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Abstract

We consider a class of nonuniformly hyperbolic dynamical systems with a
first return time satisfying a central limit theorem (CLT) with nonstandard
normalisation (n log n)1/2. For such systems (both maps and flows) we show
that it automatically follows that the functional central limit theorem or weak
invariance principle (WIP) with normalisation (n log n)1/2 holds for Hölder ob-
servables.

Our approach streamlines certain arguments in the literature. Applications
include various examples from billiards, geodesic flows and intermittent dy-
namical systems. In this way, we unify existing results as well as obtaining
new results. In particular, we deduce the WIP with nonstandard normalisation
for Bunimovich stadia as an immediate consequence of the corresponding CLT
proved by Bálint & Gouëzel.

1 Introduction

Let (X,µ) be a probability space, f : X → X a measurable map, and v : X → R an
integrable observable. Let an = n1/2 or an = (n log n)1/2. Define

Wn(t) = a−1
n

nt−1∑
j=0

(v −
∫

X
v dµ) ◦ f j, t = 0, 1

n
, 2
n
, . . . , 1, (1.1)

and linearly interpolate to obtainWn ∈ C[0, 1]. LetW denote unit Brownian motion.
We say that v satisfies a weak invariance principle (WIP) with variance σ2 and
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normalisation an if Wn →µ σW in C[0, 1] as n → ∞.1 It is the standard WIP if
an = n1/2 and nonstandard WIP if an = (n log n)1/2. If σ = 0, the WIP is called
degenerate.

Similarly, we say that v satisfies a standard/nonstandard central limit theorem
(CLT) with variance σ2 if a−1

n

∑n−1
j=0 (v −

∫
X
v dµ) ◦ f j →µ N(0, σ2) as n→ ∞.

We note that the WIP is also known as the functional central limit theorem.
The standard CLT is well-known for a wide class of nonuniformly hyperbolic dy-

namical systems, going back to work of [37, 38] for Hölder observables of Anosov
and Axiom A diffeomorphisms and flows. The standard CLT also holds for nonuni-
formly expanding/hyperbolic systems with summable decay of correlations modelled
by Young towers [40, 41]. In such examples, the standard WIP also holds.

There are numerous examples, especially intermittent maps [36] and examples
from dispersing billiards as mentioned below, where correlations decay at rate 1/n
and the CLT still holds but with the nonstandard normalisation (n log n)1/2. In most,
but not all, of these examples, the nonstandard WIP has also been shown to hold.
An exception is the Bunimovich stadium [9], where the nonstandard CLT was proved
by [5] but the nonstandard WIP was not previously proved.

Example 1.1 (Bunimovich stadia [9]) As described in more detail in Section 7,
these are billiards in a convex domain enclosed by two semicircles and two parallel line
segments tangent to the semicircles. We consider (dynamically) Hölder observables v,
and let Iv denote the average of v over trajectories bouncing perpendicular to the
straight edges. It was shown by Bálint & Gouëzel [5] that v satisfies a nonstandard
CLT for Iv ̸= 0 and a standard CLT for Iv = 0.

A consequence of the results in this paper is that for Bunimovich stadia the
nonstandard WIP holds for (dynamically) Hölder observables v with Iv ̸= 0. The
analogous result for the billiard flow is also shown to hold.

In this paper, we give a unifying approach for nonuniformly hyperbolic systems
modelled by Young towers, showing how to establish the nonstandard WIP as a con-
sequence of the nonstandard CLT. In addition to the Bunimovich stadium example,
we also prove the nonstandard WIP for a family of multidimensional nonuniformly
expanding nonMarkovian nonconformal intermittent maps [17]. Existing examples
that we recover include one-dimensional intermittent maps [16] and billiards with
cusps [4].

This work was motivated by our study of certain geodesic flows on surfaces with
nonpositive curvature [28]. For these examples, the nonstandard CLT follows from
a general approach initiated by [4] in their study of billiards with cusps. In con-
trast, their proof of the nonstandard WIP relies on additional ad hoc arguments. We
show here that the nonstandard WIP in [4] is immediate in such situations given the

1We write →µ to denote weak convergence with respect to a specific probability measure µ on
the left-hand side. So An →µ A means that An is a family of random variables on a probability
space (X,µ) and An →w A.
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nonstandard CLT. In particular, the example-specific details in [4, Section 8] can be
dispensed with. Hence we are able to prove the nonstandard WIP for the geodesic
flow example in [28]. Moreover, our method is somewhat independent of how the
nonstandard CLT is proved and hence we are able to cover the much more difficult
situation of Bunimovich stadia.2

The remainder of this paper is organised as follows. Sections 2 and 3 are pre-
liminary in nature, summarising how to induce limit laws for maps and flows and
establishing a nonstandard WIP for Gibbs-Markov maps. In Section 4, we state and
prove our main result on nonstandard limit laws for nonuniformly hyperbolic systems
modelled by Young towers. Results for flows are given in Section 5. Sections 6 and 7
contain the applications to intermittent maps and billiards (while the discussion of
geodesic flows on certain nonpositively curved surfaces is left to [28]).

Notation We use “big O” and ≪ notation interchangeably, writing an = O(bn) or
an ≪ bn if there are constants C > 0, n0 ≥ 1 such that an ≤ Cbn for all n ≥ n0. We
write an ≈ bn if an ≪ bn and bn ≪ an. As usual, an = o(bn) means that an/bn → 0
and an ∼ bn means that an/bn → 1. We denote the integer part of x by [x].

2 Inducing statistical limit laws

In this section, we establish results for inducing the CLT/WIP with stan-
dard/nonstandard normalisation for discrete/continuous time. Many results of this
type already exist in the literature [5, 10, 20, 22, 27, 32, 33, 34, 37, 44] but are
formulated for slightly different situations.

We begin with an inducing theorem for flows in Section 2.1 before covering the
simpler situation for maps in Section 2.2. In Section 2.3, we discuss how to verify
certain hypotheses.

2.1 Inducing for flows

Let f : X → X be an ergodic measure-preserving transformation on a probability
space (X,µ) and let r : X → R+ be an integrable roof function. Define the suspension

Xr = {(x, u) ∈ X × [0,∞) : 0 ≤ u ≤ r(x)}/ ∼ , (x, r(x)) ∼ (fx, 0),

and the suspension flow gt(x, u) = (x, u + t) computed modulo identifications. A gt-
invariant probability measure is given by µr = (µ× Lebesgue)/r̄ where r̄ =

∫
X
r dµ.

Let v : Xr → R be an integrable observable with
∫
Xr v dµ

r = 0. Define vX : X→ R
and Q : Xr → R by

vX(x) =

∫ r(x)

0

v(x, u) du, Q(x, u) =

∫ u

0

v(x, s) ds,

2These extra difficulties are still present in the proof of the nonstandard CLT [5] but, by the
method presented here, play no further role when passing to the nonstandard WIP.
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as well as the Birkhoff integrals/sums

vt =

∫ t

0

v ◦ gs ds : Xr → R, vXn =
n−1∑
j=0

vX ◦ f j : X → R.

Also, define processes Wn ∈ C[0,∞) on Xr and WX
n ∈ D[0,∞) on X, setting

Wn(t) = a−1
n vnt , WX

n (t) = a−1
n vX[nt] ,

where an > 0 is a sequence satisfying lim
n→∞

an = ∞ and such that supn≥1 a[λn]/aa <∞
for all λ > 0. As in the introduction (Section 1), we say that vX satisfies a WIP with
variance σ2 and normalisation an if WX

n →µ σW . Similarly, we say that v satisfies a
WIP with variance σ2 and normalisation an if Wn →µr σW .

Theorem 2.1 Suppose that:

(I1) vX satisfies a WIP with variance σ2 and normalisation an on (X,µ), and

(I2) a−1
n max

0≤j≤n
|vX | ◦ f j →µ 0 as n→ ∞.

Then v satisfies a CLT with variance r̄−1σ2 and normalisation an on (Xr, µr). If
moreover

(I3) a−1
n sup

t∈[0,n]
|Q| ◦ gt →µr 0 as n→ ∞,

then v satisfies a WIP with variance r̄−1σ2 and normalisation an on (Xr, µr).

