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Abstract

We generalize the proof of Karamata’s Theorem by the method of approxi-
mation by polynomials to the operator case. As a consequence, we offer a simple
proof of uniform dual ergodicity for a very large class of dynamical systems with
infinite measure, and we obtain bounds on the convergence rate.

In many cases of interest, including the Pomeau-Manneville family of in-
termittency maps, the estimates obtained through real Tauberian remainder
theory are very weak. Building on the techniques of complex Tauberian re-
mainder theory, we develop a method that provides second (and higher) order
asymptotics. In the process, we derive a higher order Tauberian theorem for
scalar power series, which to our knowledge, has not previously been covered.

1 Introduction and main results

Suppose that (X,µ) is an infinite measure space and f : X → X is a conservative
measure preserving transformation with transfer operator L : L1(X) → L1(X). The
transformation f is pointwise dual ergodic if there exists a positive sequence an such
that a−1

n

∑n
j=0 L

jv →
∫
X
v dµ a.e. as n→∞, for all v ∈ L1(X). If furthermore, there

exists Y ⊂ X with µ(Y ) ∈ (0,∞) such that a−1
n

∑n
j=0 L

j1Y → µ(Y ) uniformly on Y ,
then Y is referred to as a Darling-Kac set (see Aaronson [2] for further background)
and we refer to f as uniformly dual ergodic. At present, it is an open question whether
every pointwise dual ergodic transformation has a Darling-Kac set. However, it is
desirable to prove pointwise dual ergodicity by identifying Darling-Kac sets, as this
facilitates the proof of several strong properties for f (see for instance [1, 2, 3, 5, 6,
41, 43, 45] and for the setting of Markov chains [8, 10, 32]; see also [9] and references
therein).
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1.1 Uniform dual ergodicity

An important class of examples is provided by interval maps with indifferent fixed
points (see for instance [40, 41, 45]). Standard examples are the family of Pomeau-
Manneville intermittency maps [37] which are uniformly expanding except for an
indifferent fixed point at 0. To fix notation, we focus on the version studied by
Liverani et al. [33]:

fx =

{
x(1 + 2αxα), 0 < x < 1

2

2x− 1, 1
2
< x < 1

. (1.1)

It is well known that for α ≥ 1, we are in the situation of infinite ergodic theory:
there exist a unique (up to scaling) σ-finite, absolutely continuous invariant measure
µ, and µ([0, 1]) =∞. Let β = 1/α. Using the standard procedure of inducing, several
studies established that Y = [1

2
, 1] is a Darling-Kac set for f with return sequence an

proportional to nβ for β ∈ (0, 1), and proportional to n/ log n for β = 1.
An important refinement is the limit theorem of Thaler [41] where the convergence

of a−1
n

∑n
j=0 L

jv is shown to be uniform on compact subsets of (0, 1] for all observables
of the form v = u/h where u is Riemann integrable and h is the density.

The results of [41] are formulated for Markov maps of the interval with indifferent
fixed points. This includes transformations with slowly varying return sequences, the
so called β = 0 case. One such example is

fx =

{
x(1 + xe−1/x), 0 < x < 1

2

2x− 1, 1
2
< x < 1

, (1.2)

with return sequence an proportional to log n (see [40]). Zweimüller [44, 45] relaxed
the Markov condition and systematically studied non-Markovian nonuniformly ex-
panding interval maps (so-called AFN maps). In particular, [44] obtained a spectral
decomposition into basic (conservative and ergodic) sets and proved that for each
basic set there is a σ-finite absolutely continuous invariant measure, unique up to
scaling. The results in [41] on uniform dual ergodicity were extended in [45] to the
class of AFN maps.

In this paper, we generalize the proof of Karamata’s Theorem by the elemen-
tary method of approximation by polynomials [27, 28] to the operator case. As a
consequence, we offer a simple proof of uniform dual ergodicity for a large class of
dynamical systems with infinite measure. This method of proof, combined with tech-
niques from [34], allows us to strengthen the results in [41, 45].

It is convenient to describe our first result in the setting of AFN maps f : X → X,
though it applies to much more general systems, as described in Section 3. Let
X ′ ⊂ X denote the complement of the indifferent fixed points. For any compact subset
A ⊂ X ′, the construction in [44] yields a suitable first return set Y containing A. Fix
such a set Y with first return time function ϕ : Y → Z+, ϕ(y) = inf{n ≥ 1 : fny ∈ Y }.
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We assume that the tail probabilities are regularly varying: µ(y ∈ Y : ϕ(y) > n) =
`(n)n−β where ` is slowly varying and β ∈ [0, 1].

For (1.1), `(n) is asymptotically constant and β = 1
α

. For (1.2), `(n) is asymptot-
ically proportional to 1/ log n and β = 0.

Define m(n) = `(n) for β ∈ [0, 1) and m(n) = ˜̀(n) =
∑n

j=1 `(j)j
−1 for β = 1. Set

Dβ = Γ(1− β)Γ(1 + β) for β ∈ (0, 1) and D0 = D1 = 1.

Theorem 1.1 Suppose that f : X → X is an AFN map with regularly varying
tail probabilities, β ∈ [0, 1]. Consider observables of the form v = ξu where ξ is
µ-integrable and bounded variation on X, and u is Riemann integrable. Then

lim
n→∞

a−1
n

n∑
j=0

Ljv =

∫
X

v dµ

uniformly on compact subsets of X ′, where an = D−1
β nβm(n)−1.

The proof of Theorem 1.1 is provided in Subsection 3.2.

Remark 1.2 Even in the case of AFN maps, the class of observables v is much larger
than in [41, 45]. We note that Theorem 1.1 follows from our earlier paper [34] when
β ∈ (1

2
, 1], but that the methods in [34] fail for β ∈ [0, 1

2
].

1.2 Convergence rates – real Tauberian theory

Karamata’s approximation by polynomials method (generalized to the operator case)
allows us to obtain convergence rates in Theorem 1.1 by mimicking the arguments used
in real Tauberian remainder theory (see for instance [31, Chapter VII] and references
therein). Below, we provide an example of such a theorem, restricting to the case of
(1.2), where the remainder is optimal. More general examples of Tauberian theorems
with remainders for positive operators are covered in Section 3.3. In particular,
Theorem 3.2(b) provides sharp remainders for a large class of dynamical systems in
the β = 0 case.

Theorem 1.3 Let f be defined by (1.2) and let h be the density for µ. Set c = 1
2
h(1

2
).

Suppose that v : [0, 1] → R is Hölder or bounded variation supported on a compact
subset of (0, 1]. Then

c

n∑
j=0

Ljv = log n

∫ 1

0

v dµ+O(1),

uniformly on compact sets of (0, 1].
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Theorem 1.3 is proved in Section 3.
In the situation of (1.1), we obtain the error term O(nβ/ log n) (see Theo-

rem 3.2(a)). The remainder in this case is not optimal (cf. [34, Corollary 9.3]).
However, this result is probably the best possible using methods from real Tauberian
theory, as discussed in Remark 3.8. Hence in the next subsection we turn to the
complex theory.

Remark 1.4 Since complex Tauberian theory yields optimal results in many situa-
tions where the real theory fails, it is natural to ask whether we could have bypassed
the real theory altogether. However, there are many situations where the real the-
ory yields optimal results that are not obviously amenable to the complex theory;
examples in this paper include the β = 0 case in Theorem 3.1 and Theorem 3.2(b) as
well as the case 0 < β < γ ≤ 1 in Theorem 3.2(a). (For the last result we note that
Theorem 4.1 gives a stronger result for 0 < β < γ via the complex theory, but relies
on an additional monotonicity hypothesis when γ ≤ 1.)

In situations where both theories apply (for example Theorem 3.1 for β ∈ (0, 1)),
it should be noted that the real theory is much more elegant and vastly simpler.

1.3 Higher order asymptotics – complex Tauberian theory

Building on the techniques of complex remainder theory for the scalar case (see Ko-
revaar [31, Chapter III.16]), we develop a method that provides higher order uniform
dual ergodic theorems for infinite measure preserving systems. For simplicity, in this
paper we focus on the typical case of (1.1), but as explained in the sequel, our method
applies to other cases of interest. Also, the case β = 1 of (1.1) has been fully un-
derstood in [34]; more general examples are considered in work in progress. Hence
higher order theory for the case of β = 1 is not considered in this paper.

Theorem 1.5 Let f be defined by (1.1) with β ∈ (0, 1). Suppose that v : [0, 1] → R
is Hölder or bounded variation supported on a compact subset of (0, 1].

Set k = max{j ≥ 0 : (j + 1)β − j > 0}. Let τ = 1 for β 6= 1
2

and τ = 2 for β = 1
2
.

Then

n∑
j=0

Ljv = (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k)

∫ 1

0

v dµ+O(logτn),

uniformly on compact subsets of (0, 1], where C0, C1, . . . are real nonzero constants
(depending only on f).

Theorem 1.5 is proved in Section 4.

Remark 1.6 In particular, when β > 1
2

we obtain the second order asymptotics

limn→∞ n
1−β(n−β

∑n
j=0 L

jv − C0

∫ 1

0
v dµ) = C1

∫ 1

0
v dµ.
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Remark 1.7 In [34], we obtained first and higher order asymptotics of the iterates
Ln but the methods require β > 1

2
. As a byproduct, we obtained a weakened version

of Theorem 1.5 with logτn replaced by n
1
2 . In particular, the second order asymptotics

result in Remark 1.6 is contained in [34] only for β > 3
4
.

In the process of proving Theorem 1.5, we obtain the following complex Tauberian
theorem with remainder, which to our knowledge has not been previously considered.
(See [13, Corollary 3] for a related result, but with more stringent hypotheses depen-
dent on asymptotics of Φ(z) as z → 1 from outside the unit circle.)

