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Abstract

We consider deterministic homogenization (convergence to a stochastic differential equa-
tion) for multiscale systems of the form

xk+1 = xk + n−1an(xk, yk) + n−1/2bn(xk, yk), yk+1 = Tnyk,

where the fast dynamics is given by a family Tn of nonuniformly expanding maps. Part 1
builds on our recent work on martingale approximations for families of nonuniformly expand-
ing maps. We prove an iterated weak invariance principle and establish optimal iterated
moment bounds for such maps. (The iterated moment bounds are new even for a fixed
nonuniformly expanding map T .) The homogenization results are a consequence of this
together with parallel developments on rough path theory in Part 2 by Chevyrev, Friz,
Korepanov, Melbourne and Zhang.

1 Introduction

Recently, there has been a great deal of interest in deterministic homogenization [4, 6, 7, 8,
9, 12, 16, 17, 20, 24] whereby deterministic multiscale systems converge to a stochastic differ-
ential equation as the time-scale separation goes to infinity. A byproduct of this is a deeper
understanding [16] of the correct interpretation of limiting stochastic integrals [28].

Using rough path theory [11, 23], it was shown in [16, 17] that homogenization reduces
to proving certain statistical properties for the fast dynamics. These statistical properties
take the form of an “iterated invariance principle” (iterated WIP) which gives the correct
interpretation of the limiting stochastic integrals, and control of “iterated moments” which
provides tightness in the rough path topology used for proving convergence. In particular,
the homogenization question was settled in [16, 17] for uniformly expanding/hyperbolic fast
(Axiom A) dynamics and for nonuniformly expanding/hyperbolic fast dynamics modelled by
Young towers with exponential tails [29]. The results in [16, 17] also covered fast dynamics
modelled by Young towers with polynomial tails [30] but the results were far from optimal. It
turns out that advances on two separate fronts are required to obtain optimal results:

(i) Martingale methods for nonuniformly expanding maps modelled by Young towers, yielding
optimal control of iterated moments;

(ii) Discrete-time rough path theory in p-variation topologies, relaxing the required control
for ordinary and iterated moments.

∗Mathematics Department, University of Exeter, Exeter, EX4 4QF, UK
†Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram. Jerusalem, 9190401, ISRAEL
‡Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

1



These two directions rely on techniques in smooth ergodic theory and in stochastic analysis
respectively, so the homogenization question divides naturally into two parts. This paper Part
1 covers the ergodic-theoretical aspects required for (i), while the rough path aspects required
for (ii) are dealt with in Part 2 by Chevyrev et al. [5]. As we explain below, together these
provide an optimal solution to the homogenization question when the fast dynamics is given
by a nonuniformly expanding map or a family of such maps.

The homogenization question that we are interested in takes the following form. Let Tn :
Λ → Λ, n ≥ 1, be a family of dynamical systems with ergodic invariant probability measures
µn. Consider the fast-slow system

xk+1 = xk + n−1an(xk, yk) + n−1/2bn(xk, yk), yk+1 = Tnyk, (1.1)

where xk = x
(n)
k takes values in Rd with x0 ≡ ξ ∈ Rd, and yk takes values in Λ. Our main

assumption is that Tn is a uniform family of nonuniformly expanding maps of order p > 2 as
in [20] (see Section 3 below for precise definitions). We impose mild regularity conditions on
an, bn : Rd × Λ→ Rd and require that

∫
Λ bn(x, y) dµn(y) = 0 for all x ∈ Rd, n ≥ 1.

Define x̂n(t) = x
(n)
[nt] and let λn be a family of probability measures on Λ. We regard x̂n as

a sequence of random variables on the probability spaces (Λ, λn) with values in the Skorohod
space D([0, 1],Rd). The aim is to prove weak convergence, x̂n →λn X as n→∞, where X is
the solution to a stochastic differential equation.

Example 1.1 To fix ideas, we focus first on the case where Tn ≡ T is a single nonuniformly
expanding map. Pomeau-Manneville intermittent maps [27] provide the prototypical examples
of such maps. We consider in particular the class of intermittent maps studied in [22], namely

T : [0, 1]→ [0, 1], Tx =

{
x(1 + 2γxγ) x < 1

2

2x− 1 x > 1
2

. (1.2)

Here γ > 0 is a parameter and there is a unique absolutely continuous invariant probability
measure µ provided γ < 1. Moreover, the central limit theorem (CLT) holds for all Hölder
observables v : [0, 1]→ R, provided γ < 1

2 . By [14], the CLT fails for typical Hölder observables
once γ > 1

2 . Even for γ = 1
2 , the CLT requires a nonstandard normalization. Hence it is

natural to restrict here to the range γ ∈ (0, 1
2). (The range γ ∈ (1

2 , 1) leads to superdiffusive
phenomena [14, 26] and we refer to [3, 12] for the homogenization theory for the corresponding
fast-slow systems.)

The homogenization problem for fast-slow systems driven by such intermittent maps T
(with λn ≡ µ) was previously considered in [16] and then [4]. The techniques therein sufficed
in the restricted range γ ∈ (0, 2

5) and even then only in the special case b(x, y) = h(x)v(y)
where h : Rd → Rd×m, v : Λ → Rd. There are two additional steps, covered in Parts 1 and 2
respectively, that lead to homogenization in the full range γ ∈ (0, 1

2) and for general b:

(i) As mentioned above, to obtain homogenization results it suffices to prove the iterated
WIP and control of iterated moments. These statistical properties are formulated at the
level of the map T for Hölder observables v : [0, 1] → Rd with

∫
v dµ = 0. The iterated

WIP was already proved in [16] in the full range γ ∈ (0, 1
2). Define

Snv =
∑

0≤j<n
v ◦ T j , Snv =

∑
0≤i<j<n

(v ◦ T i)⊗ (v ◦ T j).
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There are numerous methods for estimating ordinary moments |Snv|L2(p−1) for p < 1/γ.
Estimates for iterated moments |Snv|L2(p−1)/3 were given in [16]. In Theorem 2.4 of the
current paper, we estimate |Snv|Lp−1 ; this is the first result giving optimal estimates for
iterated moments. Using [4], we can then cover the full range γ ∈ (0, 1

2) in the product
case b(x, y) = h(x)v(y).

(ii) The papers [16, 17] use rough path theory in Hölder spaces. However, Hölder rough
path theory requires control of the ordinary moments |Snv|L2q and the iterated moments
|Snv|Lq for some q > 3. As shown in [25, Section 3], such control even for the ordinary
moments requires γ < 1

4 . The papers by Chevyrev et al. [4, 5] employ rough path theory
in p-variation spaces and require iterated moment estimates only for q > 1. Whereas [4] is
restricted to the product case b(x, y) = h(x)v(y), Part 2 [5] covers general b following [17].
This method combined with the previous iterated WIP and iterated moment estimates
in [16] covers the range γ ∈ (0, 2

5) for general b.

Combining (i) and (ii), we cover the optimal range γ ∈ (0, 1
2) for general b.

In addition, we obtain the homogenization result x̂n →λn X for a larger class of measures
including the natural choice λn ≡ Leb.

Returning to families of nonuniformly expanding maps, in [20] we considered intermittent
maps Tn : [0, 1]→ [0, 1], n ∈ N∪{∞}, as in (1.2) with parameters γn such that limn→∞ γn = γ∞.
Homogenization results with λn = µn and λn ≡ µ∞ were obtained in [20] for a restricted class
of fast-slow systems with bn(x, y) = hn(x)vn(y), hn exact, for γ∞ ∈ (0, 1

2). (For such systems,
rough path theory was not needed.) By the results in this paper, combined with those in Part 2,
we treat general bn, again in the full range γ∞ ∈ (0, 1

2). Moreover, we cover a larger class of
measures including λn ≡ Leb.

The remainder of Part 1 is organized as follows. In Sections 2 and 3, we consider nonuni-
formly expanding maps (fixed, and in uniform families [20], respectively). In particular, we
obtain optimal estimates for iterated moments in Theorem 2.4 and the iterated WIP for fam-
ilies in Theorem 3.4. In Section 4, we consider examples including the intermittent maps in
Example 1.1. The theory is extended to families of nonuniformly expanding semiflows in Sec-
tion 5.

We refer to Part 2 for the parallel developments in rough path theory and a precise statement
and proof of homogenization for the fast-slow systems (1.1).

Notation For a, b ∈ Rd, we define the outer product a⊗ b = abT ∈ Rd×d. For J ∈ Rm×n, we

use the norm |J | =
(∑m

i=1

∑n
j=1 J

2
ij

)1/2
. Then |a⊗ b| ≤ |a||b| for a, b ∈ Rd.

For real-valued functions f, g, the integral
∫
f dg denotes the Itô integral (where defined).

Similarly, for vector-valued functions,
∫
f ⊗ dg denotes matrices of Itô integrals.

We use “big O” and � notation interchangeably, writing an = O(bn) or an � bn if there
are constants C > 0, n0 ≥ 1 such that an ≤ Cbn for all n ≥ n0. As usual, an = o(bn) means
that limn→∞ an/bn = 0.

Let v : Λ → R be an observable on a metric space (Λ, dΛ) and let η ∈ (0, 1]. Recall that
v : Λ→ R is η-Hölder observable, v ∈ Cη(Λ), if ‖v‖η = |v|∞ + supx 6=y |v(x)− v(y)|/dΛ(x, y)η <

∞. where |v|∞ = supΛ |v|. For v = (v1, . . . , vd) : Λ → Rd, d ≥ 1, we write v ∈ Cη(Λ,Rd) if
vj ∈ Cη(Λ) for j = 1, . . . , d, and set ‖v‖η =

∑d
j=1 ‖vj‖η.

2 Nonuniformly expanding maps

In this section, we recall and extend the results in [20] for nonuniformly expanding maps.
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Let (Λ, dΛ) be a bounded metric space with finite Borel measure ρ and let T : Λ → Λ be
a nonsingular transformation. Let Y ⊂ Λ be a subset of positive measure, and let α be an at
most countable measurable partition of Y . We suppose that there is an integrable return time
function τ : Y → Z+, constant on each a with value τ(a) ≥ 1, and constants β > 1, η ∈ (0, 1],
C1 ≥ 1 such that for each a ∈ α,

(1) F = T τ restricts to a (measure-theoretic) bijection from a onto Y .

(2) dΛ(Fx, Fy) ≥ βdΛ(x, y) for all x, y ∈ a.

(3) dΛ(T `x, T `y) ≤ C1dΛ(Fx, Fy) for all x, y ∈ a, 0 ≤ ` < τ(a).

(4) ζ0 = dρ|Y
dρ|Y ◦F satisfies | log ζ0(x)− log ζ0(y)| ≤ C1dΛ(Fx, Fy)η for all x, y ∈ a.

Such a dynamical system T : Λ → Λ is called nonuniformly expanding. (It is not required
that τ is the first return time to Y .) We refer to the induced map F = T τ : Y → Y as
a uniformly expanding map. There is a unique absolutely continuous F -invariant probability
measure µY on Y and dµY /dρ ∈ L∞.