Remark 2.2 Condition (I3) provides control during excursions in Xr from X.

The remainder of this section is devoted to the proof of Theorem 2.1. It is con-
venient to work with the Skorohod spaces D[0, T ] and D[0,∞) of real-valued càdlàg
functions (right-continuous ψ(t+) = ψ(t) with left-hand limits ψ(t−)) on the respec-
tive interval, with the sup-norm topology in the case of D[0, T ] and the topology
of uniform convergence on compact subsets in the case of D[0,∞). (Alternatively,
one could work with the space of continuous functions, replacing certain piecewise
constant functions by piecewise linear interpolants throughout.)

Proposition 2.3 Assume that condition (I2) holds. Then

sup
t∈[0,T ]

|WX
n (t) ◦ f −WX

n (t)| →µ 0 for all T > 0.
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Proof Note that WX
n (t) ◦ f −WX

n (t) = a−1
n (vX ◦ f [nt] − vX). Hence

sup
t∈[0,T ]

|WX
n (t) ◦ f −WX

n (t)| ≤ 2a−1
n max

0≤j≤[nT ]
|vX | ◦ f j →µ 0

where we used (I2) and that a[nT ]/an is bounded.

Define the lap numbers Nt = Nt(x, u) = max{n ≥ 0 :
∑n−1

j=0 r(f
jx) ≤ u + t} on

Xr for t ≥ 0. Set

ψn(t) =
Nnt

n
: Xr → R , ψ̄(t) =

t

r̄
∈ R.

Also, define the processes ŴX
n ∈ D[0,∞) on Xr by setting ŴX

n (x, u) = WX
n (x).

Proposition 2.4 Assume that conditions (I1) and (I2) hold. Then ŴX
n ◦ ψn →µr

r̄−1/2σW in D[0,∞).

Proof First, we show that ŴX
n →µr σW . By condition (I1), WX

n →µ σW . Define
the absolutely continuous probability measure µ̂ on X by dµ̂/dµ = r̄−1r. By the
ergodicity of µ, Proposition 2.3 and [45, Theorem 1], we can pass weak convergence
of WX

n from µ to µ̂ yielding that WX
n →µ̂ σW . But

µr(ŴX
n ∈ E) = r̄−1

∫
X

r1{WX
n ∈E} dµ = µ̂(WX

n ∈ E)

for all Borel sets E ⊂ D[0,∞), so ŴX
n →µr σW .

Second, it follows from the definition of the lap number and the ergodicity of µ
that lim

t→∞
Nt(x, u)/t = 1/r̄ for µ-a.e. x and every u. Hence

ψn(t)(x, u) = Nnt(x, u)/n = tNnt(x, u)/(nt) → t/r̄ = ψ̄(t)

for µ-a.e. x and every u, t as n → ∞. It follows that supt∈[0,T ] |ψn(t) − ψ̄(t)| → 0

µr-a.e. Hence3 (ŴX
n , ψn) →µr (σW, ψ̄). By the continuous mapping theorem,

ŴX
n ◦ ψn →µr σW ◦ ψ̄ = r̄−1/2σW,

as required.

Proof of Theorem 2.1 By the definition of lap number, we have the decomposition

vt(x, u) = vXNt(x,u)(x) +Q(gt(x, u))−Q(x, u).

3There is a technical issue since the sup-norm topology on càdlàg spaces is not separable, but
this is easily resolved as in [20, Proposition A.4].
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Hence,
Wn(t)(x, u) = a−1

n

(
vXNnt(x,u)(x) +Q(gnt(x, u))−Q(x, u)

)
.

But a−1
n vXNnt(x,u)

(x) = ŴX
n (x, u) ◦ ψn(t)(x, u), so

Wn = ŴX
n ◦ ψn + Fn where Fn(t) = a−1

n (Q ◦ gnt −Q). (2.1)

Clearly, Fn(1) →µr 0. Also, if condition (I3) holds, then supt∈[0,T ] |Fn(t)| →µr 0 for
all T > 0. Hence, the result follows from (2.1) and Proposition 2.4.

2.2 Inducing for maps

A similar result holds for discrete suspensions (towers). Let (F,X, µ) be an ergodic
measure-preserving transformation and r : X → Z+ an integrable function. Define
the tower Xr = {(x, ℓ) ∈ X × Z : 0 ≤ ℓ ≤ r(x)} and tower map

f : Xr → Xr , f(x, ℓ) =

{
(x, ℓ+ 1), 0 ≤ ℓ < r(x)− 1

(Fx, 0), ℓ = r(x)− 1
,

with ergodic invariant probability measure µr = (µ× counting)/r̄ where r̄ =
∫
X
r dµ.

Let v : Xr → R be an integrable observable with
∫
Xr v dµ

r = 0. Define vX : X→ R
and Q : Xr → R by

vX(x) =

r(x)−1∑
ℓ=0

v(x, ℓ) , Q(x, ℓ) =
ℓ∑

k=0

v(x, k).

Theorem 2.5 The statement of Theorem 2.1 holds true in this context with condi-
tion (I3) taking the form

(I3) a−1
n max

0≤j≤n
|Q| ◦ f j →µr 0 as n→ ∞.

Proof The proof is identical to that for Theorem 2.1 with the obvious modifications
(sums in place of integrals, etc).

2.3 Verification of hypotheses

In the situation of maps in Subsection 2.2, condition (I3) simplifies considerably, as
we now explain. Define ṽX : X → R by

ṽX(x) = max
0≤ℓ≤r(x)

∣∣∣∣∣
ℓ−1∑
k=0

v(x, k)

∣∣∣∣∣ .
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Proposition 2.6 Suppose that

a−1
n max

0≤j≤n
ṽX ◦ F j →µ 0 as n→ ∞. (2.2)

Then (I2) and (I3) hold.

Proof Clearly, (2.2) implies (I2), so we focus on (I3). Note that |Q(x, ℓ)| ≤ ṽX(x) for
all (x, ℓ) ∈ Xr. Also, for any (x, ℓ) ∈ Xr, n ≥ 1, we can write fn(x, ℓ) = (x′, ℓ′) ∈ Xr

where x′ = F n′
x for some n′ ≤ n. Hence

a−1
n max

j≤n
|Q ◦ f j| ≤ a−1

n max
j≤n

ṽX ◦ F j. (2.3)

Let zn = a−1
n max

0≤j≤n
ṽX ◦ F j and define ẑn(x, u) = zn(x). Then for ϵ > 0, K > 0:

µr

(
a−1
n max

0≤j≤n
|Q ◦ f j| > ϵ

)
≤ µr(ẑn > ϵ) = r̄−1

∫
X

r1{zn>ϵ} dµ

≤ r̄−1Kµ(zn > ϵ) + r̄−1µ(r > K).

Since r ∈ L1(X) and zn →µ 0 by (2.2), condition (I3) then follows.

Remark 2.7 Similarly, for flows we can define ṽX : X → R by

ṽX(x) = max
0≤u≤r(x)

∣∣∣∣∫ u

0

v(x, s) ds

∣∣∣∣ .
Suppose that

a−1
n max

0≤j≤n
ṽX ◦ f j →µ 0 as n→ ∞.

Then certainly (I2) holds. Condition (I3) also holds provided inf(r) > 0. This extra
condition is required for the step (2.3) in the proof of Proposition 2.6. It ensures that
for any (x, u) ∈ Xr, t > 0, we can write gt(x, u) = (x′, u′) ∈ Xr where x′ = fnx for
some n ≤ 1 + t/ inf(r).

Suppose that an = n1/2. If vX (resp. ṽX) is in L2(X), then condition (I2)
(resp. (2.2)) is automatically satisfied. The next result is useful for verifying (I2)
and (2.2) when an = (n log n)1/2.

Proposition 2.8 Let V : X → R be a measurable function satisfying µ(|V | > n) =
O(n−2). Then (n log n)−1/2 max

0≤j≤n
|V | ◦ F j →µ 0 as n→ ∞.

