = sup;|DF, ]1] and note that
A, <1 <A Also, A, = O(n~F9) by (2.7). Recall that Y, = U?; Y, ; is bounded
by two flat horizontal sides and two smooth vertical curves. By Proposition 2.4, the
Lipschitz constants corresponding to the vertical Curves are bounded by some Ly > 0.

We choose ng > 1 sufficiently large so that -~ Za(14 Lp) < & and then shrink
go if needed so that if I C Y has diam I < gy then at least one of the following holds:

i) IcUr,Y,and IN2, ij; dY,, ; consists of at most one horizontal curve
H and one vertical curve V.

(i) I CcU,— .

In case (i), H is flat and V' is smooth. Recall that A < 3. Shrinking e, further, we can
suppose that I NV is the graph of a function with Llpschltz constant L satisfying

3+ L1 < Ail.
Let I CY be an open subset with diam I < gy3. Note that
Fn_j(aaF(I NY,;)) \O:al C (I NO:p,Yn;)\ Oenl.

Recall that 9Y,,; = H,; UV, ; where H, ; consists of two flat horizontal edges and
V,,; consists of two vertical curves. Hence

F, H0-F(INYy; )\ Al C {(I M Dp, Hpj) \ O-alY UL{(I N Dp, Vinj) \ Oal}. (A6)
Case (i). Since the only intersections are with H and V', (A.6) simplifies to

U FYO.F(INa))\ 0al C{INIpH)\ DI} U{(INDAV)\ Drl}.
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By Proposition A.5 (taking £ = 1 and replacing ¢ by cA),
Leb((I NAAV)\ 0:ad) < (14 Ly) Lebdoal.
Similarly, Leb((I N 9y H) \ 8:21) < Leb 1. Hence

Leb(F; Y (0-F(INa))\ 0.al)
Z Leb E)EAI

<24+ Ly <A1

Case (ii). By (A.6).

JFE " (0-F(Ina)\ 0.al C Sy + Sy,

where
oo 4" ~ oo 4" ~
Su=|J U Nda, Hup)\0aL}, Sy = | (I N n, Vi) \ 0al ).
n=ng j=1 n=ng j=1

We estimate Sy and Sy separately. The curve V,, = U;il Vijn 1s smooth with Lipschitz
constant bounded by Lg, and

Sv = | J Leb{(INd.s, Vi) \ O:-nT}.
n=ngo
By Proposition A.5 (taking £ = A,,/A and replacing € by €A),

2A,
A

Leb((1 M Oen, V) \ 0-ad) < =2(1 4 Lo) Leb a1

Hence, by the choice of ny,

Leb Sy - f’: 2A,,

DOV 4Ly <
Lebonl = 2 (L TR)S

1

1

Shrinking ey further if necessary, it follows from the skew-product structure of F
(where vertical distances are contracted by 47¢) that A, can be improved to 4™ in
the formula for Sy leading to the estimate Liibaf f 7 < i.

Hence again we obtain the desired complexity bound

S~ Leb(E QR U a) \0) _ 1
Leb Ol -2

<A P-1.

a
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A.4 Set 7

The construction of Z and Z’ proceeds as follows: Recall that the partition elements
in o accumulate on the left vertical side {3} x T of Y. Let ¢ = 1/100 and let
So, S1 denote open squares with side lengths ¢§ and 2c¢d, respectively, and centred
at lp = (2,0). Let Z = SyNY and Z/ = S;NY. It is immediate that Z' O Z,

Leb Z < I:lebZ’, and diam 7’ < 9.

Now Z is a rectangle with vertex [y, and elements of o accumulate at [, and
shrink in diameter. Hence there exists ny > 2, 79 > 1 such that Y,,; C Z for all
n>mng,i=1,...,4(modi,), where i,, = 4" (ig — 1). For n > ny,

F(ZNnInt{y =n}) D F(Ule Yn,in+i> =Y

proving (A.1). Setting a; = Yiging+1 and a2 = Y11 ¢, )41, We have a; C Z and
Fa; D 2, B] xT > Z for i = 1,2. Moreover, ¢|,, = ng and ¢l,, = ng + 1,
verifying (A.2).

B Boundary terms

In this appendix we recall some standard estimates for computing integrals around
the boundary of “rectangular” domains. Consider a domain of the form

a={(y,0) €R x [C,D]: 41 (0) <y < 1pa(6)},

where 11,1y : [C, D] — R are C* with ¢y < 1. Define M : [C, D] — R, M(0) =
max{|¢1(0)], [¢5(0)]}-

Theorem B.1 Let v :R? — R be a C! function. Then

[ ol <2{(D = )7+ (4 M3+ 200/ (0 = )] 1

+V2((1+ [M2)Y? + M) | 1aVos

First, we consider the special case where a is a rectangle.