Theorem 1.8 Let Φ(z) =
∑∞

j=0 ujz
j be a convergent power series for |z| < 1 with

|uj| = O(1). Let 1 > γ1 > γ2 > · · · > γk > 0, where k ≥ 0. Write z = e−u+iθ, u > 0,
θ ∈ [0, 2π). Suppose that

Φ(z) =
k∑
r=1

Ar(u− iθ)−γr +O(1), as u, θ → 0

for A1, . . . , Ak real constants. Then

n∑
j=0

uj =
k∑
r=1

Ar
Γ(1 + γr)

nγr +O(log n).

Remark 1.9 Expressions of the form (u−iθ)−γ, γ > 0, occur throughout this paper.
In all instances, we have u > 0 and θ arbitrarily small, and (u− iθ)−γ simply denotes
the principal branch. In other words, writing u − iθ = reiψ with r ∈ (0, 1) and
ψ ∈ (−π, π), we define (u− iθ)−γ = r−γe−iγψ.

1.4 Renewal sequences

Theorem 1.8 has immediate applications to scalar renewal sequences with infinite
mean. To make this explicit we recall some basic background on scalar renewal
theory. For more details we refer the reader to [12, 9]. Let (Xi)i≥1 be a sequence
of positive integer-valued independent identically distributed random variables with
probabilities P (Xi = j) = fj. Define the partial sums Sn =

∑n
j=1Xj, and set u0 = 1

and un =
∑n

j=1 fjun−j, n ≥ 1. Then it is easy to see that un =
∑n

j=0 P (Sj = n). The
sequences (un)n≥0 are called renewal sequences.

The analysis of scalar renewal sequences with infinite mean relies crucially on
the assumption of regularly varying tails:

∑
j>n fj = `(n)n−β, where ` is slowly

varying and β ∈ [0, 1] (see [12, 9] and references therein). Then Karamata’s Tauberian
theorem yields

∑n
j=0 uj ∼ D−1

β nβm−1(n), where Dβ and m(n) are as defined above.
(For results on first order asymptotics for un we refer to [9, 11, 15].)

A natural problem is to consider higher order expansions of
∑n

j=0 uj. Suppose

for example that
∑

j>n fj = cn−β + b(n) + c(n), where b(n) = O(n−2β) and c(n) is
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summable. If β ≤ 1/2, assume further that b(n) is monotone. Set k = max{j ≥ 0 :
(j+1)β− j > 0}. It follows from the methods in this paper (specifically Theorem 1.8
together with a scalar version of Lemma 2.5), that

n∑
j=0

uj = (C0n
β + C1n

2β−1 + C2n
3β−2 + · · ·+ Ckn

(k+1)β−k) +O(logτn),

where C0, C1, . . . are real nonzero constants and τ = 1 for β 6= 1
2
, τ = 2 for β = 1

2
.

Our method for proving uniform dual ergodic theorems centres around an operator
version of renewal sequences. Let (X,µ) be a measure space (finite or infinite), and
f : X → X a conservative measure preserving map. Fix Y ⊂ X with µ(Y ) ∈ (0,∞).
Let ϕ : Y → Z+ be the first return time ϕ(y) = inf{n ≥ 1 : fny ∈ Y } (finite almost
everywhere by conservativity). Let L : L1(X)→ L1(X) denote the transfer operator
for f and define

Tn = 1YL
n1Y , n ≥ 0, Rn = 1YL

n1{ϕ=n}, n ≥ 1.

Thus Tn corresponds to un (returns to Y ) and Rn corresponds to fn (first returns).
The relationship Tn =

∑n
j=1 Tn−jRj generalises the notion of scalar renewal sequences.

Operator renewal sequences were introduced by Sarig [38] to study lower bounds
for mixing rates associated with finite measure preserving systems, and this tech-
nique was substantially extended and refined by Gouëzel [18, 19]. The authors [34]
developed a theory of renewal operator sequences for dynamical systems with infi-
nite measure, generalizing the results of [15, 11] to the operator case. This method
yields asymptotics for Lnv, and mixing rates, for a large class of systems including
those in Theorem 1.1 (in particular (1.1)) for β ∈ (1

2
, 1]. It is known [15] that such

results cannot hold in this generality for β ≤ 1
2
. Under the additional hypothesis

µ(ϕ = n) = O(`(n)n−(β+1)) which is satisfied by (1.1), Gouëzel [21] obtains asymp-
totics (but not mixing rates) for Lnv for all β ∈ (0, 1).

The uniform dual ergodic theorems proved in this paper follow from an operator
version of Theorem 1.8, namely Theorem 4.1.

The rest of the paper is organised as follows. In Section 2, we describe the general
framework for our results on the renewal operators Tn. In Section 3, we generalize
the proof of Karamata’s Theorem by the elementary method of approximation by
polynomials and obtain uniform dual ergodic theorems with remainders for a large
class of dynamical systems with infinite measure. Section 4 is devoted to higher order
uniform dual ergodic theorems for a large class of systems. Appendix A contains the
proof of several technical results stated in Section 2. Appendix B contains compu-
tations of some complex contour integrals. In Appendix C, we provide explicit tail
probabilities for (1.1) and (1.2).

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn as n→∞ if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.
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2 General framework

Let (X,µ) be an infinite measure space, and f : X → X a conservative measure
preserving map. Fix Y ⊂ X with µ(Y ) = 1. Let ϕ : Y → Z+ be the first return time
ϕ(y) = inf{n ≥ 1 : fny ∈ Y } and define the first return map F = fϕ : Y → Y .

The return time function ϕ : Y → Z+ satisfies
∫
Y
ϕdµ =∞. We require that

µ(y ∈ Y : ϕ(y) > n) = `(n)n−β where ` is slowly varying and β ∈ [0, 1].

Recall that the transfer operator R : L1(Y ) → L1(Y ) for the first return map
F : Y → Y is defined via the formula

∫
Y
Rv w dµ =

∫
Y
v w ◦ F dµ, w ∈ L∞(Y ).

Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄, we define
R(z) : L1(Y )→ L1(Y ) to be the operator R(z)v = R(zϕv). Also, for each n ≥ 1, we
define Rn : L1(Y )→ L1(Y ),

Rnv = 1YR(1{ϕ=n}v) = R(1{ϕ=n}v).

It is easily verified that R(z) =
∑∞

n=1Rnz
n.

Our assumptions on the first return map F : Y → Y are functional-analytic. We
assume that there is a function space B ⊂ L∞(Y ) containing constant functions, with
norm ‖ ‖ satisfying |v|∞ ≤ ‖v‖ for v ∈ B, such that

(H1′) Rn : B → B are bounded linear operators satisfying
∑∞

n=1 ‖Rn‖ <∞.

It follows that z 7→ R(z) is an analytic family of bounded linear operators on B
for z ∈ D, and that this family extends continuously to D̄. Since R(1) = R and B
contains constant functions, 1 is an eigenvalue of R(1). Throughout, we assume:

(H2) The eigenvalue 1 is simple and isolated in the spectrum of R(1), and the spec-
trum of R(z) does not contain 1 for all z ∈ D.

In particular z 7→ (I − R(z))−1 is an analytic family of bounded linear operators on
B for z ∈ D. Define Tn : L1(Y ) → L1(Y ) for n ≥ 0 and T (z) : L1(Y ) → L1(Y ) for
z ∈ D̄ by setting

Tnv = 1YL
n(1Y v), T (z) =

∞∑
n=0

Tnz
n.

(Here, T0 = I.) We have the usual relation Tn =
∑n

j=1 Tn−jRj for n ≥ 1, and it follows

that T (z) = I + T (z)R(z) on D. Hence the renewal equation T (z) = (I − R(z))−1

holds for z ∈ D. In particular T (z) =
∑∞

n=0 Tnz
n is analytic on D.

In Section 3, we prove that uniform dual ergodicity holds under (H1′) and (H2).
However, remainders and higher order theory require an improved version of (H1′).
For simplicity, we will assume (H1) below, though many results can be obtained under
weaker assumptions.

(H1) There is a constant C > 0 such that ‖Rn‖ ≤ Cµ(ϕ = n) for all n ≥ 1.
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Remark 2.1 In [34], we studied the asymptotics of the iterates Ln under conditions
(H1) and (H2) together with an aperiodicity assumption (H2(ii) in [34]). Moreover,
generally the existence of an asymptotic expression for Ln requires β > 1

2
. Uniform

dual ergodicity deals with the asymptotics of
∑n

j=0 L
j, and we prove in this paper

that conditions (H1′) and (H2) suffice, with no restriction on β.

2.1 Asymptotics of T (z) on D
Under an aperiodicity assumption, we obtained in [34] the asymptotics of Tn by
estimating the Fourier coefficients of T (eiθ). The asymptotic expansion of T (eiθ) as
θ → 0 is a key ingredient of the argument in [34].

The corresponding key ingredients for the results in this paper are the asymptotic
expansion of T (e−u) as u → 0+ (u real) for first order uniform dual ergodicity with
remainders, and the asymptotic expansion of T (z) as z → 1 (z ∈ D) for higher order
results.

We recall the first order asymptotics of T (e−u) from [34]. Denote the spectral
projection corresponding to the simple eigenvalue 1 for R by Pv =

∫
Y
v dµ.

Proposition 2.2 ([34, Proposition 7.1]) Assume (H1′) and (H2). Suppose that
µ(ϕ > n) = `(n)n−β where ` is slowly varying and β ∈ [0, 1]. Define ˜̀(n) =∑n

j=1 `(j)j
−1. Then

T (e−u) ∼

{
˜̀( 1
u
)−1u−1P, β = 1,

Γ(1− β)−1`( 1
u
)−1u−βP, β ∈ [0, 1),

as u→ 0+. (Recall that A(x) ∼ c(x)A for bounded linear operators A(x), A : B → B
if ‖A(x)− c(x)A‖ = o(c(x)).)

