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Abstract. We give sufficient Gordin-type criteria for the iterated (enhanced) weak invariance principle to hold for deterministic dy-
namical systems. Such an invariance principle is intrinsically related to the interpretation of stochastic integrals. We illustrate this
with examples of deterministic fast-slow systems where our iterated invariance principle yields convergence to a stochastic differential
equation.

Résumé. Nous donnons des critères suffisants de type Gordin assurant qu’un principe d’invariance itéré (renforcé) faible est satisfait
pour des systèmes dynamiques déterministes. Un tel principe d’invariance est intrinsèquement relié à l’interprétation des intégrales sto-
chastiques. Nous illustrons ceci par des exemples de systèmes lents-rapides déterministes où notre principe d’invariance itéré implique
la convergence vers une équation différentielle stochastique.
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1. Introduction

Recently, there has been a great deal of interest in homogenisation of deterministic systems with multiple timescales [3,
4,8,9,16,23,24,26,27,38]; the aim is to prove convergence to a stochastic differential equation (SDE) as the separation of
timescales increases. The papers [16,38] considered some simplified situations where it sufficed that the fast dynamics
satisfies the weak invariance principle (WIP). In general, however, there are issues regarding the correct interpretation of
stochastic integrals (Itô, Stratonovich, . . . ) in the limiting SDE that are not resolved by the WIP. According to rough path
theory [10,11,31], it is necessary to consider an iterated (or enhanced) WIP in order to determine the stochastic integrals.
Kelly & Melbourne [23,24] applied rough path theory in the deterministic setting and reduced homogenisation theorems
to establishing the iterated WIP and suitable moment control. The conditions on moments were optimized in Chevyrev et
al. [3,4].

The current paper is based on results of the first author in his Ph. D. thesis [12] and aims to extend the class of
dynamical systems for which the iterated WIP holds. There is already a wealth of literature on the central limit theorem
(CLT) and WIP for large classes of dynamical systems in both the dynamical systems and probability theory literature [5,
13,18,19,22,29,36,46,47]. We slightly extend the class of systems for which the WIP holds, and greatly extend the class
of systems for which the iterated WIP holds.

Our approach is based on Gordin’s method [13] for proving limit theorems via martingale approximation. It is well-
known that the L2-criterion of Gordin [13] leads to the CLT and WIP, and it follows from [23] that the iterated WIP
holds under this criterion (see [6, Proposition 2.5]). Proving the same results under the L1 version of this criterion
(hypotheses (2.1) and (3.1) in this paper) is more delicate. The CLT was obtained by [14] and much later the WIP was
obtained by [5]. The WIP in [5] is not quite in the right form for dynamical systems; in this paper we modify it so that it
applies to dynamical systems by extending a time-reversal argument from [23].

Previously there were no results on the iterated WIP under Lp Gordin criteria for p < 2 (except where there is ad-
ditional Young tower structure, see [40] and [23, Section 10]). Addressing this is the main aim of this work. In the
noninvertible setting (Section 2), we prove the iterated WIP under the L1 Gordin criterion. In the invertible setting (Sec-
tion 3), the validity of the iterated WIP under the L1 Gordin criterion remains unresolved. However, we prove the iterated
WIP under a hybrid L1–L2 criterion (3.2) which is still a significant improvement on existing results.
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The remainder of the paper is organised as follows. In Section 2, we present our main results in the noninvertible
setting. Section 3 deals with the invertible setting. In Section 4, we consider some illustrative examples and in Section 5
we give an application to homogenisation of fast-slow systems.

Notation. For a, b ∈ R
d , we define the outer product a ⊗ b = abT ∈ R

d×d . For J ∈ R
d×d , we write |J | =

(
∑d

i,j=1 J 2
ij )

1/2.

For real-valued functions f , g, the integral
∫

f dg denotes the Itô integral (where defined). Similarly, for Rd -valued
functions,

∫
f ⊗ dg denotes matrices of Itô integrals.

We use “big O” and � notation interchangeably, writing an = O(bn) or an � bn if there are constants C > 0, n0 ≥ 1
such that an ≤ Cbn for all n ≥ n0.

2. Noninvertible setting

Let (�,F,μ) be a probability space and T : � → � be an ergodic measure-preserving map. Let P : L1 → L1 be the
associated transfer operator (so

∫
�

Pv w dμ = ∫
�

v w ◦ T dμ for v ∈ L1, w ∈ L∞). Also define the Koopman operator
Uv = v ◦ T . We recall that

PU = I and UP = E
(·|T −1F

)
.

Let v ∈ L∞(�,Rd) with
∫
�

v dμ = 0. Our underlying hypothesis throughout this section is the L1 Gordin criterion

∞∑
n=1

∣∣P nv
∣∣
1 < ∞. (2.1)

Under this hypothesis, it is well-known that the CLT and WIP hold. We mention [5,29] for this and related results. Our
aim is to prove the iterated (or enhanced) version of the WIP. Previously, this was proved in [23, Section 4] under the
more restrictive assumption

∑∞
n=1 |P nv|2 < ∞.

Define the sequences of càdlàg processes

Wn ∈ D
([0,∞)

,Rd), Wn ∈ D
([0,∞)

,Rd×d),

by

Wn(t) = 1√
n

∑
0≤j≤[nt]−1

v ◦ T j , Wn(t) = 1

n

∑
0≤i<j≤[nt]−1

(
v ◦ T i

) ⊗ (
v ◦ T j

)
. (2.2)

Theorem 2.1. Let v ∈ L∞(�,Rd) with
∫
�

v dμ = 0, and suppose that (2.1) holds. Then

(a) The limit � = limn→∞
∫
�

Wn(1) ⊗ Wn(1) dμ ∈R
d×d exists.

(b) det� = 0 if and only if there exists c ∈R
d nonzero and h ∈ L1 such that c · v = h ◦ T − h.

(c) Let ν be any probability measure on � absolutely continuous with respect to μ and regard (Wn,Wn) as a sequence
of processes in D([0,∞),Rd ×R

d×d) on the probability space (�,ν).
Then (Wn,Wn) →w (W,W) as n → ∞, where W is a d-dimensional Brownian motion with covariance � and

W(t) =
∫ t

0
W ⊗ dW + t

∞∑
j=1

∫
�

v ⊗ (
v ◦ T j

)
dμ.

Remark 2.2. A standard calculation using (2.1) and Theorem 2.1(a) yields the Green-Kubo formula

� =
∫

�

v ⊗ v dμ +
∞∑

j=1

∫
�

{
v ⊗ (

v ◦ T j
) + (

v ◦ T j
) ⊗ v

}
dμ.

Remark 2.3. The assumption that T is noninvertible is not assumed explicitly in Theorem 2.1, but hypothesis (2.1)
implies that v ≡ 0 when T is invertible.
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Remark 2.4. There are various possible extensions to Theorem 2.1:
(1) Let 1 ≤ p,q ≤ ∞ with 1

p
+ 1

q
= 1. Dedecker & Rio [5] consider unbounded functions v ∈ Lp(�,R) and prove

that the ordinary WIP Wn →w W holds provided the 1-norm in (2.1) is replaced by the q-norm. (In fact it suffices that∑∞
n=1 P nv converges in Lq in [5].) A natural question is to prove the iterated WIP (Wn,Wn) →w (W,W) under such

assumptions. However, the main motivation for studying the iterated WIP is its fundamental role in the theory of fast-
slow systems (considered further in Section 5) where it is standard to consider bounded v. Also, considering unbounded v

would exacerbate the issues regarding hypotheses (3.1) and (3.2) in the invertible setting. Hence we restrict in this paper
to the case of bounded v.

(2) Dedecker & Rio [5] prove a nonergodic version of the WIP following Volný [47]. It seems likely that a nonergodic
version of the iterated WIP holds (paying due attention to the limit of Wn(1) − Mn(1) in the proof of Theorem 2.1(c)).
Again, ergodicity of μ is a standard assumption in the motivating setting of fast-slow systems, and is assumed throughout
this paper.

(3) A third possible extension is to consider limits of (Wn(s),Wn(t)) in the space D([0,∞) × [0,∞),Rd × R
d×d).

This seems to involve a nontrivial extension of [21,28] and hence is beyond the scope of this paper.

Hypothesis (2.1) can be viewed as a slow mixing condition: we recall the following elementary result.

Proposition 2.5. Let v ∈ L∞(�,R) with
∫
�

v dμ = 0. Suppose that there exists an > 0 such that∣∣∣∣∫
�

v w ◦ T n dμ

∣∣∣∣ ≤ an|w|∞ for all w ∈ L∞(�,R), n ≥ 1.

Then |P nv|p ≤ |v|1−1/p∞ a
1/p
n for all 1 ≤ p < ∞. In particular, hypothesis (2.1) holds if

∑∞
n=1 an < ∞.

Proof. See for example [39, Proposition 2.1]. �

Throughout the remainder of this section, Lp is shorthand for Lp((�,μ),Rd) unless stated otherwise.

2.1. Martingales

Let v : � → R
d be an L∞ observable with mean zero satisfying hypothesis (2.1), and define

χk
� =

k∑
j=�

P jv, 1 ≤ � ≤ k < ∞ and χ =
∞∑

j=1

P jv.