Proposition B.2 Suppose that a = [A, B] x [C, D] is a rectangle and that v is C".
Write 0a = H, UV, where H, is the union of the two horizontal edges and V, is the
union of the two ‘vertical’ edges. Then

/|mgmp—crmﬂm+uﬁw%h /ﬁmgmB—ArmMm+umw@h
Va

a

Consequently, [, |v| < K[1,0}1 + V2[1,Vo|; where K =2(B — A)~™ +2(D — C)~..
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Proof We give the details for the horizontal edges. The vertical edges are dealt with
in the identical manner. The final statement follows from the fact that |z| + |y| <

V2(2? 4 y?)2,
Note that [, |v| = ff lo(y, C)| dy + ff |v(y, D)| dy. (Throughout, we work in
the coordinate system (y,#).) On the bottom edge,
B (C+D)/2
| ot =@-cyrt [ {7 w.o)ldo} dy
A a Yo

<=y et [ [ .0~ ot 0110} )

A Se
where a; is the rectangle [A, B] x [C, (C' + D)/2]. But

B

C+D)/2

v
o0

| (v.0)| dv,
c

o ov
00.6) 0.0 =| [ Stwrae| < [
C
and it follows that

B
[ 10,01y < 2D = ) el -+ Lo 90/08].
A
The same estimate holds for the top edge ff |v(y, D)| dy, but with a; replaced by
as = [A, B] x [(C + D)/2, D]. Since a; U ay = a we obtain the required estimate for
fHa |v]. |
To prove Theorem B.1, we introduce the diffeomorphism ¢ : a — [—1,1] x [C, D]
given by
2y — (¥2(0) + ¥1(0)) 1
9(y.0) = ( 0), 97 w.0) = (h(y.0),0),
TR Y0 - 0) = (. 0.0)

where h(y,0) = 2(62(6) — ¢1(6))y + 5(u2(6) + 1(9)). Note that Jg = 1/d,h =
2/(ts — ).

Proposition B.3 |0ph(y,0)] < M(0) = max{|v1(0)|, |v5(0)|} for all y € [-1,1],
6 € [C, D).

Proof Write 9ph = §(v) — o))y + 5(5 + 7). If ) > ¢}, then the maximum value
me and minimum value m; are obtained at y = 1 and y = —1 respectively yielding
my = ¥ and my = ] respectively. The values are reversed if ¥}, < /]. |

Vertical edges Let v be the left edge and 5 the right edge and write V,, = v Us.

Lemma B.4 Letv:R? = R be a C* function. Then

/ o] < 2((1L+ M*)Y2 + M)/ (2 — )| [Tav] + [(1+ M?)2 ][ LDyl
Va
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/ o] = / [0(t2(6), O)|(1 + (¢4(6))2) 2 df

C
:/ Iv(g_1(1,9))!(1+[(%h)(l,@)]z’)md@:/ jw(1,0)]db,
C C

where w : [-1,1] x [C, D] — R is given by w = v o g~ (1 + (9ph)?)"/2. Similarly,
D

f% lv| = fc lw(—1,0)| db.

By Proposition B.2,

o] < M-xiepwh + [1-11x(c,p 9w
v,

For the first term,

sl = [ 00,971 (1 + (Bph)) /2
[~1,1]x[C,D]

<[ ey = [l A
[~1,1]x[C,D] a

= 2/ ol (14 M?)"? /(e = 1) < 2/(1+ M?)'?/(ths — 1) ]| Lav]1-
Next, we have

Oyw = () 0 g 9,h(1 + (9ph)*)/* +v o g7 (1 + (9ph)?) 20y 040, h.

Hence
L—1,xjep)Oyw)t < Iy + Iy
where
h= [ @ og 0k (0 @)
[~1,1]x[C,D]
B / 10,0] (14 (9ph)? 0 g)/% < |(1+ M*)'/?| o[ 1,0,v]1,
and
I, = / lvog ' (1+ (9ph)?) 2|0y |0p0yh| < / |v o g™ |9s0,h|
[—1,1]x[C,D] [—1,1]x[C,D]
— [10l10udyh1 39 = [ 101105 = 641/ (62 = wn)
< (W — 1)/ (2 = 1)]ol Lav |t < 2IM /(102 — 1) |so|1av]s- u
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Horizontal edges Next we let H, denote the union of the horizontal edges.

Lemma B.5 Letv:R? = R be a C* function. Then

/]v\§2{(D C) ™+ | M/ (s — )| }y1av\1+y1 Apvly + | Moo | Lady 01

Proof For the bottom edge, we write
w2(0)
[ w0t = [ poo) oo o= [ w0l
¥1(C)
where w = v o g'9,h. Similarly, fwf((DD)) lu(t, D)|dt = fjl lw(y, D)| dy.
By Proposition B.2,

/ |U(t, C)| dt < 2<D — C)_1|1[_171]X[07D]U)|1 + |1[_171]X[07D]69w|1.

a

Now

ol = [ wog 1ol = [ 10110,b17g = Lot
(—1,1]x[C,D] a

Also,
dyw = Oyv 0 g~ Jgh Oyh + Ogv 0 g  Oyh +v o g~ Bydyh,
and so
1-1xjo,p0ow|i < I + I + I,
where

I = / 18,0 0 910510, h] = / 19,0110k o 9|0, h]Tg
[~1,1]x[C,D] a

— [18,0110uh] 0 < M1 |10,

L= oo g oyl = [ 1onel10,hl g = [ (oue] = [Ldwel,
[-1,1]x[C,D] a a
and

B[ oo okl = [ 1l|as,hlIg < 16~ )/ (e — o)Ll Lol
[~1,1]x[C,D] a

< 2|M/ (Y2 — ¥1)]oo|Lav]r-
Proof of Theorem B.1 We combine the contributions from Lemmas B.4 and B.5.
The coefficient of the |1,v|; term is immediate. The remaining terms yield

11.00v]1 + (1 + |M|2)Y2 + |M|oo) [1a0yv]1.