Define the (one-sided) Young tower map [30], f∆ : ∆→ ∆,

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` ≤ τ(y)− 1}, f∆(y, `) =

{
(y, `+ 1), ` ≤ τ(y)− 2

(Fy, 0), ` = τ(y)− 1
.

The projection π∆ : ∆ → Λ, π∆(y, `) = T `y, defines a semiconjugacy from f∆ to T . Define
the ergodic f∆-invariant probability measure µ∆ = µY × {counting}/

∫
Y τ dµY on ∆. Then

µ = (π∆)∗µ∆ is an absolutely continuous ergodic T -invariant probability measure on Λ.
In this section, we work with a fixed nonuniformly expanding map T : Λ→ Λ with induced

map F = T τ : Y → Y where τ ∈ Lp(Y ) for some p ≥ 2,1 and Young tower map f∆ :
∆→ ∆. The corresponding ergodic invariant probability measures are denoted µ, µY and µ∆.
Throughout, | |p denotes the Lp-norm on (Λ, µ), (Y, µY ) and (∆, µ∆) as appropriate. Also, ‖ ‖η
denotes the Hölder norm on Λ and Y .

Although the map T is fixed, the dependence of various constants on T is important in later
sections. To simplify the statement of results in this section, we denote by C various constants
depending continuously on diam Λ, C1, β, η, p and |τ |p.

Let L : L1(∆)→ L1(∆) and P : L1(Y )→ L1(Y ) denote the transfer operators corresponding
to f∆ : ∆→ ∆ and F : Y → Y . (So

∫
∆ Lv w dµ∆ =

∫
∆ v w◦f∆ dµ∆ for v ∈ L1(∆), w ∈ L∞(∆),

and
∫
Y Pv w dµY =

∫
Y v w ◦ F dµY for v ∈ L1(Y ), w ∈ L∞(Y ).)

Let ζ = dµY /dµY ◦ F . Given y ∈ Y and a ∈ α, let ya denote the unique ya ∈ a with
Fya = y. Then we have the pointwise expression for L,

(Lv)(y, `) =

{∑
a∈α ζ(ya)v(ya, τ(ya)− 1), ` = 0

v(y, `− 1), 1 ≤ ` ≤ τ(y)− 1
. (2.1)

2.1 Martingale-coboundary decomposition

Let T : Λ → Λ be a nonuniformly expanding map as above with return time τ ∈ Lp(Y ),
p ≥ 2. Fix d ≥ 1 and let v ∈ Cη(Λ,Rd) with

∫
Λ v dµ = 0. Define the lifted observable

φ = v ◦ π∆ : ∆→ Rd.
1 In [20], we considered this set up with p ≥ 1. Since we have no new results for p < 2 beyond those already

in [20], we restrict in this paper to the case p ≥ 2.
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We recall the martingale-coboundary decomposition

φ = m+ χ ◦ f∆ − χ, m ∈ kerL (2.2)

from [20, Section 2.2], which is obtained as follows. First, define the induced observable φ′ :

Y → Rd by φ′(y) =
∑τ(y)−1

`=0 φ(y, `). Next, define χ′,m′ : Y → Rd by χ′ =
∑∞

k=1 P
kφ′ and

φ′ = m′ + χ′ ◦ F − χ′. Let

χ(y, `) = χ′(y) +
`−1∑
k=0

φ(y, k) and m(y, `) =

{
0, ` ≤ τ(y)− 2

m′(y), ` = τ(y)− 1
. (2.3)

By [20, Section 2.2], ‖χ′‖η ≤ C‖v‖η. Furthermore,

Proposition 2.1 |m|p ≤ C‖v‖η, |χ|p−1 ≤ C‖v‖η and for all n ≥ 1, q ≥ p,∣∣max
k≤n
|χ ◦ fk∆ − χ|

∣∣
p
≤ C‖v‖η

(
n1/q + n1/p|1{τ≥n1/q}τ |p

)
.

(In particular,
∣∣maxk≤n |χ ◦ fk∆ − χ|

∣∣
p
≤ C ′‖v‖ηn1/p.)

Proof See [20, Propositions 2.4 and 2.7].

Proposition 2.2
∣∣Ln|m|p∣∣∞ ≤ C‖v‖pη for all n ≥ 1.

Proof Using (2.1) and the definition of m, we have

(L|m|p)(y, `) =

{∑
a∈α ζ(ya)|m′(ya)|p, ` = 0

0, 1 ≤ ` ≤ τ(y)− 1
.

Note that |m′| ≤ 2|χ′|∞ + |φ′| ≤ 2|χ′|∞ + τ |v|∞ � τ‖v‖η. Also |1aζ|∞ � µY (a) (see for
example [20, Proposition 2.2]). Hence

L|m|p �
∑

a∈α µY (a)τ(a)p‖v‖pη = |τ |pp‖v‖pη � ‖v‖pη.

Hence,
∣∣Ln|m|p∣∣∞ ≤ ∣∣L|m|p∣∣∞ � ‖v‖pη for all n ≥ 1.

Let φ̆ = UL(m ⊗ m) −
∫

∆m ⊗ mdµ∆ : ∆ → Rd×d where U is the Koopman operator
Uφ = φ ◦ f∆.

Proposition 2.3
∣∣maxk≤n |

∑k−1
j=0 φ̆ ◦ f

j
∆|
∣∣
p
≤ Cn1/2‖v‖2η.

Proof See [20, Corollary 3.2].

2.2 Moment estimates

Given v ∈ Cη(Λ,Rd) with
∫

Λ v dµ = 0, we define

Snv =
∑

0≤j<n
v ◦ T j , Snv =

∑
0≤i<j<n

(v ◦ T i)⊗ (v ◦ T j). (2.4)

The main result in this section is the estimate for iterated moments
∣∣maxk≤n |Skv|

∣∣
p−1

in the
next theorem.
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Theorem 2.4 (Iterated moments) For all n ≥ 1,∣∣max
k≤n
|Skv|

∣∣
2(p−1)

≤ Cn1/2‖v‖η,
∣∣max
k≤n
|Skv|

∣∣
p−1
≤ Cn‖v‖2η.

Proof Since p ≥ 2, the estimate for Snv is given in [20, Corollary 2.10]. It remains to prove
the bound for Snv, equivalently Snφ =

∑
0≤i<j<n(φ ◦ f i∆)⊗ (φ ◦ f j∆). Using (2.2),

Snφ =
∑

0≤j<n
(χ ◦ f j∆ − χ)⊗ (φ ◦ f j∆) +

∑
0≤i<j<n

(m ◦ f i∆)⊗ (φ ◦ f j∆) = In + Jn.

By Proposition 2.1,∣∣max
k≤n
|Ik|
∣∣
p−1
≤ |φ|∞

∑
0≤j<n

|χ ◦ f j∆ − χ|p−1 ≤ 2n|v|∞|χ|p−1 � n‖v‖2η.

Next, Jn =
∑n−2

i=0 (m ◦ f i∆)⊗
((∑n−i−1

j=1 φ ◦ f j∆) ◦ f i∆
)

=
∑n

`=2Xn,`, where

Xn,` =
(
m⊗

`−1∑
j=1

φ ◦ f j∆
)
◦ fn−`∆ =

(
m⊗ {(S`−1φ) ◦ f∆}

)
◦ fn−`∆ .

Now, |Snφ|p ≤ |Snφ|2(p−1) � n1/2‖v‖η since p ≥ 2. Hence by Proposition 2.2,

|Xn,`|pp ≤
∫

∆
|m|p|(S`−1φ) ◦ f∆|p dµ∆ =

∫
∆
L|m|p|S`−1φ|p dµ∆

≤
∣∣L|m|p∣∣∞|S`−1φ|pp � `p/2‖v‖2pη � np/2‖v‖2pη ,

so |Xn,`|2p � n‖v‖4η.
LetM denote the underlying σ-algebra on (∆, µ∆) and define Gn,` = f

−(n−`)
∆ M, 2 ≤ ` ≤ n.

Since Lm = 0,

Ln+1−`Xn,` = L
(
m⊗ {(S`−1φ) ◦ f∆}

)
= Lm⊗ (S`−1φ) = 0

for all `. It follows (cf. [20, Proposition 2.9]) that {Xn,`,G`; 2 ≤ ` ≤ n} is a sequence of
martingale differences. Working coordinatewise, by Burkholder’s inequality [2],

∣∣max
k≤n
|Jk|
∣∣2
p
�
∣∣∣( n∑

`=2

X2
n,`

)1/2∣∣∣2
p

=
∣∣∣ n∑
`=2

X2
n,`

∣∣∣
p/2
≤

n∑
`=2

|X2
n,`|p/2 =

n∑
`=2

|Xn,`|2p � n2‖v‖4η,

and so
∣∣maxk≤n |Jk|

∣∣
p
� n‖v‖2η. This completes the proof.

Moments on ∆ It is standard that the moment estimates for v : Λ → Rd follow from
corresponding estimates for lifted observables φ = v ◦π∆ : ∆→ Rd. In Proposition 2.8, we need
such an estimate for an observable on ∆ that need not be the lift of an observable on Λ. Hence,
we recall now how to derive moment estimates on ∆.

We define a metric on ∆ based on the metric dΛ on Y :

d∆((y, `), (y′, `′)) =

{
dΛ(Fy, Fy′) ` = `′ and y, y′ are in the same a ∈ α
diam Λ else

. (2.5)
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Remark 2.5 In (2.5), if we use a symbolic metric on Y in place of dΛ, then d∆ is the usual
symbolic metric on ∆.

As usual, ‖ ‖η denotes the Hölder norm on ∆. From the definition of nonuniformly expanding
map, dΛ(T `y, T `

′
y′) ≤ C1d∆((y, `), (y′, `′)); hence if v : Λ → Rd is Hölder then so is its lift

φ = v ◦ π : ∆→ Rd. Moreover, f∆ is itself a nonuniformly expanding map on (∆, d∆) with the
same constants as T , so Theorem 2.4 yields:

Lemma 2.6 Let φ : ∆ → Rd with ‖φ‖η < ∞, such that
∫

∆ φdµ∆ = 0. Define Snφ =∑
0≤j<n φ ◦ f

j
∆ and Snφ =

∑
0≤i<j<n(φ ◦ f i∆)⊗ (φ ◦ f j∆). Then∣∣max

k≤n
|Skφ|

∣∣
2(p−1)

≤ Cn1/2‖φ‖η and
∣∣max
k≤n
|Skφ|

∣∣
p−1
≤ Cn‖φ‖2η.

2.3 Drift and diffusion coefficients

Let Snv, Snv be as in (2.4) and define Σ, E ∈ Rd×d,

Σ = lim
n→∞

1

n

∫
Λ
Snv ⊗ Snv dµ, E = lim

n→∞

1

n

∫
Λ
Snv dµ. (2.6)

Proposition 2.7 The limits in (2.6) exist and are given by

Σ =
∫

∆m⊗mdµ∆, E =
∫

∆ χ⊗ φdµ∆.