Proof Let an = (n log n)1/2, qn = (n log log n)1/2, and define

En = {x ∈ X : |V (F jx)| > qn for some 0 ≤ j ≤ n}. (2.4)
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Then

µ(En) ≤
n∑

j=0

µ(|V ◦ F j| > qn) = (n+ 1)µ(|V | > qn) ≪ nq−2
n = (log log n)−1.

Setting Vn = V 1{|V |≤qn}, we have Vn ◦ F j = V ◦ F j for all j ≤ n on Ec
n and hence it

suffices to show that a−1
n max

0≤j≤n
|Vn| ◦ F j →µ 0. Now,

∫
X

V 4
n dµ ≤

∑
k≤qn+1

k4µ(k − 1 < |V | ≤ k) ≪
∑

k≤qn+1

k3µ(|V | > k) ≪
∑

k≤qn+1

k ≈ q2n,

so ∣∣∣ max
0≤j≤n

|Vn| ◦ F j
∣∣∣4
4
≤ n|Vn|44 ≪ nq2n = n2 log log n.

Hence

a−4
n

∣∣∣ max
0≤j≤n

|Vn| ◦ F j
∣∣∣4
4
≪ log log n/(log n)2,

which implies the required convergence.

3 Nonstandard WIP for Gibbs-Markov maps

In this section, we prove a nonstandard WIP for Gibbs-Markov maps. We would
expect that this result is well-known to experts, but we could not find a convenient
reference. For the nonstandard CLT, see [1, 23]. For our purposes in this paper, it
suffices to consider piecewise constant observables, and we do so, but this assumption
is easily relaxed. Similarly, we only consider the simplest tail conditions ((3.1) below)
since this also suffices for our purposes.

Let (Z, µ) be a probability space with an at most countable measurable partition
{Zk : k ≥ 1} and let F : Z → Z be an ergodic measure-preserving map. Define the
separation time s(z, z′) to be the least integer n ≥ 0 such that F nz and F nz′ lie in
distinct partition elements. We assume that s(z, z′) = ∞ if and only if z = z′; then
dθ(z, z

′) = θs(z,z
′) is a metric for θ ∈ (0, 1).

We say that F : Z → Z is a Gibbs-Markov map if:

(i) F : Zk → Z is a measure-theoretic bijection onto a union of partition elements
for each k ≥ 1;

(ii) infk µ(FZk)> 0;

(iii) there exists θ ∈ (0, 1) such that log ξ is dθ-Lipschitz, where ξ = dµ/dµ ◦ F .

(For standard facts about Gibbs-Markov maps, we refer to [2, 3].)
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Let V : Z → R be an observable that is in the nonstandard domain of the central
limit theorem. In particular, we assume that there exists σ > 0 such that

µ(|V | > n) ∼ σ2n−2 as n→ ∞. (3.1)

(So V ∈ Lp(Z) for all p < 2, but V ̸∈ L2(Z).) We suppose that
∫
Z
V dµ = 0.

As mentioned above, we suppose for simplicity that V is piecewise constant (con-
stant on partition elements Zk). In this section, we prove:

Theorem 3.1 Let F : Z → Z be a mixing Gibbs-Markov map. Suppose that V is
piecewise constant and satisfies (3.1). Then V satisfies the nonstandard WIP with
variance σ2.

Remark 3.2 If V is piecewise constant (say) and lies in L2, then it is well-known that
V satisfies a standard (possibly degenerate) WIP. (Again, finding a good reference
seems hard, but (for example) this is a very special case of [20, Theorem 2.1] with
G = 1 and d = 1. Conditions (i)–(iii) of [20, Theorem 2.1] reduce to integrability of
the observable since V is piecewise constant and G = 1.)

For u : Z → R, define

∥u∥θ = |u|∞ + |u|θ, |u|θ = sup
z ̸=z′, s(z,z′)≥1

|u(z)− u(z′)|
dθ(z, z′)

.

Let L : L1(Z) → L1(Z) be the transfer operator corresponding to (F,Z, µ), so∫
Z
Lu v dµ =

∫
Z
u (v ◦ F ) dµ for u ∈ L1(Z), v ∈ L∞(Z). Since F is a mixing Gibbs-

Markov map, there exist constants γ ∈ (0, 1), C0 > 0 such that

∥Lju−
∫
Z
u dµ∥θ ≤ C0γ

j∥u∥θ for all u : Z → R continuous, j ≥ 0. (3.2)

Let qn = (n log log n)1/2, and define Vn = V 1{|V |≤qn} −
∫
Z
V 1{|V |≤qn} dµ. Write

Vn = mn + χn ◦ F − χn where χn =
∞∑
j=1

LjVn.

Proposition 3.3 Suppose that V ∈ L1(Z) is piecewise constant. Then
supn≥1 ∥χn∥θ <∞.

Proof We recall the pointwise formula (LVn)(z) =
∑

k≥1 ξ(zk)Vn(zk), where the sum
is over those k for which there is a preimage of z under F lying in Zk, in which case
zk ∈ Zk is the unique such preimage. There is a constant C1 > 0 such that

0 < ξ(z) ≤ C1µ(Zk), |ξ(z)− ξ(z′)| ≤ C1µ(Zk)dθ(z, z
′),
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for all z, z′ ∈ Zk, k ≥ 1. Hence, for z ∈ Z,

|(LVn)(z)| ≤ C1

∑
kµ(Zk)|Vn(zk)| = C1

∑
kµ(Zk)|Vn|Zk

| = C1|Vn|1 ≤ 2C1|V |1.

Next, let z, z′ ∈ Z lying in a common partition element. Since F is Markov, we
can match up preimages zk, z

′
k ∈ Zk. It follows that

|(LVn)(z)− (LVn)(z
′)| ≤ C1

∑
kµ(Zk)|Vn(zk)|dθ(z, z′) ≤ 2C1|V |1 dθ(z, z′).

Hence ∥LVn∥θ ≤ 4C1|V |1. By (3.2), we conclude that ∥χn∥θ ≤ C0(1− γ)−1∥LVn∥θ ≤
4C0C1(1− γ)−1|V |1.

Corollary 3.4 The following hold uniformly in n ≥ 1 and 1 ≤ p ≤ ∞:

|mn|p = |V 1{|V |≤qn}|p +O(1) and |mn|θ = O(1).

In particular, |mn|22 ∼ σ2 log n, |mn|44 ≪ q2n and ∥mn∥θ ≪ qn .

Proof Note that∣∣|mn|p − |V 1{|V |≤qn}|p
∣∣ ≤ ∣∣∣∣∫

Z

V 1{|V |≤qn} dµ

∣∣∣∣+ 2|χn|p ≤ |V |1 + 2|χn|∞

and
|mn|θ = |χn ◦ F − χn|θ ≤ (1 + θ−1)|χn|θ,

hence the first two estimates follow by Proposition 3.3.
Estimates for mn thereby reduce to estimates for V 1{|V |≤qn}. For example,

|V 1{|V |≤qn}|22 = 2

∫ qn

0

tµ(|V | ≥ t) dt ∼ 2σ2 log qn ∼ σ2 log n.

The calculation for |V 1{|V |≤qn}|44 is similar, and the estimate for |V 1{|V |≤qn}|∞ (and
hence ∥mn∥θ) is immediate.

Corollary 3.5 There exist γ ∈ (0, 1) and C > 0 such that∣∣∣∣∣
∫
Z

m2
n (m

2
n ◦ F j) dµ−

(∫
Z

m2
n dµ

)2
∣∣∣∣∣ ≤ Cγjq2n log n for all n, j ≥ 1.

Proof By (3.2),∣∣∣∣∣
∫
Z

m2
n (m

2
n ◦ F j) dµ−

(∫
Z

m2
n dµ

)2
∣∣∣∣∣ =

∣∣∣∣∫
Z

(
m2

n −
∫
Z

m2
n dµ

)
(m2

n ◦ F j) dµ

∣∣∣∣
=

∣∣∣∣∫
Z

Lj

(
m2

n −
∫
Z

m2
n dµ

)
m2

n dµ

∣∣∣∣ ≤ ∣∣∣∣Lj

(
m2

n −
∫
Z

m2
n dµ

)∣∣∣∣
∞

|m2
n|1

≤ 2C0γ
j∥m2

n∥θ |mn|22 ≤ 2C0γ
j∥mn∥2θ |mn|22.