It follows from our assumptions that χk
� ∈ L∞ for all � ≤ k and χ ∈ L1. Moreover, χk

1 → χ in L1 as k → ∞. Follow-
ing [34], we write

v = m(k) + χk
1 ◦ T − χk

1 + P kv, k ≥ 1 and v = m + χ ◦ T − χ. (2.3)

Since PU = I , it is easily verified from the definitions in (2.3) that m, m(k) ∈ kerP for all k. It is immediate that
m(k) ∈ L∞ for all k, that m ∈ L1 and that m(k) → m in L1. A somewhat surprising fact due originally to [25], see also [5,
15,29,32,46], is that m ∈ L2. We begin by recovering this fact using an elementary argument.

Lemma 2.6. m ∈ L2 and m(k) → m in L2 as k → ∞.

Proof. Working componentwise, we can suppose without loss that d = 1. For � < k,

m(k) − m(�) = (
χk

1 − χk
1 ◦ T − P kv

) − (
χ�

1 − χ�
1 ◦ T − P �v

)
= χk

�+1 − χk
�+1 ◦ T + P �v − P kv = χk−1

� − χk
�+1 ◦ T . (2.4)

Hence∣∣m(k) − m(�)
∣∣2
2 =

∫
�

(
m(k) − m(�)

)(
χk−1

� − χk
�+1 ◦ T

)
dμ =

∫
�

(
m(k) − m(�)

)
χk−1

� dμ,
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where we used that m(k), m(�) ∈ kerP . Continuing and using (2.4) once more,∣∣m(k) − m(�)
∣∣2
2 =

∫
�

(
χk−1

� − χk
�+1 ◦ T

)
χk−1

� dμ =
∫

�

{(
χk−1

�

)2 − χk
�+1 Pχk−1

�

}
dμ

=
∫

�

{(
χk−1

�

)2 − (
χk

�+1

)2}
dμ =

∫
�

(
χk−1

� − χk
�+1

)(
χk−1

� + χk
�+1

)
dμ

=
∫

�

(
P �v − P kv

)(
χk−1

� + χk
�+1

)
dμ

≤ (∣∣P �v
∣∣∞ + ∣∣P kv

∣∣∞)(∣∣χk−1
�

∣∣
1 + ∣∣χk

�+1

∣∣
1

) ≤ 4|v|∞
∞∑

n=�

∣∣P nv
∣∣
1.

It follows from (2.1) that m(k) is Cauchy in L2. By uniqueness of limits in L1, the L2 limit of m(k) coincides with m. �

Elements of kerP enjoy the following martingale structure.

Proposition 2.7. Let φ ∈ L1 ∩ kerP and fix n ≥ 1. Define Gj = T −(n−j)F , 1 ≤ j ≤ n. Then {φ ◦ T n−j , Gj ; 1 ≤ j ≤ n}
is a sequence of martingale differences. That is, G1 ⊂ · · · ⊂ Gn, φ ◦ T n−j is Gj -measurable for each j , and E(φ ◦
T n−j |Gj−1) = 0 for each j .

Proof. Since T −1F ⊂F , it follows that Gj ⊂ Gj+1. Measurability of φ ◦ T n−j with respect to Gj is clear. Finally,

E
(
φ ◦ T n−j |Gj−1

) = E
(
φ|T −1F

) ◦ T n−j = (UPφ) ◦ T n−j = 0,

since φ ∈ kerP . �

2.2. Second moments

Throughout, we write vn = ∑n−1
j=0 v ◦ T j , mn = ∑n−1

j=0 m ◦ T j and so on for observables v, m, . . . defined on �.

Corollary 2.8. Let φ ∈ L2 ∩ kerP . Then |max1≤�≤n |φ�||2 ≤ 4
√

n|φ|2 for all n ≥ 1. In particular, |max1≤�≤n |(m −
m(k))�||2 ≤ 4

√
n|m − m(k)|2 for all k,n ≥ 1.

Proof. Fix n ≥ 1 and let X(j) = φ ◦ T n−j . Since φ ∈ kerP , it follows that |X(1) + · · · + X(n)|2 = √
n|φ|2. By Proposi-

tion 2.7, {X(j), Gj ; 1 ≤ j ≤ n} is a sequence of martingale differences. Hence by Doob’s inequality,∣∣∣ max
1≤�≤n

∣∣X(1) + · · · + X(�)
∣∣∣∣∣

2
≤ 2

∣∣X(1) + · · · + X(n)
∣∣
2 = 2

√
n|φ|2.

Finally, max1≤�≤n |φ�| ≤ 2 max1≤�≤n |X(1) + · · · + X(�)|. �

Following [37], we have a similar estimate for vn.

Proposition 2.9. |max1≤�≤n |v�||22 ≤ 128n|v|∞ ∑∞
j=0 |P jv|1.

Proof. Fix n ≥ 1 and define the random variables X(j) = v ◦ T n−j , 1 ≤ j ≤ n which are adapted to the filtration Gj =
T −(n−j)F . The version of Rio’s inequality [44] for p = 2 in [41, Proposition 7] states that

∣∣∣ max
1≤�≤n

∣∣X(1) + · · · + X(�)
∣∣∣∣∣2

2
≤ 16

n∑
j=1

bj,n

where

bj,n = max
1≤j≤u≤n

∣∣∣∣∣X(j)

u∑
k=j

E
(
X(k)|Gj

)∣∣∣∣∣
1

≤ |v|∞ max
1≤j≤u≤n

∣∣∣∣∣
u∑

k=j

E
(
v ◦ T n−k|Gj

)∣∣∣∣∣
1

.
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By Proposition 2.7, E(m ◦ T n−k|Gj ) = 0 for all k > j . By (2.3),

u∑
k=j

E
(
v ◦ T n−k|Gj

) = E
(
m ◦ T n−j + χ ◦ T n+1−j − χ ◦ T n−u|Gj

) = v ◦ T n−j + χ ◦ T n−j −E
(
χ ◦ T n−u|Gj

)
.

Hence

bj,n ≤ |v|∞
(|v|1 + 2|χ |1

) ≤ 2|v|∞
∞∑

j=0

∣∣P jv
∣∣
1

and so∣∣∣ max
1≤�≤n

∣∣X(1) + · · · + X(�)
∣∣∣∣∣2

2
≤ 32 |v|∞

∞∑
j=0

∣∣P jv
∣∣
1.

Finally, max1≤�≤n |v�| ≤ 2 max1≤�≤n |X(1) + · · · + X(�)|. �

Lemma 2.10. limn→∞ 1√
n
|max1≤�≤n |(v − m)�||2 = 0.

Proof. By hypothesis (2.1) and Lemma 2.6, for each ε > 0, there exists k ≥ 1 such that
∑∞

j=k |P jv|1 < ε2 and |m −
m(k)|2 < ε.

Recall that m, m(k) ∈ kerP . By Corollary 2.8,

1√
n

∣∣∣ max
1≤�≤n

∣∣(m − m(k)
)
�

∣∣∣∣∣
2
< 4ε. (2.5)

Next, v = m(k) + χk
1 ◦ T − χk

1 + P kv, so∣∣(v − m(k)
)
n

∣∣ ≤ 2
∣∣χk

1

∣∣∞ + ∣∣(P kv
)
n

∣∣ ≤ 2k|v|∞ + ∣∣(P kv
)
n

∣∣.
Note that P kv satisfies our underlying hypotheses, namely P kv ∈ L∞,

∫
�

P kv dμ = 0,
∑∞

n=1 |P n(P kv)|1 < ∞. Hence
by Proposition 2.9,

∣∣∣ max
1≤�≤n

∣∣(v − m(k)
)
�

∣∣∣∣∣
2
≤ 2k|v|∞ +

∣∣∣ max
1≤�≤n

∣∣(P kv
)
�

∣∣∣∣∣
2
≤ 2k|v|∞ +

{
128n

∣∣P kv
∣∣∞

( ∞∑
j=0

∣∣P j+kv
∣∣
1

)}1/2

≤ 2k|v|∞ +
{

128n|v|∞
( ∞∑

j=k

∣∣P jv
∣∣
1

)}1/2

� k + ε
√

n.

Combining this with (2.5), 1√
n
|max1≤�≤n |(v − m)�||2 � 1√

n
k + ε. Hence lim supn→∞ 1√

n
|max1≤�≤n |(v − m)�||2 � ε

and the result follows since ε is arbitrary. �

Proof of parts (a) and (b) of Theorem 2.1. Since m ∈ kerP , it holds that
∫
�

mn ⊗ mn dμ = n
∫
�

m ⊗ mdμ for all n.
By Proposition 2.9, |vn|2 � n1/2. Hence,∣∣∣∣n−1

∫
�

vn ⊗ vn dμ −
∫

�

m ⊗ mdμ

∣∣∣∣ = n−1
∣∣∣∣∫

�

(vn ⊗ vn − mn ⊗ mn)dμ

∣∣∣∣
≤ n−1(|vn|2 + |mn|2

)|vn − mn|2 � n−1/2|vn − mn|2 → 0

by Lemma 2.10. This proves part (a) and shows in addition that

� =
∫

�

m ⊗ mdμ. (2.6)

It follows that cT �c = ∫
�
(c · m)2 dμ for all c ∈R

d .
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Next we prove part (b). If det� = 0, then there exists c ∈ R
d nonzero such that �c = 0 and hence

∫
�
(c · m)2 dμ =

cT �c = 0, so c · m = 0. By (2.3), c · v = h ◦ T − h where h = c · χ ∈ L1.
Conversely, suppose that c ·v = h◦T −h for c ∈ R

d nonzero and h ∈ L1. Then c ·Pv = h−Ph. Also, Pv = χ −Pχ ,
hence c · χ − h ∈ ker(P − I ). By ergodicity, c · χ = h + aI for some a ∈ R. Substituting into (2.3),

c · v = c · m + c · χ ◦ T − c · χ = c · m + h ◦ T − h = c · m + c · v,

and so c · m = 0. Hence cT �c = ∫
�
(c · m)2 dμ = 0. It follows that det� = 0. �

2.3. Iterated WIP

In this subsection, we prove Theorem 2.1(c). First, we prove the ordinary WIP.