Moreover, for all n ≥ 1,∣∣∣ 1
n

∫
Λ
Snv ⊗ Snv dµ− Σ

∣∣∣ ≤ C‖v‖2ηn1/p−1/2,
∣∣∣ 1
n

∫
Λ
Snv dµ− E

∣∣∣ ≤ C‖v‖2η(n−1/2 + n−(p−2)).

Proof The limit for Σ is obtained in [20, Corollary 2.12]. The proof of [20, Corollary 2.12]
contains the estimate∣∣∣ 1

n

∫
Λ
Snv ⊗ Snv dµ− Σ

∣∣∣� n−1/2‖v‖η|χ ◦ fn∆ − χ|p,

so the convergence rate for Σ follows from Proposition 2.1.
Next, we note that |χ⊗ (n−1Snφ)|1 ≤ |χ|1|v|∞ <∞ since χ ∈ Lp−1 ⊂ L1. Also n−1Snφ→ 0

almost surely by the pointwise ergodic theorem. Hence it follows from the dominated conver-
gence theorem that

lim
n→∞

1

n

∫
∆
χ⊗ Snφdµ∆ = 0.

Since Lm = 0, we have
∫

∆(m ◦ f i∆)⊗ (φ ◦ f j∆) dµ∆ = 0 for all i < j. Hence by (2.2),∫
∆
Snφdµ∆ =

∫
∆

n−1∑
j=1

(χ ◦ f j∆ − χ)⊗ (φ ◦ f j∆) dµ∆ = n

∫
∆
χ⊗ φdµ∆ −

∫
∆
χ⊗ Snφdµ∆.

It follows that E = limn→∞
1
n

∫
∆ Snφdµ∆ =

∫
∆ χ⊗ φdµ∆.

To obtain the convergence rate for E, we may suppose without loss that p ∈ (2, 5
2 ]. Write

(p − 1)−1 + q−1 = 1 where q ∈ [3,∞). It follows from Hölder’s inequality and Proposition 2.1
that |χ⊗ Snφ|1 ≤ |χ|p−1|Snφ|q � ‖v‖η|Snφ|q. By Theorem 2.4,∫

∆
|Snφ|q dµ∆ ≤ |Snφ|q−2(p−1)

∞

∫
∆
|Snφ|2(p−1) dµ∆ � ‖v‖qη nq−2(p−1)np−1 = ‖v‖qη nq−(p−1).

Hence |χ⊗ Snφ|1 � ‖v‖2η n1−(p−1)/q = ‖v‖2η n3−p and the result follows.

For later use, we record the following result:
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Proposition 2.8 For n ≥ 1,∣∣∣∣max
k≤n

∣∣∣ k−1∑
j=0

(
(χ⊗ φ) ◦ f j∆ − E

)∣∣∣∣∣∣∣
1

≤ C‖v‖2η
(
n3/4 + n

∫
Y
τ21{τ≥n1/4} dµY

)
.

Proof Fix q > 0, and define

ψ : ∆→ Rd×d, ψ(y, `) = (χ⊗ φ)(y, `)1{τ(y)≥q}.

By (2.3), |χ⊗ φ|(y, `) ≤ (|χ′|∞ + `|v|∞)|v|∞ � ‖v‖2ητ(y). Hence

|ψ|1 � ‖v‖2η
∫

∆
τ(y)1{τ(y)≥q} dµ∆(y, `) ≤ ‖v‖2η

∫
Y
τ21{τ≥q} dµY . (2.7)

Write χ⊗ φ− E = U + V where

U = ψ −
∫

∆
ψ dµ∆, V = χ⊗ φ− ψ −

∫
∆

(χ⊗ φ− ψ) dµ∆.

By (2.7),∣∣∣max
k≤n
|SkU |

∣∣∣
1
≤
∣∣∣∑
j<n

|U ◦ f j∆|
∣∣∣
1
≤ n|U |1 ≤ 2n|ψ|1 � n‖v‖2η

∫
Y
τ21{τ≥q} dµY .

Next, V (y, `) = (χ⊗ φ)(y, `)1{τ<q} −
∫

∆(χ⊗ φ)1{τ<q} dµ∆. By (2.3),

|χ(y, `)− χ(y′, `)| ≤ |χ′(y)− χ′(y′)|+
`−1∑
k=0

|φ(y, k)− φ(y′, k)|

� ‖v‖ηdΛ(y, y′)η + ‖φ‖η
`−1∑
k=0

d∆((y, k), (y′, k))η

� ‖v‖ητ(y)d∆((y, `), (y′, `))η.

Here we used that ‖φ‖η � ‖v‖η and dΛ(y, y′) ≤ d∆((y, `), (y′, `)).
A simpler calculation shows that |χ(y, `)| � τ(y)‖v‖η. It follows that ‖V ‖η � q‖v‖2η. By

Lemma 2.6, ∣∣max
k≤n
|SkV |

∣∣
1
� ‖V ‖η n1/2 � q‖v‖2η n1/2.

The result follows by taking q = n1/4.

Remark 2.9 Nonuniformly expanding maps are mixing up to a finite cycle. When they are
mixing (in particular, if gcd{τ(a) : a ∈ α} = 1), then we have formulas of Green-Kubo type for
Σ and E in (2.6), namely

Σ =

∫
Λ
v ⊗ v dµ+

∞∑
n=1

∫
Λ

(
v ⊗ (v ◦ Tn) + (v ◦ Tn)⊗ v

)
dµ, E =

∞∑
n=1

∫
Λ
v ⊗ (v ◦ Tn) dµ.

3 Families of nonuniformly expanding maps

In this section, we prove the iterated WIP and iterated moment estimates for uniform families
of nonuniformly expanding maps.
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3.1 Iterated WIP and iterated moments

Throughout, Tn : Λn → Λn, n ≥ 1, is a family of nonuniformly expanding maps as in Section 2
with absolutely continuous ergodic Tn-invariant probability measures µn. To each Tn there is
associated an induced uniformly expanding map Fn : Yn → Yn with ergodic invariant probability
measure µYn and a return time τn ∈ Lp(Yn) where p ≥ 2.

We assume that Tn is a uniform family of order p ≥ 2 in the sense of [20]. This means that
the expansion and distortion constants C1 ≥ 1, β > 1, η ∈ (0, 1] for the induced maps Fn can
be chosen independent of n and that the family {τpn} is uniformly integrable on (Yn, µYn), i.e.
supn

∫
Yn
τpn1{τn≥q} dµYn → 0 as q → ∞. Let vn : Λn → Rd, n ≥ 1, be a family of observables

with supn≥1 ‖vn‖η <∞ and
∫

Λn
vn dµn = 0.

Let f∆n : ∆n → ∆n be the corresponding family of Young tower maps, with invariant
probability measures µ∆,n and semiconjugacies π∆n : ∆n → Λn. In particular, µn = π∆n∗µ∆n .

Define the lifted observables φn = vn◦π∆n : ∆n → Rd. By Section 2, we have the martingale-
coboundary decompositions

φn = mn + χn ◦ f∆n − χn.

Proposition 3.1 The family {|mn|2; n ≥ 1} is uniformly integrable on (Λn, µn).

Proof See [20, Proposition 4.3].

Abusing notation from Section 2 slightly, we define

Skvn =
∑

0≤j<k
vn ◦ T jn, Skvn =

∑
0≤i<j<k

(vn ◦ T in)⊗ (vn ◦ T jn).

By uniformity, the constants C in Section 2 can be chosen independently of n. Hence the next
result is an immediate consequence of Theorem 2.4:

Corollary 3.2 (Iterated moments) For all n ≥ 1,∣∣max
k≤n
|Skvn|

∣∣
L2(p−1)(µn)

≤ Cn1/2‖vn‖η,
∣∣max
k≤n
|Snvn|

∣∣
Lp−1(µn)

≤ Cn‖vn‖2η.

Write

Σn = lim
k→∞

1

k

∫
∆n

Skvn ⊗ Skvn dµ∆n , En = lim
k→∞

1

k

∫
∆n

Skvn dµ∆n . (3.1)

Corollary 3.3 The limits in (3.1) exist for each n and are given by

Σn =

∫
∆n

mn ⊗mn dµ∆n , En =

∫
∆n

χn ⊗ φn dµ∆n .

For p > 2, the convergence is uniform in n.

Proof This follows from Proposition 2.7.

Define Wn ∈ D([0, 1],Rd), Wn ∈ D([0, 1],Rd×d) by

Wn(t) =
1√
n

∑
0≤j<nt

vn ◦ T jn, Wn(t) =
1

n

∑
0≤i<j<nt

(vn ◦ T in)⊗ (vn ◦ T jn).

We can now state the main result of this section.
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Theorem 3.4 (Iterated WIP) Suppose that limn→∞Σn = Σ and limn→∞En = E. Then

(Wn,Wn)→µn (W,W) as n→∞ in D([0, 1],Rd × Rd×d),

where W is d-dimensional Brownian motion with covariance matrix Σ and W(t) =
∫ t

0 W ⊗
dW + Et. (As always in this paper,

∫ t
0 W ⊗ dW denotes the Itô integral.)

To prove Theorem 3.4, it is equivalent to show that (Qn,Qn)→µ∆n
(W,W) where

Qn(t) =
1√
n

∑
0≤j<nt

φn ◦ f j∆n
, Qn(t) =

1

n

∑
0≤i<j<nt

(φn ◦ f i∆n
)⊗ (φn ◦ f j∆n

).

Define also Mn(t) = 1
n

∑
0≤i<j<nt(mn ◦ f i∆n

)⊗ (φn ◦ f j∆n
) .

Lemma 3.5 Suppose that limn→∞Σn = Σ. Then (Qn,Mn) →µ∆n
(W,M) in D([0, 1],Rd ×

Rd×d), where M(t) =
∫ t

0 W ⊗ dW .

Proof We verify the hypotheses of Theorem A.1. Hypothesis (a) holds by Proposition 3.1.
Next, by Proposition 2.1, writing | |2 as shorthand for | |L2(µ∆n ) and | |L2(µYn ),∣∣∣max

k≤n

∣∣ ∑
0≤j<k

(φn −mn) ◦ f j∆n

∣∣∣∣∣
2

=
∣∣∣max
k≤n
|χn ◦ fk∆n

− χn|
∣∣∣
2

≤ C‖vn‖η(n1/4 + n1/2|1{τn≥n1/4}τn|2).

Since the family {τ2
n} is uniformly integrable, n−1/2

∣∣maxk≤n |
∑

0≤j<k(φn −mn) ◦ f j∆n
|
∣∣
2
→ 0,

verifying hypothesis (b).
Finally, by Proposition 2.3, for t ∈ [0, 1],∣∣∣ ∑

0≤j<nt
UnLn(mn ⊗mn) ◦ f j∆n

− [nt]Σn

∣∣∣
2
≤ Cn1/2‖vn‖2η.