By Corollary 3.4, ∥mn∥θ ≪ qn and |mn|22 ≈ log n and so the proof is complete.
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Remark 3.6 A more careful argument shows that ∥L(m2
n)∥θ ≪ qn and hence the

estimate in Corollary 3.5 can be improved to Cγjqn log n. However, this refinement
is not required here.

Set an = (n log n)1/2.

Lemma 3.7
∣∣∑[nt]−1

j=0 m2
n ◦ F j − a2nσ

2t
∣∣2
2
= o(a4n) as n→ ∞ for all t ≥ 0.

Proof By Corollary 3.4,
∫
Z
m2

n dµ ∼ σ2 log n so∫
Z

[nt]−1∑
j=0

m2
n ◦ F j dµ = [nt]

∫
Z

m2
n dµ ∼ σ2t n log n = a2nσ

2t. (3.3)

Next, again by Corollary 3.4,
∫
Z
m4

n dµ≪ q2n and so∫
Z

[nt]−1∑
j=0

m4
n ◦ F j dµ≪ nq2n = n2 log log n = o(a4n).

By Corollary 3.5, for i < j,∫
Z

(m2
n ◦ F i) (m2

n ◦ F j) dµ =

∫
Z

m2
n (m

2
n ◦ F j−i) dµ

=

(∫
Z

m2
n dµ

)2

+O
(
γj−iq2n log n

)
∼ σ4 log2 n+O

(
γj−iq2n log n

)
.

Hence∫
Z

[nt]−1∑
j=0

m2
n ◦ F j

2

dµ = 2
∑

0≤i<j<nt

∫
Z

(m2
n ◦ F i) (m2

n ◦ F j) dµ+

∫
Z

[nt]−1∑
j=0

m4
n ◦ F j dµ

∼ σ4(n2t2 − nt) log2 n+O

(
q2n log n

∑
0<r<nt

(nt− r)γr

)
+ o(a4n)

∼ σ4n2t2 log2 n+O
(
nq2n log n

)
+ o(a4n) ∼ a4nσ

4t2. (3.4)

Using (3.3) and (3.4),∣∣∣∣∣∣
[nt]−1∑
j=0

m2
n ◦ F j − a2nσ

2t

∣∣∣∣∣∣
2

2

=

∫
Z

[nt]−1∑
j=0

m2
n ◦ F j − a2nσ

2t

2

dµ

=

∫
Z

[nt]−1∑
j=0

m2
n ◦ F j

2

dµ− 2a2nσ
2t

∫
Z

[nt]−1∑
j=0

m2
n ◦ F j dµ+ a4nσ

4t2

= a4nσ
4t2 − 2a2nσ

2t · a2nσ2t+ a4nσ
4t2 + o(a4n) = o(a4n)
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as required.

Let (F̂ , Ẑ, µ̂) denote the natural extension (see e.g. [35]) of (F,Z, µ) with measure-

preserving semiconjugacy π̂ : Ẑ → Z. Let m̂n = mn◦ π̂. By construction, mn ∈ kerL.
It follows as in [19] that {m̂n ◦ F̂−j : j = 1, 2, . . . } is a martingale difference sequence.
(A detailed explanation can be found for example in [18, Remark 3.12].) Hence, for
t ≥ 0, we can define the martingale difference array {Xn,j : 1 ≤ j ≤ [nt]} where

Xn,j = a−1
n m̂n ◦ F̂−j. Define the processes M̂−

n (t) =
∑[nt]

j=1Xn,j on (Ẑ, µ̂).

Lemma 3.8 M̂−
n →µ̂ σW in D[0,∞) as n→ ∞.

Proof We verify the hypotheses of [31, Theorem 3.2]. Fix t ≥ 0. By Corollary 3.4,∣∣∣max
j≤[nt]

|Xn,j|
∣∣∣
1
≤ a−1

n |mn|∞ ≪ a−1
n qn → 0.

By [31, Theorem 3.2], it therefore remains to show that
∑

1≤j≤[nt]

X2
n,j →µ̂ σ

2t. But

∑
1≤j≤nt

X2
n,j = a−2

n

[nt]∑
j=1

(m̂2
n) ◦ F̂−j =

a−2
n

[nt]−1∑
j=0

(m̂2
n) ◦ F̂ j

 ◦ F̂−[nt]

=

a−2
n

[nt]−1∑
j=0

m2
n ◦ F j

 ◦ π̂ ◦ F̂−[nt].

Hence it suffices that a−2
n

∑[nt]−1
j=0 m2

n ◦ F j →µ σ
2t which follows from Lemma 3.7.

Proof of Theorem 3.1 Define processes

Mn(t) = a−1
n

[nt]−1∑
j=0

mn ◦ F j , W̃n(t) = a−1
n

[nt]−1∑
j=0

Vn ◦ F j

on (Z, µ). Let g(u)(t) = u(1) − u(1 − t) and note that Mn ◦ π̂ ◦ F̂−n = g(M̂−
n ) and

g(σW ) =d σW . By Lemma 3.8 and the continuous mapping theorem4,

Mn =d Mn ◦ π̂ ◦ F̂−n = g(M̂−
n ) →µ̂ g(σW ) =d σW.

But W̃n(t) =Mn(t) + a−1
n (χn ◦ F [nt] − χn) where supn |χn|∞ <∞ by Proposition 3.3.

Hence W̃n →µ σW .

4Technical issues about the domain and range of g can be dealt with either by linearly interpo-
lating and passing to C[0, 1], or by proceeding as in [27, Proposition 4.9].
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Finally, define En as in (2.4) (with X replaced by Z). As before, µ(En) ≪
(log log n)−1. On Ec

n, we have (Vn − V ) ◦ F j = −
∫
V 1{|V |≤qn} dµ =

∫
V 1{|V |>qn} dµ,

0 ≤ j ≤ n, so for Wn defined as in (1.1),

sup
t∈[0,1]

|Wn(t)− W̃n(t)|∞ ≤ a−1
n n

∣∣∣∣∫
Z

V 1{|V |>qn} dµ

∣∣∣∣≪ na−1
n q−1

n = (log n log log n)−1/2.

Hence Wn →µ σW .

4 Nonstandard limit laws for Young towers

In this section, we consider nonstandard limit laws for a class of nonuniformly hyper-
bolic systems [40, 41]. Throughout, an = (n log n)1/2.

4.1 Exponential Young towers

We start with a Gibbs-Markov map as in Section 3, now denoted (F̄ , Z̄, µ̄Z) with
partition Z̄k, k ≥ 1. We suppose moreover that F̄ is full-branch5, so F̄ is a measure-
theoretic bijection from Z̄k onto Z̄ for all k. Let τ : Z̄ → Z+ be a piecewise constant
return time with µ̄Z(τ > n) = O(e−cn) for some c > 0. Define the tower ∆̄ = {(z, ℓ) :
z ∈ Z̄, 0 ≤ ℓ < τ(z)} and tower map

f̄∆ : ∆̄ → ∆̄ , f̄∆(z, ℓ) =

{
(z, ℓ+ 1), 0 ≤ ℓ < τ(z)− 1

(F̄ z, 0), ℓ = τ(z)− 1
.

An ergodic f̄∆-invariant probability measure is given by µ̄∆ = (µ̄Z × counting)/τ̄
where τ̄ =

∫
Z̄
τ dµ̄Z . We call (∆̄, µ̄∆) a one-sided exponential Young tower.

Let (Z, dZ) be a metric space with Borel probability measure µZ . Let F : Z → Z
be an ergodic measure-preserving transformation and π̄ : Z → Z̄ a measure-preserving
semiconjugacy. The return time τ : Z̄ → Z+ lifts to a return time on Z which we
also denote by τ . Define the (two-sided) exponential tower ∆ = {(z, ℓ) : z ∈ Z, 0 ≤
ℓ < τ(z)} and tower map

f∆ : ∆ → ∆ , f∆(z, ℓ) =

{
(z, ℓ+ 1), 0 ≤ ℓ < τ(z)− 1

(Fz, 0), ℓ = τ(z)− 1
,

with ergodic invariant probability measure µ∆ = (µZ × counting)/τ̄ . We have parti-
tions {Zk} of Z and {∆k,ℓ} of ∆ where Zk = π̄−1(Z̄k) and ∆k,ℓ = Zk × {ℓ}.

