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Abstract

We give a short analytic proof of local large deviations for i.i.d. random
variables in the domain of a multivariate α-stable law, α ∈ (0, 1) ∪ (1, 2]. Our
method simultaneously covers lattice and nonlattice distributions (and mixtures
thereof), bypassing aperiodicity considerations. The proof applies also to the
dynamical setting.

1 Introduction

Local large deviation results for i.i.d. random variables in the domain of a stable law
have been recently obtained by Caravenna and Doney [7, Theorem 1.1] and refined
by Berger [5, Theorem 2.3]. We refer to such results as stable local large deviations
(stable LLD).

The aim of this paper is three-fold. First, we provide a new proof of the stable
LLD in Theorem 1.1 (we exclude the case α = 1 but include the case α = 2 which was
previously omitted). Second, in Theorem 1.6, we generalise to the multivariate case
which for the main part had also been previously omitted. Our methods bypass ape-
riodicity considerations and cover lattice and nonlattice distributions simultaneously.
Instead of using Fuk-Nagaev inequalities as was done in [5, 7], we give a short ana-
lytic proof using Nagaev-type perturbative arguments together with decay of Fourier
coefficients. A major advantage of this approach is that it generalises naturally to the
dynamical setting. This is the third main aim of this paper where in Theorem 3.2 we
establish the stable LLD for sequences of nonindependent random variables arising
from observables of deterministic dynamical systems.
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We begin by recalling the scalar i.i.d. set up in [5, 7]. Let X be a random variable
with EX2 = ∞. We suppose that

P(X > x) = (p+ o(1))ℓ(x)x−α, P(X ≤ −x) = (q + o(1))ℓ(x)x−α (1.1)

as x → ∞, where α ∈ (0, 2], ℓ : [0,∞) → (0,∞) is slowly varying, and p, q ≥ 0 with
p+ q > 0. Equivalently, X is in the domain of an α-stable law Yα (determined by α,
p, q). Namely, there are sequences an > 0, bn ∈ R, such that

1
an
(Sn − bn) →d Yα.

where Sn = X1 + · · ·+Xn and the Xi are independent copies of X.
Without loss of generality, we may suppose that ℓ is continuous. Set ℓ̃ = ℓ for

α ∈ (0, 2) and ℓ̃(x) = 1 +
∫ 1+x

1
ℓ(u)
u
du for α = 2. Then an satisfies

lim
n→∞

nℓ̃(an)

aαn
= 1.

Also,

bn =


0 α ∈ (0, 1)

nE(X1{|X|≤an}) α = 1

nEX α ∈ (1, 2]

.

Stable local large deviations (the main topic of this paper) concerns estimates for
P(Sn ∈ J) for subsets J ⊂ R taking into account the location of J :

Theorem 1.1 Assume (1.1) with α ∈ (0, 2]. Then for every h > 0 there is a constant
C > 0 such that

P(Sn − bn ∈ (x− h, x+ h]) ≤ C
n

an

ℓ̃(|x|)
1 + |x|α

for all n ≥ 1, x ∈ R. (1.2)

In particular, in the lattice case where X is supported on Z, there is a constant
C > 0 such that

P(Sn − [bn] = N) ≤ C
n

an

ℓ̃(|N |)
1 + |N |α

for all n ≥ 1, N ∈ Z.

Remark 1.2 Caravenna and Doney [7, Theorem 1.1] proved Theorem 1.6 for α ∈
(0, 1) ∪ (1, 2) and (amongst other things) this was extended by Berger [5, Theorem
2.3] to the range α ∈ (0, 2) (focusing on the lattice case). Our analytic proof covers
the range α ∈ (0, 1) ∪ (1, 2] so the combined results cover the range α ∈ (0, 2].
Our arguments cover the lattice and nonlattice cases simultaneously. As mentioned
before, our main contribution is to provide a new proof which generalises easily to
the dynamical setting.

In the range |x| ≪ an, the estimate (1.2) follows from the local limit theorems of
Gnedenko [11, Chap. 9, Sec. 50] and Stone [17], and in particular the estimate is sharp
in the range |x| ≈ an. Hence the main content of Theorem 1.1 is when |x| ≫ an.
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Remark 1.3 We have excluded the problematic case α = 1 which was completely
solved by Berger [5]. In fact, our methods apply without modification for α = 1
in the symmetric case bn = 0. However, in the nonsymmetric case the estimate in
Lemma 2.2(i) below fails (see [10, Lemma 5]). Consequently, without refining our
methods further we would obtain a suboptimal estimate in Theorem 1.6 for α = 1,
bn ̸= 0.

Remark 1.4 The estimates in Theorem 1.6 are proved under assumption (1.1) which
is necessary and sufficient for convergence to the stable law Yα. For stronger estimates
under more restrictive hypotheses, we refer to [5, 9, 12].

Next, we generalise to the multivariate situation. Let Sd−1 = {x ∈ Rd : |x| = 1}
denote the unit sphere in Rd. (Throughout, | | denotes the Euclidean norm.)