Remark 2.3 [34, Proposition 7.1] does not contain the case β = 0, but the proof
in [34] is easily extended to this case.

We now state three results that are proved in Appendix A. The next lemma
provides the first order expansion of T (z) for z ∈ D.

Lemma 2.4 Assume (H1′) and (H2). Suppose that µ(ϕ > n) = `(n)n−β where ` is
slowly varying and β ∈ (0, 1). Write z = e−u+iθ, u > 0. Then

Γ(1− β)T (z) ∼ `(1/|u− iθ|)−1(u− iθ)−βP, as z → 1.

Assuming (H1) and the existence of a good remainder in the tail probabilities
µ(ϕ > n), one can also obtain higher order asymptotics (or asymptotics with remain-
der) of T (z) (see [34] for higher order expansions of T (eiθ)).
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Lemma 2.5 Assume (H1) and (H2) and let β ∈ (0, 1). Suppose that µ(ϕ > n) =
c(n−β +H(n)), where c > 0 and H(n) = O(n−2β).

If β ∈ (1
2
, 1), set cH = −Γ(1 − β)−1

∫∞
0
H1(x) dx, where H1(x) = [x]−β − x−β +

H([x]). Let k = max{j ≥ 0 : (j + 1)β − j > 0}. Then writing z = e−u+iθ, u > 0,

cΓ(1− β)T (z) =
(

(u− iθ)−β + cH(u− iθ)1−2β + · · ·+ ckH(u− iθ)k−(k+1)β
)
P +O(1).

If β ∈ (0, 1
2
], we assume further that H(n) = b(n) + c(n) where b(n) is monotone

with b(n) = O(n−2β) and c(n) is summable. Then

cΓ(1− β)T (z) = (u− iθ)−βP +D(z),

where D(z) = O(1) for β < 1
2

and D(z) = O(log 1
|u−iθ|) if β = 1

2
.

Finally, we state two results about higher order expansions of T (e−u) that go
beyond the situations covered for T (z) above. We recall the following definition
introduced by de Haan [22] (see also [9, Chapter 3]):

Definition 2.6 ([22]) A measurable function f on (0,∞) is in the class OΠL for some
slowly varying function L if for any α ≥ 0, |f(αx)− f(x)| = O(L(x)) as x→∞.

For example, if f(x) = logp x, p ∈ R, then f ∈ OΠL with L = logp−1 x.

Lemma 2.7 Assume (H1) and (H2).

(a) Suppose that µ(ϕ > n) = cn−β +O(n−γ) where c > 0, 0 < β < γ < 1. Then

cΓ(1− β)T (e−u) =
(
u−β +O(uγ−2β)

)
P +O(1), u ∈ [0, 1]

(b) Let `, ˆ̀ be slowly varying functions such that `(x) → ∞ as x → ∞, with `, ˆ̀,
ˆ̀−1 locally bounded on [0,∞), and such that ` ∈ OΠˆ̀. Suppose that µ(ϕ > n) =

`(n)−1 +O(`(n)−2 ˆ̀(n)). Then

T (e−u) =
(
`(1/u) +O(ˆ̀(1/u)

)
P +O(1), u ∈ [0, 1].

Remark 2.8 The proof of Theorem 1.1 uses Proposition 2.2, and the convergence
rates in Theorem 1.3 (and related results) rely on Lemma 2.7. Lemma 2.5 is required
for the asymptotic expansion in Theorem 1.5.

Lemma 2.4 is included because it is clearly an interesting result in its own right
even though we do not make explicit use of it in this paper. We note that a proof
of Theorem 1.1 for β > 0 can be based on Lemma 2.4 via the methods in Section 4.
However, the proof in Section 3.1 is more elegant. Also, under an aperiodicity as-
sumption, it is immediate from Lemma 2.4 that the Fourier coefficients of T (eiθ)
coincide with the Tn, bypassing the tedious calculation in [34, Section 4].
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3 Uniform dual ergodicity with remainders

In this section, we prove uniform dual ergodicity under hypotheses (H1′) and (H2).
Assuming (H1) and (H2) and imposing further conditions on the tail probabilities,
we obtain remainders in the implied convergence.

Recall that m(n) = `(n) for β ∈ [0, 1), m(n) = ˜̀(n) =
∑n

j=1 `(j)j
−1 for β = 1,

Dβ = Γ(1−β)Γ(1+β) for β ∈ (0, 1) and D0 = D1 = 1. The first result of this section
reads as

Theorem 3.1 Assume (H1′) and (H2). Suppose µ(ϕ > n) = `(n)n−β, where ` is
slowly varying and β ∈ [0, 1]. Then

lim
n→∞

Dβm(n)n−β
n∑
j=0

Ljv =

∫
Y

v dµ,

uniformly on Y for all v ∈ B.

The proof of Theorem 3.1 is provided in Subsection 3.1; it relies on a version of
Karamata’s Tauberian Theorem that gives uniform convergence for positive operators.
This is the content of Lemma 3.5. In Subsection 3.2, we show that Theorem 3.1
extends to a large class of observables supported on the whole of X and we prove
Theorem 1.1.

The proof of Lemma 3.5 combined with arguments used in [31, Theorems 3.1
and 3.2, Chapter VII] allows us to obtain uniform dual ergodic theorems with re-
mainders. Our next result provides an example.

Theorem 3.2 Assume (H1) and (H2). Let v ∈ B.

(a) If µ(ϕ > n) = cn−β +O(n−γ), where c > 0, β ∈ (0, 1) and γ > β, then

cDβn
−β

n∑
j=0

1YL
jv =

∫
Y

v dµ+ Env, ‖En‖ = O(1/ log n).

(b) Let `, ˆ̀ be slowly varying functions such that `(x) → ∞ as x → ∞, with `,
ˆ̀, ˆ̀−1 locally bounded on [0,∞), and such that ` ∈ OΠˆ̀. If µ(ϕ > n) =

`(n)−1 +O(`(n)−2 ˆ̀(n)), then
n∑
j=0

1YL
jv = {`(n) +O(ˆ̀(n))}

∫
Y

v dµ+ Env, ‖En‖ = O(1).

Theorem 3.2 is proved in Subsection 3.3.

Proof of Theorem 1.3 Choose Y as in Proposition C.2 so that µ(ϕ > n) =
c log−1 n + O(log−2 n). Take B to consist of Hölder or BV functions supported on
Y as appropriate. In the notation of Theorem 3.2(b), we have `(n) = c−1 log n and
ˆ̀= 1. Hence the result follows from Theorem 3.2(b).
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3.1 A Karamata Theorem for positive operators

Let T (e−u) =
∑∞

j=0 Tje
−uj, u > 0, where Tj : B → B are uniformly bounded positive

operators. Let P : B → B be a bounded linear operator.

Proposition 3.3 Suppose that T (e−u) ∼ L(1/u)u−βP as u → 0+ where β > 0 and
L is slowly varying. Let q : [0, 1]→ R be a polynomial satisfying q(0) = 0. Then

Γ(1 + β)
∞∑
j=0

Tjq(e
−uj) ∼ L(1/u)u−β

∫ ∞
0

q(e−t) dtβ P as u→ 0+,

where ∼ is in the sense of the operator norm for operators on B.

Proof First note that
∫∞

0
e−y dyβ = Γ(1 + β), and so for any k > 0,

T (e−ku) ∼ L(1/u)(ku)−βP = (Γ(1 + β))−1L(1/u)u−β
∫ ∞

0

e−kt dtβ P.

Write q(x) =
∑m

k=1 bkx
k. Then

∞∑
j=0

Tjq(e
−uj) =

m∑
k=1

bk

∞∑
j=0

Tje
−ukj =

m∑
k=1

bkT (e−ku)

∼ (Γ(1 + β))−1L(1/u)u−β
m∑
k=1

bk

∫ ∞
0

e−kt dtβ P

= (Γ(1 + β))−1L(1/u)u−β
∫ ∞

0

q(e−t) dtβ P.

Proposition 3.4 Define g : [0, 1] → [0, 1], g = 1[e−1,1]. Let ε > 0. Then there is a
polynomial q with q(0) = 0 such that q ≥ g on [0, 1] and∫ 1

0

(q(x)− g(x))x−3/2 dx < ε.

Proof We follow the argument starting at the bottom of page 21 in [31]. Choose
δ > 0 such that δ < (2e)−1 and δ < ((2e)3/2 + 4)−1ε. Let h : [0, 1] → [0, 1] be the
continuous function that (i) coincides with g except on the interval J = [e−1− δ, e−1],
and (ii) is linear on the interval J . By the Weierstrass approximation theorem,
there is a polynomial R that δ-approximates the continuous function x−1h(x) + δ on

[0, 1]. Then q(x) = xR(x) satisfies q(0) = 0 and q(x) ≥ h ≥ g. Also
∫ 1

0
(h(x) −

g(x))x−3/2 dx ≤ (2e)3/2δ and
∫ 1

0
(q(x) − h(x))x−3/2 dx ≤ 2δ

∫ 1

0
x−1/2 dx = 4δ. The

result follows.
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Lemma 3.5 Suppose that T (e−u) ∼ L(1/u)u−βP as u → 0+ where β ≥ 0 and L is
slowly varying. Then

lim
n→∞

Γ(1 + β)L(n)−1n−β
n∑
j=0

Tjv = Pv,

uniformly on Y for all v ∈ B.

Proof First, we consider the case β > 0.
Without loss, we may suppose that v ≥ 0. Define g = 1[e−1,1], and given ε > 0

choose q as in Proposition 3.4. By positivity of the operators Tj and Proposition 3.3,

n∑
j=0

Tj =
∞∑
j=0

Tjg(e−j/n) ≤
∞∑
j=0

Tjq(e
−j/n) ∼ (Γ(1 + β))−1L(n)nβ

∫ ∞
0

q(e−t) dtβ P,

as n → ∞. More precisely, there exists h0(n) = o(1) as n → ∞ such that for any
v ∈ B, v ≥ 0, and any y ∈ Y ,

n∑
j=0

(Tjv)(y) ≤ (Γ(1 + β))−1L(n)nβ
∫ ∞

0

q(e−t) dtβ
(

(Pv)(y) + h0(n)‖v‖
)
.