5The full-branch assumption is mainly for convenience and is satisfied in the applications. It is
easy to weaken the assumption significantly but some care is needed since for instance the result
of [23] used in Lemma 4.1 assumes a big image and preimage condition which is stronger than the
big images condition in Section 3.
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There are further properties of exponential Young towers which are only required
in the proof of Theorem 4.2 below in an argument identical to [5, Lemma 5.3]. Hence,
we refer to [5] for the statement of these properties.

An observable K : ∆ → R is called piecewise constant if K is constant on each
partition element ∆k,ℓ.

Lemma 4.1 Let K : ∆ → R be piecewise constant and define

Kτ : Z → R , Kτ (z) =

τ(z)−1∑
ℓ=0

K(z, ℓ).

If K satisfies a nonstandard CLT with variance σ2 > 0, then µZ(|Kτ | > n) ∼ τ̄σ2n−2

as n→ ∞.

Proof We follow the proof of [33, Lemma 5.1(c)]. Since τ and Kτ are piecewise
constant, they are well-defined and piecewise constant on the domain Z̄ of the Gibbs-
Markov map F̄ : Z̄ → Z̄. In particular, we can reduce from ∆ and Z to ∆̄ and
Z̄.

Since τ ∈ Lp(Z̄) for all finite p, it follows from Remark 3.2 that τ satisfies a
(possibly degenerate) standard CLT on (Z̄, µ̄Z). In particular, a−1

n

∑n−1
j=0 (τ − τ̄) ◦

F̄ j →µ̄Z
0. By assumption, K satisfies a nonstandard CLT on (∆̄, µ̄∆) with variance

σ2 > 0. Inducing as in [33, Appendix A] (with X = ∆̄, Y = Z̄, bn = an, and
α = 2 in [33, Remark A.3]), Kτ satisfies a nonstandard CLT on (Z̄, µ̄Z) with variance
τ̄σ2 > 0. Since Kτ is piecewise constant on Z̄, it follows from [23] that µ̄Z(|Kτ | >
n) ∼ τ̄σ2n−2.

4.2 Subexponential Young towers

Now let R : ∆ → Z+ be a distinguished integrable piecewise constant observable.
Define Rτ : Z → Z+ as in Lemma 4.1. Notice that

∫
Z
Rτ dµZ = R̄τ̄ where R̄ =∫

∆
Rdµ∆.
We use Rτ to define a new (subexponential) tower Γ = {(z, ℓ) : z ∈ Z, 0 ≤ ℓ <

Rτ (z)} and tower map

fΓ : Γ → Γ , fΓ(z, ℓ) =

{
(z, ℓ+ 1), 0 ≤ ℓ < Rτ (z)− 1

(Fz, 0), ℓ = Rτ (z)− 1
,

with ergodic fΓ-invariant probability measure µΓ = (µZ × counting)/R̄τ̄ .
Let dθ be the metric on Z̄ defined in Section 3. An observable v : Γ → R is

dynamically Hölder if it is bounded and there is a constant C > 0 such that

|v(z, ℓ)− v(z′, ℓ)| ≤ C
(
dZ(z, z

′) + dθ(π̄z, π̄z
′)
)

(4.1)
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for all z, z′ ∈ Zk, k ≥ 1, 0 ≤ ℓ < Rτ |Zk.
We can now state and prove the main theorem of this section.

Theorem 4.2 Let v : Γ → R be a dynamically Hölder observable with
∫
Γ
v dµΓ = 0.

Define

V : ∆ → R , V (z, j) =

Rj(z)−1∑
ℓ=Rj−1(z)

v(z, ℓ),

where Rj(z) =
∑j

k=0R(z, k). Suppose that

V = K +H

where K : ∆ → R is piecewise constant and H ∈ L2+ϵ(∆) for some ϵ > 0.

(a) If R and K satisfy nonstandard CLTs with variances σ2
R > 0 and σ2

K > 0, then v
satisfies a nonstandard WIP with variance R̄−1σ2

K.

(b) If K = 0, then there exists σ̃2 ≥ 0 such that v satisfies a standard CLT with
variance σ̃2.

Proof (a) Induce further to obtain observables Vτ , Ṽτ : Z → R,

Vτ (z) =

Rτ (z)−1∑
ℓ=0

v(z, ℓ) =

τ(z)−1∑
j=0

V (z, j) , Ṽτ (z) = max
0≤k≤Rτ (z)

∣∣∣∣∣
k−1∑
ℓ=0

v(z, ℓ)

∣∣∣∣∣ .
To obtain the nonstandard WIP for v with variance R̄−1σ2, it suffices to verify the
hypotheses of Theorem 2.5 with Γ, Z, Rτ playing the roles of Xr, X, r. By Proposi-
tion 2.6, it suffices to prove:

(I1) Vτ satisfies a nonstandard WIP with variance τ̄σ2;

(2.2) a−1
n max

0≤j≤n
Ṽτ ◦ F j →µZ

0 as n→ ∞;

on the probability space (Z, µZ).

Now, |Ṽτ | ≤ |v|∞Rτ . By Lemma 4.1,

µZ(|Ṽτ | > n) ≤ µZ(Rτ > n/|v|∞) ≪ n−2.

Hence condition (2.2) follows from Proposition 2.8.
Write

Vτ = Kτ +Hτ where Hτ (z) =

τ(z)−1∑
ℓ=0

H(z, ℓ).

By Lemma 4.1, µZ(|Kτ | > n) ∼ τ̄σ2n−2. Since Kτ is locally constant, it is well de-
fined and locally constant on the Gibbs-Markov base F̄ : Z̄ → Z̄. By Theorem 3.1, Kτ
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satisfies the nonstandard WIP with variance τ̄σ2n−2. Hence, to verify condition (I1),

it remains to show that the contribution from Ĥτ = Hτ −
∫
Z
Hτ dµZ is negligible.

This is mainly [5, Lemmas 5.3 and 5.4] (written out also in [33, Section 6]).
By assumption, H ∈ L2+ϵ(∆) and τ : Z → Z+ has exponential tails. Hence

Hτ ∈ L2+ϵ1(Z) for any ϵ1 ∈ (0, ϵ). The Hölder constants of Hτ on partition elements
Zk are unbounded but are of order Rτ and so are integrable. By [5, Lemma 5.3], a

Gordin-type argument [19] shows that Ĥτ = m + χ ◦ F − χ where m,χ ∈ Lp(Z) for
some p > 2 and {m ◦ F j : j ≥ 0} is a reverse martingale-difference sequence. By
Doob’s inequality,

∣∣max0≤k≤n |
∑k−1

j=0 m◦F j|
∣∣
2
≤ 4
∣∣∑n−1

j=0 m◦F j
∣∣
2
= 4n1/2|m|2. Also,∣∣max0≤j≤n |χ ◦ F j|

∣∣
p
≤ n1/p|χ|p. Hence a−1

n max0≤j≤n |Ĥτ ◦ F j| →µZ
0 demonstrating

the negligibility of Ĥτ .

(b) Define Vτ : Z → R as in part (a). We again apply Theorem 2.5 with Γ, Z, Rτ

playing the roles of Xr, X, r. To obtain the standard CLT, we must show that

(I1) Vτ satisfies a standard WIP;

(I2) n−1/2max0≤j≤n |Vτ | ◦ F j →µZ
0 as n→ ∞;

on the probability space (Z, µZ).
The argument applied above for H, but now applied to V , shows that Vτ =

m+ χ ◦ F − χ where m,χ ∈ Lp(Z) for some p > 2 and {m ◦ F j : j ≥ 0} is a reverse
martingale-difference sequence. Again,

∣∣max0≤j≤n |χ ◦ F j|
∣∣
p
≤ n1/p|χ|p. Hence by

the WIP for L2 martingales [7], we obtain the standard WIP for Vτ with variance∫
Z
m2 dµZ . This verifies condition (I1).