Lemma 2.11. Wn →w W in D([0,∞),Rd) as n → ∞ on the probability space (�,μ).

Proof. It suffices to prove that Wn →w W in D([0,K],Rd) for each fixed integer K ≥ 1. Define Mn(t) = 1√
n

×∑
0≤j≤[nt]−1 m ◦ T j . Recall that m ∈ L2 ∩ kerP . By the pointwise ergodic theorem and (2.6),

n−1
n−1∑
j=0

{
UP(m ⊗ m)

} ◦ T j →
∫

�

UP(m ⊗ m)dμ =
∫

�

m ⊗ mdμ = � a.e.

It follows from [26, Theorem A.1] that Mn →w W in D([0,K],Rd). Also,

sup
t∈[0,K]

∣∣Wn(t) − Mn(t)
∣∣ = 1√

n
max

1≤�≤nK

∣∣(v − m)�
∣∣ →p 0

by Lemma 2.10. Hence Wn →w W in D([0,K],Rd). �

Define the sequence of processes

Mn ∈ D
([0,∞)

,Rd×d), Mn(t) = 1

n

∑
0≤i<j≤[nt]−1

(
m ◦ T i

) ⊗ (
v ◦ T j

)
.

Lemma 2.12. (Wn,Mn) →w (W,M) in D([0,∞),Rd × R
d×d) as n → ∞ on the probability space (�,μ), where

M(t) = ∫ t

0 W ⊗ dW .

Proof. It suffices to prove that (Wn,Mn) →w (W,M) in D([0,K],Rd ×R
d×d) for each fixed integer K ≥ 1. Define for

t ∈ [0,K],

W−
n (t) = 1√

n

∑
1≤j≤[nt]

v ◦ T nK−j , M−
n (t) = 1√

n

∑
1≤j≤[nt]

m ◦ T nK−j , (2.7)

M
−
n (t) = 1

n

∑
1≤i<j≤[nt]

(
v ◦ T nK−i

) ⊗ (
m ◦ T nK−j

)
.

There are three main steps:

Step 1 Transfer convergence of Wn in Lemma 2.11 to convergence of W−
n and M−

n , showing that (W−
n ,M−

n ) →w

(W,W) in D([0,K],Rd ×R
d).

Step 2 Apply [21,28] to show that (W−
n ,M−

n ,M−
n ) →w (W,W,M) in D([0,K],Rd ×R

d ×R
d×d).

Step 3 Transfer convergence of (W−
n ,M−

n ,M−
n ) in Step 2 back to convergence of (Wn,Mn), yielding the desired result.

Let D̃ denote càglàd functions. Following [23], we define

g : D([0,K],Rd
) → D̃

([0,K],Rd
)
, g(r)(t) = r(K) − r(K − t).
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Then

Wn(t) = 1√
n

nK∑
j=nK−[nt]+1

v ◦ T nK−j = 1√
n

nK∑
j=[n(K−t)]+1

v ◦ T nK−j − F 1
n (t)

= W−
n (K) − W−

n (K − t) − F 1
n (t) = g

(
W−

n

)
(t) − F 1

n (t),

where F 1
n (t) is either 0 or n−1/2v ◦ T nK−[n(K−t)]−1. In particular,

sup
t∈[0,K]

∣∣F 1
n (t)

∣∣ ≤ n−1/2|v|∞ → 0.

By Lemma 2.11 and the continuous mapping theorem,

W−
n = g−1(Wn + F 1

n

) →w g−1(W) in D̃([0,K],Rd).

Using the fact that the limiting process has continuous sample paths, it follows (see [23, Proposition 4.9]) that W−
n →w

g−1(W) in D([0,K],Rd). By [23, Lemma 4.11], the processes g−1(W) and W are equal in distribution, so W−
n →w W

in D([0,K],Rd). By the continuous mapping theorem, (W−
n ,W−

n ) →w (W,W) in D([0,K],Rd ×R
d). Also,

sup
t∈[0,K]

∣∣W−
n (t) − M−

n (t)
∣∣ ≤ 2n−1/2 max

1≤�≤nK

∣∣(v − m)�
∣∣ (2.8)

so | supt∈[0,K] |W−
n (t)−M−

n (t)||2 → 0 by Lemma 2.10. Hence (W−
n ,M−

n ) →w (W,W) in D([0,K],Rd ×R
d) complet-

ing Step 1.
By Proposition 2.7, {m ◦ T nK−j ; 1 ≤ j ≤ nK} is a martingale difference sequence with respect to the filtration

Gn,j = T −(nK−j)F for each n ≥ 1. Moreover, W−
n is adapted (i.e. v ◦ T nK−j is Gn,j -measurable for all j , n). Also∫

�
|M−

n (t)|2 dμ = n−1[nt] ∫
�

|m|2 dμ ≤ K|m|22, so condition C2.2(i) in [28, Theorem 2.2] is satisfied. Applying [28,
Theorem 2.2] (or alternatively [21]) we deduce that (W−

n ,M−
n ,M−

n ) →w (W,W,M) in D([0,K],Rd × R
d × R

d×d)

completing Step 2.
Adapting [23], we define h : D([0,K],Rd ×R

d ×R
d×d) → D̃([0,K],Rd ×R

d×d),

h(r,u, v)(t) = (
r(K) − r(K − t) ,

{
v(K) − v(K − t) − r(K − t) ⊗ (

u(K) − u(K − t)
)}∗)

,

where ∗ denotes matrix transpose.
We claim that

(Wn,Mn) = h
(
W−

n ,M−
n ,M−

n

) − Fn where sup
t∈[0,K]

∣∣Fn(t)
∣∣ →p 0.

Suppose that the claim is true. By the continuous mapping theorem and [23, Proposition 4.9], (Wn,Mn) →w h(W,W,M)

in D([0,K],Rd × R
d×d). By [23, Lemma 4.11], the processes h(W,W,M) and (W,M) are equal in distribution so

(Wn,Mn) →w (W,M) in D([0,K],Rd ×R
d×d).

It remains to prove the claim. Write h = (h1, h2) where h1 : D([0,K],Rd × R
d × R

d×d) → D̃([0,K],Rd) and h2 :
D([0,K],Rd ×R

d ×R
d×d) → D̃([0,K],Rd×d).

By Step 1,

Wn(t) = h1(W−
n ,M−

n ,M−
n

)
(t) − F 1

n (t) where sup
t∈[0,K]

∣∣F 1
n (t)

∣∣ ≤ n−1/2|v|∞ → 0.

Also,

Mn(t) = 1

n

∑
nK−[nt]<j<i≤nK

(
m ◦ T nK−i

) ⊗ (
v ◦ T nK−j

)
= 1

n

∑
nK−[nt]<i<j≤nK

{(
v ◦ T nK−i

) ⊗ (
m ◦ T nK−j

)}∗

= 1

n

∑
[n(K−t)]<i<j≤nK

{(
v ◦ T nK−i

) ⊗ (
m ◦ T nK−j

)}∗ − F 2
n (t)∗
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= {
M

−
n (K) −M

−
n (K − t) − W−

n (K − t) ⊗ (
M−

n (K) − M−
n (K − t)

)}∗ − F 2
n (t)∗

= h2(W−
n ,M−

n ,M−
n

)
(t) − F 2

n (t)∗,

where F 2
n (t) is either 0 or n−1 ∑

[n(K−t)]+1<j≤nK(v ◦ T nK−[n(K−t)]−1) ⊗ (m ◦ T nK−j ). In particular, |F 2
n (t)| ≤

n−1|v|∞ max1≤�≤nK |m�|, so by Corollary 2.8,∣∣∣ sup
t∈[0,K]

∣∣F 2
n (t)

∣∣∣∣∣
2
� n−1/2|v|∞ |m|2 → 0.

This completes the proof of the claim. �

Proof of Theorem 2.1(c). First we consider the case ν = μ. It follows from the definition of χ that∫
�

χ ⊗ v dμ =
∞∑

j=1

∫
�

(
P jv

) ⊗ v dμ =
∞∑

j=1

∫
�

v ⊗ (
v ◦ T j

)
dμ.

By Lemma 2.12, it suffices to show for all K > 0 that∣∣∣∣ sup
t∈[0,K]

(
Wn(t) −Mn(t) − t

∫
�

χ ⊗ v dμ

)∣∣∣∣ →p 0 as n → ∞.

Now,

n∑
j=1

j−1∑
i=0

(
(v − m) ◦ T i

) ⊗ (
v ◦ T j

) =
n∑

j=1

(
χ ◦ T j − χ

) ⊗ (
v ◦ T j

) =
n∑

j=1

(χ ⊗ v) ◦ T j − χ ⊗
n∑

j=1

v ◦ T j .