But ∫ ∞
0

q(e−t) dtβ =

∫ ∞
0

g(e−t) dtβ +

∫ ∞
0

(q(e−t)− g(e−t)) dtβ

= 1 +

∫ 1

0

(q(x)− g(x))β(log x−1)β−1x−1 dx

≤ 1 + C

∫ 1

0

(q(x)− g(x))x−3/2 dx < 1 + Cε,

where C is a constant depending only on β. Hence,

Γ(1 + β)L(n)−1n−β
n∑
j=0

(Tjv)(y) ≤ (1 + Cε)((Pv)(y) + h0(n)‖v‖).

The reverse inequality is proved in the same way, and ε is arbitrary completing the
proof for β > 0.

Finally, we indicate the differences when β = 0. The conclusion of Proposition 3.3
is replaced by

∞∑
j=0

Tjq(e
−uj) ∼ L(1/u)q(1)P as u→ 0+.

12



Let q(x) = −7x2 + 8x. Then q(0) = 0, q(1) = 1, and q ≥ g on [0, 1]. Hence

n∑
j=0

Tj =
∞∑
j=0

Tjg(e−j/n) ≤
∞∑
j=0

Tjq(e
−j/n) ∼ L(n)q(1)P = L(n)P.

For the reverse direction, take q(x) = 2x2 − x so that q(0) = 0, q(1) = 1, and q ≤ g
on [0, 1].

Proof of Theorem 3.1 This follows immediately from Proposition 2.2 and
Lemma 3.5.

3.2 Uniform dual ergodic theorems for general observables

Theorem 3.1 establishes uniform dual ergodicity for observables v ∈ B. In particular,
it is required that v is supported on Y . However, it is straightforward to gener-
alise [34, Theorem 10.4], and thereby prove uniform dual ergodicity for a large class
of observables supported on the whole of X.

Let Xk = f−kY \ ∪k−1
j=0f

−jY . Thus, z ∈ Xk if and only if k ≥ 0 is the smallest k

such that fkz ∈ Y . (In particular, X0 = Y .) Given v ∈ L∞(X), define vk = 1Xkv.
Let B(X) consist of functions v ∈ L1(X) satisfying Lkvk ∈ B for each k ≥ 0.

Theorem 3.6 Assume the set up of Theorem 3.1. Let v ∈ B(X) and suppose that∑
‖Lkvk‖ <∞. Then

lim
n→∞

Dβm(n)n−β
n∑
j=0

Ljv =

∫
X

v dµ, uniformly on Y .

Proof Set an = D−1
β m(n)−1nβ. By Theorem 3.1,

∑n
j=0 Tj = anP + Dn, where

‖Dn‖ = o(an). On Y ,

n∑
j=0

Ljv =
n∑
j=0

j∑
k=0

Tj−kL
kvk =

n∑
k=0

n−k∑
j=0

TjL
kvk.

Thus,∥∥∥a−1
n

n∑
j=0

Ljv −
∫
X

v dµ
∥∥∥� ∥∥∥a−1

n

n∑
k=0

an−k

∫
X

Lkvk dµ−
n∑
k=0

∫
X

vk dµ
∥∥∥

+ a−1
n

n∑
k=0

‖Dn−k‖‖Lkvk‖+
∑
k>n

∫
X

|vk| dµ

13



≤
n∑
k=0

∣∣∣an−k
an
− 1
∣∣∣ ∫

X

|vk| dµ+
n∑
k=0

a−1
n ‖Dn−k‖‖Lkvk‖+

∑
k>n

∫
X

|vk| dµ.

Clearly, the last term converges to zero. Moreover, limn→∞(a−1
n an−k − 1) = 0, for

each k. Since we also know that
∫
X
vk dµ is summable, the first term converges to

zero. Finally, limn→∞ a
−1
n ‖Dn−k‖ = 0, for each k. This together with the summability

of ‖Lkvk‖ shows that the second term converges to zero, ending the proof.

Proof of Theorem 1.1 We modify the proof of [34, Theorem 11.5]. Without loss,
choose Y such that f(Y ) = X. Suppose first that v : X → R is µ-integrable and
BV. As noted in [34, Section 11.3], the space B = BV (Y ) is a suitable Banach space.
In particular, hypotheses (H1) and (H2) are satisfied and moreover

∑
‖Lkvk‖ <∞.

Hence the hypotheses of Theorem 3.6 are satisfied and we obtain a uniform dual
ergodic theorem for such v. Finally, given v of the required form v = ξu, we ap-
proximate u from above and below by BV functions u±. Then v is approximated
from above and below by observables v± = ξu± for which uniform convergence on
compact sets of X ′ holds. But

∫
(v+ − v−) can be made arbitrarily small and the

result follows.

3.3 Remainders in the uniform convergence

The proof of Theorem 3.2 relies on the following Tauberian remainder theorem for
positive operators. Let T (e−u), P be bounded linear operators on B, u ∈ (0, 1).

Lemma 3.7 (a) Let β > 0, β̂ < β. Suppose that T (e−u) = u−βP +D(u) as u→ 0+,

where ‖D(u)‖ = O(u−β̂). Then

Γ(1 + β)
n∑
j=0

Tj = nβP + En, ‖En‖ = O(nβ/ log n).

(b) Let `, ˆ̀ be slowly varying functions such that `(x)→∞ as x→∞ and ` ∈ OΠˆ̀.

Suppose that T (e−u) = {`(1/u) + O(ˆ̀(1/u))}P + D(u) as u → 0+, where ‖D(u)‖ =
O(1). Then

n∑
j=0

Tj = (`(n) +O(ˆ̀(1/n))P + En, ‖En‖ = O(1).

Proof We mimic the arguments used in the proof of [31, Theorem 3.1, Chapter VII].
Define g : [0, 1]→ [0, 1], g = 1[e−1,1]. By [31, Theorem 3.4, Chapter VII] (see also [29,
30]), there exist constants m0 ≥ 1, C1 > 0, C2 > 1, and for every m ≥ m0 there exist
real polynomials qjm(x) =

∑m
k=1 b

j
kmx

k, j = 1, 2, such that

(i) q1
m(x) ≤ g(x) ≤ q2

m(x), 0 ≤ x ≤ 1.
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(ii)
∫∞

0
(q2
m(e−t)− q1

m(e−t)) dtβ ≤ C1/m.

(iii)
∑m

k=1 |b
j
km| ≤ Cm

2 for j = 1, 2.

Proceeding as in the proof of Lemma 3.5, in case (a), we have

n∑
j=0

Tj =
∞∑
j=0

Tjg(e−j/n) ≤
∞∑
j=0

Tjq
2
m(e−j/n) =

m∑
k=1

b2
kmT (e−k/n)

= nβ
m∑
k=1

b2
kmk

−βP +
m∑
k=1

b2
kmD(k/n).

Moreover,

Γ(1 + β)
m∑
k=1

b2
kmk

−β =
m∑
k=1

b2
km

∫∞
0
e−kt dtβ =

∫∞
0
q2
m(e−t) dtβ

= 1 +
∫∞

0
(q2
m(e−t)− g(e−t)) dtβ.

Hence

Γ(1 + β)n−β
n∑
j=0

Tj ≤ P +
∫∞

0
(q2
m(e−t)− g(e−t)) dtβP + Γ(1 + β)n−β

m∑
k=1

b2
kmD(k/n).

By property (i) and (ii) above,
∫∞

0
(q2
m(e−t) − g(e−t)) dtβ ≤ C1/m. By property (iii)

and the hypothesis on D(u),∥∥∥ m∑
k=1

b2
kmD(k/n)

∥∥∥� nβ̂
m∑
k=1

k−β̂|b2
km| ≤ nβ̂

m∑
k=1

|b2
km| ≤ Cm

2 n
β̂.

Hence, taking m = δ log n with δ sufficiently small, we have Γ(1+β)n−β
∑n

j=0 Tj−P ≤
Hn where ‖Hn‖ � 1/ log n. Repeating the argument with q1

m instead of q2
m, we obtain

the inequality in the reverse direction.
In case (b), we use two fixed polynomials qj(x) =

∑m
k=1 b

j
kx

k, j = 1, 2 as in the
proof of Lemma 3.5, so that q1 ≤ g ≤ q2 in [0, 1] and qj(0) = 0, qj(1) = 1. Write
T (e−u) = {`(1/u) + h(u)}P +D(u) as u→ 0+, where h(u) = O(ˆ̀(1/u)). Then

n∑
j=0

Tj ≤
m∑
k=1

b2
k`(n/k)P +

m∑
k=1

b2
kh(k/n)P +

m∑
k=1

b2
kD(k/n)

= `(n)
m∑
k=1

b2
kP +

m∑
k=1

b2
k(`(n/k)− `(n))P +

m∑
k=1

b2
kh(k/n)P +Hn

= `(n)P +O(ˆ̀(n))P +Hn,
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where ‖Hn‖ = O(1). The reverse inequality is obtained by repeating the argument
with q1 instead of q2.

Proof of Theorem 3.2 This is immediate from Lemma 2.7 and Lemma 3.7.

Remark 3.8 As mentioned in the introduction, it seems unlikely that the apparently
weak estimate in Theorem 3.2(a) can be improved using methods from real Tauberian
theory. We explain this now within the context of the classical scalar theory.