Definition 1.5 An Rd-valued random variable X is regularly varying with index p
if there exists a Borel probability measure σ on Sd−1, such that

lim
t→∞

P(|X| > λt, X/|X| ∈ A)

P(|X| > t)
= λpσ(A)

for all λ > 0 and all Borel sets A ⊂ Sd−1 with σ(∂A) = 0.
For p = −α < 0, we say that X is nondegenerate if

∫
Sd−1 |u · θ|α dσ(θ) > 0 for all

u ∈ Sd−1.

Taking A = Sd−1, we have that |X| is a scalar regularly varying function. Hence
there exists a slowly varying function ℓ : [0,∞) → (0,∞) such that P(|X| > t) =
tpℓ(t).

Let X be an Rd-valued random variable with E|X|2 = ∞. We suppose that X
is nondegenerate and regularly varying with index −α where α ∈ (0, 1) ∪ (1, 2]. We
define ℓ̃, an and bn as in the scalar case (again taking ℓ to be continuous).

Let Yα denote the d-dimensional stable law with spectral measure Λ = cos πα
2
Γ(1−

α)σ and characteristic function

E(eis·Yα) = exp
{
−

∫
Sd−1

|s · θ|α
(
1− i sgn(s · θ) tan πα

2

)
dΛ(θ)

}
, s ∈ Rd. (1.3)

By [16], X is in the domain of attraction of Yα. Indeed, a
−1
n (Sn−bn) →d Yα as n→ ∞

where Sn = X1 + · · ·+Xn and the Xi are independent copies of X.
Let Πh(x) =

∏d
j=1(xj − h, xj + h] for x ∈ Rd, h > 0.

Theorem 1.6 Let α ∈ (0, 1) ∪ (1, 2]. For every h > 0, there is a constant C > 0
such that

P
(
Sn − bn ∈ Πh(x)

)
≤ C

n

adn

ℓ̃(|x|)
1 + |x|α

for all n ≥ 1, x ∈ Rd. (1.4)
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Theorem 1.1 for α ̸= 1 is immediate from Theorem 1.6.

Remark 1.7 We emphasize that our method works simultaneously for lattice and
nonlattice distributions, bypassing any aperiodicity assumptions. In particular, our
result covers distributions that are jointly lattice and nonlattice avoiding the consider-
ation of numerous different cases that arise in the corresponding local limit theorems
(see the discussion in [8]).

Moreover, in the dynamical setting of Section 3, local limit theorems would require
additional hypotheses beyond the probabilistic ones, and our method avoids such
hypotheses.

Remark 1.8 Berger [6] obtains LLD for multivariate stable laws in the case when
they are lattice distributed. Furthermore, [6] allows the scalings an to vary from
component to component.

Our analytic proof of Theorem 1.6 is given in Section 2. In Section 3, we show
that our proof applies to a class of deterministic dynamical systems. In fact, we prove
a stronger operator stable LLD in Theorem 3.2 which yields the desired stable LLD
in Corollary 3.3.

Notation We write an ≪ bn if there are constants C > 0, n0 ≥ 1 such that
an ≤ Cbn for all n ≥ n0. As usual, an = o(bn) means that limn→∞ an/bn = 0 and
an ∼ bn means that limn→∞ an/bn = 1.

2 Stable local large deviations in the i.i.d. set up

In this section, we provide an analytic proof of Theorem 1.6 establishing local large
deviations for i.i.d. random variables in the domain of a multivariate stable law. We
abbreviate Πh(0) to Πh.

Fix α ∈ (0, 1) ∪ (1, 2], and let X be Rd-valued with E|X|2 = ∞, nondegenerate
and regularly varying with index −α. Define an and ℓ̃ as in Section 1. Since we
exclude the case α = 1, we can suppose without loss of generality that bn = 0. This
is automatic for α ∈ (0, 1) while for α ∈ (1, 2] we can replace X by X−EX. In other
words, we suppose that EX = 0 for α ∈ (1, 2].

2.1 Technical lemmas

The proof of the results obtained here exploits classical approaches [11, 13] for char-
acteristic functions collected in Lemmas 2.1 and 2.2 below.

For s ∈ Rd, define Ψ(s) = E(eis·X).

Lemma 2.1 There exist constants ϵ, c > 0, such that

|Ψ(s)| ≤ exp{−c|s|αℓ̃(1/|s|)} for all s ∈ Π3ϵ.
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Proof Since Sn = X1+ · · ·+Xn is a sum of i.i.d. random vectors and a−1
n Sn →d Yα,

it follows from the Lévy continuity theorem that limn→∞Ψ(s/an)
n = E(eis·Yα) for all

s ∈ Rd. The convergence is uniform on compact sets so limn→∞ Ψ(u/an)
n = E(eiu·Yα)

uniformly in u ∈ Sd−1. Hence

lim
n→∞

|Ψ(u/an)|n = e−ku uniformly in u ∈ Sd−1,

where ku =
∫
Sd−1 |u · θ|α dΛ(θ). By compactness, ku is bounded and hence

lim
n→∞

n log |Ψ(u/an)| = −ku uniformly in u ∈ Sd−1.