Since v ∈ L∞, χ ∈ L1, and
∫
�

v dμ = 0, it follows from the pointwise ergodic theorem that

Wn(1) −Mn(1) = n−1
n∑

j=1

j−1∑
i=0

(
(v − m) ◦ T i

) ⊗ (
v ◦ T j

) →
∫

�

χ ⊗ v dμ a.e.

as n → ∞. Hence for any K > 0,∣∣∣∣ sup
t∈[0,K]

(
Wn(t) −Mn(t) − t

∫
�

χ ⊗ v dμ

)∣∣∣∣ → 0 a.e.

The iterated WIP on (�,μ) follows.
Now we consider the case where ν is a general probability measure absolutely continuous with respect to μ. Since μ

is ergodic, it suffices by [52, Theorem 1] to show that

lim
n→∞μ

(
sup

t∈[0,K]

∣∣Wn(t) ◦ T − Wn(t)
∣∣ > ε

)
= 0 (2.9)

for all ε > 0, where Wn = (Wn,Wn).
Now, Wn(t) ◦ T − Wn(t) = n−1/2(v ◦ T [nt] − v) so∣∣Wn(t) ◦ T − Wn(t)

∣∣ ≤ 2n−1/2 max
0≤k≤nK

∣∣v ◦ T k
∣∣ ≤ 2n−1/2|v|∞

for all t ∈ [0,K]. Similarly,∣∣Wn(t) ◦ T −Wn(t)
∣∣ ≤ 2n−1|v|∞ max

1≤k≤nK
|vk|

for all t ∈ [0,K]. By Proposition 2.9 and (2.1), |max1≤k≤nK |vk||2 � (n|v|∞ ∑
j≥0 |P jv|1)1/2 � n1/2. Hence

| supt∈[0,K] |Wn(t) ◦ T − Wn(t)||2 � n−1/2, and (2.9) follows. �
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3. Invertible setting

Let (�,F,μ) be a probability space and T : � → � be an invertible ergodic measure-preserving map. We suppose
that there is a sub-sigma-algebra F0 ⊂ F such that T −1F0 ⊂ F0. Then Fj = T jF0 defines a nondecreasing filtration
{Fj : j ∈ Z}.

Fix d ≥ 1 and let v ∈ L∞(�,Rd) with
∫
�

v dμ = 0. The L1 Gordin criterion now takes the form

∞∑
n=1

∣∣E0
(
v ◦ T −n

)∣∣
1 +

∞∑
n=0

∣∣E0
(
v ◦ T n

) − v ◦ T n
∣∣
1 < ∞, (3.1)

where Ej = E( · |Fj ).
Under hypotheses similar to (3.1), the CLT and WIP have been proved by various authors, including [5,42,46]. In

Section 3.1, we recover the WIP under hypothesis (3.1) using techniques similar to those in Section 2 combined with
ideas from [5].

The iterated WIP holds under the L2 Gordin criterion
∑∞

n=1 |E0(v ◦ T −n)|2 + ∑∞
n=0 |E0(v ◦ T n) − v ◦ T n|2 < ∞

by [23, Section 4] (see [6, Proposition 2.5]). An interesting open question is to prove the iterated WIP under the L1

criterion (3.1), but this seems currently out of reach. In Section 3.2, we prove the iterated WIP under a hybrid L1–L2

Gordin criterion

∞∑
n=1

∣∣E0
(
v ◦ T −n

)∣∣
1 +

∞∑
n=0

∣∣E0
(
v ◦ T n

) − v ◦ T n
∣∣
2 < ∞. (3.2)

The same argument works if the roles of ||1 and ||2 are reversed in (3.2).
We note that the existence of a suitable sub-sigma-algebra F0 is very natural in the dynamical setting. Indeed it is often

the case that � is covered by a collection Ws of disjoint measurable sets, called “stable leaves”, such that T Ws
x ⊂ Ws

T x

for all x ∈ �, where Ws
x is the stable leaf containing x. In this situation, let F0 denote the sigma-algebra generated by

Ws . Then T −1F0 ⊂F0. The following result gives sufficient conditions for hypotheses (3.1) and (3.2) to hold.

Proposition 3.1. Let p ≥ 1 and let v ∈ L∞(�,R) with
∫
�

v dμ = 0.

(a) Suppose that there exists C > 0, ε > 0 such that∣∣∣∣∫
�

v w ◦ T n dμ

∣∣∣∣ ≤ C|w|∞ n−(p+ε)

for all F0-measurable w ∈ L∞(�,R), n ≥ 1. Then
∑∞

n=1 |E0(v ◦ T −n)|p < ∞.
(b) Suppose that there exists C > 0, ε > 0 such that∫

�

diam
(
v
(
T nWs

))
dμ ≤ C|w|∞ n−(p+ε)

for all n ≥ 1. Then
∑∞

n=0 |E0(v ◦ T n) − v ◦ T n|p < ∞.

Proof. The arguments are standard. See for example [6, Theorem 3.1]. �

Throughout the remainder of this section, Lp is shorthand for Lp((�,μ),Rd) unless stated otherwise.

3.1. WIP in the invertible setting

Define Wn ∈ D([0,∞),Rd) as in (2.2). Let ν be any probability measure on � absolutely continuous with respect to μ.
In this subsection, we prove:

Theorem 3.2. Let v ∈ L∞ with
∫
�

v dμ = 0, and suppose that (3.1) holds. Then conclusions (a) and (b) of Theorem 2.1
hold, and Wn →w W in D([0,∞),Rd) as n → ∞ on (�,ν), where W is a d-dimensional Brownian motion with covari-
ance �.
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For −∞ < � ≤ k < ∞, define

χk
� =

k∑
j=�

aj , aj =
{
E0(v ◦ T j ) j ≤ −1

E0(v ◦ T j ) − v ◦ T j j ≥ 0.

Also define χ = ∑∞
j=−∞ aj . It follows from our assumptions that χk

� ∈ L∞ for all � ≤ k and χ ∈ L1. Moreover, χk−k → χ

in L1 as k → ∞.

Proposition 3.3.

(a) E−1(χ
−�
−k ) = χ−�−1

−k−1 ◦ T for all k ≥ � > 0.

(b) E(χk+1
�+1 (χk

� ◦ T − χk+1
�+1 )) = 0 for all k ≥ � ≥ 0.

Proof. (a) Since E−1E0 = E−1 and E−1(g ◦ T ) = (E0 g) ◦ T ,

E−1
(
χ−�

−k

) =
−�∑

j=−k

E−1
(
v ◦ T j

) =
−�∑

j=−k

(
E0

(
v ◦ T j−1)) ◦ T = χ−�−1

−k−1 ◦ T .

(b) Note that

χk
� ◦ T − χk+1

�+1 =
k∑

j=�

{
E0

(
v ◦ T j

) ◦ T −E0
(
v ◦ T j+1)},

so χk
� ◦ T − χk+1

�+1 is F0-measurable. Also E0χ
k+1
�+1 = 0. Hence

E
(
χk+1

�+1

(
χk

� ◦ T − χk+1
�+1

)) = EE0
(
χk+1

�+1

(
χk

� ◦ T − χk+1
�+1

)) = E
((

χk
� ◦ T − χk+1

�+1

)
E0χ

k+1
�+1

) = 0

as required. �

Write

v = m(k) + χk−k ◦ T − χk−k + a−k − ak+1, k ≥ 1 and v = m + χ ◦ T − χ. (3.3)

It is immediate from the definitions that m(k) ∈ L∞ for all k, that m ∈ L1 and that m(k) → m in L1. Moreover, we have
the following result corresponding to Lemma 2.6:

Lemma 3.4. m ∈ L2 and m(k) → m in L2 as k → ∞.

Proof. For k ≥ � ≥ 0,

m(k) − m(�) = (
χk−k − χ�−�

) − (
χk−k − χ�−�

) ◦ T + (ak+1 − a−k) − (a�+1 − a−�)

= (
χ−�−1

−k + χk
�+1

) − (
χ−�−1

−k + χk
�+1

) ◦ T + (ak+1 − a−k) − (a�+1 − a−�)

= (
χ−�

−k+1 + χk+1
�+2

) − (
χ−�−1

−k + χk
�+1

) ◦ T .

Hence |m(k) − m(�)|2 ≤ A + B where

A = ∣∣χ−�
−k+1 − χ−�−1

−k ◦ T
∣∣
2, B = ∣∣χk+1

�+2 − χk
�+1 ◦ T

∣∣
2.

Now,

A2 = E
((

χ−�
−k+1

)2 − 2χ−�
−k+1 χ−�−1

−k ◦ T + (
χ−�−1

−k

)2)
.

By Proposition 3.3(a),

E
(
χ−�

−k+1 χ−�−1
−k ◦T

) = EE−1
(
χ−�

−k+1 χ−�−1
−k ◦T

) = E
(
χ−�−1

−k ◦T E−1
(
χ−�

−k+1

)) = E
((

χ−�−1
−k ◦T

)2) = E
((

χ−�−1
−k

)2)
.
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Hence

A2 = E
((

χ−�
−k+1

)2 − (
χ−�−1

−k

)2) = E
((

χ−�
−k+1 − χ−�−1

−k

)(
χ−�

−k+1 + χ−�−1
−k

))
= E

(
(a−� − a−k)

(
χ−�

−k+1 + χ−�−1
−k

)) ≤ |a−� − a−k|∞
∣∣χ−�

−k+1 + χ−�−1
−k

∣∣
1 ≤ 4|v|∞

−�∑
j=−∞

∣∣E0
(
v ◦ T j

)∣∣
1.