Hypothesis (c) follows.

Proof of Theorem 3.4 Write Qn(t)−Mn(t) = An(t)−Bn(t), where

An(t) =
1

n

∑
0≤j<nt

(χn ⊗ φn) ◦ f j∆n
, Bn(t) =

1

n
χn ⊗

∑
0≤j<nt

φn ◦ f j∆n
.

By Lemma 3.5, it suffices to show that supt∈[0,1] |An(t)−Bn(t)− tEn| →µ∆n
0.

Write | |q = | |Lq(µ∆n ). Since the family {τ2
n} is uniformly integrable, it follows from

Proposition 2.8 that∣∣ sup
t∈[0,1]

|An(t)− tEn|
∣∣
1
� ‖vn‖2η

(
n−1/4 +

∫
Yn

τ2
n1{τn≥n1/4} dµYn

)
→ 0.

Next, supt∈[0,1] |Bn(t)| ≤ |χn|B′n where B′n = n−1 maxk≤n
∣∣∑k−1

j=0 φn ◦f
j
∆n

∣∣. By Theorem 2.4,

|B′n|2 � n−1/2‖vn‖η � n−1/2, so B′n →µ∆n
0. Also, by Proposition 2.1, |χn|1 � ‖vn‖η = O(1).

It follows that supt∈[0,1] |Bn(t)| →µ∆n
0.
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Corollary 3.6 Suppose that limn→∞Σn = Σ and limn→∞En = E. Let λn be a family of
probability measures on Λn absolutely continuous with respect to µn. Suppose that the densities

ρn = dλn/dµn satisfy supn
∫
ρ1+δ
n dµn <∞ for some δ > 0 and that inf

N≥1
lim sup
n→∞

∫ ∣∣∣ 1

N

N−1∑
j=0

ρn ◦

T jn − 1
∣∣∣ dµn = 0.

Then (Wn,Wn) →λn (W,W) as n → ∞ in D([0, 1],Rd × Rd×d) where W is d-dimensional
Brownian motion with covariance matrix Σ and W(t) =

∫ t
0 W ⊗ dW + Et.

Proof We verify the conditions of Remark B.2 with B = D([0, 1],Rd × Rd×d) and dB(u, v) =
supt∈[0,1] |u(t)− v(t)|. The result then follows from Theorem 3.4.

Conditions (S1) and (S5) of Remark B.2 hold by assumption so it remains to verify (S4).
Define the sequence of random variables

Rn : Λ→ D([0, 1],Rd × Rd×d), Rn = (Wn,Wn).

We have supt∈[0,1] |(Wn ◦ Tn)(t)−Wn(t)| ≤ 2n−1/2|vn|∞. Also,

(Wn ◦ Tn)(t)−Wn(t) = n−1
∑

1≤i<nt
(vn ◦ T in)⊗ (vn ◦ Tnn )− n−1

∑
1≤j<nt

vn ⊗ (vn ◦ T jn).

Write | |1 = | |L1(µn). By Corollary 3.2,∣∣ sup
[0,1]
|Wn ◦ Tn −Wn|

∣∣
1
≤ 4n−1|vn|∞

∣∣max
k≤n
|Skvn|

∣∣
1
� n−1/2‖vn‖2η.

Hence
|dB(Rn ◦ Tn, Rn)|1 � n−1/2(|vn|∞ + ‖vn‖2η),

verifying condition (S4).

Remark 3.7 By Corollary 3.2, |N−1
∑k−1

j=0 ρn ◦ T
j
n − 1| � N−1/2‖ρn‖η. Hence a sufficient

condition for the assumptions on ρn in Corollary 3.6 is that supn ‖ρn‖η <∞.

3.2 Existence of limits for Σn and En

Theorem 3.4 and Corollary 3.6 establish the iterated WIP subject to the existence of limn→∞Σn

and limn→∞En. In this subsection, we describe mild conditions under which these limits exist.
Let (Λ, dΛ) be a bounded metric space with finite Borel measure ρ. We assume that Tn,

n ∈ N ∪ {∞}, is a uniform family as in Section 3.1 but now of order p > 2 and defined on the
common space Λ. In particular, each Tn is a nonuniformly expanding map as in Section 2, with
absolutely continuous ergodic Tn-invariant Borel probability measures µn. We suppose that µn
is statistically stable: µn →w µ∞ as n→∞. Moreover, we require that∫

Λ(v ◦ T j∞)(w ◦ T k∞) (dµn − dµ∞)→ 0 and T jn →µn T
j
∞ as n→∞ (3.2)

for all j, k ≥ 0 and all v, w ∈ Cη(Λ). (The second part of condition (3.2) means that µn{y ∈
Λ : dΛ(T jny, T

j
∞y) > a} → 0 for all a > 0.)

Let vn ∈ Cη(Λ,Rd), n ∈ N∪{∞}, with
∫

Λ vn dµn = 0. We assume that limn→∞ ‖vn−v∞‖η =
0.
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Lemma 3.8 Define Snvn =
∑

0≤j<n vn ◦ T
j
n and Snvn =

∑
0≤i<j<n(vn ◦ T in)⊗ (vn ◦ T jn). Then

the limits

Σn = lim
n→∞

1

n

∫
Λ
Snvn ⊗ Snvn dµn, En = lim

n→∞

1

n

∫
Λ
Snvn dµn,

exist for all n ∈ N ∪ {∞}, and limn→∞Σn = Σ∞, limn→∞En = E∞.

Proof The limits Σn and En exist for n fixed by Corollary 3.3. We refer to [20, Proposition 7.6]
for the proof that limn→∞Σn = Σ∞. Here we show that limn→∞En = E∞.

Write Jn,n =
∫

Λ Snvn dµn. Let δ > 0. By Corollary 3.3, there exists N ≥ 1 such that
|N−1Jn,N − En| < δ for all n ≥ 1. Hence,

|En − E∞| < 2δ +N−1|Jn,N − J0,N |. (3.3)

Next

Jn,N − J0,N =

∫
Λ

(SNvn − SNv∞) dµn +

∫
Λ
SNv∞ (dµn − dµ∞).

By condition (3.2), limn→∞
∫

Λ SNv∞ (dµn − dµ∞) = 0. Also,

|SNvn − SNv∞| ≤
∑

0≤i<j<N
|(vn ◦ T in)⊗ (vn ◦ T jn)− (v∞ ◦ T i∞)⊗ (v∞ ◦ T j∞)| ≤ A1 +A2,

where

A1 =
∑

0≤i<j<N
|(vn ◦ T in)⊗ (vn ◦ T jn)− (v∞ ◦ T in)⊗ (v∞ ◦ T jn)|,

A2 =
∑

0≤i<j<N
|(v∞ ◦ T in)⊗ (v∞ ◦ T jn)− (v∞ ◦ T i∞)⊗ (v∞ ◦ T j∞)|.

Now,

A1 ≤
∑

0≤i<j<N
(|vn| ◦ T in|vn − v∞| ◦ T jn + |vn − v∞| ◦ T in|v∞| ◦ T jn)

≤ N2(|vn|∞ + |v∞|∞)|vn − v∞|∞.

Also,

A2 ≤ N |v∞|∞
∑

0≤j<N
|v∞ ◦ T jn − v∞ ◦ T j∞| ≤ N |v∞|∞|v∞|ηgn,N ,

where gn,N (y) =
∑N−1

j=0 dΛ(T jny, T
j
∞y)η. By the assumption on vn and condition (3.2), we obtain

that limn→∞ |SNvn − SNv∞|L1(µn) = 0. Hence limn→∞ Jn,N = J0,N and so lim supn→∞ |En −
E∞| ≤ 2δ by (3.3). Since δ is arbitrary, the result follows.

3.3 Auxiliary properties

Our results so far in this section on the iterated WIP and control of iterated moments verify
the main hypotheses required to apply rough path theory in Part 2. However, there remain
two relatively minor hypotheses, Assumption 2.11 and Assumption 2.12(ii)(a) in [5] which we
address now. We continue to assume the set up of Subsection 3.2 though we require weaker
regularity assumptions on vn: it suffices that vn ∈ L∞(Λ,Rd), n ≥ 1, and v∞ ∈ Cη(Λ,Rd) with

limn→∞ |vn − v∞|∞ = 0. Fix t ∈ [0, 1], and define Vn = n−1
∑[nt]−1

j=0 vn ◦ T jn.
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Proposition 3.9 (a) limn→∞
∣∣Vn − t ∫Λ v∞ dµ∞

∣∣
Lp(µn)

= 0.

(b) limn→∞
∫

Λ vn ⊗ vn dµn =
∫

Λ v∞ ⊗ v∞ dµ∞.

Proof (a) Define Un = n−1
∑[nt]−1

j=0 v∞ ◦ T jn. Then |Vn − Un|∞ ≤ t|vn − v∞|∞ → 0. Since v∞

is Hölder, it follows from Corollary 3.2 that |Un − t
∫

Λ v∞ dµn|Lp(µn) � ‖v∞‖η n−1/2. By (3.2),∫
Λ v∞ dµn →

∫
Λ v∞ dµ∞ and the result follows.

(b) We have
∫

Λ |vn ⊗ vn − v∞ ⊗ v∞| dµn ≤ (|vn|∞ + |v∞|∞)|vn − v∞|∞ → 0. Also,
∫

Λ v∞ ⊗
v∞(dµn − dµ∞)→ 0 by (3.2).

4 Examples

In this section, we consider examples of nonuniformly expanding dynamics, including families
of intermittent maps (1.2) discussed in the introduction, covered by the results in this paper.

4.1 Application to intermittent maps

Fix a family of intermittent maps Tn : [0, 1]→ [0, 1], n ∈ N ∪ {∞}, as in (1.2) with parameters
γn ∈ (0, 1

2) such that limn→∞ γn = γ∞. By [19, Example 5.1], Tn is a uniform family of nonuni-
formly expanding maps of order p for all p ∈ (2, γ−1

∞ ). By [1, 18], µn is strongly statistically
stable. That is, the densities hn = dµn/dLeb satisfy limn→∞

∫
Λ |hn − h∞| dLeb = 0. Using this

property, conditions (3.2) are easily verified.
Hence our main results on control of iterated moments (Corollary 3.2) and the iterated WIP

(Theorem 3.4 and Lemma 3.8) hold for families of intermittent maps Tn and Hölder observables
vn : [0, 1] → Rd with

∫
vn dµn = 0 and limn→∞ ‖vn − v∞‖η = 0. Also the auxiliary properties

in Proposition 3.9 are satisfied. This leads via Part 2 to homogenization results x̂n →µn X
for fast-slow systems (1.1). Since µn(x̂n ∈ B) − µ∞(x̂n ∈ B) =

∫
Λ 1{x̂n∈B}(hn − h∞) dLeb for

suitable subsets B ⊂ D([0, 1],Rd), it follows from strong statistical stability that x̂n →µ∞ X.
In the remainder of this subsection, we show that all our results remain valid when µn is

replaced by Lebesgue measure. (We continue to assume that the observables vn are centered
with respect to µn, so

∫
vn dµn = 0.)