Since Vτ ∈ Lp, p > 2, it follows that
∣∣max0≤j≤n |Vτ | ◦ F j

∣∣
p
≪ n1/p, verifying

condition (I2).

Remark 4.3 The assumption that τ has exponential tails can be weakened signifi-
cantly. Certainly we used that τ ∈ L2(Z) in the proof of Lemma 4.1. In addition, we
require that H and τ are sufficiently well-behaved that Hτ ∈ Lp(Z) for some p > 2.

Remark 4.4 Throughout, we have focused on the “critical” case where v is bounded
while R and V have similar behaviour. However, we can consider unbounded observ-
ables v when the first return time R lies in Lp(∆) for some p > 2. We still require that
v satisfies (4.1) and the assumptions on V = K +H are unchanged. The condition
on R in Theorem 4.2(a) can be removed and we require instead that Rτ ∈ L2(Z).

In this way, we can recover results in [16, 21] for unbounded observables of inter-
mittent maps.

4.3 Underlying dynamical systems

Let X be a metric space with Borel probability µ and f : X → X a measure-
preserving transformation. Fix a measurable subset Y ⊂ X and let R0 : Y → Z+ be
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the first return time R0(y) = inf{n ≥ 1 : fny ∈ Y }. Define the first return map

fY = fR0 : Y → Y , fY (y) = fR0(y)(y).

An fY -invariant probability measure on Y is obtained by normalising µ|Y .
We assume that (fY , Y, µY ) is modelled by a (two-sided) exponential Young tower.

That is, there exists (f∆,∆, µ∆) built over a map F : Z → Z with Gibbs-Markov
quotient F̄ : Z̄ → Z̄ and return time τ : Z → Z+ with exponential tails, exactly as in
Subsection 4.1, such that Z is a Borel subset of Y and such that the semiconjugacy

π∆ : ∆ → Y, π∆(z, ℓ) = f ℓ
Y z,

satisfies π∆ ∗µ∆ = µY . We assume further that R = R0 ◦ π∆ : ∆ → Z+ is piecewise
constant.

By construction, ∆ and R satisfy the assumptions in Subsection 4.2, so we can
use Rτ : Z → Z+ to define a subexponential tower map fΓ : Γ → Γ. It is easily
verified that

πΓ : Γ → X, πΓ(z, ℓ) = f ℓz,

defines a measure-preserving semiconjugacy between (fΓ,Γ, µΓ) and (f,X, µ). Hence
we obtain the following immediate consequence of Theorem 4.2. We say that an
observable v0 : X → R is dynamically Hölder if the lifted observable v0 ◦ πΓ : Γ → R
is dynamically Hölder.

Corollary 4.5 Let v0 : X → R be a dynamically Hölder observable with
∫
X
v0 dµ= 0.

Define V : ∆ → R as in Theorem 4.2 with v = v0 ◦ πΓ. Suppose that

V = K +H

where K : ∆ → R is piecewise constant and H ∈ L2+ϵ(∆) for some ϵ > 0.

(a) If R and K satisfy nonstandard CLTs with variances σ2
R > 0 and σ2

K > 0, then
v0 satisfies a nonstandard WIP with variance R̄−1σ2

K.

(b) If K = 0, then there exists σ̃2 ≥ 0 such that v0 satisfies a standard CLT with
variance σ̃2.

Remark 4.6 The variance σ̃2 in Corollary 4.5(b) is typically nonzero in our appli-
cations, where “typically” is interpreted in the very strong sense that σ̃2 = 0 only
within a closed subspace of infinite codimension amongst Hölder observables v0. See
for example the discussion in [24, End of Section 4].

Remark 4.7 In the applications to be considered in Sections 6 and 7, Hölder ob-
servables v0 : X → R are dynamically Hölder.

It is often the case that H = O(R1−δ) for some δ > 0. Since R ∈ Lp(∆) for all
p < 2, the integrability assumption on H in Corollary 4.5 is automatic.

In the examples, the nonstandard CLT for K is degenerate if and only if K = 0.
Hence there is a dichotomy whereby either part (a) or part (b) of Corollary 4.5 applies.
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5 Limit laws for suspension flows

Let (fΓ,Γ, µΓ), (f∆,∆, µ∆), R, etc, be as in Section 4 and let h : Γ → (0,∞) be a
dynamically Hölder (hence bounded) roof function. We form the suspension

Γh = {(x, u) : x ∈ Γ, 0 ≤ u < h(x)}/ ∼ , (x, h(x)) ∼ (fΓ(x), 0),

and the suspension flow gt(x, u) = (x, u + t) computed modulo identifications, with
invariant probability measure µh = (µΓ × Lebesgue)/h̄ where h̄ =

∫
Γ
h dµΓ.

Theorem 5.1 Let v : Γh → R be a bounded observable with
∫
Γh v dµ

h = 0. Define

vh : Γ → R, vh(x) =

∫ h(x)

0

v(x, u) du,

and assume that vh is dynamically Hölder. Define V : ∆ → R as in Theorem 4.2 with
v replaced by vh. Suppose that

V = K +H

where K is piecewise constant and H ∈ L2+ϵ(∆) for some ϵ > 0.

(a) If R and K satisfy nonstandard CLTs with variance σ2
R > 0 and σ2

K > 0, then v
satisfies a nonstandard WIP with variance h̄−1R̄−1σ2

K.

(b) If K = 0, then there exists σ̃2 ≥ 0, typically nonzero, such that v satisfies a
standard CLT with variance σ̃2.

Proof (a) Define

Q : Γh → R , Q(x, u) =

∫ u

0

v(x, s) ds.

We apply Theorem 2.1 with Γh, Γ, h playing the roles of Xr, X, r. To obtain the
nonstandard WIP with variance h̄−1R̄−1σ2, we must show that

(I1) vh satisfies a nonstandard WIP with variance R̄−1σ2;

(I2) (n log n)−1/2 max
0≤j≤n

|vh| ◦ f j
Γ →µΓ

0 as n→ ∞;

(I3) (n log n)−1/2 sup
t∈[0,n]

|Q| ◦ gt →µh 0 as n→ ∞;

on the probability space (Γ, µΓ). Condition (I1) follows from Theorem 4.2. Condi-
tions (I2) and (I3) are trivial since |vh|, |Q(x, u)| ≤ |v|∞|h|∞ <∞.
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(b) It is convenient to regard Γh as a suspension Zφ over Z with unbounded roof

function φ(z) =
∫ Rτ (z)

0
h(z, u) du. Define the further induced observable

Vτ : Z → R , Vτ (z) =

∫ φ(z)

0

v(z, u) du =

τ(z)−1∑
ℓ=0

V (z, ℓ).

We apply Theorem 2.1 with Γh, Z, φ playing the roles of Xr, X, r. To obtain the
standard CLT, we must show that

(I1) Vτ satisfies a standard WIP;

(I2) n−1/2 max
0≤j≤n

|Vτ | ◦ F j →µZ
0 as n→ ∞;

on the probability space (Z, µZ).
Condition (I1) is verified by the argument in the proof of Theorem 4.2(b). Since

Vτ ∈ Lp, p > 2, it follows that
∣∣ max
0≤j≤n

|Vτ | ◦ F j
∣∣
p
≪ n1/p, verifying condition (I2).

6 Applications to intermittent maps

In this section, we consider some intermittent map examples. In all the examples,
f : X → X is a piecewise C1 map with domain X = [0, 1] or X ⊂ [0, 1]×T and there
is a unique absolutely continuous mixing f -invariant probability measure µ. There
is a stipulated subset Y ⊂ X with µ(Y ) > 0, first return time R : Y → Z+ and
first return map fR : Y → R. We consider a Hölder observable v : X → R with∫
X
v dµ = 0 and define the induced observable V =

∑R−1
ℓ=0 v ◦ f ℓ : Y → R. Without

loss of generality we assume that v is Cη for some η ∈
(
0, 1

2

)
.