Next,

B2 = E
((

χk+1
�+2

)2 − 2χk+1
�+2 χk

�+1 ◦ T + (
χk

�+1

)2)
.

By Proposition 3.3(b),

E
(
χk+1

�+2 χk
�+1 ◦ T

) = E
(
χk+1

�+2

(
χk

�+1 ◦ T − χk+1
�+2

) + (
χk+1

�+2

)2) = E
((

χk+1
�+2

)2)
.

Hence

B2 = E
((

χk
�+1

)2 − (
χk+1

�+2

)2) = E
((

χk
�+1 − χk+1

�+2

)(
χk

�+1 + χk+1
�+2

))
= E

(
(a�+1 − ak+1)

(
χk

�+1 + χk+1
�+2

)) ≤ |a�+1 − ak+1|∞
∣∣χk

�+1 + χk+1
�+2

∣∣
1 ≤ 8|v|∞

∞∑
j=�+1

∣∣E0
(
v ◦ T j

) − v ◦ T j
∣∣
1.

It follows from hypothesis (3.1) together with these estimates for A and B that m(k) is Cauchy in L2. By uniqueness
of limits in L1, the L2 limit of m(k) coincides with m. �

Standard calculations (see for example [18,47] or [6, Proposition 2.2]) show that m is F0-measurable and that
E−1m = 0. Hence {m ◦ T −j : n ∈ Z} is a martingale with respect to the filtration Fj . The same is true for

m(k) =
k+1∑

j=−k+1

E0
(
v ◦ T j

) −
k∑

j=−k

(
E0

(
v ◦ T j

)) ◦ T .

Maximal inequality for a−k

Proposition 3.5. Let w ∈ L∞ and suppose that w is F0-measurable. Then

| max
1≤�≤n

|w�||22 ≤ 128n|w|∞
∞∑

j=0

|E0(w ◦ T −j )|1.

Proof. Fix n ≥ 1 and define the random variables X(j) = w ◦T n−j which are adapted to the filtration Fj−n. Using Rio’s
inequality as in the proof of Proposition 2.9, |max1≤�≤n |X(1) + · · · + X(�)||22 ≤ 16

∑n
j=1 bj,n where

bj,n = max
1≤j≤u≤n

∣∣∣∣∣X(j)

u∑
k=j

E
(
X(k)|Fj−n

)∣∣∣∣∣
1

≤ |w|∞ max
1≤j≤u≤n

∣∣∣∣∣
u∑

k=j

E
(
w ◦ T n−k|Fj−n

)∣∣∣∣∣
1

.

Define m−, χ− ∈ L1,

χ− =
∞∑

j=1

E0
(
w ◦ T −j

)
, w = m− + χ− ◦ T − χ−.

Using that w is F0-measurable, it is easily verified that m− is F0-measurable and E−1m− = 0. Hence E(m− ◦
T n−k|Fj−n) = 0 for all k > j . It follows that

u∑
k=j

E
(
w ◦ T n−k|Fj−n

) = E
(
m− ◦ T n−j + χ− ◦ T n+1−j − χ− ◦ T n−u|Fj−n

)
.

Now continue as in the proof of Proposition 2.9. �
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Corollary 3.6. |max1≤�≤n |(a−k)�||22 ≤ 128n|v|∞ ∑∞
j=k |E0(v ◦ T −j )|1.

Proof. Recall that a−k = E0(v ◦ T −k), so |a−k|∞ ≤ |v|∞ and a−k is F0-measurable. By Proposition 3.5,∣∣∣ max
1≤�≤n

∣∣(a−k)�
∣∣∣∣∣2

2
≤ 128n|v|∞

∞∑
j=0

∣∣E0
(
a−k ◦ T −j

)∣∣
1.

Setting g = v ◦ T −k ,

E0
(
a−k ◦ T −j

) = E0
(
(E0g) ◦ T −j

) = (E−jE0g) ◦ T −j = (E−j g) ◦ T −j = E0
(
g ◦ T −j

) = E0
(
v ◦ T −(j+k)

)
.

The result follows. �

Maximal inequality for ak

Here we rely heavily on ideas from [5]. In particular, we require the following maximal inequality [5, Equation (3.4)]:

Lemma 3.7. Let Sn = ∑n
j=1 X(j) be a sum of L2 random variables. Then

E
(
S∗

n
2) ≤ 4E

(
S 2

n

) − 4
n∑

j=1

E
(
X(j)S

∗
j−1

)
where S∗

n = max{0, S1, . . . , Sn}. �

The following elementary estimate is useful:

Proposition 3.8. Define h :Rn → R, h(b) = max{0, b1, b1 + b2, . . . ,
∑n

j=1 bi}. Then |h(b)−h(b′)| ≤ ∑n
i=1 |bi − b′

i |. �

Proposition 3.9. Let w ∈ L∞ with E0w = 0. Then∣∣∣ max
1≤�≤n

|w�|
∣∣∣2

2
≤ 96n|w|∞

∞∑
j=0

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1.

Proof. Define X(j) = w ◦ T −j and Sn = ∑n
j=1 X(j). Then

E
(
S2

n

) =
n−1∑
i,j=0

E
(
w ◦ T −i w ◦ T −j

) = nE
(
w2) + 2

n−1∑
j=1

(n − j)E
(
w w ◦ T j

)
.

Also, E(wE0(w ◦ T j )) = E(E0(w ◦ T j )E0w) = 0 and so

E
(
S2

n

) = nE
(
w2) + 2

n−1∑
j=1

(n − j)E
(
w

(
w ◦ T j −E0

(
w ◦ T j

)))

≤ 2n|w|∞
(

|w|1 +
∞∑

j=1

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1

)
= 2n|w|∞

∞∑
j=0

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1.

Next, define

Yi,j = Ej

(
w ◦ T −i

)
, Zp,j =

p∑
i=1

Yi,j , Z∗
j−1 = max{0,Z1,j , . . . ,Zj−1,j }.

Note that Yi,j is Fj -measurable for all i < j , so in particular Z∗
j−1 is Fj -measurable. Hence E(X(j)Z∗

j−1) =
E(Z∗

j−1EjX(j)) = 0. It follows that

n∑
j=1

∣∣E(
X(j)S∗

j−1

)∣∣ =
n∑

j=1

∣∣E(
X(j)

(
S∗

j−1 − Z∗
j−1

))∣∣ ≤ |w|∞
n∑

j=1

E
∣∣S∗

j−1 − Z∗
j−1

∣∣.
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By Proposition 3.8,

∣∣S∗
j−1 − Z∗

j−1

∣∣ ≤
j−1∑
i=1

∣∣X(i) − Yi,j

∣∣ =
j−1∑
i=1

|w ◦ T −i − (Ej−iw) ◦ T −i |

and hence

n∑
j=1

∣∣E(
X(j)S∗

j−1

)∣∣ ≤ |w|∞
∑

1≤i<j≤n

|w −Ej−iw|1 = |w|∞
n−1∑
j=1

(n − j)|w −Ejw|1

≤ n|w|∞
∞∑

j=1

|Ejw − w|1 = n|w|∞
∞∑

j=1

|(E0
(
w ◦ T j

)) ◦ T −j − w|1

= n|w|∞
∞∑

j=1

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1.

Combining this with the estimate for ES2
n it follows from Lemma 3.7 that

E
(
S∗

n
2) ≤ 12n|w|∞

∞∑
j=0

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1.

The transformation w �→ −w sends S∗
n �→ Sn,∗ = max{0,−S1, . . . ,−Sn}. Hence

E(S2
n,∗) ≤ 12n|w|∞

∞∑
j=0

|E0(w ◦ T j ) − w ◦ T j |1,

and so

max
1≤�≤n

|S�|2 = max
{
S∗

n
2
, S2

n,∗
} ≤ S∗

n
2 + S2

n,∗ ≤ 24n|w|∞
∞∑

j=0

∣∣E0
(
w ◦ T j

) − w ◦ T j
∣∣
1.

Finally, w� = (Sn − Sn−�) ◦ T n, so |max1≤�≤n |w�||2 ≤ 2|max1≤�≤n |S�||2 and the result follows. �

Corollary 3.10. |max1≤�≤n |(ak)�||22 ≤ 192n|v|∞ ∑∞
j=k |E0(v ◦ T j ) − v ◦ T j |1.

Proof. Recall that ak = E0(v ◦ T k) − v ◦ T k , so |ak|∞ ≤ 2|v|∞ and E0ak = 0. By Proposition 3.9,∣∣∣ max
1≤�≤n

∣∣(ak)�
∣∣∣∣∣2

2
≤ 192n|v|∞

∞∑
j=0

∣∣E0
(
ak ◦ T j

) − ak ◦ T j
∣∣
1.

Setting g = v ◦ T k , ak = E0g − g,

E0
(
ak ◦ T j

) − ak ◦ T j = E0
(
(E0g) ◦ T j

) −E0
(
g ◦ T j

) − (E0g) ◦ T j + g ◦ T j

= (EjE0g) ◦ T j −E0
(
g ◦ T j

) − (E0g) ◦ T j + g ◦ T j

= −E0
(
g ◦ T j

) + g ◦ T j = −E0
(
v ◦ T j+k

) + v ◦ T j+k.

The result follows. �

Lemma 3.11. limn→∞ 1√
n
|max1≤�≤n |(v − m)�||2 = 0.