The result follows since |Jpv| + |[9,v] < v/2|Vv|. |
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C Convergence to a stable law

In this appendix, we describe a general functional-analytic framework for establish-
ing convergence to a stable law. Our presentation follows [2, Theorem 6.1] with a
simplification due to [32].

Let F: Y — Y be an ergodic measure-preserving transformation on a probability
space (Y, py) with transfer operator R : L'(Y) — L'(Y). Let B(Y) C L'(Y) be a
Banach space containing constant functions. In particular, 1 is a simple eigenvalue
for R: B(Y) — B(Y). We assume that there is a spectral gap for R : B(Y) — B(Y),
so spec R C {1} U B,(0) for some k < 1.

Let ¢ € LY(Y) with fy ¥ dpy = 0, and suppose that there are constants oy, 09 > 0
with o1 + 092 > 0, and « € (1,2), such that

py (Y >x) = (o1 +o0(1)z™® and py(¢ < —x) = (02+o0(1))z™" asx — oo.
(C.1)
Define
o= (01 +02)I'(1 — a)cos &, B = (01— 02)/(01 + 02).

It follows from these assumptions on ¢ (see [40, Theorem 2.6.5]) that
/ e dpy =1 — o|t|*(1 —iBsgnttan &) + o(|t|*) ast — 0.
Y

Define the twisted transfer operators R; : L'(Y) — LY (Y), t € R, by Ryv =
R(e"™v). Our final assumption is that there exists to > 0, o/ € (3, 1] and C > 0
such that R, restricts to an operator R, : B(Y) — B(Y) and ||R, — R|z < C|t|*" for
all [t| < to. Let ¢b, = Y17 ¢ o FV.

Theorem C.1 Under the above assumptions, n=" %, —4 O‘l/aGaﬁ where Gy g is the
a-stable law with characteristic function E(e"C#) = exp{—[t|*(1 — ifsgnt tan %)}

Proof The argument is by now standard. Since we could not find the result stated
in the literature, we give the details.

Since t — R, : B(Y) — B(Y) is continuous at ¢ = 0, there exists t; € (0, %],
Ko € (k,1) and A\, € By(0), such that \; is a simple isolated eigenvalue for R, and
spec Ry € {\} U B,,(0) for all |t| < t;. Moreover, |\, — 1| < [¢|*".

Let w, € B(Y) denote the family of eigenfunctions corresponding to \; with
wo = 1. Shrinking t; if necessary, we can ensure that w;, > 0. In particular, we
can normalize so that [, w; dpuy =1 for all [t| < ;.

Let P, be the corresponding family of spectral projections with Pyv = fY vdpy .
Again ||P, — Py||s < [t|*. We have

R = \'P,+ RM(I - P,).
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Let k1 € (Ko, 1). Then there exists a constant C' > 0 and functions a; (t), as(t,n) such
that

[ Brtdi =3+ @) + aaltin)
Y

and
lai ()| < CJt*, las(t,n)| < Cky,

for all |t| <t;, n> 1.
Next,

)\t = / )\twt d,LLY = / Rtwt d,LLY = / Rt]- d[lly + / (Rt - R)(wt - w()) d/LY
Y Y Y Y
= / e dpy + O(t*) = / e dyy =1 — o|t|*(1 —ifsgnt tan %) + o(t*).
Y Y
Now fix t € R. Then

/eim—l/awn duy = / Rn(eitn—l/a¢n)duy — / R?nfl/aldﬂy

Y Y Y
= A" (I ai(tn %) + aa(tn™V n) = A7 . (1+O0(n /) + O(x})
= (I —ot|*n™"(1 — iBsgnttan 2&)" (1 + O(n=/*)) + O(k7)
— exp{—olt|*(1 —ifsgnttan &)},

as n — oo. Replacing ¢ by to~'/¢, it follows from the Lévy continuity theorem that
O'il/anfl/a@/)n —d Gaﬂg. [ |

Remark C.2 Similarly, following [3], if uy (|[¢)] > z) ~ (62 + o(1))z™2 as * — oo,
then \; = 1+02t%log |t| + o(t*log |t]). (Here, we require that |R; — R||z < C|t|.) The
above argument then shows that (nlogn)~'/%y, —4 N(0,0?).

Remark C.3 We have restricted to tails of the form py (|| > ) = ¢(x)z~™ where
lim, o, £(x) = ¢ for some ¢ > 0, since this suffices for our examples. The general case
with ¢ slowly varying goes through as in [2, 3].
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