Example 6.1 (The LSV map) Let X = [0, 1]. The simplest example of an inter-
mittent map f : X → X is the LSV map [29] given by

fx =

{
x(1 + 21/αx1/α), 0 ≤ x < 1

2

2x− 1, 1
2
≤ x ≤ 1.

There is a unique absolutely continuous f -invariant probability measure µ for all
α > 1. It is well-known that Hölder observables v : X → R satisfy the standard WIP
when α > 2. See [34] for functional limit theorems when α ∈ (1, 2). Here we focus on
the case α = 2. By [21] (see also [44]), v satisfies a nonstandard CLT if v(0) ̸= 0 and
a standard CLT otherwise. The nonstandard WIP for v(0) ̸= 0 is proved in [16].

We now indicate how to recover the nonstandard WIP using the results in this
paper. The situation is greatly simplified from Section 4: we can take Y = ∆ =
∆̄ = Z = Z̄ (and τ = 1). The common space is denoted Y here and we take
Y =

[
1
2
, 1
]
. By [29], µ(R = n) ∼ 1

2
σ2
Rn

−3 for some σ2
R > 0. It is standard (see [29]
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or [21, Proof of Theorem 1.3]) that fR is a full-branch Gibbs-Markov map. We have
a semiconjugacy πΓ : Γ → X where (fΓ,Γ, µΓ) is a one-sided Young tower with
Γ = {(y, ℓ) : y ∈ Y, 0 ≤ ℓ < R(y)}.

A calculation [21, Proof of Theorem 1.3] shows that V = K + H where K =
Rv(0) and H = O(R1−2η). By [21], R satisfies a nonstandard CLT with variance σ2

R.
Hence, for v(0) ̸= 0, we obtain the nonstandard WIP with variance R̄−1v(0)2σ2

R by
Corollary 4.5(a).

Example 6.2 (An example with two neutral fixed points) We consider an
example studied in [15] with X = [0, 1] and

fx =


x(1 + 31/2x1/2), x ∈

[
0, 1

3

)
3x− 1, x ∈

[
1
3
, 2
3

)
1− (1− x)(1 + 31/2(1− x)1/2), x ∈

[
2
3
, 1
]
.

As in Example 6.1, we can take Y = ∆ = ∆̄ = Z = Z̄ (and τ = 1), and we
choose Y =

[
1
3
, 2
3

]
. By [15, Proof of Lemma 6.3], µ(R > n) ∼ σ2

Rn
−2 for some

σ2
R > 0 and by symmetry µ(R1( 1

3
, 1
2
) > n) = µ(R1( 1

2
, 2
3
) > n) ∼ 1

2
σ2
Rn

−2. The first

return map F = fR : Y → Y is a full-branch Gibbs-Markov map. Moreover, V =
K + H where K = R1( 1

3
, 1
2
)v(0) + R1( 1

2
, 2
3
)v(1) and H = O(R1−2η). It follows that

µ(|K| > n) ∼ σ2
Kn

−2 where σ2
K = 1

2
σ2
R(v(0)

2 + v(1)2). If σ2
K > 0, then it is a

consequence of Theorem 3.1 that K satisfies the nonstandard WIP with variance σ2
K .

By Corollary 4.5, we obtain a standard CLT if v(0) = v(1) = 0 and the nonstandard
WIP with variance R̄−1σ2

K otherwise.

Example 6.3 (NonMarkovian examples) Zweimüller [42, 43] studied a class of
nonMarkovian interval maps f : X → X with indifferent fixed points, called AFN
maps. For definiteness, we focus on the example

fx = x+ bx3/2 mod 1 (6.1)

for b ∈ [1,∞). Note that f has [b] + 1 branches and there is a neutral fixed point
at 0. When b is an integer, we can proceed as in Example 6.1 so we are particular
interested in the case where b is not an integer and hence f is nonMarkovian. (The
methods described here apply more generally to mixing AFN maps.) We only sketch
the details since a more complicated example is treated in Example 6.4 below.

We choose Y = [y0, 1] where y0 < 1 is maximal such that fy0 = 0. It is easily
checked that µ(R > n) ∼ σ2

Rn
−2 for some σ2

R > 0. Although fR is not Markov (hence
not Gibbs-Markov) it is well-known that the transfer operator for fR has a spectral
gap on the space of bounded variation functions and hence R satisfies a nonstandard
CLT [17, Remark C.2].

The same calculation as in Example 6.1 shows that V = v(0)R +H where H =
O(R1−2η). This already yields the nonstandard CLT for v when v(0) ̸= 0.
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A standard technique [42, 43] for studying AFN maps is to reinduce the first
return map fR : Y → Y to obtain a Gibbs-Markov map F : Z → Z. (See also [8].)
We can then apply Corollary 4.5 to obtain the nonstandard WIP when v(0) ̸= 0 and
a typically nondegenerate standard CLT when v(0) = 0.

Example 6.4 (A multidimensional nonMarkovian example) To illustrate the
generality of the techniques in this paper with regard to intermittent maps, we con-
sider a family of multidimensional nonMarkovian nonconformal intermittent maps
introduced by Eslami et al. [17]. Let X0 = [0, 1] × T with T = R/Z and define the
map f : X0 → X0 given by f(x, θ) = (f1(x, θ), f2(θ)) where

f1(x, θ) =

{
x(1 + x1/αu(x, θ)), 0 ≤ x ≤ 3

4

4x− 3, , 3
4
< x ≤ 1

, f2(θ) = 4θ mod 1.

Here, u :
[
0, 3

4

]
× T → (0,∞) is C2 with u(0, θ) ≡ c0 > 0 such that x(1 +

x1/αu(x, θ))≤ 1 on
[
0, 3

4

]
× T. There is a neutral invariant circle {x = 0} and we

require that f is uniformly expanding outside any neighbourhood of this circle. There
are further technical assumptions on u in [17] that we do not write down here. As
shown in [17], f restricts to a mixing transformation on X = f

([
0, 3

4

]
× T

)
. In [17],

the cases α ∈ (0, 2) and α > 2 are studied extensively, but the case α = 2 is largely
omitted since Theorem 3.1 was not available. Here, we cover this missing case.

Following [17], we take Y = X ∩
([

3
4
, 1
]
× T

)
. By [17, Proposition 4.11], µ(R =

n) ∼ 1
2
σ2
Rn

−3 for some σ2
R > 0. By [17, Corollary 4.10], the transfer operator for

the first return map fR : Y → Y has a spectral gap in a space of two-dimensional
bounded variation functions, and hence we can apply [17, Remark C.2] to obtain a
nonstandard CLT with variance σ2

R for R.
By the proof of [17, Theorem 1.3, Section 6], V = K + H, K = IvR, where

Iv =
∫
T v(0, θ) dθ and H = O(R1−2η). In this way, we already obtain that v satisfies

the nonstandard CLT with variance R̄−1I2vσ
2
R if Iv ̸= 0 and a typically nondegenerate

standard CLT if Iv = 0.
By [17, Lemma 3.1], we can reinduce the first return map fR : Y → Y to obtain

a Gibbs-Markov map F : Z → Z such that the return time for returns of fR to Z
has exponential tails. Hence we are in the situation of Section 4. By Corollary 4.5,
we obtain the nonstandard WIP if Iv ̸= 0.

7 Applications to dispersing billiards

In this section, we provide details and proofs for the billiard examples mentioned
in Section 1. For background material on billiards, we refer to [12]. The billiard
domain, denoted by Q, is a compact connected subset of R2 or T2 with piecewise
smooth boundary and the billiard flow ft is defined on Q×S1. Fix a point q ∈ Q and
a unit vector ψ ∈ S1. Then q moves in straight lines with unit speed in direction ψ
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until reflecting (angle of reflection equalling the angle of incidence) off the boundary
∂Q. This defines a volume-preserving flow. A natural Poincaré section is given by
X = ∂Q× [−π/2, π/2] corresponding to collisions with ∂Q (with outgoing velocities
in [−π/2, π/2]). The Poincaré map f : X → X is called the collision map or the
billiard map. It preserves a probability measure µ, equivalent to Lebesgue, called
Liouville measure.