Proof. By Lemma 3.4 and hypothesis (3.1), for each ε > 0, there exists k ≥ 1 such that

∣∣m − m(k)
∣∣
2 < ε,

∞∑
j=k

∣∣E0
(
v ◦ T −j

)∣∣
1 < ε2,

∞∑
j=k+1

∣∣E0
(
v ◦ T j

) − v ◦ T j
∣∣
1 < ε2.
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Since E−1m = E−1m
(k) = 0, it follows from Doob’s inequality as in Corollary 2.8 that∣∣∣ max

1≤�≤n

∣∣(m − m(k)
)
�

∣∣∣∣∣
2
< 4

√
nε. (3.4)

By (3.3),∣∣(v − m(k)
)
n

∣∣ ≤ 2
∣∣χk−k

∣∣∞ + ∣∣(a−k)n
∣∣ + ∣∣(ak+1)n

∣∣ ≤ (6k + 2)|v|∞ + ∣∣(a−k)n
∣∣ + ∣∣(ak+1)n

∣∣. (3.5)

Substituting the estimates from Corollaries 3.6 and 3.10 into (3.5), |max1≤�≤n |(v − m(k))�||2 � k + εn1/2, and com-
bining this with (3.4),

1√
n

∣∣∣ max
1≤�≤n

∣∣(v − m)�
∣∣∣∣∣

2
� kn−1/2 + ε.

Hence lim supn→∞ 1√
n
|max1≤�≤n |(v − m)�||2 � ε and the result follows since ε is arbitrary. �

We require the following standard result from probability theory.

Proposition 3.12. Let Y1, Y2. . . . be identically distributed random variables with finite second moment. Then
|max1≤�≤n |Y�||2 = o(

√
n) as n → ∞. �

Proof of Theorem 3.2. Conclusions (a) and (b) hold by the same arguments in the proof of Theorem 2.1 (using
Lemma 3.11 in place of Lemma 2.10).

Fix K ≥ 1 to be an integer and define W−
n (t) and M−

n (t) for t ∈ [0,K] as in (2.7). Also, for t ≥ 0 define

M̃−
n (t) = 1√

n

[nt]∑
j=1

m ◦ T −j .

Note that {m ◦ T −n; n ∈ Z} is a martingale difference sequence with respect to the filtration Fn. By Proposition 3.12,
1√
n
|max1≤j≤n |m ◦ T −j ||2 → 0. Also, by the ergodic theorem 1

n

∑n
j=1(m ⊗ m) ◦ T −j → ∫

�
m ⊗ mdμ = � almost

everywhere. Hence we have verified the hypotheses of [48, Theorem 2.1], yielding M̃−
n →w W in D[0,∞),Rd). Since

M−
n = M̃−

n ◦ T nK , it follows that M−
n →w W in D[0,K],Rd). By (2.8) and Lemma 3.11, W−

n →w W in D[0,K],Rd)

on (�,μ).
Defining g as in Step 1 of the proof of Lemma 2.12, we obtain

Wn(t) = g
(
W−

n (t)
) − F 1

n (t) for t ∈ [0,K],

where supt∈[0,K] |F 1
n (t)| ≤ n−1/2|v|∞. Applying [23, Proposition 4.9 and Lemma 4.11], Wn →w g(W) =w W in

D[0,K],Rd) on (�,μ).
Finally, the case where ν is a general probability measure absolutely continuous with respect to μ follows from [52,

Corollary 3]. �

3.2. Iterated WIP in the invertible setting

Define Wn ∈ D([0,∞),Rd), Wn ∈ D([0,∞),Rd×d) as in (2.2). Let ν be any probability measure on � absolutely
continuous with respect to μ. In this subsection, we prove:

Theorem 3.13. Let v ∈ L∞ with
∫
�

v dμ = 0, and suppose that (3.2) holds. Assume also that T is mixing. Then
(Wn,Wn) →w (W,W) in D([0,∞),Rd ×R

d×d) as n → ∞ on (�,ν), where W is as in Theorem 3.2 and

W(t) =
∫ t

0
W ⊗ dW + t

∞∑
j=1

∫
�

v ⊗ (
v ◦ T j

)
dμ.
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Write

χ = χ− + χ+, χ− =
∞∑

j=1

E0
(
v ◦ T −j

)
, χ+ =

∞∑
j=0

(
E0

(
v ◦ T j

) − v ◦ T j
)
.

By (3.2), χ− ∈ L1 and χ+ ∈ L2. Define v̂ ∈ L2 by

v = v̂ + χ+ ◦ T − χ+.

Then

v̂ =
∞∑

j=0

{
E0

(
v ◦ T j

) − (
E0

(
v ◦ T j

)) ◦ T
}

is F0-measurable.
Define

M̂n ∈ D
([0,∞),Rd×d

)
, M̂n(t) = 1

n

∑
0≤i<j≤[nt]−1

(
m ◦ T i

) ⊗ (
v̂ ◦ T j

)
,

where m is as in (3.3). (This differs from the definition of Mn in Section 2; we use v̂ instead of v since v is not F0-
measurable.)

Lemma 3.14. (Wn,M̂n) →w (W,M) in D([0,∞),Rd ×R
d×d) as n → ∞ on (�,μ), where M(t) = ∫ t

0 W ⊗ dW .

Proof. Fix K ≥ 1 an integer and define W−
n , M−

n as in (2.7). As shown in the proof of Theorem 3.2, M−
n →w W in

D([0, [0,K],Rd). By the continuous mapping theorem, (M−
n ,M−

n ) →w (W,W) in D([0,K]),Rd ×R
d).

Define

Ŵn(t) = 1

n

∑
0≤j≤[nt]−1

v̂ ◦ T j , Ŵ−
n (t) = 1

n

∑
1≤j≤[nt]

v̂ ◦ T nK−j .

By Lemma 3.11, 1√
n
|max1≤�≤n |(v − m)�||2 → 0. Also, 1√

n
|max1≤�≤n |(v − v̂)�||2 ≤ 2√

n
|max1≤�≤n χ+ ◦ T �|2 → 0 by

Proposition 3.12. Hence 1√
n
|max1≤�≤n |(v̂ − m)�||2 → 0. It follows that(

Ŵ−
n ,M−

n

) →w (W,W) in D
([0,K],Rd ×R

d
)
.

Define

M̂
−
n (t) = 1

n

∑
1≤j<i≤[nt]

(
v̂ ◦ T −j

) ⊗ (
m ◦ T −i

)
.

We apply [21,28] as in Step 2 of the proof of Lemma 2.12: M−
n is a martingale and Ŵ−

n is adapted with respect to the
filtration Fj . Moreover,

∫
�

|M−
n (t)|2 dμ = n−1[nt] ∫

�
|m|2 dμ ≤ K|m|22 for all t ∈ [0,K] so condition C2.2(i) in [28,

Theorem 2.2] is satisfied. Hence(
Ŵ−

n ,M−
n ,M̂−

n

) →w (W,W,M) in D
([0,K],Rd ×R

d ×R
d×d

)
.

Next, define h : D([0,K],Rd ×R
d ×R

d×d) → D̃([0,K],Rd ×R
d×d), as in Step 3 of the proof of Lemma 2.12. Then

(Ŵn,M̂n) = h
(
Ŵ−

n ,M−
n ,M̂−

n

) − Fn where sup
t∈[0,K]

∣∣Fn(t)
∣∣ →p 0,

and we deduce that

(Ŵn,M̂n) →w (W,M) in D
([0,K],Rd ×R

d×d
)
.

Using once again that 1√
n
|max1≤�≤n |(v − v̂)�||2 → 0, we obtain the desired result. �
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Proposition 3.15.
∑∞

j=1

∫
�

v ⊗ (v ◦ T j ) dμ = ∫
�
(χ ⊗ v − m ⊗ (χ+ ◦ T )) dμ.

Proof. Write

v ⊗ (
v ◦ T j

) = (m + χ ◦ T − χ) ⊗ (
v ◦ T j

)
= m ⊗ (

v̂ ◦ T j + χ+ ◦ T j+1 − χ+ ◦ T j
) + (χ ◦ T − χ) ⊗ (

v ◦ T j
)
.

Then
∑n

j=1

∫
�

v ⊗ (v ◦ T j ) dμ = I1 + I2 + I3 where

I1 =
n∑

j=1

∫
�

m ⊗ (
v̂ ◦ T j

)
dμ, I2 =

∫
�

m ⊗ (
χ+ ◦ T n+1 − χ+ ◦ T

)
dμ,

I3 =
∫

�

n∑
j=1

(χ ◦ T − χ) ⊗ v ◦ T j ) dμ.

Now,

E
(
m ⊗ (

v̂ ◦ T j
)) = EE−j

(
m ⊗ (

v̂ ◦ T j
)) = E

(
(E−jm) ⊗ (

v̂ ◦ T j
)) = 0,

so I1 = 0. Since T is mixing, I2 → − ∫
�

m ⊗ (χ+ ◦ T )dμ. Finally,

I3 =
∫

�

n∑
j=1

(
χ ◦ T −(j−1) − χ ◦ T −j

) ⊗ v dμ =
∫

�

(
χ − χ ◦ T −n

) ⊗ v dμ →
∫

�

χ ⊗ v dμ

since T is mixing. �

Proof of Theorem 3.13. Write(
v ◦ T i

)⊗(
v ◦ T j

) = (
m ◦ T i

) ⊗ (
v ◦ T j

) + (
χ ◦ T i+1 − χ ◦ T i

) ⊗ (
v ◦ T j

)
= (

m ◦ T i
) ⊗ (

v̂ ◦ T j
) + (

m ◦ T i
) ⊗ (

χ+ ◦ T j+1 − χ+ ◦ T j
) + (

χ ◦ T i+1 − χ ◦ T i
) ⊗ (

v ◦ T j
)
.