Setting a−1
n = t and inverting to obtain n ∼ (tαℓ̃(1/t))−1 as n→ ∞, we obtain

lim
t→0+

(tαℓ̃(1/t))−1 log |Ψ(tu)| = −ku uniformly in u ∈ Sd−1.

(The details of this last step are identical to the last five lines of the proof of [1,
Lemma 6.4].) By nondegeneracy and compactness, minu∈Sd−1 ku > 0. Writing s = tu,

log |Ψ(s)| ∼ −ku|s|αℓ̃(1/|s|) as s→ 0.

Hence there exists ϵ > 0 such that log |Ψ(s)| ≤ −1
2
ku|s|αℓ̃(1/|s|) for all s ∈ Π3ϵ and

the result follows with c = 1
2
minu∈Sd−1 ku.

Throughout this section we fix ϵ so that Lemma 2.1 holds. Let ∂j = ∂/∂sj.

Lemma 2.2 Let M > 0. There exists C > 0 such that for all s, h ∈ ΠM ,

(i) |Ψ(s+ h)−Ψ(s)| ≤ C|h|αℓ(1/|h|) for α ∈ (0, 1).

(ii) |∂jΨ(s+ h)− ∂jΨ(s)| ≤ C|h|α−1ℓ̃(1/|h|) for α ∈ (1, 2], j = 1, . . . , d.

(iii) |∂jΨ(s)| ≤ C|s|α−1ℓ̃(1/|s|) for α ∈ (1, 2], j = 1, . . . , d.

Proof (i) For K > 0, write Ψ(s+ h)−Ψ(s) = A+B where

A = E
(
1{|X|>K}(e

ih·X − 1)eis·X
)
, B = E

(
1{|X|≤K}(e

ih·X − 1)eis·X
)
.

Note that
|A| ≤ 2E1{|X|>K} = 2P(|X| > K) = 2K−αℓ(K).

Next, let G(x) = P(|X| ≤ x) denote the distribution function of |X|, so 1 − G(x) =
x−αℓ(x). Then

|B| ≤ |h|E
(
|X|1{|X|≤K}

)
= |h|

∫ K

0

x dG(x).
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Using integration by parts and Karamata’s Theorem,∫ K

0

x dG(x) = −
∫ K

0

x d(1−G(x)) = −(x(1−G(x))
∣∣∣K
0
+

∫ K

0

(1−G(x)) dx

≤
∫ K

0

(1−G(x)) dx =

∫ K

0

x−αℓ(x) dx = (1− α)−1K1−αℓ(K).

Hence |B| ≪ |h|K1−αℓ(K). Taking K ≈ 1/|h| yields the desired estimate.

(ii) For K > 0, write ∂jΨ(s+ h)− ∂jΨ(s) = i(A+B) where

A = E
(
1{|X|>K}Xj(e

ih·X − 1)eis·X
)
, B = E

(
1{|X|≤K}Xj(e

ih·X − 1)eis·X
)
.

Using integration by parts and Karamata’s Theorem,

|A| ≤ 2E
(
|X|1{|X|>K}

)
= 2

∫ ∞

K

x dG(x)

= 2K(1−G(K)) + 2

∫ ∞

K

(1−G(x)) dx = 2K−(α−1)ℓ(K) + 2

∫ ∞

K

x−αℓ(x) dx

= 2{1 + (α− 1)−1}K−(α−1)ℓ(K) ≪ K−(α−1)ℓ̃(K),

and

|B| ≤ |h|E
(
|X|21{|X|≤K}

)
= |h|

∫ K

0

x2 dG(x) ≤ 2|h|
∫ K

0

x(1−G(x)) dx

= 2|h|
∫ K

0

x−(α−1)ℓ(x) dx = 2(2− α)−1|h|K2−αℓ̃(K).

Again we take K ≈ 1/|h|.
(iii) Since EX = 0, it follows from part (ii) that ∂jΨ(s) = ∂jΨ(s) − ∂jΨ(0) satisfies
the desired estimate.

Lemma 2.3 Let L : (0,∞) → (0,∞) be a continuous slowly varying function. For
all c > 0, β ≥ 0, there exists C > 0 such that for all n ≥ 1,∫

Rd

|s|βL(1/|s|) exp{−nc|s|αℓ̃(1/|s|)} ds ≤ C
L(an)

ad+β
n

.

In particular, ∫
Π3ϵ

|s|βL(1/|s|)|Ψ(s)|n ds ≤ C
L(an)

ad+β
n

.