The densities hn = dµn/dLeb are uniformly bounded below (see [22, Lemma 2.4] for explicit
lower bounds). Hence it is immediate that the moment estimates in Corollary 3.2 hold with µn
changed to Leb. Since Leb is not invariant, the following nonstationary version of the moment
estimates is required in Part 2:

Proposition 4.1
∣∣∑

`≤j<k vn ◦ T
j
n

∣∣
L2(p−1)(Leb)

≤ C(k − `)1/2‖vn‖η and∣∣∑
`≤i<j<k(vn ◦ T in)⊗ (vn ◦ T jn)

∣∣
Lp−1(Leb)

≤ C(k − `)‖vn‖2η for all 0 ≤ ` < k < n.

Proof Since µn is Tn-invariant, it follows from Corollary 3.2 that∣∣∣ ∑
`≤j<k

vn ◦ T jn
∣∣∣
L2(p−1)(µn)

=
∣∣∣ ∑

0≤j<k−`
vn ◦ T jn

∣∣∣
L2(p−1)(µn)

� (k − `)1/2‖vn‖η,∣∣∣ ∑
`≤i<j<k

(vn ◦ T in)⊗ (vn ◦ T jn)
∣∣∣
Lp−1(µn)

=
∣∣∣ ∑

0≤i<j<k−`
(vn ◦ T in)⊗ (vn ◦ T jn)

∣∣∣
Lp−1(µn)

� (k − `)‖vn‖2η.

Now use that the densities hn are uniformly bounded below.
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Next we turn to the iterated WIP. Defining Σn and En as in (3.1) for n ∈ N ∪ {∞}, we
already have that limn→∞Σn = Σ∞ and limn→∞En = E∞ by Lemma 3.8.

Proposition 4.2 (Wn,Wn) →Leb (W,W) as n → ∞ in D([0, 1],Rd × Rd×d), where W is d-
dimensional Brownian motion with covariance matrix Σ∞ and W(t) =

∫ t
0 W ⊗ dW + E∞t.

Proof By Theorem 3.4, (Wn,Wn) →µn (W,W) as n → ∞ in D([0, 1],Rd × Rd×d). To pass
from µn to Leb, we apply Corollary 3.6. Let ρn = h−1

n = dLeb/dµn. Then supn |ρn|∞ <∞. To
deal with the remaining assumption in Corollary 3.6, write∫

Λ

∣∣∣ 1

N

N−1∑
j=0

ρn ◦ T jn − 1
∣∣∣ dµn ≤ I1(N,n) + I2(N,n) + I3(N,n) + I4(N)

where

I1 =

∫
Λ

1

N

∣∣∣N−1∑
j=0

(ρn ◦ T jn − ρ∞ ◦ T jn)
∣∣∣ dµn, I2 =

∫
Λ

1

N

N−1∑
j=0

ρ∞ ◦ T jn|hn − h∞| dLeb,

I3 =

∫
Λ

1

N

∣∣∣N−1∑
j=0

(ρ∞ ◦ T jn − ρ∞ ◦ T j∞)
∣∣∣ dµ∞, I4 =

∫
Λ

∣∣∣ 1

N

N−1∑
j=0

ρ∞ ◦ T j∞ − 1
∣∣∣ dµ∞.

Fix N ≥ 1. By Tn-invariance of µn,

I1(N,n) ≤
∫

Λ
|ρn − ρ∞| dµn =

∫
Λ
|hn − h∞|ρ∞ dLeb ≤ |ρ∞|∞

∫
Λ
|hn − h∞| dLeb,

and also

I2(N,n) ≤ |ρ∞|∞
∫

Λ
|hn − h∞| dLeb.

By boundedness of ρ∞ and strong statistical stability, limn→∞ I1(N,n) = limn→∞ I2(N,n) = 0.
By continuity of ρ∞ and the dominated convergence theorem, limn→∞ I3(N,n) = 0. Hence for
each fixed N ≥ 1,

lim sup
n→∞

∫
Λ

∣∣∣ 1

N

N−1∑
j=0

ρn ◦ T jn − 1
∣∣∣ dµn ≤ I4(N).

By the mean ergodic theorem, limN→∞ I4(N) = 0. Hence lim supn→∞
∫

Λ

∣∣∣ 1
N

∑N−1
j=0 ρn ◦ T jn −

1
∣∣∣ dµn → 0 as N → ∞. This verifies the final assumption in Corollary 3.6 completing the

proof.

Finally, we consider the analogue of Proposition 3.9 with µn replaced by Leb where appro-
priate. Again we can relax the assumptions on vn; it suffices that vn ∈ L∞(Λ,Rd), n ≥ 1, and
v∞ ∈ Cη(Λ,Rd) with limn→∞ |vn − v∞|∞ = 0.

Recall that Vn = n−1
∑

j<[nt] vn ◦ T
j
n where t ∈ [0, 1] is fixed.

Proposition 4.3 (a) limn→∞
∣∣Vn − t ∫Λ v∞ dµ∞

∣∣
Lp(Leb)

= 0.

(b) limn→∞ n
−1
∑

j<n

∫
Λ(vn ⊗ vn) ◦ T jn dLeb =

∫
Λ v∞ ⊗ v∞ dµ∞.
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Proof (a) Using again that the densities hn = dµn/dLeb are uniformly bounded below,∫
Λ

∣∣∣Vn − t∫
Λ
v∞ dµ∞

∣∣∣ dLeb�
∫

Λ

∣∣∣Vn − t ∫
Λ
v∞ dµ∞

∣∣∣ dµn → 0

by Proposition 3.9(a).
(b) Set wn = vn ⊗ vn −

∫
Λ vn ⊗ vn dµn. Then wn ∈ Cη(Λ,Rd×d) with

∫
Λwn dµn = 0 and∣∣∣n−1

∑
j<n

∫
Λ

(vn ⊗ vn) ◦ T jn dLeb−
∫

Λ
vn ⊗ vn dµn

∣∣∣ ≤ n−1

∫
Λ

∣∣∣∑
j<n

wn ◦ T jn
∣∣∣ dLeb

� n−1

∫
Λ

∣∣∣∑
j<n

wn ◦ T jn
∣∣∣ dµn � n−1/2‖wn‖η → 0

by Corollary 3.2.

4.2 Further examples

In [20], the WIP and estimates of ordinary moments were obtained for many examples of
nonuniformly expanding dynamics. We now obtain the corresponding iterated results.

Revisiting [19, Example 5.2] and [20, Example 4.10, Example 7.3], we consider families
of quadratic maps Tn : [−1, 1] → [−1, 1], n ∈ N ∪ {∞}, given by Tn(x) = 1 − anx

2, an ∈
[0, 2] with limn→∞ an = a∞. Fixing b, c > 0 we assume that the Collet-Eckmann condition
|(T kn )′(1)| ≥ cebk holds for all k ≥ 0, n ≥ 1.2 The set of parameters such that this Collet-
Eckmann condition holds has positive Lebesgue measure for b, c sufficiently small. Moreover
Tn is a uniform family of nonuniformly expanding maps of order p (for any p) and satisfies
strong statistical stability. Hence we obtain control of iterated moments (Corollary 3.2) and
the iterated WIP (Theorem 3.4 and Lemma 3.8) for Hölder observables vn : [−1, 1]→ Rd with∫

Λ vn dµn = 0 and limn→∞ |vn − v∞|∞ = 0.
Revisiting [19, Example 5.4] and [20, Example 4.11, Example 7.3], we consider families of

Viana maps Tn : S1×R→ S1×R, n ∈ N∪{∞}. Again, we obtain control of iterated moments
and the iterated WIP.

In both sets of examples, we obtain homogenization results x̂n →µn X by Part 2 and
x̂n →µ∞ X by strong statistical stability as explained at the beginning of Subsection 4.1.

5 Families of nonuniformly expanding semiflows

In this section, we consider uniform families of nonuniformly expanding semiflows. These are
modelled as suspensions over uniform families of nonuniformly expanding maps. In keeping
with the program of [24], no mixing assumptions are imposed on the semiflows.

Specifically, let Tn : Λn → Λn, n ≥ 1, be a uniform family of nonuniformly expanding
maps of order p ≥ 2 as in Section 3 with ergodic invariant probability measures µΛn . Let
hn : Λn → R+ be a family of roof functions satisfying supn ‖hn‖η <∞ and infn inf hn > 0. For
each n ≥ 1, define the suspension

Ωn = Λhnn = {(x, u) ∈ Λn × R : 0 ≤ u ≤ hn(x)}/ ∼ , (x, hn(x)) ∼ (Tnx, 0).

The suspension flow gn,t : Ωn → Ωn is given by gn,t(x, u) = (x, u + t) computed modulo
identifications. Let h̄n =

∫
Λn
hn dµΛn . Then µn = µhnΛn

= (µΛn×Lebesgue)/h̄n is an ergodic gn,t-
invariant probability measure on Ωn. We call gn,t : Ωn → Ωn a uniform family of nonuniformly
expanding semiflows of order p.

2There is a typo in [20, Example 4.10] where cebn should be cebk.
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To simplify the statement of results in this section, we denote by C various constants de-
pending continuously on the data associated with Tn : Λn → Λn as well as supn ‖hn‖η.

For v : Ωn → Rd, define

‖v‖η = |v|∞ + sup
(x,u)6=(x′,u)∈Ωn

|v(x, u)− v(x′, u)|
dΛn(x, x′)η

.

5.1 Moment estimates

As in Sections 2 and 3, for uniform moment estimates it suffices to consider a fixed uniformly
expanding semiflow gt : Ω → Ω. The main result in this section, Theorem 5.3, establishes the
desired moment estimates. We also collect together some other results that fit best into the
fixed semiflow setting.

Given v : Ω→ Rd, define the induced observable

ṽ : Λ→ R, ṽ(x) =
∫ h(x)

0 v(x, u) du.

Proposition 5.1 |ṽ|∞ ≤ |h|∞|v|∞ and ‖ṽ‖η ≤ ‖h‖η‖v‖η.

Proof The estimate for |ṽ|∞ is immediate. Also, for x, x′ ∈ Λ with h(x) ≤ h(x′),

|ṽ(x)− ṽ(x′)| ≤ |h(x)− h(x′)||v|∞ +

∫ h(x)

0
|v(x, u)− v(x′, u)| du

≤ ‖h‖η|v|∞dΛ(x, x′) +

∫ h(x)

0
‖v‖η dΛ(x, x′) du ≤ ‖h‖η‖v‖ηdΛ(x, x′),

completing the proof.

Define

St =

∫ t

0
v ◦ gs ds, St =

∫ t

0

∫ s

0
(v ◦ gr)⊗ (v ◦ gs) dr ds

on Ω. Also, for the induced observable ṽ : Λ→ Rd, define

S̃n(x, u) =
∑

0≤j<n
ṽ(T jx), S̃n(x, u) =

∑
0≤i<j<n

ṽ(T ix)⊗ ṽ(T jx), (x, u) ∈ Ω.