Then

Wn(t) − M̂n(t) = 1

n

∑
0≤i≤[nt]−2

(
m ◦ T i

) ⊗ (
χ+ ◦ T [nt] − χ+ ◦ T i+1)

+ 1

n

∑
1≤j≤[nt]−1

(
χ ◦ T j − χ

) ⊗ (
v ◦ T j

) = 1

n

(
An(t) + Bn(t)

)
where

An(t) =
∑

0≤i≤[nt]−2

(
m ◦ T i

) ⊗ (
χ+ ◦ T [nt])

Bn(t) = −
∑

0≤i≤[nt]−2

(
m ⊗ (χ+ ◦ T )

) ◦ T i +
∑

1≤j≤[nt]−1

(χ ⊗ v) ◦ T j − χ ⊗
∑

1≤j≤[nt]−1

v ◦ T j .

Recall that v ∈ L∞, χ ∈ L1 and χ+, m ∈ L2. By the ergodic theorem, 1
n
Bn(1) → ∫

�
(χ ⊗ v − m ⊗ (χ+ ◦ T )) dμa.e.

and hence

1

n
sup

t∈[0,K]

∣∣∣∣Bn(t) − t

∫
�

(
χ ⊗ v − m ⊗ (χ+ ◦ T )

)
dμ

∣∣∣∣ → 0 a.e.

Also,

1

n

∣∣∣ sup
t∈[0,K]

An(t)

∣∣∣
1
≤ 1√

n

∣∣∣∣ max
1≤�≤nK

∣∣∣∣∑
i<�

m ◦ T i

∣∣∣∣∣∣∣∣
2

1√
n

∣∣∣ max
1≤�≤nK

χ+ ◦ T �
∣∣∣
2
≤ 2

√
K|m|2 1√

n

∣∣∣ max
1≤�≤nK

χ+ ◦ T �
∣∣∣
2
→ 0
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by Doob’s inequality and Proposition 3.12. Hence

sup
t∈[0,K]

∣∣∣∣Wn(t) − M̂n(t) − t

∫
�

(
χ ⊗ v − m ⊗ (χ+ ◦ T )

)
dμ

∣∣∣∣ →p 0.

By this combined with Lemma 3.14 and Proposition 3.15, (Wn,Wn) →w (W,W) on (�,μ).
Finally, we consider the case where ν is a general probability measure absolutely continuous with respect to μ. As in

the proof of Theorem 2.1, it suffices to establish (2.9) for all ε > 0. The estimates∣∣Wn(t) ◦ T − Wn(t)
∣∣ ≤ 2n−1/2|v|∞,

∣∣Wn(t) ◦ T −Wn(t)
∣∣ ≤ 2n−1|v|∞ max

1≤k≤nK
|vk|

hold as before for all t ∈ [0,K]. Hence it suffices to show that |max1≤k≤nK |vk||2 � n1/2.
Write v = w + w′ where w = E0v, w′ = v −E0v. By Propositions 3.5 and 3.9,

∣∣∣ max
1≤k≤nK

|wk|
∣∣∣
2
�

(
n|v|∞

∑
j≥0

∣∣E0
(
w ◦ T −j

)∣∣
1

)1/2

=
(

n|v|∞
∑
j≥0

∣∣E0
(
v ◦ T −j

)∣∣
1

)1/2

and ∣∣∣ max
1≤k≤nK

∣∣w′
k

∣∣∣∣∣
2
�

(
n|v|∞

∑
j≥0

∣∣E0
(
w′ ◦ T j

) − w′ ◦ T j
∣∣
1

)1/2

=
(

n|v|∞
∑
j≥0

∣∣E0
(
v ◦ T j

) − v ◦ T j
∣∣
1

)1/2

.

Hence the required estimate for max1≤k≤nK |vk| follows from (3.1). �

4. Examples

In this section, we consider examples consisting of time-one maps of nonuniformly expanding semiflows and nonuni-
formly hyperbolic flows to which our theory applies and gives new results.

4.1. Noninvertible setting

We begin by revisiting nonuniformly expanding maps modelled by one-sided Young towers [51]. Optimal results for the
iterated WIP were obtained by [23] and we recover their result. In particular, [51] proved results on decay of correlations;
Theorem 2.1 applies whenever the decay of correlations is summable by Proposition 2.5. As described below, we are
moreover able to treat time-one maps of nonuniformly expanding semiflows, significantly improving on existing results.

It is convenient to mention a specific family of dynamical systems. Prototypical examples of nonuniformly expand-
ing map are given by intermittent maps of Pomeau-Manneville type [43]. For definiteness, we consider the example
considered by [30], namely

f : [0,1] → [0,1], f (x) =
{

x(1 + 2γ xγ ) x < 1
2

2x − 1 x > 1
2 .

(4.1)

Here γ ∈ [0,1) is a parameter and there is a unique absolutely continuous invariant probability measure μ0 for each γ .
Let v : [0,1] →R

d be Hölder with
∫ 1

0 v dμ0 = 0. By [20,51], there is a constant C > 0 such that | ∫ 1
0 v w ◦ T m dμ0| ≤

Cn−(γ −1−1)|w|∞ for all w ∈ L∞([0,1],R). By Proposition 2.5, hypothesis (2.1) holds for γ < 1
2 . Hence we obtain the

iterated WIP, Theorem 2.1, for all γ < 1
2 . This recovers a result of [23, Example 10.3] and it is sharp since even the CLT

fails for γ ∈ [ 1
2 ,1) when v(0) �= 0 by [17].

Now we consider suspension semiflows and their time-one maps to obtain new examples where the iterated WIP holds.
Again we consider the specific example (4.1) for definiteness, but f could be replaced by any nonuniformly expanding
map modelled by a Young tower. Let h : [0,1] → (0,∞) be a Hölder roof function and define the suspension semiflow
ft : � → � where

� = {
(x,u) ∈ [0,1] ×R : 0 ≤ u ≤ h(x)

}
/ ∼,

(
x,h(x)

) ∼ (f x,0),
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and ft (x,u) = (x,u + t) computed modulo identifications. The probability measure μ = (μ0 × Leb)/
∫ 1

0 hdμ0 is ft -
invariant and ergodic. At the level of the semiflow ft , when γ < 1

2 the iterated WIP holds for Hölder mean zero observ-
ables v by [23, Theorem 6.1].

Now consider the time-one map T = f1 : � → �. In general, even the CLT is not known for such maps. By [33,35],
typically (under a non-approximate eigenfunction condition due to [7]) T has decay of correlations at the same rate as f

for sufficiently smooth observables. (We refer to [35, Section 3] for details regarding the class of observables v and [35,
Section 5] for details regarding the word “typical”.) A consequence [23, Theorem 4.3 and Proposition 4.4] is that the
iterated WIP holds for γ < 1

3 . Previously, the range γ ∈ [ 1
3 , 1

2 ) remained open. But Proposition 2.5 again implies that the
L1 Gordin criterion (2.1) holds for all γ < 1

2 . Hence, by Theorem 2.1, the iterated WIP holds in the optimal range γ < 1
2 .

4.2. Invertible setting

We begin by revisiting nonuniformly hyperbolic maps modelled by two-sided Young towers [50,51]. Optimal results in
this setting were obtained by [40] (see also [23, Section 10.2]). (Unlike in the noninvertible setting, Theorem 3.13 does
not recover this result since the iterated WIP is not known under the L1 Gordin criterion (3.1).)

Examples of nonuniformly hyperbolic maps include intermittent solenoids [2, Section 5] and [40, Example 4.2]. These
are invertible analogues of the intermittent maps in Section 4.1 and are obtained by adapting the classical Smale-Williams
solenoid construction [45,49]. There is an invariant contracting stable foliation Ws as in Proposition 3.1 and the dynamics
modulo the stable leaves is given by an intermittent map. In particular, condition (a) in Proposition 3.1 is satisfied for
p < γ −1 − 1 where γ is the parameter for the intermittent map. The examples in [2] and some of the examples in [40]
have exponential contraction along stable leaves. For these examples and v Hölder, condition (b) in Proposition 3.1
is satisfied for all p ∈ [1,∞) and hence Theorem 3.13 applies for all γ < 1

2 . The remaining examples in [40] have
contraction along stable leaves which is as slow as the expansion of the underlying intermittent map, and condition (b) in
Proposition 3.1 is satisfied for p < γ −1 − 1; hence Theorem 3.13 applies for γ < 1

3 .
As in Section 4.1, we consider intermittent solenoidal flows given by suspensions over intermittent solenoids. Optimal

results on the iterated WIP for such flows follow by combining [40] and [23, Theorem 6.1]. Again we focus on time-one
maps of intermittent solenoid flows, restricting to typical flows and sufficiently smooth observables. Previous results on
the iterated WIP in this context apply only for γ < 1

3 ; we considerably relax this restriction. By the arguments in [6],
the conditions of Proposition 3.1 hold for the same values of p as in the case of intermittent solenoids described above.
Hence for the examples with exponential contraction along stable leaves, we obtain the iterated WIP for all γ < 1

2 .
Exponential contraction can be relaxed to moderately fast polynomial contraction as discussed in [1]. Explicit examples
with γ ∈ [ 1

3 , 1
2 ) and condition (b) of Proposition 3.1 holding for p = 2 can be found in [12]. For such examples, the

iterated WIP follows from Theorem 3.13; this is far beyond the scope of previous methods.