Proof Let In =
∫
Rd |s|βL(1/|s|) exp{−nc|s|αℓ̃(1/|s|)} ds. Using the change of vari-

ables s = σ/an, we obtain

In =
L(an)

ad+β
n

Jn where Jn =

∫
Rd

L(an/|σ|)
L(an)

|σ|β exp{−cn|σ|αa−α
n ℓ̃(an/|σ|)} dσ.
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By Potter’s bounds, for any δ ∈ (0, α), there exists c′ > 0 such that

Jn ≪
∫
|σ|>1

|σ|β+δ exp{−c′n|σ|α−δa−α
n ℓ̃(an)} dσ.

Recalling that na−α
n ℓ̃(an) ∼ 1, there exists c′′ > 0 such that

Jn ≪
∫
|σ|>1

|σ|β+δe−c′′|σ|α−δ

dσ <∞.

A similar argument deals with the integral on {|σ| ≤ 1}.
The final statement follows from Lemma 2.1.

2.2 Proof of the stable LLD

In this subsection, we prove Theorem 1.6. We suppose without loss of generality that
h = 1; the result for smaller cubes is immediate and the result for larger cubes can
be obtained by taking unions of smaller cubes.

As in [17], we convolve with a suitable function γ with compactly supported
Fourier transform γ̂. Specifically, fix a continuous integrable function γ0 : R → [0,∞)
with γ0 ≥ 1 on [−2, 2] such that its Fourier transform γ̂0 is real-valued, even and C2

with support in [−ϵ, ϵ].1 For s ∈ R, define

r0(s) =
1

2π

sin s

s
γ̂0(s).

We note that r0 is C
2 and supported in [−ϵ, ϵ]. Define γ : Rd → [0,∞) and r : Rd → R,

γ(y) = γ0(y1) · · · γ0(yd), r(s) = r0(s1) · · · r0(sd).

Lemma 2.4 For n ≥ 1, x ∈ Rd,

P
(
Sn ∈ Π1(x)

)
≤

∫
Rd

e−is·xr(s)Ψ(s)n ds.

Proof By the Fourier inversion formula,

γ(y) =
1

(2π)d

∫
Πϵ

eis·yγ̂(s) ds =
1

(2π)d

∫
Πϵ

e−is·yγ̂(s) ds. (2.1)

1It is easily verified that such a γ0 exists. Start with an even C∞ function γ̂0 : R → [0,∞)
supported in [− ϵ

2 ,
ϵ
2 ] with inverse Fourier transform γ0. Then γ0 is real-valued and C∞. Taking

γ̂0 ̸≡ 0 ensures that γ0(0) =
1
2π

∫∞
−∞ γ̂0(ξ) dξ > 0. Replacing γ0(x) by γ0(ax) with a sufficiently small

ensures that γ0 > 0 on [−2, 2]. (Such a scaling shrinks the support of γ̂0, so the new γ̂0 remains
supported in − ϵ

2 ,
ϵ
2 ].) Next, replace γ0 by cγ0 for c sufficiently large, ensuring that γ0 ≥ 1 on [−2, 2].

Finally, replace γ0 by γ2
0 and γ̂0 by γ̂0 ⋆ γ̂0 to ensure that γ0 ≥ 0.
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Let Fn(x) = P
(
Sn ∈

∏d
j=1(−∞, xj]

)
. By Fubini,∫

Π1(x)

∫
Rd

γ(y − y′)dFn(y
′) dy

=
1

(2π)d

∫
Πϵ

(∫
Π1(x)

e−is·y dy
)
γ̂(s)

(∫
Rd

eis·y
′
dFn(y

′)
)
ds (2.2)

= 2d
∫
Πϵ

e−is·xr(s)Ψ(s)n ds.

Next, since γ0 ≥ 0 and γ0|[−2,2] ≥ 1,∫
Rd

γ(y − y′) dFn(y
′) ≥

∫
Π2(y)

dFn(y
′) = P

(
Sn ∈ Π2(y)

)
.

Hence∫
Π1(x)

∫
Rd

γ(y − y′) dFn(y
′) dy ≥

∫
Π1(x)

P
(
Sn ∈ Π2(y)

)
dy ≥ 2d P

(
Sn ∈ Π1(x)

)
.

Combining this with (2.2) yields the desired result.

Proof of Theorem 1.6 Recall that we have reduced to the case h = 1. By
Lemma 2.4, it suffices to estimate In,x =

∫
Rd e

−is·xr(s)Ψ(s)n ds. Since r is bounded
and supported in Πϵ, it follows from Lemma 2.3 that

|In,x| ≪
∫
Πϵ

|Ψ(s)|n ds≪ a−d
n .

If n ≫ (1 + |x|α)/ℓ̃(|x|), then |In,x| ≪ a−d
n ≪ n

adn

ℓ̃(|x|)
1+|x|α as required. Hence to

complete the proof it suffices to consider the case n ≤ c(1 + |x|α)/ℓ̃(|x|) for some
c > 0 fixed. In particular, we can suppose that |x| ≥ π/ϵ, and it suffices to prove

that |In,x| ≪ n
adn

ℓ̃(|x|)
|x|α for n ≤ c′|x|α/ℓ̃(|x|). Since aαn/ℓ̃(an) ∼ n and y 7→ yα/ℓ̃(y) is

asymptotically increasing, this last restriction can be written as an ≤ |x|.