The method of approximation by polynomials links information about the asymp-
totics of real power series Φ(s) =

∑∞
n=0 une

−ns as s → 0+, to asymptotics of the
partial sums

∑n
j=0 uj as n → ∞ (see Korevaar [31, Chapters I and VII]). Freud [14]

refined Karamata’s method and obtained error estimates of the type described in
Theorem 3.2(a). Within the context of real power series, the Freud remainder terms
are optimal. For example, suppose that the coefficients un are non-negative and
Φ(s) = s−β + O(s−γ) as s → 0+, where β > 0 and γ < β. By Ingham [25] and
Korevaar [29, 30], the best possible result for the asymptotics of the partial sums is∑n

j=0 uj = nβ +O(nβ/ log n) as n→∞.
More generally, Tauberian theorems relate the asymptotics of a nondecreasing

function U(x) as x → ∞ with the asymptotics of the Laplace transform Û(s) =∫∞
0
e−sx dU(x) as s→ 0+. Improved remainder theorems can be obtained by impos-

ing further conditions on U(x) (see for instance [7, 16, 17, 23, 26, 36]; see also [9,
Chapter 3] and references therein). However, such conditions on U are not appropri-
ate in the context of dynamical systems.

4 Higher order asymptotics

In this section, we prove a result on higher order asymptotics in the uniform dual
ergodic theorem. Throughout, we assume (H1) and (H2), and that µ(ϕ > n) =
c(n−β +H(n)), where β ∈ (0, 1), c > 0 and H(n) = O(n−2β). If β ∈ (0, 1

2
], we assume

further that H(n) = b(n) + c(n) where b(n) is monotone with b(n) = O(n−2β) and
c(n) is summable.

Recall H1(x) = [x]−β−x−β+H([x]). For β ∈ (1
2
, 1), cH = −Γ(1−β)−1

∫∞
0
H1(x) dx

and we set dk = ckH/Γ
(
(k + 1)β − (k − 1)

)
for k ≥ 0.

Theorem 4.1 Let k = max{j ≥ 0 : (j + 1)β − j > 0} Then for all v ∈ B,

cΓ(1− β)
n∑
j=0

Tjv = (d0n
β + d1n

2β−1 + d2n
3β−2 + · · ·+ dkn

(k+1)β−k)

∫
Y

v dµ+ Env,

where |Env|∞ ≤ C(logτn)|v|∞, C constant, and τ = 1 for β 6= 1
2
, τ = 2 for β = 1

2
.

Proof of Theorem 1.5 Choose Y as in Proposition C.1. The result follows from
Theorem 4.1 and Proposition C.1.
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In the remainder of this section, we prove Theorem 4.1. The following result can
be found in Korevaar [31, Proposition 16.1, Chapter III], see also [39].

Lemma 4.2 Let p ∈ N fixed and let 0 < r < 1. Then for all α ∈ (0, 1] with
1− r ≤ α/4 and for m ∈ Z, the following holds:∫ α

−α

(eiθ − eiα)p(eiθ − e−iα)p

1− reiθ
eimθ dθ

=

O
(

α2p

αp|m|p+1

)
, m ≥ −(2p− 1)

2πr−(2p+m)(1− 2r cosα + r2)p +O
(

α2p

αp|m|p+1

)
, m ≤ −2p

(4.1)

where the implied constants are independent of r, α,m.

Recall that T (z) =
∑∞

j=0 Tjz
j for |z| < 1. An immediate consequence of the above

proposition is

Corollary 4.3 (cf [31, Corollary 16.2, Chaper III]) Let p ∈ N be fixed. Then
for all r ∈ (0, 1), α ∈ (0, 1] with 1− r ≤ α/4, and n ≥ 2p,

2πrn−2p(1− 2r cosα + r2)p
n−2p∑
j=0

Tj =

∫ α

−α

T (reiθ)

1− reiθ
(eiθ − eiα)p(eiθ − e−iα)pe−inθdθ +B,

where B : L∞(Y ) → L∞(Y ) is an operator satisfying |B|∞ ≤ C
∑∞

j=0
rjα2p

αp|j−n|p+1
and

C is a constant depending only on p.

Proof Following exactly the same proof as that in the scalar case [31, Corollary 16.2,
Chapter III], we obtain the formula above, where the operator B satisfies |B|∞ ≤
C
∑∞

j=0
|Tj |∞rjα2p

αp|j−n|p+1
. Since Tj = 1YL

j1Y and L : L∞(X) → L∞(X) has norm 1, it

follows that |Tj|∞ ≤ 1 for all j yielding the required result.

Below we collect some useful tools for the proof of Theorem 4.1.

Proposition 4.4 Let θ ∈ [−π/2, π/2]. Then |1 − e−1/neiθ|−1 � n and |1 −
e−1/neiθ|−1 � 1/|θ|.

Proof To obtain the first estimate, we use the fact that |1 − e−1/neiθ| ≥ Re(1 −
e−1/neiθ) ≥ 1− e−1/n. Hence, |1− e−1/neiθ|−1 � n.

To obtain the second estimate, we use the fact that |1 − e−1/neiθ| ≥ | Im(1 −
e−1/neiθ)| = e−1/n| sin θ| � |θ|. Hence, |1− e−1/neiθ|−1 � 1/|θ| .

Proposition 4.5 Fix ε > 0. Let A(n) := 1 − 2e−1/n cos ε + e−2/n. Let A(θ) := 1 −
2eiθ cos ε+e2iθ for θ ∈ [−π, π]. Then |A−1(n)| = O(1) and |A2(θ)−A2(n)| � |θ|+1/n,
uniformly in θ.

17



Proof Write A(n) = (1− e−1/neiε)(1− e−1/ne−iε) and A(θ) = (eiθ − eiε)(eiθ − e−iε).
Setting θ = ±ε in Proposition 4.4 yields the estimate for A−1(n). Next, note

that A(θ) − A(n) = (eiθ − e−1/n)(eiθ + e−1/n − 2 cos ε) and hence |A2(θ) − A2(n)| =
|(A(θ) + A(n))(A(θ)− A(n))| � |A(θ)− A(n)| � |eiθ − e−1/n| � |θ|+ 1/n.

Proof of Theorem 4.1 We work out the implications of Corollary 4.3. Fix p = 2,
and α = ε where ε > 0 is fixed sufficiently small that Lemma 2.4 holds on D̄ ∩Bε(1).
Let r = e−1/n (in particular, the constraint 1− r ≤ α/4 is satisfied), and write

2π

e
e4/nA2(n)

n−4∑
j=0

Tj =

∫ ε

−ε

T (e−1/neiθ)

1− e−1/neiθ
A2(θ)e−inθ dθ +B, (4.2)

where

|B|∞ �
∞∑
j=0

ε4

ε2(j − n)2 + 1
�

∞∑
j=0

|Tjv|∞
(j − n)2 + 1

<∞.

By Proposition 4.5, A−2(n) = O(1) so multiplying (4.2) by A−2(n), we have

2π

e
e4/n

n−4∑
j=0

Tj =

∫ ε

−ε

T (e−1/neiθ)

(1− e−1/neiθ)

A2(θ)

A2(n)
e−inθ dθ +B1 = I +B1, (4.3)

where |B1|∞ <∞.
Next, write

I =

∫ ε

−ε

T (e−1/neiθ)

1− e−1/neiθ
e−inθ dθ +

∫ ε

−ε

T (e−1/neiθ)

1− e−1/neiθ
A2(θ)− A2(n)

A2(n)
e−inθ dθ = J +H.

We first estimate H. Put F (θ, n) := T (e−1/neiθ)(1 − e−1/neiθ)−1A−2(n)(A2(θ) −
A2(n)). Recall that ‖T (e−1/neiθ)‖ � | 1

n
− iθ|−β � nβ. By Proposi-

tion 4.4, |1 − e−1/neiθ|−1 � n. This together with Proposition 4.5 implies that

‖1[−1/n,1/n]F (θ, n)‖ � nβ. Thus, ‖
∫ 1/n

−1/n
F (θ, n) dθ‖ � nβ−1.

By Proposition 4.4, |1 − e−1/neiθ|−1 � 1/|θ|. Hence, ‖T (e−1/neiθ)(1 −
e−1/neiθ)−1‖ � |θ|−(β+1). This together with Proposition 4.5 implies that
‖1aF (θ, n)‖ � |θ|−β, where a := [−ε,−1/n] ∪ [1/n, ε]. Thus, ‖

∫
a
F (θ, n) dθ‖ �∫

a
|θ|−β dθ � 1. Putting the two estimates together, we have ‖H‖ = O(1).

Next, we estimate J . Since (1− e−1/neiθ)−1 = ( 1
n
− iθ)−1(1 +O(| 1

n
− iθ|)),

J =

∫ ε

−ε

T (e−1/neiθ)
1
n
− iθ

e−inθ dθ +

∫ ε

−ε
T (e−1/neiθ)h(θ, n) dθ,

where |h(θ, n)| = O(1). But ‖
∫ ε
−ε T (e−1/neiθ)h(θ, n) dθ‖ �

∫ ε
−ε |θ|

−β dθ = O(1), so

J = J1 +O(1) where J1 =
∫ ε
−ε

T (e−1/neiθ)
1
n
−iθ e−inθ dθ. By Lemma 2.5,

cΓ(1− β)T (z) =
k∑
j=0

cjH( 1
n
− iθ)j−(j+1)βP +D(z),
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where ‖D(z)‖ = O(1) for β 6= 1
2
, and ‖D(z)‖ = O(log 1

|u−iθ|) for β = 1
2
. Thus, we can

write

cΓ(1− β)J1 =
k∑
j=0

cjHLjP + J ′,

where

Lj =

∫ ε

−ε

e−inθ

( 1
n
− iθ)(j+1)β−(j−1)

dθ, ‖J ′‖ �
∫ ε

−ε

‖D(e−1/ne−iθ)‖
| 1
n
− iθ|

dθ.

For β = 1
2
,

‖J ′‖ �
∫ ε

−ε

log 1
| 1
n
−iθ|

| 1
n
− iθ|

dθ � log n

∫ 1/n

0

n dθ + log n

∫ ε

1/n

1

θ
dθ � log2 n,

and similarly ‖J ′‖ � log n for β 6= 1
2
.