A general framework introduced by [30] and explored further in [14] is to model a
suitable first return map by an exponential Young tower ∆ as described in Section 4.
More precisely, one chooses6 a positive measure set Y ⊂ X with first return time
R : Y → Z+ and first return map fY = fR : Y → Y . Then it is shown that there is an
exponential tower f∆ : ∆ → ∆ and a measure-preserving semiconjugacy π∆ : ∆ → Y
such that (dynamically) Hölder observables V : Y → R lift to dynamically Hölder
observables V ◦ π∆ : ∆ → R.

With this structure in place, we can now construct a (nonexponential) Young
tower fΓ : Γ → Γ and a measure-preserving semiconjugacy πΓ : Γ → X such that
(dynamically) Hölder observables v : X → R lift to dynamically Hölder observables
v ◦ πΓ : Γ → R. In this way, statistical limit laws for the billiard map f : X → X
reduce to statistical limit laws on Γ as described in Section 4.

If moreover the flow time between collisions in X is Hölder and bounded below,
then these statistical limit laws for f : X → X lift to statistical limit laws for the
billiard flow ft as described in Section 5.

Example 7.1 (Billiards with cusps) These are billiard domains Q ⊂ R2 where
∂Q is a simple closed curve consisting of finitely many convex inwards C3 curves with
nonvanishing curvature such that the interior angles at corner points are zero. By [13,
Theorem 1.1], the billiard map f : X → X falls into the framework of Section 4. In [4],
it is shown that there is a constant Iv ∈ R, given explicitly in terms of the values of
the observable v near the cusp, such that a nondegenerate WIP holds for Iv ̸= 0 and
a standard CLT holds for Iv = 0.

Our methods give a more streamlined approach which leads to exactly the same
results as in [4]. The main step is a nonstandard CLT for R which is established
in [4, Eq (2.5)]. Let v : X → R be a Hölder observable and define the first return
observable V =

∑R−1
ℓ=0 v ◦ f ℓ : Y → R. When there is a single cusp, V = K + H

where K = IvR, and H = O(R1−δ) for some δ > 0. (Such a decomposition is implicit
in [4, Eq. (6.16)] and nearby calculations. A similar decomposition for billiards with
flat cusps is computed explicitly in [26, End of Section 6] and [33, Proposition 8.1].)
Hence the hypotheses of Theorem 4.2 are satisfied and all the remaining results in [4]
are seen to hold independently of the details of the billiard model.

When there are several cusps, the situation is similar with K piecewise constant

6Roughly speaking, Y is chosen to be a subset of X bounded away from the regions where
hyperbolicity is expected to break down, e.g. for billiards with cusps, Y excludes a neighbourhood
of each cusp.
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(at the level of the tower ∆) equal to a constant multiple of R in a neighbourhood of
each cusp. (See [25] for an explicit calculation in the situation of several flat cusps.)

The roof function for the billiard flow is not bounded below and it can be
shown that the flow mixes faster than the billiard map (at least superpolynomially
quickly [6]). As a consequence of this, the standard CLT and WIP (and moreover the
almost sure invariance principle) hold for Hölder observables of the billiard flow [6].
The variance is typically nonzero.

Example 7.2 (Bunimovich stadia [9]) These are convex billiard domainsQ ⊂ R2

where ∂Q is a simple closed curve consisting of two semicircles C1, C2 of radius 1 and
two parallel line segments S1, S2 of length L tangent to the semicircles.

By Markarian [30], the billiard map f : X → X falls within the Young tower

framework of Section 4. Let Ĉj = Cj × (−π/2, π/2) ⊂ X, j = 1, 2, and set

Y =
(
Ĉ1 \ fĈ1

)
∪
(
Ĉ2 \ fĈ2

)
.

Then [30] verifies the Chernov axioms [11] showing that fY = fR : Y → Y is modelled
by a Young tower with exponential tails.

The first return time R : Y → Z+ decomposes into R = Rslide + Rbounce as
follows. Suppose x ∈ Ĉ1 \ fĈ1. The trajectory of x slides along the semicircle C1

for Rslide ≥ 0 iterates and then bounces between the line segments S1 and S2 for
Rslide ≥ 0 iterates before returning to Y . Similarly for x ∈ Ĉ2 \ fĈ2. Elementary
geometric arguments [5, 30] show that µ(Rbounce = n) ∼ cn−3 for some c > 0 and
µ(Rslide = n) = O(n−4). In particular, R ∈ Lp(Y ) for all p < 2 and Rslide ∈ Lp(Y ) for
all p < 3.

Let v : X → R be a dynamically Hölder observable and let V =
∑R−1

ℓ=0 v ◦ f j.
Define

Iv =
1

2L

∫
S1∪S2

v(q, 0) dq ;

this is the average of v over trajectories bouncing perpendicular to the straight edges.

Lemma 7.3 V = IvR +H where H ∈ L2+ϵ(Y ) for some ϵ > 0.

Proof This is [5, Line 1 of proof of Lemma 5.3]. In more detail, write V = Vslide +
Vbounce where

Vslide =

Rslide−1∑
ℓ=0

v ◦ f ℓ, Vbounce =
R−1∑

ℓ=Rslide

v ◦ f ℓ.

Using the Hölder continuity of v, we can view Vbounce as a Riemann sum approximating
the integral Iv to obtain

Vbounce = IvRbounce +O(R1−δ
bounce) = IvR +O(Rslide) +O(R1−δ),
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for some δ > 0. Clearly, |Vslide| ≤ |v|∞Rslide, so

V = IvR +H , |H| ≪ Rslide +R1−δ.

This completes the proof.

By the proof of [5, Theorem 1.1] (see in particular [5, page 504, line 11]), the first
return time R : Y → Z+ (denoted there by φ+) satisfies a nonstandard CLT with
variance σ2

R > 0. Since K = IvR is a scalar multiple of R, it is immediate that the
hypotheses of Theorem 4.2 are satisfied. We conclude that if Iv ̸= 0, then v satisfies
a nonstandard WIP with variance σ2 = R̄−1I2vσ

2
R; and if Iv = 0, then v satisfies a

typically nondegenerate standard CLT.
Next, we consider the billiard flow with roof function h. Given a Hölder observable,

we define vh : X → R and V : Y → R as in Theorem 5.1. Then V = K + H with
K = JvR and H = L2+ϵ(Y ) for some ϵ > 0 where

Jv =
1

2L

∫
S1∪S2

vh(q, 0) dq =
1

2L

∫
(S1∪S2)×[−π

2
,
π
2 ]
v dLeb .

Hence we obtain the nonstandard WIP (Jv ̸= 0) and the standard CLT (Jv = 0) for
the billiard flow by Theorem 5.1.

The CLTs are not new, so our contribution beyond [5] is the nonstandard WIP
for the billiard map and flow when Iv ̸= 0.

Remark 7.4 A further example of fundamental importance is the planar infinite
horizon Lorentz gas, for which the nonstandard WIP was studied extensively by [39].
In some sense, the situation is simpler than the other billiards examples, but the
observable of interest is the displacement function which is vector-valued. This raises
extra technical issues which we do not address here. (Our methods easily yield the
nonstandard WIP for components of the displacement function.)
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[27] D. Kelly and I. Melbourne. Smooth approximation of stochastic differential equa-
tions. Ann. Probab. 44 (2016) 479–520.

[28] Y. Lima, C. Matheus and I. Melbourne. Nonstandard limit theorems for geodesic
flows on surfaces with nonpositive curvature. In preparation, 2025.

[29] C. Liverani, B. Saussol and S. Vaienti. A probabilistic approach to intermittency.
Ergodic Theory Dynam. Systems 19 (1999) 671–685.

26



[30] R. Markarian. Billiards with polynomial decay of correlations. Ergodic Theory
Dynam. Systems 24 (2004) 177–197.

[31] D. L. McLeish. Dependent central limit theorems and invariance principles. Ann.
Probability 2 (1974) 620–628.

[32] I. Melbourne and A. Török. Statistical limit theorems for suspension flows. Israel
J. Math. 144 (2004) 191–209.

[33] I. Melbourne and P. Varandas. Convergence to a Lévy process in the Skorohod
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