The case α ∈ (0, 1). We exploit the modulus of continuity of Ψ (see, for instance, [14,
Chapter 1]). Note that In,x = −

∫
Rd e

−is·xr(s − h)Ψ(s − h)n ds, where h = πx/|x|2.
Hence

|In,x| =
1

2

∣∣∣ ∫
Rd

e−is·x(r(s)Ψ(s)n − r(s− h)Ψ(s− h)n
)
ds
∣∣∣ ≤ I1 + I2 (2.3)

where

I1 =

∫
Rd

|r(s)− r(s− h)||Ψ(s)|n ds, I2 =

∫
Rd

|r(s− h)||Ψ(s)n −Ψ(s− h)n| ds.
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Since r is supported in Πϵ and |x| ≥ π/ϵ, the integrands in I1 and I2 are supported
in Π2ϵ. Using also that r is bounded and Lipschitz,

I1 ≪ |x|−1

∫
Π2ϵ

|Ψ(s)|n ds, I2 ≪
∫
Π2ϵ

|Ψ(s)n −Ψ(s− h)n| ds.

By Lemma 2.3, I1 ≪ 1
adn

1
|x| .

Next recall the inequality

|un − vn| ≤ n|u− v|(|u|n−1 + |v|n−1), (2.4)

which holds for all u, v ∈ C, n ≥ 1. Using this and Lemma 2.2(i),

|Ψ(s)n −Ψ(s− h)n| ≪ n|x|−αℓ(|x|)
(
|Ψ(s)|n−1 + |Ψ(s− h)|n−1

)
.

Hence by Lemma 2.3, I2 ≪ n|x|−αℓ(|x|)
∫
Π3ϵ

|Ψ(s)|n−1 ds≪ n
adn

ℓ(|x|)
|x|α .

The case α ∈ (1, 2]. Choose j so that |xj| = max{|x1|, . . . , |xd|}. LetDn = Ψn−1∂jΨ.
Integrating by parts, In,x = E1 + E2 where

E1 =
1

ixj

∫
Rd

e−is·x∂jr(s)Ψ(s)n ds, E2 =
n

ixj

∫
Rd

e−is·xr(s)Dn(s) ds.

Integrating by parts once more, and using that r is C2 and supported in Πϵ,

|E1| ≤
1

x2j

∫
Πϵ

|∂2j r(s)||Ψ(s)|n ds+ n

x2j

∫
Πϵ

|∂jr(s)||Dn(s)| ds

≪ 1

|x|2

∫
Πϵ

|Ψ(s)|n ds+ n

|x|2

∫
Πϵ

|Ψ(s)|n−1 ds.

(Here, we used also that ∂jΨ is bounded on Πϵ by Lemma 2.2(iii).) By Lemma 2.3,

|E1| ≪
n

adn

1

|x|2
≪ n

adn

ℓ̃(|x|)
|x|α

.

Next, we exploit the modulus of continuity of rDn, writing h = πx−1
j ej (where

ej ∈ Rd is the j’th unit vector) and

|E2| ≤
n

|xj|

∫
Rd

|r(s)− r(s− h)| |Dn(s)| ds+
n

|xj|

∫
Rd

|r(s− h)| |Dn(s)−Dn(s− h)| ds

≪ n

|x|2

∫
Π2ϵ

|Ψ(s)|n−1 ds+
n

|x|

∫
Π2ϵ

|Dn(s)−Dn(s− h)| ds.

Again, n
|x|2

∫
Π2ϵ

|Ψ(s)|n−1 ds≪ n
adn

1
|x|2 ≪ n

adn

ℓ̃(|x|)
|x|α , so it remains to estimate

J =
n

|x|

∫
Π2ϵ

|Dn(s)−Dn(s− h)| ds.
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Relabel {s, s − h} = {s1, s2} where |Ψ(s1)| ≤ |Ψ(s2)|. Then J = J1 + J2 where
Ji =

n
|x|

∫
Ki for i = 1, 2, and

K1 = |Ψ(s1)|n−1|∂jΨ(s1)− ∂jΨ(s2)|, K2 = |Ψ(s1)
n−1 −Ψ(s2)

n−1||∂jΨ(s2)|.

By Lemma 2.2(ii),

K1 ≪ |xj|1−αℓ̃(|xj|)|Ψ(s1)|n−1 ≪ |x|1−αℓ̃(|x|)|Ψ(s1)|n−1.

Hence by Lemma 2.3,

J1 ≪ n
ℓ̃(|x|)
|x|α

∫
Π3ϵ

|Ψ(s)n−1| ds≪ n

adn

ℓ̃(|x|)
|x|α

.