By Corollary B.3 (with ρ = (j + 1)β − j),

Lj =
2π

e

n(j+1)β−j

Γ((j + 1)β − (j − 1))
+O(1).

Putting all the estimates together,

cΓ(1− β)I =
2π

e
(
k∑
j=0

djn
(j+1)β−j)P +O(logτn).

The conclusion follows by plugging this estimate into (4.3).

Remark 4.6 Often, we have an a priori uniform bound for the operators Tn : B → B
in which case Theorem 4.1 can be proved at the level of operators on B yielding the
improved result that

cΓ(1− β)
n∑
j=0

Tj = (d0n
β + d1n

2β−1 + d2n
3β−2 + · · ·+ dkn

(k+1)β−k)Pv + En,

where ‖En‖ = O(logτn).
Such a bound on ‖Tn‖ holds under an aperiodicity assumption as in [34] — indeed

‖Tn‖ → 0. Moreover, all examples covered in [34] and in this paper are topologically
mixing up to a finite cycle and hence satisfy ‖Tn‖ = O(1). However, it is not clear
how to deduce this bound directly from hypotheses (H1) and (H2) and none of the
results in Section 1 are actually affected.

Remark 4.7 The proof of Theorem 1.8 goes exactly the same as the proof of The-
orem 4.1 with T (z) replaced by Φ(z),

∑n
j=0 Tj replaced by

∑n
j=0 uj and j − (j + 1)β

replaced by γj, j = 1, . . . , k. The asymptotics of Φ(z) is part of the hypothesis of
Theorem 1.8.
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A Proof of Lemmas 2.4, 2.5 and 2.7

In this appendix, we prove the results stated in Section 2.1 on asymptotics of T (z). We
follow [4, 34], incorporating a simplification due to [20]. (The analogous calculations
in [34] can also be simplified in this manner.)

By (H1′) and (H2), there exist ε > 0 and a continuous family of simple eigenvalues
of R(z), namely λ(z) for z ∈ D̄ ∩ Bε(1) with λ(1) = 1. Let P (z) : B → B denote
the corresponding family of spectral projections with P (1) = P and complementary
projections Q(z) = I − P (z). Also, let v(z) ∈ B denote the corresponding family of
eigenfunctions normalized so that

∫
Y
v(z) dµ = 1 for all z. In particular, v(1) ≡ 1.

Then we can write

T (z) = (1− λ(z))−1P (z) + (I −R(z))−1Q(z), (A.1)

for z ∈ D̄ ∩Bε(1), z 6= 1.

Proposition A.1 Assume (H1′) and (H2). There exist ε, C > 0 such that ‖(I −
R(z))−1Q(z)‖ ≤ C for z ∈ D̄ ∩Bε(1), z 6= 1.

Proof of Lemma 2.4 The main part of the proof is to show that 1 − λ(z) ∼
Γ(1 − β)`(1/|u − iθ|)(u − iθ)β. By (A.1), continuity of P (z), and Proposition A.1,
T (z) = (1− λ(z))−1(P + o(1)) +O(1) and the result follows.

Following [20],

λ(z) =

∫
Y

R(z)v(z) dµ =

∫
Y

R(z)v(1) dµ+

∫
Y

(R(z)−R(1))(v(z)− v(1)) dµ (A.2)

=

∫
Y

zϕ dµ+

∫
Y

(zϕ − 1)(v(z)− v(1)) dµ.

Now ∣∣∣∫
Y

(zϕ − 1)(v(z)− v(1)) dµ
∣∣∣ ≤ |v(z)− v(1)|∞

∫
Y

|zϕ − 1| dµ

= |v(z)− v(1)|∞
∞∑
n=1

|zn − 1|µ(ϕ = n).

By the assumption µ(ϕ > n) = `(n)n−β, a standard computation (see for example [34,
Proof of Proposition 2.7]) shows that

∑∞
n=1 |zn−1|µ(ϕ = n) = O(`(1/|z−1|)|z−1|β).

By continuity of the family v(z), we obtain that λ(z) =
∫
Y
zϕ dµ+ o(`(1/|u− iθ|)|u−

iθ|β). Hence it remains to consider the term
∫
Y
zϕ dµ.

At this point, we follow [4, 34], which is simplified due to the absence of v(z) (but
with the complication that z is two-dimensional). Define the distribution function
G(x) = µ(ϕ ≤ x). Then

∫
Y
zϕ dµ =

∫∞
0
e(−u+iθ)x dG(x). Integrating by parts,

1−
∫
Y

zϕ dµ =

∫ ∞
0

(1− e(−u+iθ)x) dG(x) = (u− iθ)
∫ ∞

0

e−(u−iθ)x(1−G(x)) dx.
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Since 1−G(x) = x−β`(x), we can write 1−
∫
Y
zϕ dµ = `(1/|u− iθ|)(u− iθ)βJ(z),

where

J(z) =

∫ ∞
0

e−(u−iθ)x

[(u− iθ)x]β
hu,θ(x)(u− iθ) dx, hu,θ(x) =

`(x)

`(1/|u− iθ|)
.

The proof will be complete once we show that J(z) converges to Γ(1−β) as u, θ → 0.
We consider only the case θ > 0, since the case θ < 0 follows by the same argument.

We consider separately each of two possible cases: (i) 0 ≤ θ ≤ u; (ii) 0 ≤ u ≤ θ.
In both cases we let ĥu,θ(σ) = hu,θ(σ/|u− iθ|).

In case (i) we let I1 =
∫∞

0
e−(u−iθ)x[(u − iθ)x]−β(u − iθ) dx. Put y = θ/u. Using

the substitution σ = |u− iθ|x, we have

J(z) = I1 +
( 1− iy
|1− iy|

)1−β
∫ ∞

0

e−σ|1−iy|
−1

eiσy|1−iy|
−1

σ−β(ĥu,θ(σ)− 1) dσ

= I1 +
( 1− iy
|1− iy|

)1−β
I2.

By Proposition B.1, we have I1 = Γ(1−β). We show that limu,θ→0 I2 = 0 by applying
the dominated convergence theorem (DCT).

By Potter’s bounds (see e.g. [9]), for any fixed δ > 0, |ĥu,θ(σ)| � σδ + σ−δ, for all
σ ∈ (0,∞). Since |1− iy| ∈ [1,

√
2], the integrand of I2 is bounded, up to a constant,

by the function e−σ/
√

2(σ−(β−δ) + σ−(β+δ)), which is L1 when taking δ ∈ (0, 1 − β).
Moreover, for each fixed σ ∈ (0,∞), limu,θ→0 ĥu,θ(σ) = 1 by definition of ` being
slowly varying. Thus, for each σ,

lim
u,θ→0

e−σ|1−iy|
−1
eiσy|1−iy|

−1

σβ
(ĥu,θ(σ)− 1) = 0.

It follows from the DCT that limu,θ→0 I2 = 0. This ends the proof in case (i).
In case (ii), we set Eu,θ(x) := e−(u−iθ)x[(u− iθ)x]−β(u− iθ)] and write

J(z) =

∫ b/θ

0

Eu,θ(x) dx+

∫ b/θ

0

Eu,θ(x)(hu,θ(x)− 1) dx+

∫ ∞
b/θ

Eu,θ(x)hu,θ(x) dx,

for some large positive b.
Put y = u/θ. Using the substitution σ = |u− iθ|x, we have∫ b/θ

0

Eu,θ(x)(hu,θ(x)− 1) dx

=
( y − i
|y − i|

)1−β
∫ |y−i|b

0

(ĥu,θ(σ)− 1)e−σy|y−i|
−1

eiσ|y−i|
−1

σ−β dσ.

By the argument used for I2 in case (i), we have that limu,θ→0

∫ b/θ
0

Eu,θ(x)(hu,θ(x)−
1) dx = 0.
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The substitution σ = θx gives

I∞b :=

∫ ∞
b/θ

Eu,θ(x)hu,θ(x) dx = (y − i)1−β
∫ ∞
b

e−σyeiσ

σβ
hu,θ(σ/θ) dσ.

But the integral is oscillatory with σ 7→ e−σyσ−βhu,θ(σ/θ) decreasing for each fixed
value of u and θ. By Potter’s bounds, hu,θ(σ/θ)� (σ|y− i|)δ + (σ|y− i|)−δ � σδ and
so I∞b = O(b−(β−δ)).

Putting these together, limu,θ→0 J(z) = limu,θ→0

∫ b/θ
0

Eu,θ(x) dx + O(b−(β−δ)). By

Proposition B.1,
∫ b/θ

0
Eu,θ(x) dx = Γ(1−β)+O(b−β). This ends the proof in case (ii),

since b is arbitrary.

Next, we turn to the higher order expansions. The following consequence of (H1)
is standard (see for instance [34, Proposition 2.7]).

Proposition A.2 Assume (H1) and that µ(ϕ > n) = `(n)n−β where ` is slowly
varying and β ∈ [0, 1). Then there is a constant C > 0 such that ‖R(rei(θ+h)) −
R(reiθ)‖ ≤ C`(1/h)hβ and ‖R(r) − R(1)‖ ≤ C`( 1

1−r )(1 − r)β for all θ ∈ [0, 2π),
r ∈ (0, 1], h > 0.

Corollary A.3 The estimates for R(z) in Proposition A.2 are inherited by the fam-
ilies P (z), Q(z), λ(z) and v(z), where defined.

Lemma A.4 Assume (H1) and (H2) and let β ∈ (0, 1). Suppose that µ(ϕ > n) =
c(n−β + H(n)), where c > 0 and H(n) = O(n−q), q > β. If q ≤ 1, we assume
further that H(n) = b(n) + c(n), where b is monotone with |b(n)| = O(n−q) and c(n)
is summable.