5. Application to homogenisation

Let (�,F,μ) be a probability space and T : � → � be an ergodic measure-preserving map. Consider the fast-slow
system

x
(ε)
n+1 = x(ε)

n + ε2a
(
x(ε)
n

) + εb
(
x(ε)
n

)
v(yn), x

(ε)
0 = ξ ∈R

d ,

yn+1 = Tyn,

where a : Rd → R
d , b : Rd → R

d×d and v ∈ L∞(�,Rd) with
∫
�

v dμ = 0.

Define x̂ε(t) = x
(ε)

[t/ε2] and

Wε(t) = ε
∑

0≤j≤[t/ε2]−1

v(yj ), Wε(t) = ε2
∑

0≤i<j≤[t/ε2]−1

v(yi) ⊗ v(yj ).

The aim is to prove homogenisation to a stochastic differential equation (SDE) of the type

dX = ã(X)dt + b(X)dW, X(0) = ξ,

where ã : Rd → R
d is to be determined; i.e. to show that x̂ε →w X in D[0,∞),Rd) as ε → 0.

In the special case where a and b are Lipschitz, and b satisfies an exactness condition of the form b = (dh)−1 for some
h : Rd → R

d , this problem was completely solved by [16]: It is necessary and sufficient that v satisfies the WIP. Hence
the L1 Gordin criterion suffices by Theorems 2.1 and 3.2.
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When the exactness condition for b fails, [23,27] proved homogenisation for a ∈ C1+ and b ∈ C2+ under an L4 Gordin
criterion on v (see [6, Theorem 2.9]). Moreover, ã(X) = a(X) + 1

2

∑d
α,β,γ=1 Eγβ∂αbβ(X)bαγ (X) where E is the matrix

in the iterated WIP.1

In certain special cases, our results yield homogenisation theorems where the previous papers do not. One such example
is the following:

Proposition 5.1. Let d = 2 and write x = (x1, x2). Let

a(x) =
(

0
g(x)

)
, b(x) =

(
1 0
0 x1

)
,

where g : R2 →R is Lipschitz. Suppose that v satisfies either the L1 Gordin criterion (2.1) in the noninvertible setting or
the hybrid L1–L2 Gordin criterion (3.2) in the invertible setting. In particular, W12

ε (1) →w W
12(1) + c for some c ∈ R.

Then x̂ε →w X in D([0,∞),R2) as ε → 0 where X is the solution to the SDE

dX = ã(X)dt + b(X)dW, X(0) = ξ,

with ã(X) = ( 0
g(X)+c

)
.

Proof. We have x̂1
ε (t) = ξ1 + W 1

ε (t) and

x̂2
ε (t) = ξ2 + ε2

[tε−2]−1∑
j=0

g
(
x

(ε)
j

) + ε

[tε−2]−1∑
j=0

(
x

(ε)
j

)1
v2(yj ) = ξ2 +

∫ t

0
g
(
xε(s)

)
dt +

∫ t

0
x̂1
ε (s) dW 2

ε (s) + Aε(t)

= ξ2 +
∫ t

0
g
(
xε(s)

)
ds +

∫ t

0

(
ξ1 + W 1

ε (s)
)
dW 2

ε (s) + Aε(t)

= ξ2 +
∫ t

0
g
(
xε(s)

)
ds + ξ1W 2

ε (t) +W
12
ε (t) + Aε(t)

where∣∣Aε(t)
∣∣ ≤ ε2|g|∞ + ε|v|∞ max

0≤j≤ε−2t

∣∣(x(ε)
j

)1∣∣ ≤ ε2|g|∞ + ε|v|∞ξ1 + ε|v|∞ max
0≤s≤t

∣∣W 1
ε (s)

∣∣.
In other words,

x̂ε(t) = ξ +
∫ t

0
a
(
xε(s)

)
ds + Uε(t)

where

Uε =
(

W 1
ε

ξ1W 2
ε +W

12
ε + Aε

)
.

The resulting solution map x̂ε = G(Uε) is continuous on C([0,K],R2) for all K > 0 since a is Lipschitz. By the iterated
WIP, Uε →w U where

U =
(

W 1

ξ1W 2 +W
12

)
, W

12(t) =
∫ t

0
W 1 dW 2 + tE12, E12 = c,

so the continuous mapping theorem shows that x̂ε →w G(U) = X where

dX = a(X)dt + dU, X(0) = ξ.

But U1 = W 1 and

U2(t) =
∫ t

0

(
ξ1 + W 1)dW 2 + tE12 =

∫ t

0
X1 dW 2 + tE12 =

∫ t

0
X1 dW 2 + tc,

1There is a typo in [23] and subsequent papers; the matrix entry Eβγ should be replaced by Eγβ as written here.
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yielding ã(X) = ( 0
g(X)+c

)
as required. �
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[46] M. Tyran-Kamińska. An invariance principle for maps with polynomial decay of correlations. Comm. Math. Phys. 260 (2005) 1–15. MR2175987

https://doi.org/10.1007/s00220-005-1400-z
[47] D. Volný. Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 (1993) 41–74.

MR1198662 https://doi.org/10.1016/0304-4149(93)90037-5
[48] W. Whitt. Proofs of the martingale FCLT. Probab. Surv. 4 (2007) 268–302. MR2368952 https://doi.org/10.1214/07-PS122
[49] R. F. Williams. One-dimensional non-wandering sets. Topology 6 (1967) 473–487. MR0217808 https://doi.org/10.1016/0040-9383(67)90005-5
[50] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998) 585–650. MR1637655

https://doi.org/10.2307/120960
[51] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math. 110 (1999) 153–188. MR1750438 https://doi.org/10.1007/BF02808180
[52] R. Zweimüller. Mixing limit theorems for ergodic transformations. J. Theoret. Probab. 20 (2007) 1059–1071. MR2359068 https://doi.org/10.

1007/s10959-007-0085-y

http://www.ams.org/mathscinet-getitem?mr=1695915
https://doi.org/10.1017/S0143385799133856
http://www.ams.org/mathscinet-getitem?mr=1654527
https://doi.org/10.4171/RMI/240
http://www.ams.org/mathscinet-getitem?mr=1782272
https://doi.org/10.1214/aop/1019160258
http://www.ams.org/mathscinet-getitem?mr=2472164
https://doi.org/10.1112/plms/pdn028
http://www.ams.org/mathscinet-getitem?mr=2470832
https://doi.org/10.1090/S0002-9939-08-09751-7
http://www.ams.org/mathscinet-getitem?mr=3851312
https://doi.org/10.1088/1361-6544/aad309
http://www.ams.org/mathscinet-getitem?mr=2175992
https://doi.org/10.1007/s00220-005-1407-5
http://www.ams.org/mathscinet-getitem?mr=2434305
https://doi.org/10.1090/S0002-9947-08-04520-0
http://www.ams.org/mathscinet-getitem?mr=2776125
https://doi.org/10.1088/0951-7715/24/4/018
http://www.ams.org/mathscinet-getitem?mr=1917674
https://doi.org/10.1007/s00220-002-0676-5
http://www.ams.org/mathscinet-getitem?mr=3471365
https://doi.org/10.1142/S0219493716600121
http://www.ams.org/mathscinet-getitem?mr=2206313
https://doi.org/10.1214/154957806100000202
http://www.ams.org/mathscinet-getitem?mr=2123210
https://doi.org/10.1214/009117904000001035
http://www.ams.org/mathscinet-getitem?mr=0576270
http://www.ams.org/mathscinet-getitem?mr=2117923
http://www.ams.org/mathscinet-getitem?mr=0228014
https://doi.org/10.1090/S0002-9904-1967-11798-1
http://www.ams.org/mathscinet-getitem?mr=2175987
https://doi.org/10.1007/s00220-005-1400-z
http://www.ams.org/mathscinet-getitem?mr=1198662
https://doi.org/10.1016/0304-4149(93)90037-5
http://www.ams.org/mathscinet-getitem?mr=2368952
https://doi.org/10.1214/07-PS122
http://www.ams.org/mathscinet-getitem?mr=0217808
https://doi.org/10.1016/0040-9383(67)90005-5
http://www.ams.org/mathscinet-getitem?mr=1637655
https://doi.org/10.2307/120960
http://www.ams.org/mathscinet-getitem?mr=1750438
https://doi.org/10.1007/BF02808180
http://www.ams.org/mathscinet-getitem?mr=2359068
https://doi.org/10.1007/s10959-007-0085-y
https://doi.org/10.1112/plms/pdn028
https://doi.org/10.1090/S0002-9904-1967-11798-1
https://doi.org/10.1007/s10959-007-0085-y

	Introduction
	Notation

	Noninvertible setting
	Martingales
	Second moments
	Iterated WIP

	Invertible setting
	WIP in the invertible setting
	Maximal inequality for a-k
	Maximal inequality for ak

	Iterated WIP in the invertible setting

	Examples
	Noninvertible setting
	Invertible setting

	Application to homogenisation
	Acknowledgements
	References