Next, by (2.4),

K2 ≪ n|∂jΨ(s2)||Ψ(s1)−Ψ(s2)||Ψ(s2)|n−2.

By the mean value theorem for vector-valued functions, there exists s∗ between s1
and s2 such that

K2 ≪ n|xj|−1|∂jΨ(s2)||∂jΨ(s∗)||Ψ(s2)|n−2 ≪ n|x|−1(K3 +K4)

where

K3 = |∂jΨ(s2)||∂jΨ(s2)− ∂jΨ(s∗)||Ψ(s2)|n−2, K4 = |∂jΨ(s2)|2|Ψ(s2)|n−2.

Correspondingly, we have J2 ≪ J3 + J4 = n2|x|−2(
∫
K3 +

∫
K4).

By Lemma 2.2(ii),(iii), K3 ≪ |x|1−αℓ̃(|x|)|s2|α−1ℓ̃(1/|s2|)|Ψ(s2)|n−2. Hence, by
Lemma 2.3,

J3 ≪ n2|x|−(α+1)ℓ̃(|x|)
∫
Π3ϵ

|s|α−1ℓ̃(1/|s|)|Ψ(s)|n−2 ds≪ n2|x|−(α+1)ℓ̃(|x|)a−(d+α−1)
n ℓ̃(an)

∼ n|x|−(α+1)ℓ̃(|x|)a−(d−1)
n =

n

adn

ℓ̃(|x|)
|x|α

an
|x|

≪ n

adn

ℓ̃(|x|)
|x|α

,

where we have used that an ≤ |x|.
Finally, by Lemma 2.2(iii), K4 ≪ |s2|2(α−1)ℓ̃(1/|s2|)2|Ψ(s2)|n−2. Hence, by

Lemma 2.3,

J4 ≪ n2|x|−2

∫
Π3ϵ

|s|2(α−1)ℓ̃(1/|s|)2|Ψ(s)|n−2 ds≪ n2|x|−2a−d
n a−2(α−1)

n ℓ̃(an)
2

∼ n|x|−2a−d
n a2−α

n ℓ̃(an) =
n

adn

ℓ̃(|x|)
|x|α

a2−α
n ℓ̃(an)

|x|2−αℓ̃(|x|)
≪ n

adn

ℓ̃(|x|)
|x|α

.

Combining the estimates for J1, J3, J4 we obtain that J ≪ n
adn

ℓ̃(|x|)
|x|α completing the

proof.
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3 Stable LLD for dynamical systems

In this section we show that the previous results can be generalized to a class of
deterministic dynamical systems.

The dynamical systems considered here are obtained by iterating a measure-
preserving map f : Λ → Λ on a probability space (Λ, µ). Starting with an initial
condition z distributed according to µ, the process z, fz, f 2z = f(fz), . . . on ΛN is
stationary, with distribution µ⊗ δfz ⊗ δf2z ⊗ · · · . Also, if v : Λ → Rd is a measurable
observable, then the Rd-valued process v, v◦f , v◦f 2, . . . is stationary. The stationary
distribution µ⊗δfz⊗δf2z⊗· · · should be compared with the distribution µ⊗µ⊗µ⊗· · ·
in the i.i.d. case and explains the word “deterministic”: once the initial condition is
specified the future dynamics is uniquely specified with no further randomness. This
contrasts with standard probabilistic settings, where fresh randomness is typically
injected at each time step. This means that techniques from probability theory have
to be reinforced with methods from “smooth ergodic theory” with suitable regularity
conditions imposed on the map f , the measure µ and the observable v.

The abstract setting in this section includes two classes of deterministic dynamical
systems: Gibbs-Markov maps with v piecewise Hölder, and more generally AFU maps
with v piecewise bounded variation. (The Gauss map f(z) = z−1 − [z−1], z ∈ (0, 1]
is a classical example of a Gibbs-Markov map.) Define vn =

∑n−1
k=0 v ◦ fk. For v in

the domain of an α-stable law Yα, α ∈ (0, 2], it is shown in [1, 2] that vn suitably
normalised converges in distribution to Yα. Here, we prove the corresponding local
large deviation estimates.

In Subsection 3.1, we state our main results for deterministic dynamical systems
in an abstract functional-analytic framework. Subsections 3.2 and 3.3 contain the
proof of these results. In Subsections 3.4 and 3.5, we verify that Gibbs-Markov maps
and AFU maps are covered by these results.

3.1 Dynamical systems set up

Let f : Λ → Λ be a measure-preserving map on a probability space (Λ, µ). Let
v : Λ → Rd be a measurable observation with

∫
Λ
|v|2 dµ = ∞. We fix α ∈ (0, 1)∪(1, 2]

throughout and assume

(H1) v is nondegenerate and regularly varying with index −α as in Definition 1.5.

Define ℓ, ℓ̃ and an as in Section 1. As in the i.i.d. case, we set bn = 0 for α < 1 and
bn = n

∫
Λ
v dµ for α > 1.