We introduce the lap number N(t) : Ω→ N, t ≥ 0,

N(t)(x, u) = max
{
n ≥ 0 :

∑n−1
j=0 h(T jx) ≤ u+ t

}
.

Also, define
H : Ω→ Rd, H(x, u) =

∫ u
0 v(x, s) ds.

Proposition 5.2 For all t ≥ 0,

|St − S̃N(t)|∞ ≤ 2|h|∞|v|∞,

|St − S̃N(t) −
∫ t

0 (H ⊗ v) ◦ gs ds| ≤ 2|h|∞|v|∞|S̃N(t)|+ 2|h|2∞|v|2∞.

Proof We use formal calculations from the proof of [16, Proposition 7.5], focusing on the
precise estimates.

First, St = S̃N(t) +H ◦ gt −H. Hence |St − S̃N(t)|∞ ≤ 2|H|∞ ≤ 2|h|∞|v|∞.
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Second, writing Tn = inf{t′ ≥ 0 : N(t′) = n}, we observe that

S̃N(t) =

∫ TN(t)

0
S̃N(s) ⊗ (v ◦ gs) ds =

∫ t

0
S̃N(s) ⊗ (v ◦ gs) ds− S̃N(t) ⊗ (H ◦ gt).

Hence

St =
∫ t

0 S̃N(s) ⊗ (v ◦ gs) ds+
∫ t

0 (H ⊗ v) ◦ gs ds−H ⊗
∫ t

0 v ◦ gs ds

= S̃N(t) +
∫ t

0 (H ⊗ v) ◦ gs ds+K(t),

where K(t) = S̃N(t) ⊗ (H ◦ gt)−H ⊗ St. We have

|K(t)| ≤ |S̃N(t)||H|∞ + |H|∞|St| ≤ |S̃N(t)||h|∞|v|∞ + |h|∞|v|∞(|S̃N(t)|+ 2|h|∞|v|∞).

The result follows.

Theorem 5.3 (Iterated moments) For all t1 ≥ 0,∣∣∣ sup
t∈[0,t1]

|St|
∣∣∣
L2(p−1)(Ω)

≤ Ct11/2‖v‖η,
∣∣∣ sup
t∈[0,t1]

|St|
∣∣∣
Lp−1(Ω)

≤ Ct1‖v‖2η.

Proof The estimates are trivial for t ∈ [0, 1] (since t ≤ t1/2) so we restrict to t1 ≥ 1, t ∈ [1, t1].
Since inf h > 0, it is immediate ([16, Proposition 7.4]) that

|N(t)|∞ ≤ C0 t for all t ≥ 1, (5.1)

where C0 = (inf h)−1 + 1.
By (5.1),∫

Ω
sup

1≤t≤t1
|S̃N(t)|2(p−1) dµ ≤

∫
Ω

max
k≤C0t1

|S̃k|2(p−1) dµ

≤ h̄−1|h|∞
∫

Λ
max
k≤C0t1

∣∣∣ ∑
0≤j<k

ṽ ◦ T j
∣∣∣2(p−1)

dµΛ.

Hence by Theorem 2.4,∣∣∣ sup
1≤t≤t1

|S̃N(t)|
∣∣∣
L2(p−1)(Ω)

�
∣∣∣ max
k≤C0t1

∣∣∣ ∑
0≤j<k

ṽ ◦ T j
∣∣∣∣∣∣
L2(p−1)(Λ)

� t1
1/2‖ṽ‖η � t1

1/2‖v‖η.

Similarly,
∣∣ sup1≤t≤t1 |S̃N(t)|

∣∣
Lp−1(Ω)

� t1‖v‖2η. Also,
∫ t1

0 |(H ⊗ v) ◦ gs| ds ≤ t1|h|∞|v|2∞ so the

result follows from Proposition 5.2.

Corollary 5.4 For all t1 ≥ 0,∣∣∣ sup
t∈[0,t1]

∣∣∣ ∫ t

0
(H ⊗ v) ◦ gs ds− t

∫
Ω
H ⊗ v dµ

∣∣∣∣∣∣
L2(p−1)(Ω)

≤ Ct11/2‖v‖2η.

Proof Using the St estimate in Theorem 5.3 with v replaced by H ⊗ v −
∫

ΩH ⊗ v dµ, we

obtain
∣∣ supt∈[0,t1] |

∫ t
0 (H ⊗ v) ◦ gs ds − t

∫
ΩH ⊗ v dµ|

∣∣
2(p−1)

� t1
1/2‖H ⊗ v‖η. In addition,

‖H ⊗ v‖η ≤ ‖H‖η‖v‖η ≤ |h|∞‖v‖2η.
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Lemma 5.5 For all s ∈ [0, inf h], n ≥ 1,∣∣∣ sup
t∈[0,1]

|S̃[nt] ◦ gs − S̃[nt]|
∣∣∣
∞
≤ 2|h|∞|v|∞,

∣∣∣ sup
t∈[0,1]

|S̃[nt] ◦ gs − S̃[nt]|
∣∣∣
L2(p−1)(Ω)

≤ Cn1/2‖v‖2η.

Proof The random variable N(s)(x, u) lies in {0, 1} due to the restriction on s. If N(s)(x, u) =
0, then gs(x, u) = (x, u+ s). Now, S̃n and S̃n are independent of u, and so S̃[nt] ◦ gs ≡ S̃[nt] and

S̃[nt] ◦ gs ≡ S̃[nt] for all n, t and all s, x, u with N(s)(x, u) = 0.
Hence we may suppose for the remainder of the proof that N(s) ≡ 1 in which case gs(x, u) =

(fx, u+ s− h(x)). Then,

|S̃[nt] ◦ gs(x, u)− S̃[nt](x, u)| =
∣∣∣ ∑

0≤j<[nt]

(ṽ(T j+1x)− ṽ(T jx))
∣∣∣ ≤ 2|ṽ|∞ ≤ 2|h|∞|v|∞.

Next,

|S̃[nt] ◦ gs(x, u)− S̃[nt](x, u)| =
∣∣∣ ∑

0≤i<j<[nt]

(
ṽ(T i+1x)⊗ ṽ(T j+1x)− ṽ(T ix)⊗ ṽ(T jx)

)∣∣∣
=
∣∣∣ ∑

1≤i<[nt]

ṽ(T ix)⊗ ṽ(T [nt]x)−
∑

1≤j<[nt]

ṽ ⊗ ṽ(T jx)
∣∣∣

≤ 2|ṽ|∞
∣∣∣( ∑

0≤j<[nt]−1

ṽ ◦ T j
)

(fx)
∣∣∣.

Hence
∣∣∣ supt∈[0,1] |S̃[nt] ◦ gs − S̃[nt]|

∣∣∣
2(p−1)

� n1/2‖ṽ‖2η � n1/2‖v‖2η by Theorem 2.4.

Proposition 5.6
∣∣ supt≤t1 |N(t)− t/h̄|

∣∣
L2(p−1)(Ω)

≤ Ct11/2 for t1 ≥ 1.

Proof Let Skh =
∑k−1

j=0 h ◦ T j . By definition of N(t),

SN(t)(x,u)h(x) ≤ u+ t < SN(t)(x,u)+1h(x).

Hence −SN(t)(x,u)h(x)− |h|∞ < −t ≤ −SN(t)(x,u)h(x) + |h|∞, so

|N(t)(x, u)− t/h̄| ≤ {|SN(t)(x,u)h(x)−N(t)(x, u)h̄|+ 2|h|∞}/h̄.

By (5.1), for all (x, u) ∈ Ω,

sup
t≤t1
|N(t)(x, u)− t/h̄| � max

k≤C0t1

∣∣Skh(x)− kh̄
∣∣+ 1.

Hence by Theorem 2.4,∣∣ sup
t≤t1
|N(t)− t/h̄|

∣∣
L2(p−1)(Ω)

�
∣∣ max
k≤C0t1

|Skh− kh̄|
∣∣
L2(p−1)(Λ)

� t1
1/2,

as required.
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5.2 Iterated weak invariance principle

Let gn,t : Ωn → Ωn be a uniform family of nonuniformly expanding semiflows of order p ≥ 2. Let
vn : Ωn → Rd, n ≥ 1, be a family of observables with supn≥1 ‖vn‖η < ∞ and

∫
Ωn
vn dµn = 0.

The corresponding family of induced observables ṽn : Λn → Rd satisfies supn≥1 ‖ṽn‖η < ∞
and

∫
Λn
vn dµΛn = 0. Define Σn and En in terms of ṽn as in (3.1). Also define Hn(x, u) =∫ u

0 vn(x, s) ds.
In this section, we prove an iterated WIP for the processes Wn ∈ C([0, 1],Rd) and Wn ∈

C([0, 1],Rd×d) on Ωn given by

Wn(t) =
1√
n

∫ nt

0
vn ◦ gn,s ds, Wn(t) =

∫ t

0
Wn(s)⊗ dWn(s).

First, we consider the processes W̃n ∈ D([0, 1],Rd), W̃n ∈ D([0, 1],Rd×d)

W̃n(t)(x, u) =
1√
n

[nt]−1∑
j=0

ṽn(T jnx), W̃n(t)(x, u) =
1

n

∑
0≤i<j<[nt]

ṽn(T inx)⊗ ṽn(T jnx),

defined on Ωn. Let Nn(t) denote the lap numbers corresponding to the semiflows gn,t on Ωn.
Also define

γn ∈ D([0, 1],R), γn(t) = n−1Nn(nt).

Proposition 5.7 Suppose that En → E, Σn → Σ, h̄n → h̄. Then

(W̃n, W̃n) ◦ γn →µn (h̄−1/2W̃ , h̄−1W̃) in D([0, 1],Rd × Rd×d),

where W̃ is a d-dimensional Brownian motion with covariance matrix Σ and W̃(t) =
∫ t

0 W̃ ⊗
dW̃ + Et.

Proof Choose c0 > 0 such that hn ≥ c0 for all n. Let λn be the sequence of probability
measures on Ωn supported on Λn × [0, c0] with density ρn = dλn/dµn = 1Λn×[0,c0]/c0.

The process (W̃n, W̃n) on (Ωn, λn) has the same distribution as the process (W̃n, W̃n)|Λn on

(Λn, µΛn), so by Theorem 3.4, (W̃n, W̃n)→λn (W̃ , W̃).
By Lemma 5.5, for each s ∈ [0, c0],∣∣ sup
t∈[0,1]

|W̃[nt] ◦ gn,s − W̃[nt]|
∣∣
∞ � n−1/2,

∣∣ sup
t∈[0,1]

|W̃[nt] ◦ gn,s − W̃[nt]|
∣∣
L1(µn)

� n−1/2.