If q > 1, set cH = −Γ(1− β)−1
∫∞

0
H1(x) dx where H1(x) = [x]−β − x−β +H([x]).

If q ≤ 1, set cH = 0.
Then writing z = e−u+iθ, u > 0,

1− λ(z) = cΓ(1− β){(u− iθ)β − cH(u− iθ) +O(|u− iθ|2β) +D(z),

where D(z) = O(|u− iθ|q) if q 6= 1, and D(z) = O(|u− iθ| log 1
|u−iθ|) if q = 1.

Proof We may suppose without loss that q < β + 1. The proof adapts the proof of
Lemma 2.4, noting that ` = c+ o(1). Again we have the decomposition (A.2). Since
(H1) holds, we can estimate the second term using Corollary A.3:∣∣∣∫

Y

(R(z)−R(1))(v(z)− v(1)) dµ
∣∣∣ ≤ ‖R(z)−R(1)‖ ‖v(z)− v(1)‖ � |z − 1|2β.

Hence again the proof reduces to computations for
∫
Y
zϕ dµ.

By assumption, the distribution function G(x) = µ(ϕ ≤ x) satisfies 1 − G(x) =
c(x−β + H1(x)) where H1(x) = H(x) + O(x−(β+1)) = O(x−q). As in the proof of
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Lemma 2.4, we consider separately each of two possible cases: (i) 0 ≤ θ ≤ u, (ii)
0 ≤ u ≤ θ.

In case (i), we have

1−
∫
Y
zϕ dµ = c(u− iθ)β

∫ ∞
0

e−(u−iθ)x

[(u− iθ)x]β
(u− iθ) dx+ c(u− iθ)

∫ ∞
0

e−(u−iθ)xH1(x) dx

= c(u− iθ)βI1 + c(u− iθ)I2.

We already know that I1 = Γ(1− β). If q < 1, then

|(u− iθ)I2| � u

∫ ∞
0

e−uxx−q dx = uq
∫ ∞

0

e−σσ−q dσ � |u− iθ|q.

If q = 1, then

|(u− iθ)I2| � u+ u

∫ ∞
1

e−uxx−1 dx = u+ u

∫ ∞
u

e−σσ−1 dσ � u log
1

u

≤ |u− iθ| log
1

|u− iθ|
.

Finally, for q > 1,

I2 =

∫ ∞
0

(e−(u−iθ)x − 1)H1(x) dx+

∫ ∞
0

H1(x) dx = I ′2 − cHΓ(1− β),

where

|I ′2| �
(∫ 1/|u−iθ|

0

|u− iθ|x1−q dx+

∫ ∞
1/|u−iθ|

1/xq dx
)
� |u− iθ|q−1.

In case (ii), we write

1−
∫
Y
zϕ dµ = c(u− iθ)β

∫ ∞
0

e−(u−iθ)x

[(u− iθ)x]β
(u− iθ) dx+ c(u− iθ)

∫ ∞
0

e−(u−iθ)xH1(x) dx

= (u− iθ)βI1 + (u− iθ)I2.

Again I1 = Γ(1 − β). It remains to estimate I2. If q < 1, define H2(x) =
[x]−β − x−β + c([x]). Then

I2 = −
∫ ∞

0

e−(u−iθ)xb([x]) dx+

∫ ∞
0

e−(u−iθ)xH2(x) dx = −I ′2 + I ′′2 .

Clearly, I ′′2 = O(1) since H2 is integrable. Let y = u/θ, so y ≤ 1. Substituting σ = θx,

θI ′2 =

∫ ∞
0

e−σyeiσb([σ/θ]) dσ.
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Suppose for definiteness that b is positive and decreasing. Since σ 7→ e−σyb([σ/θ]) is
decreasing for each fixed value of u and θ, we have∫ ∞

0

e−σy cosσ b([σ/θ]) dσ ≤
∫ π/2

0

e−σy cosσ b([σ/θ]) dσ � θq
∫ π/2

0

σq dσ � θq.

The integral with cos replaced by sin is treated similarly. Hence |(u−iθ)I2| � θ|I2| �
|u− iθ|q. The proof for q = 1 is identical, except that in the last step∫ ∞

0

e−σy cosσ b([σ/θ]) dσ ≤ θ + θ

∫ π/2

θ

σ−1 dσ � θ log
1

θ
� |u− iθ| log

1

|u− iθ|
.

If q > 1, then we proceed as in case (i).

Proof of Lemma 2.5 Taking q = 2β, it follows from Lemma A.4 that (1−λ(z))−1P
has the desired expansion. By (A.1), Corollary A.3 and Proposition A.1, ‖T (z)−(1−
λ(z))−1P‖ = O(1).

Proof of Lemma 2.7 The basic argument is similar to the one used in the proof of
Lemma 2.5, simplified by the fact that the various integrals are absolutely convergent.
We give the details for the more difficult case (b).

Let G(x) = µ(ϕ ≤ x) so that 1 − G(x) = `(x)−1 + H(x), where ` ∈ OΠˆ̀ and

H(x) = O(`(x)−2 ˆ̀(x)). Write
∫
Y
e−uϕ dµ = 1 +

∫∞
0

(e−ux − 1) dG(x). Integrating by
parts,

1−
∫
Y

e−uϕ dµ = u

∫ ∞
0

e−ux(1−G(x)) dx

= u

∫ ∞
0

e−ux
1

`(x)
dx+ u

∫ ∞
0

e−uxH(x) dx.

Thus,

1−
∫
Y

e−uϕ dµ =
1

`(1/u)

∫ ∞
0

e−σ
`(1/u)

`(σ/u)
dσ +

∫ ∞
0

e−σH(σ/u) dσ = I1 + I2.

Now,

I1 =
1

`(1/u)

∫ ∞
0

e−σ dσ +
1

`(1/u)

∫ ∞
0

e−σ
( `(1/u)

`(σ/u)
− 1
)
dσ

=
1

`(1/u)
+

ˆ̀(1/u)

`(1/u)2

∫ ∞
0

e−σ
`(1/u)

`(σ/u)

(`(1/u)− `(σ/u)

ˆ̀(1/u)

)
dσ.

By Potter’s bounds, for any fixed δ > 0, `(1/u)`(σ/u)−1 � σδ + σ−δ. Also, by [9,
Theorem 3.8.6] (which is the analogue of Potter’s bounds for de Haan functions), for
any fixed δ > 0, ˆ̀−1(1/u)|`(1/u)− `(σ/u)| � σδ + σ−δ. Hence,

I1 =
1

`(1/u)
+O

( ˆ̀(1/u)

`(1/u)2

)
.
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Next,

|I2| �
∫ ∞

0

e−σ
ˆ̀(σ/u)

`(σ/u)2
dσ =

ˆ̀(1/u)

`(1/u)2

∫ ∞
0

e−σ
ˆ̀(σ/u)

ˆ̀(1/u)

`(1/u)2

`(σ/u)2
dσ �

ˆ̀(1/u)

`(1/u)2
.

Putting these together, we have shown that 1−λ(e−u) = 1−
∫
Y
e−uϕ dµ+O(`(1/u)2) =

`(1/u)−1 +O(`(1/u)−2 ˆ̀(1/u)). Hence

(1− λ(e−u))−1 = `(1/u) +O(ˆ̀(1/u)).

Again, the result follows by (A.1), Corollary A.3 and Proposition A.1.

B Some contour integrals

Proposition B.1 Let β ∈ (0, 1). Then for every u > 0 and θ 6= 0 fixed, we have∫ R

0

e−(u−iθ)x

[(u− iθ)x]β
(u− iθ) dx = Γ(1− β) +O(R−β), as R→∞.

Proof Write ∫ R

0

e−(u−iθ)x[(u− iθ)x]−β(u− iθ) dx =

∫
Γ

e−ww−β dw,

where Γ is a line segment of length R emanating from 0 in the fourth quadrant. The
angle formed by Γ with the positive real axis is φ := − arg(u− iθ) ∈ [0, π/2].

Define the arcs Sδ = {δeiψ : −φ ≤ ψ ≤ 0}, SR = {Reiψ : −φ ≤ ψ ≤ 0}, and let L
be the line segment from δ to R along the real axis. By Cauchy’s theorem,∫

Γ

e−ww−β dw = lim
δ→0

(∫
Sδ

+

∫
L

−
∫
SR

)
e−ww−β dw.

On Sδ,∣∣∣∫
Sδ

e−ww−β dw
∣∣∣ =

∣∣∣∫ 0

−φ
e−δe

iψ

(δeiψ)−βδieiψ dψ
∣∣∣ ≤ ∫ 0

−π/2
δ1−β dψ ≤ (π/2)δ1−β.

On SR,∣∣∣∫
SR

e−ww−β dw
∣∣∣ =
∣∣∣∫ 0

−φ
e−Re

−ψ
(Reiψ)−βRieiψ dψ

∣∣∣ ≤ R1−β
∫ π/2

0

e−R cosψ dψ

Since cosψ > 1− 2ψ/π for ψ ∈ (0, π/2) (just draw the graph of cosψ and 1− 2ψ/π),∣∣∣∫
SR

e−ww−β dw
∣∣∣ ≤ R1−β

∫ π/2

0

e−R(1−2ψ/π) dψ =
π

2Rβ
(1− e−R).
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Also,
∫
L
e−ww−β dw =

∫ R
δ
e−tt−β dt. Thus, letting δ → 0,

∫
Γ
e−ww−β dw =∫ R

0
e−tt−β dt+O(R−β) =

∫∞
0
e−tt−β dt+O(R−β), which ends the proof.

Proposition B.2 Let β ∈ (0, 1). Then∫ ∞
−∞

1

(1− iσ)β+1
e−iσ dσ =

2π

e

1

Γ(1 + β)
.