Let R : L1 → L1 be the transfer operator for f defined via the formula∫
Λ
Rϕψ dµ =

∫
Λ
ϕψ ◦ f dµ. Given s ∈ Rd, define the perturbed operator R(s) :

L1 → L1 by R(s)ϕ = R(eis·vϕ).
We assume that there is a Banach space B ⊂ L∞ containing constant functions,

with norm ∥ ∥ satisfying |ϕ|∞ ≤ ∥ϕ∥ for ϕ ∈ B, such that
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(H2) There exist ϵ > 0, C > 0 such that for all s, h ∈ Πϵ, j = 1, . . . , d,

(i) ∥R(s)∥ ≤ C for α ∈ (0, 2] and ∥∂jR(s)∥ ≤ C for α ∈ (1, 2].

(ii) ∥R(s+ h)−R(s)∥ ≤ C|h|αℓ(1/|h|) for α ∈ (0, 1) and ∥R(s+ h)−R(s)∥ ≤
C|h| for α ∈ (1, 2].

(iii) ∥∂jR(s+ h)− ∂jR(s)∥ ≤ C|h|α−1ℓ̃(1/|h|) for α ∈ (1, 2].

Since R(0) = R and B contains constant functions, 1 is an eigenvalue of R(0). We
assume:

(H3) The eigenvalue 1 is simple, and the remainder of the spectrum of R(0) : B → B
is contained in a disk of radius less than 1.

Let vn =
∑n−1

k=0 v ◦ fk. Under these hypotheses, we have distributional convergence
(vn − bn)/an →d Yα to the d-dimensional α-stable law Yα in (1.3) by [1].

Remark 3.1 Under additional aperiodicity assumptions, local limit theorems are
proved in various situations in [1, 2, 15]. Our results do not require aperiodicity
assumptions, so we do not discuss these issues further.

We can now state the main result in the dynamical setting: namely an operator
stable LLD.

Theorem 3.2 Let α ∈ (0, 1) ∪ (1, 2] and assume (H1)–(H3). Then there exists a
constant C > 0 such that

|Rn1{vn−bn∈Π1(x)}|∞ ≤ C
n

adn

ℓ̃(|x|)
1 + |x|α

for all n ≥ 1, |x| ∈ Rd.

A consequence of Theorem 3.2 is the usual stable LLD.

Corollary 3.3 Let α ∈ (0, 1) ∪ (1, 2] and assume (H1)–(H3). Then for every h > 0,
there exists C > 0 such that∣∣∣ ∫

Λ

ϕψ ◦ fn 1{vn−bn∈Πh(x)} dµ
∣∣∣ ≤ C|ϕ|∞ |ψ|1

n

adn

ℓ̃(|x|)
1 + |x|α

for all n ≥ 1, x ∈ Rd, ϕ ∈ L∞, ψ ∈ L1.
In particular, taking ϕ = ψ = 1, we obtain that

µ{vn − bn ∈ Πh(x)} ≤ C
n

adn

ℓ̃(|x|)
1 + |x|α

for all n ≥ 1, x ∈ Rd.
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Proof As in Section 2.2, we can suppose without loss of generality that h = 1. Now,∫
Λ

ϕψ ◦ fn 1{vn−bn∈Π1(x)} dµ =

∫
Λ

ψRn(1{vn−bn∈Π1(x)}ϕ) dµ,

so by positivity of the operator R,∣∣∣ ∫
Λ

ϕψ ◦ fn 1{vn−bn∈Π1(x)} dµ
∣∣∣ ≤ |Rn(1{vn−bn∈Π1(x)}ϕ)|∞|ψ|1

≤ |Rn(1{vn−bn∈Π1(x)}|ϕ|∞)|∞|ψ|1 = |Rn1{vn−bn∈Π1(x)}|∞|ϕ|∞|ψ|1.

The result follows by Theorem 3.2.

The proof of Theorem 3.2 takes up the remainder of this section. We suppose
from now on that (H1)–(H3) hold. As in Section 2, we can suppose without loss of
generality that bn = 0. Equivalently, for α ∈ (1, 2] we can suppose that

∫
Λ
v dµ = 0

3.2 Technical lemmas

By (H2) and (H3), there exists ϵ > 0 and a continuous family λ(s) of simple eigen-
values of R(s) for s ∈ Π3ϵ with λ(0) = 1. The associated spectral projections P (s),
s ∈ Π3ϵ, form a continuous family of bounded linear operators on B. Moreover, there
is a continuous family of linear operators Q(s) on B and constants C > 0, δ0 ∈ (0, 1)
such that

R(s) = λ(s)P (s) +Q(s) for s ∈ Π3ϵ. (3.1)

∥Q(s)n∥ ≤ Cδn0 for s ∈ Π3ϵ, n ≥ 1. (3.2)

Hence we can shrink ϵ so that

∥R(s)n∥ ≤ C|λ(s)|n for s ∈ Π3ϵ, n ≥ 1. (3.3)

Let ζ(s) = P (s)1∫
P (s)1 dµ

be the normalized eigenvector corresponding to λ(s).