Also, ‖ρn‖η = |ρn|∞ ≤ 1/c0 so by Theorem 5.3 with v = ρn − 1,

|
∫ t1

0 ρn ◦ gn,t dt− t1|L2(µn) � t1
1/2.

We have verified the assumptions of Lemma B.1, and it follows that (W̃n, W̃n)→µn (W̃ , W̃).
Let γ(t) = th̄−1. By Proposition 5.6,∣∣ sup

t≤1
|γn(t)− γ(t)|

∣∣
L1(µn)

= n−1
∣∣ sup
t≤1
|Nn(nt)− nth̄−1|

∣∣
L1(µn)

= O(n−1/2).

Since γ is not random it follows that (W̃n, W̃n, γn)→µn (W̃ , W̃, γ). By the continuous mapping
theorem,

(W̃n, W̃n) ◦ γn →µn (W̃ , W̃) ◦ γ = (h̄−1/2W̃ , h̄−1W̃),

as required.
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Theorem 5.8 (Iterated WIP) Suppose that limn→∞Σn = Σ, limn→∞En = E,
limn→∞ h̄n = h̄ and limn→∞

∫
Ωn
Hn ⊗ vn dµn = E′. Then

(Wn,Wn)→µn (W,W) in D([0, 1],Rd × Rd×d),

where W is a d-dimensional Brownian motion with covariance matrix h̄−1Σ and W(t) =
∫ t

0 W⊗
dW + (h̄−1E + E′)t.

Proof By Proposition 5.7, it suffices to show that supt≤1 |Wn(t) − W̃n(γn(t))| →µn 0 and

supt≤1 |Wn(t)− W̃n(t) ◦ γn − tE′| →µn 0.
First, note by Proposition 5.2 that

|Wn(t)− W̃n(γn(t))|(x, u) = n−1/2
∣∣∣ ∫ nt

0
vn(gn,s(x, u)) ds−

∑
0≤j<Nn(nt)

ṽn(T jnx)
∣∣∣

≤ 2n−1/2|hn|∞|vn|∞,

so
∣∣ supt∈[0,1] |Wn(t)− W̃n(γn(t))|

∣∣
∞ → 0.

Similarly, by Proposition 5.2,

n
{
|Wn(t)− W̃n(γn(t))− n−1

∫ nt
0 (Hn ⊗ vn) ◦ gn,s ds|

}
(x, u)

≤ 2|hn|∞|vn|∞
∣∣∣ ∑

0≤j<Nn(t)

ṽn(T jnx)
∣∣∣+ 3|hn|2∞|vn|2∞ �

∣∣∣ ∑
0≤j<Nn(t)

ṽn(T jnx)
∣∣∣+ 1.

By (5.1) and Theorem 2.4,∣∣∣ sup
t∈[0,1]

∣∣∣ ∑
0≤j<Nn(t)

ṽn ◦ T jn
∣∣∣∣∣∣
L2(Ωn)

�
∣∣∣ max
k≤C0n

∣∣∣ ∑
0≤j<k

ṽn ◦ f j∆n

∣∣∣∣∣∣
L2(Λn)

� n1/2‖ṽn‖η � n1/2,

and so ∣∣∣ sup
t∈[0,1]

|Wn(t)− W̃n(γn(t))− n−1
∫ nt

0 (Hn ⊗ vn) ◦ gn,s ds|
∣∣∣
L2(Ωn)

→ 0.

Also, by Corollary 5.4,

n−1
∣∣ supt∈[0,1] |

∫ nt
0 (Hn ⊗ vn) ◦ gn,s ds− nt

∫
Ωn
Hn ⊗ vn dµn|

∣∣
L2(Ωn)

→ 0.

Hence
∣∣ supt∈[0,1] |Wn(t)− W̃n(γn(t))− tE′|

∣∣
L2(Ωn)

→ 0 and the proof is complete.

5.3 Application to intermittent semiflows

Let Λ = [0, 1]. Fix a family of intermittent maps Tn : Λ → Λ, n ∈ N ∪ {∞}, as in (1.2) with
parameters γn ∈ (0, 1

2) and absolutely continuous invariant probability measures denoted µ̃n.
Suppose that limn→∞ γn = γ∞. Again, Tn is a uniform family of order p for all p ∈ (2, γ−1

∞ )
and the absolutely continuous invariant probability measures, denoted here by µ̃n, are strongly
statistically stable.

Fix η > 0 and let hn : Λ→ R+ be a family of roof functions satisfying supn ‖hn‖η <∞ and
infn inf hn > 0. Define the corresponding uniform family of nonuniformly expanding semiflows
gn,t : Ωn → Ωn with ergodic invariant probability measures µn = (µ̃n × Lebesgue)/h̄n where
h̄n =

∫
Λ hn dµ̃n.
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Theorem 5.9 Let vn : Ωn → Rd, n ≥ 1, with supn ‖vn‖η <∞ and
∫

Ωn
vn dµn = 0. Then there

is a constant C > 0 such that∣∣∣∣ sup
t∈[0,t1]

∣∣∣ ∫ t

0
vn ◦ gn,s ds

∣∣∣∣∣∣∣
L2(p−1)(Ωn)

≤ Ct11/2,∣∣∣∣ sup
t∈[0,t1]

∣∣∣ ∫ t

0

∫ s

0
(vn ◦ gn,r)⊗ (vn ◦ gn,s) dr ds

∣∣∣∣∣∣∣
Lp−1(Ωn)

≤ Ct1,

for all t1 ≥ 0, n ≥ 1.

Proof This is immediate from Theorem 5.3.

Theorem 5.10 Let vn : Ωn → Rd, n ∈ N ∪ {∞}, with supn ‖vn‖η < ∞ and
∫

Ωn
vn dµn = 0.

Suppose that limn→∞ supx∈Λ, u∈[0,h∞(x)]∩[0,hn(x)] |vn(x, u) − v∞(x, u)| = 0 and limn→∞ |hn −
h∞|∞ = 0.

(a) Define

Sn =
∑

0≤j<n
ṽ ◦ T j∞, Sn =

∑
0≤i<j<n

(ṽ ◦ T i∞)⊗ (ṽ ◦ T j∞).

where ṽ(x) =
∫ h∞(x)

0 v∞(x, u) du. Then the limits

Σ∞ = lim
n→∞

1

n

∫
Λ
Sn ⊗ Sn dµ̃∞, E∞ = lim

n→∞

1

n

∫
Λ
Sn dµ̃∞.

exist.

(b) Set E′ =
∫

Ω∞
H∞ ⊗ v∞ dµ∞ where H∞(x, u) =

∫ u
0 v∞(x, u) du. Define

Wn(t) = n1/2

∫ n−1t

0
vn ◦ gn,s ds, Wn(t) =

∫ t

0
Wn(s)⊗ dWn(s).

Then
(Wn,Wn)→µn (W,W) in D([0, 1],Rd × Rd×d),

where W is a d-dimensional Brownian motion with covariance matrix h̄−1
∞ Σ∞ and W(t) =∫ t

0 W ⊗ dW + (h̄−1
∞ E∞ + E′)t.

Proof Part (a) follows from Lemma 3.8.
To prove part (b), we verify the hypotheses of Theorem 5.8. Since |hn−h∞|∞ → 0 it follows

from statistical stability that h̄n → h̄∞.

Let Hn(x, u) =
∫ u

0 vn(x, s) ds. It is easy to see that
∫ hn(x)

0 (Hn⊗vn)(x, u) du→
∫ h∞(x)

0 (H∞⊗
v∞)(x, u) du uniformly in x, so again by statistical stability

∫
Ωn
Hn ⊗ vn dµn → E′.

Finally, defining Σn and En using Tn, vn and hn in place of T∞, v∞ and h∞, we have that
Σn → Σ∞ and En → E∞ by Lemma 3.8.

A Iterated WIP for martingale difference arrays

In this appendix, we recast a classical iterated WIP of [15, 21] into a form that is convenient
for ergodic stationary martingale difference arrays of the type commonly encountered in the
deterministic setting.
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Let {(∆n,Mn, µn)} be a sequence of probability spaces. Suppose that Tn : ∆n → ∆n is a
sequence of measure-preserving transformations with transfer operators Ln and Koopman oper-
ators Un. Suppose that φn, mn : ∆n → Rd lie in L2(∆n) and that

∫
∆n

φn dµn =
∫

∆n
mn dµn = 0

and mn ∈ kerLn.
Define the sequence of processes

Φn : ∆n → D([0,∞),Rd), Mn : ∆n → D([0,∞),Rd×d),

by

Φn(t) =
1√
n

∑
0≤j<nt

φn ◦ f j∆n
, Mn(t) =

1

n

∑
0≤i<j<nt

(mn ◦ f i∆n
)⊗ (φn ◦ f j∆n

), t ≥ 0.

Theorem A.1 Suppose that:

(a) the family {|mn|2, n ≥ 1} is uniformly integrable;

(b) 1√
n

maxk≤nt1

∣∣∣∑k
j=0(φn −mn) ◦ f j∆n

∣∣∣→µn 0 as n→∞ for all t1 > 0;

(c) there exists a constant matrix Σ ∈ Rd×d such that for each t > 0,

1

n

[nt]−1∑
j=0

{UnLn(mn ⊗mn)} ◦ f j∆n
→µn tΣ as n→∞.

Then (Φn,Mn)→µn (W,M) in D([0,∞),Rd×Rd×d) where W is a d-dimensional Brownian

motion with covariance Σ and M(t) =
∫ t

0 W ⊗ dW .

Proof It suffices to prove that (Φn,Mn) →µn (W,M) in D([0, t1],Rd × Rd×d) for each fixed
integer t1 ≥ 1.

Define Xn,j = n−1/2φn ◦ fnt1−j∆n
, Yn,j = n−1/2mn ◦ fnt1−j∆n

, and

Xn(t) =
∑

1≤j≤nt
Xn,j , Yn(t) =

∑
1≤j≤nt

Yn,j , Yn(t) =
∑

1≤i<j≤nt
Xn,i ⊗ Yn,j ,

for t ∈ [0, t1].
By the arguments in the proof of [20, Theorem A.1], {Yn,j ; 1 ≤ j ≤ nt1} is a martingale dif-

ference array with respect to the filtration Gn,j = T
−(nt1−j)
n Mn and Yn →µn W in D([0, t1],Rd).

Moreover, Xn is adapted (i.e. Xn,j is Gn,j-measurable for all j, n) and Xn = Yn + Zn where

|Zn(t)| = 1√
n

∣∣∣ [nt]∑
j=1

(φn −mn) ◦ fnt1−j∆n

∣∣∣ ≤ 2√
n

max
k≤nt1

∣∣∣ k∑
j=0

(φn −mn) ◦ f j∆n

∣∣∣,
so supt≤t1 |Zn(t)| →µn 0 by assumption (b). It follows easily that (Xn, Yn) →µn (W,W ) in
D([0, t1],Rd × Rd).