Proof First, write ∫ ∞
−∞

1

(1− iσ)β+1
e−iσ dσ =

i

e

∫
γ

ew

wβ+1
dw,

where the contour γ = {Rew = 1} is traversed downwards.
We estimate

∫
γ
eww−β dw and then integrate by parts to complete the proof. The

diagram below shows a simple closed contour consisting of γ together with oriented
curves C, L±, M±, S±.

γ

S

S
−

+

M
−

M
+

L
+

L
−

R

δ

−R 0 1

−δ

δ

−R

C

By Cauchy’s theorem,∫
γ

ew

wβ
dw = lim

R→∞
lim
δ→0+

(
−
∫
M+

+

∫
S+

+

∫
L+

−
∫
C

−
∫
L−
−
∫
S−

+

∫
M−

) ew
wβ

dw.

Now C = {w = δeiθ : θ ∈ (−π/2, π/2)}, and so∣∣∣∫
C

eww−β dw
∣∣∣ =

∣∣∣∫ π/2

−π/2
exp(δeiθ)δ1−βeiθ(1−β) dθ

∣∣∣� δ1−β.
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On M±, we have∣∣∣∫
M±

eww−β dw
∣∣∣ =

∣∣∣∫ 1

0

eteiR(t± iR)−β dt
∣∣∣ ≤ R−β

∫ 1

0

et dt� R−β.

On S±, we write∣∣∣∫
S±
eww−β dw

∣∣∣ =
∣∣∣∫ π−ε

π/2

eRe
±iθ

(Re±iθ)−βRie±iθ dθ
∣∣∣ ≤ R1−β

∫ π

π/2

eR cos θ dθ

= R1−β
∫ π/2

0

e−R sin θ dθ.

(Here, ε = ε(R, δ) is chosen so that S± connects with L± as shown.) But sin θ > θ/π

for θ ∈ (0, π/2). Hence, |
∫
S±
eww−β dw| ≤ R1−β ∫ π/2

0
e−Rθ/π dθ = πR−β(1− e−R/2).

We have shown that
∫
γ
ew

wβ
dw = limR→∞ limδ→0+

(∫
L+

ew

wβ
dw −

∫
L−

ew

wβ
dw
)

. Now

∫
L±
eww−β dw =

∫ 0

−R
ete±iδ(t2 + δ2)−β/2e−iβ arg(t±iδ) dt.

Since t < 0, limδ→0+ arg(t ± iδ) → ±π. Hence, the integrand converges pointwise
to e∓iπβet|t|−β as δ → 0+. Moreover, the integrand is bounded by et|t|−β which
is integrable on [−R, 0]. It follows from the DCT that limδ→0+

∫
L±
eww−β dw =

e∓iπβ
∫ 0

−R e
t|t|−β dt = e∓iπβ

∫ R
0
e−tt−β dt. Hence,∫

γ

ew

wβ
dw = −2i sinπβ lim

R→∞

∫ R

0

e−tt−β dt = −2πi
1

Γ(β)
,

where we have used the formula sinπβ
π

= 1
Γ(1−β)Γ(β)

.
Finally,

i

e

∫
γ

ew

wβ+1
dw = − i

eβ

ew

wβ

∣∣∣w=1−iσ,σ→∞

w=1−iσ,σ→−∞
+

i

eβ

∫
γ

ew

wβ
=

2π

eβ

1

Γ(β)
,

as required.

Corollary B.3 Let ρ, ε > 0. Then∫ ε

−ε

e−inθ

( 1
n
− iθ)ρ+1

dθ =
2π

e

nρ

Γ(1 + ρ)
+O(1),

for all n ≥ 1.
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Proof Compute that∫ ε

−ε

e−inθ

( 1
n
− iθ)ρ+1

dθ = nρ
∫ εn

−εn

e−iσ

(1− iσ)ρ+1
dσ

= nρ
∫ ∞
−∞

e−iσ

(1− iσ)ρ+1
dσ − nρ

(∫ −εn
−∞

+

∫ ∞
εn

) e−iσ

(1− iσ)ρ+1
dσ

=
2π

e

nρ

Γ(1 + ρ)
+O

(
nρ
∫ ∞
εn

1

σρ+1
dσ
)

=
2π

e

nρ

Γ(1 + ρ)
+O(1),

where we have used Proposition B.2.

C Tail sequences for (1.1) and (1.2)

The following proposition is an improved version of [34, Proposition 11.9]. Recall
that h denotes the density for the measure µ.

Proposition C.1 Suppose that f : [0, 1]→ [0, 1] is given as in (1.1) with β = 1/α ∈
(0, 1). Let C be a compact subset of (0, 1]. Then there exists Y ⊂ (0, 1] compact with
C ⊂ Y , such that

(i) The first return function ϕ : Y → Z+ satisfies µ(ϕ > n) = cn−β − b(n) +
O(n−(β+1)), where c = 1

4
ββh(1

2
) and b(n) is a decreasing function satisfying

b(n) = O(n−2β), and

(ii) The first return map F = fϕ : Y → Y satisfies hypotheses (H1) and (H2) with
B taken to consist of either Hölder or BV observables.

Proof First, let Y = [1
2
, 1]. Let xn ∈ (0, 1

2
] be the sequence with x1 = 1

2
and

xn = fxn+1 so xn → 0. It is well known (see for instance [33]) that xn ∼ 1
2
ββn−β and

moreover that xn = 1
2
ββn−β +O((log n)n−(β+1)).

The density h is globally Lipschitz on (ε, 1] for any ε > 0 (see for example [24]
or [33, Lemma 2.1]). Furthermore, it follows from [42, Lemma 2], see also [35], that h
is decreasing. Hence for x ∈ [1

2
, 1] we can write h(x) = h(1

2
)− h̃(x) where h̃ is positive

and Lipschitz.
Set yn = 1

2
(xn + 1) (so fyn = xn). Then ϕ = n on [yn, yn−1], hence {ϕ > n} =

[1
2
, yn]. It follows that

µ(ϕ > n) =
∫ yn

1/2
h(x) dx = 1

2
xnh(1

2
)− b(n) = 1

4
ββh(1

2
)n−β +O(n−(1+β))− b(n),

where b(n) =
∫ yn

1/2
h̃(x) dx is decreasing. Moreover, b(n)� (yn − 1

2
)2 = 1

4
x2
n � n−2β.
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The same estimates are obtained by inducing on Y = [xq, 1] for any fixed q ≥ 0.
Finally, it is well-known that hypotheses (H1) and (H2) are satisfied on such sets Y
(see for example [34, Section 11]).

Proposition C.2 Suppose that f : [0, 1] → [0, 1] is given as in (1.2). Let C be a
compact subset of (0, 1]. Then there exists Y ⊂ (0, 1] compact with C ⊂ Y , such that

(i) The first return function ϕ : Y → Z+ satisfies µ(ϕ > n) = c log−1 n+O(log−2 n),
where c = 1

2
h(1

2
), and

(ii) The first return map F = fϕ : Y → Y satisfies hypotheses (H1) and (H2) with
B taken to consist of either Hölder or BV observables.

Proof First, let Y = [1
2
, 1]. Let xn ∈ (0, 1

2
] be the sequence with x1 = 1

2
and

xn = fxn+1 so xn → 0. We claim that xn ∼ log−1 n, in accordance with [40, Remark 2,
p. 94]. By (1.2),

e1/xj = exp
( 1

xj+1

(1 + xj+1e
−1/xj+1)−1

)
= exp

( 1

xj+1

(1− xj+1e
−1/xj+1 +O(x2

j+1e
−2/xj+1))

)
= e1/xj+1 exp(−e−1/xj+1 +O(xj+1e

−2/xj+1))

= e1/xj+1(1− e−1/xj+1 +O(e−2/xj+1)) = e1/xj+1 − 1 +O(e−1/xj+1).

Hence e1/xj+1 − e1/xj = 1 +O(e−1/xj+1). Summing from j = 1 to n− 1,

e1/xn = e1/x1 + n− 1 +O
( n∑
j=2

e−1/xj
)
. (C.1)

Since xn → 0, for n sufficiently large we have e1/xn ∈ (1
2
n, 3

2
n) . Hence 1/xn ∈

(log n+ log 1
2
, log n+ log 3

2
) and xn ∼ log−1 n verifying the claim.

Substituting the estimate xn = O(log−1 n) into (C.1), we obtain e1/xn = n(1 +
O((log n)/n)) and so 1/xn = (log n)(1+O(1/n)). Hence xn = log−1 n+O((n log n)−1).

Again, the density h is globally Lipschitz on (ε, 1] for any ε > 0 (see [40]). Thus,
in the notation of the proof of Proposition C.1,

µ(ϕ > n) =
∫ yn

1
2
h(x) dx = (yn − 1

2
)h(1

2
) +O(yn − 1

2
)2 = 1

2
h(1

2
) log−1 n+O(log−2 n),

as required.
The same estimates are obtained by inducing on Y = [xq, 1] for any fixed q ≥ 0.

Again, it is well-known that hypotheses (H1) and (H2) are satisfied on such sets Y .
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[21] S. Gouëzel. Correlation asymptotics from large deviations in dynamical systems
with infinite measure. Colloquium Math. 125 (2011) 193–212.

[22] L. de Haan. On Regular Variation and its Application to the Weak Convergence
of Sample Extremes. Centre Tract 32 (1970), Amsterdam.

[23] L. de Haan. An Abel Tauber theorem for Laplace transform. J. London Math.
Soc 13 (1976) 537–542.

[24] H. Hu. Decay of correlations for piecewise smooth maps with indifferent fixed
points. Ergodic Theory Dynam. Systems 24 (2004) 495–524.

[25] A. Ingham. On Tauberian theorems. Proc. London Math. Soc. 14A (1965) 157–
173.

[26] G. Jordan. Regularly varying functions and convolutions with real kernels. Trans.
Amer. Math. Soc. 194 (1974) 177–194.
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