Also
∫

∆n
|Yn(t)|2 dµn = n−1[nt]

∫
∆n
|mn|2 dµn ≤ t1|mn|22 which is bounded by assump-

tion (a), so condition C2.2(i) in [21, Theorem 2.2] is trivially satisfied. Applying [21, Theo-
rem 2.2] (or alternatively [15]) we deduce that (Xn, Yn,Yn) →µn (W,W,M) in D([0, t1],Rd ×
Rd × Rd×d).
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Next, let D̃ denote càglàd functions. Adapting [16], we define g : D([0, t1],Rd×Rd×Rd×d)→
D̃([0, t1],Rd × Rd×d),

g(r, u, v)(t) =
(
r(t1)− r(t1 − t) , {v(t1)− v(t1 − t)− r(t1 − t)⊗ (u(t1)− u(t1 − t))}∗

)
,

where ∗ denotes matrix transpose.
We claim that

(Φn,Mn) = g(Xn, Yn,Yn) + Fn where supt∈[0,t1] |Fn(t)| →µn 0.

Suppose that the claim is true. By the continuous mapping theorem, g(Xn, Yn,Yn) →µn

g(W,W,M) in D̃([0, t1],Rd × Rd×d). Using the fact that the limiting process has continu-
ous sample paths, it follows (see [16, Proposition 4.9]) that (Φn,Mn) →µn g(W,W,M) in
D([0, t1],Rd × Rd×d). By [16, Lemma 4.11], the processes g(W,W,M) and (W,M) are equal
in distribution so (Φn,Mn)→µn (W,M) in D([0, t1],Rd × Rd×d).

It remains to prove the claim. Write g = (g1, g2) where g1 : D([0, t1],Rd × Rd × Rd×d) →
D̃([0, t1],Rd) and g2 : D([0, t1],Rd × Rd × Rd×d)→ D̃([0, t1],Rd×d).

First,

Φn(t) =
1√
n

[nt]−1∑
j=0

φn ◦ f j∆n
=

[nt]−1∑
j=0

Xn,nt1−j =

nt1∑
j=nt1−[nt]+1

Xn,j =

nt1∑
j=[n(t1−t)]+1

Xn,j + F 1
n(t)

= Xn(t1)−Xn(t1 − t) + F 1
n(t) = g1(Xn, Yn,Yn)(t) + F 1

n(t),

where F 1
n(t) is either 0 or −Xn,[n(t1−t)]+1. In particular,

|F 1
n(t)| ≤ n−1/2 max

i≤nt1
|φn ◦ f i∆n

|. (A.1)

Second,

Mn(t) =
1

n

∑
0≤i<j<nt

(mn ◦ f i∆n
)⊗ (φn ◦ f j∆n

) =
∑

0≤i<j<nt
Yn,nt1−i ⊗Xn,nt1−j

=
∑

nt1−[nt]<j<i≤nt1

Yn,i ⊗Xn,j =
∑

nt1−[nt]<i<j≤nt1

(Xn,i ⊗ Yn,j)∗

=
∑

[n(t1−t)]<i<j≤nt1

(Xn,i ⊗ Yn,j)∗ + F 2
n(t)∗

= {Yn(t1)− Yn(t1 − t)−Xn(t1 − t)⊗ (Yn(t1)− Yn(t1 − t))}∗ + F 2
n(t)∗

= g2(Xn, Yn,Yn)(t) + F 2
n(t)∗,

where F 2
n(t) is either 0 or−

∑
[n(t1−t)]+1<j≤nt1 Xn,[n(t1−t)]+1⊗Yn,j . In particular, by Burkholder’s

inequality and assumption (a),

|F 2
n(t)| ≤ n−1 max

i≤nt1
|φn ◦ f i∆n

| max
q≤nt1

∣∣∣ ∑
0≤j≤q

mn ◦ f j∆n

∣∣∣� n−1 max
i≤nt1

|φn ◦ f i∆n
| t1|mn|2

� n−1 max
i≤nt1

|φn ◦ f i∆n
|. (A.2)

By (A.1) and (A.2), it remains to show that n−1 maxi≤nt1 |φn ◦ f i∆n
| →µn 0. Note that

|φn ◦ f i∆n
| ≤ |mn ◦ f i∆n

|+
∣∣∣ i∑
j=0

(φn −mn) ◦ f j∆n

∣∣∣+
∣∣∣ i−1∑
j=0

(φn −mn) ◦ f j∆n

∣∣∣,
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so

max
i≤nt1

|φn ◦ f i∆n
| ≤ max

i≤nt1
|mn ◦ f i∆n

|+ 2 max
i≤nt1

∣∣∣ i∑
j=0

(φn −mn) ◦ f j∆n

∣∣∣.
Now for any s > 0,

n−1 max
j≤nt1

|mn ◦ f j∆n
|2 ≤ s+ n−1 max

j≤nt1
(|mn|21{n−1|mn|2>s}) ◦ f

j
∆n

≤ s+ n−1
nt1∑
j=0

(|mn|21{n−1|mn|2>s}) ◦ f
j
∆n
.

Hence

n−1
∣∣ max
j≤nt1

|mn ◦ f j∆n
|
∣∣2
2

= n−1
∣∣ max
j≤nt1

|mn ◦ f j∆n
|2
∣∣
1
≤ s+ t1

∣∣|mn|21{n−1|mn|2>s}
∣∣
1
.

Since s > 0 is arbitrary, it follows from assumption (a) that limn→∞ n
−1/2

∣∣maxj≤nt1 |mn ◦
f j∆n
|
∣∣
2

= 0. Combining this with assumption (b), n−1/2 maxi≤nt1 |φn◦f i∆n
| →µn 0 as required.

B Strong distributional convergence for families

In this appendix, we formulate a result on strong distributional convergence [10, 31] in the
context of families of dynamical systems.

Let (Ωn, µn), n ≥ 1, be a sequence of probability spaces with measure-preserving semiflows
gn,t : Ωn → Ωn. Suppose that λn is a sequence of probability measures on Ωn such that λn � µn.
Define ρn = dλn/dµn.

Lemma B.1 Suppose that Rn is a sequence of random elements on Ωn taking values in the
metric space (B, dB) and that R is a random element of B. Suppose moreover that

(S1) sup
n

∫
ρ1+δ
n dµn <∞ for some δ > 0;

(S2) dB(Rn ◦ gn,t, Rn)→µn 0 as n→∞ for each t ≥ 0 (equivalently, for all t ∈ [0, t0] for some
fixed t0 > 0);

(S3) inf
t1>0

lim sup
n→∞

∫ ∣∣∣ 1

t1

∫ t1

0
ρn ◦ gn,t dt − 1

∣∣∣ dµn = 0.

Then Rn →µn R if and only if Rn →λn R.

Proof The proof follows [13, Theorem 4,1]. Let LipB denote the space of Lipschitz bounded
functions ψ : B → R. Define An(ψ,w) =

∫
ψ ◦Rnw dµn for ψ ∈ LipB and w : B → R integrable.

Note that |An(ψ,w)| ≤ |ψ|∞|w|1 for all n.
Now Rn →µn R if and only if limn→∞An(ψ, 1) = E(ψ(R)) for every ψ ∈ LipB. Similarly

Rn →λn R if and only if limn→∞An(ψ, ρn) = E(ψ(R)) for every ψ ∈ LipB. Hence it is enough
to show that for every ψ ∈ LipB

lim
n→∞

(
An(ψ, ρn)−An(ψ, 1)

)
= 0.
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Fix t ≥ 0. Since µn is gn,t-invariant,

An(ψ, ρn ◦ gn,t)−An(ψ, ρn) =

∫
(ψ ◦Rn − ψ ◦Rn ◦ gn,t) ρn ◦ gn,t dµn.

By (S1) and gn,t-invariance, supn,t
∫
ρ1+δ
n ◦ gn,t dµn <∞. Hence by Hölder’s inequality,

|An(ψ, ρn ◦ gn,t)−An(ψ, ρn)| �
(∫
|ψ ◦Rn − ψ ◦Rn ◦ gn,t|q dµn

)1/q

where q is the conjugate exponent to 1 + δ. Now |ψ ◦Rn − ψ ◦Rn ◦ gn,t| ≤ 2|ψ|∞ and

|ψ ◦Rn − ψ ◦Rn ◦ gn,t| ≤ Lipψ dB(Rn, Rn ◦ gn,t)→µn 0,

by (S2). Hence limn→∞
(
An(ψ, ρn ◦ gn,t) − An(ψ, ρn)

)
= 0 for each t ≥ 0. Denote Un,t1 =

t1
−1
∫ t1

0 ρn ◦ gn,t dt. Then
lim
n→∞

An(ψ,Un,t1 − ρn) = 0, (B.1)

for each fixed t1 > 0. Now,

|An(ψ, ρn)−An(ψ, 1)| ≤
∣∣An(ψ, ρn − Un,t1)

∣∣+
∣∣An(ψ,Un,t1 − 1)

∣∣
≤
∣∣An(ψ, ρn − Un,t1)

∣∣+ |ψ|∞
∫
|Un,t1 − 1| dµn.

By (B.1),

lim sup
n→∞

|An(ψ, ρn)−An(ψ, 1)| ≤ |ψ|∞ lim sup
n→∞

∫
|Un,t1 − 1| dµn,

and the result follows from (S3).

Remark B.2 The discrete-time version of Lemma B.1 takes the following form. Let (Λn, µn),
n ≥ 1, be a sequence of probability spaces with measure-preserving maps Tn : Λn → Λn.
Suppose that λn is a sequence of probability measures on Λn such that λn � µn. Define
ρn = dλn/dµn. Suppose that Rn is a sequence of random elements on Λn taking values in the
metric space (B, d) and that R is a random element of B. We continue to assume (S1). Suppose
moreover that

(S4) dB(Rn ◦ Tn, Rn)→µn 0 as n→∞;

(S5) inf
N≥1

lim sup
n→∞

∫ ∣∣∣ 1

N

N−1∑
j=0

ρn ◦ T jn − 1
∣∣∣ dµn = 0.

Then Rn →µn R if and only if Rn →λn R.
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tiques sur l’espace D1 de Skorokhod. Probab. Theory Related Fields 81 (1989) 111–137.

[16] D. Kelly and I. Melbourne. Smooth approximation of stochastic differential equations. Ann.
Probab. 44 (2016) 479–520.

[17] D. Kelly and I. Melbourne. Homogenization for deterministic fast-slow systems with mul-
tidimensional multiplicative noise. J. Funct. Anal. 272 (2017) 4063–4102.

[18] A. Korepanov. Linear response for intermittent maps with summable and nonsummable
decay of correlations. Nonlinearity 29 (2016) 1735–1754.

[19] A. Korepanov, Z. Kosloff and I. Melbourne. Averaging and rates of averaging for uniform
families of deterministic fast-slow skew product systems. Studia Math. 238 (2017) 59–89.

[20] A. Korepanov, Z. Kosloff and I. Melbourne. Martingale-coboundary decomposition for
families of dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 859–
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