Lemma 3.4 There exists ϵ > 0 such that the properties of R(s) listed in (H2) are
inherited by P (s), Q(s), λ(s) and ζ(s) for all s, h ∈ Π3ϵ.

Proof This is a standard consequence of perturbation theory for smooth families of
operators.

The next result is the analogue of Lemmas 2.1 and 2.2(iii) for λ(s).

Lemma 3.5 There exist constants ϵ, c, C > 0 such that the following hold for all
s ∈ Π3ϵ,

(i) |λ(s)| ≤ exp{−c|s|αℓ̃(1/|s|)} for α ∈ (0, 1) ∪ (1, 2].
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(ii) |∂jλ(s)| ≤ C|s|α−1ℓ̃(|1/|s|) for α ∈ (1, 2], j = 1, . . . , d.

Proof (i) Write

λ(s) =

∫
R(s)ζ(s) dµ =

∫
R(s)1 dµ+

∫
(R(s)−R(0))(ζ(s)− ζ(0)) dµ

=

∫
Λ

eis·v dµ+

∫
Λ

(R(s)−R(0))(ζ(s)− ζ(0)) dµ = Ψ(s) + V (s).

The estimate for Ψ in Lemma 2.1 is unchanged (since the distribution of v is given
by (H1)) so it suffices to verify that the contributions from V are negligible.

For α ∈ (0, 1), we choose α′ ∈ (1
2
α, α). Then ∥R(s)− R(0)∥ ≪ |s|α′

by (H2) and

∥ζ(s)− ζ(0)∥ ≪ |s|α′
by Lemma 3.4. Since B ⊂ L∞,

|V (s)| ≪ ∥R(s)−R(0)∥∥ζ(s)− ζ(0)∥ ≪ |s|2α′
= o(|s|αℓ(1/|s|)).

Similarly, |V (s)| ≪ |s|2 = o(|s|αℓ̃(1/|s|)) when α ∈ (1, 2]. This completes the proof
of part (i).

(ii) By the formula in part (i), ∂jλ(0) = i
∫
Λ
vj dµ = 0. Hence ∂jλ(s) = ∂jλ(s)−∂jλ(0)

so the estimate follows from Lemma 3.4.

From now on, ϵ > 0 is fixed in accordance with the above properties.

Corollary 3.6 Let L : (0,∞) → (0,∞) be a continuous slowly varying function. For
all c > 0, β ≥ 0, there exists C > 0 such that for all n ≥ 1,∫

Π3ϵ

|s|βL(1/|s|)|λ(s)|n ds ≤ C
L(an)

ad+β
n

.

Proof This follows from Lemmas 2.3 and 3.5(i).

We require the following estimates on the derivatives of R(s)n and Q(s)n.

Lemma 3.7 Let α ∈ (1, 2] and fix δ1 ∈ (δ0, 1). Then there exists C > 0 such that for
all s, s+ h ∈ Π3ϵ, j = 1, . . . , d,

∥∂j(R(s)n)∥ ≤ Cn|λ(s)|n−1 and ∥∂j(Q(s+h)n)− ∂j(Q(s)
n)∥ ≤ Cδn1 |h|α−1ℓ̃(1/|h|).

Proof We start from ∂j(R(s)
n) =

∑n−1
k=0 R(s)

k∂jR(s)R(s)
n−k−1. By (3.3) and (H2)(i)

∥∂j(R(s)n)∥ ≪
n−1∑
k=0

|λ(s)|k|λ(s)|n−k−1 = n|λ(s)|n−1.
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Next, fix δ2 ∈ (δ0, δ1). By (3.2) and Lemma 3.4,

∥Q(s+ h)n −Q(s)n∥ ≤
n−1∑
k=0

∥Q(s+ h)k∥ ∥Q(s+ h)−Q(s)∥ ∥Q(s)n−k−1∥

≪ |h|
n−1∑
k=0

δn0 ≪ δn2 |h|. (3.4)

Let k,m ≥ 0 with k +m = n− 1. Then

(Qk∂jQQ
m)(s+ h)− (Qk∂jQQ

m)(s) =
(
Q(s+ h)k −Q(s)k

)
∂jQ(s+ h)Q(s+ h)m

+Q(s)k
(
∂jQ(s+ h)− ∂jQ(s)

)
Q(s+ h)m

+Q(s)k∂jQ(s)
(
Q(s+ h)m −Q(s)m

)
so by (3.2), (3.4) and Lemma 3.4,

∥(Qk∂jQQ
m)(s+h)−(Qk∂jQQ

m)(s)∥ ≪ δn−1
2 |h|+δn−1

2 |h|α−1ℓ̃(1/|h|) ≪ δn2 |h|α−1ℓ̃(1/|h|).

Substituting into ∂j(Q(s)
n) =

∑n−1
k=0(Q

k∂jQQ
n−k−1)(s) we obtain ∥∂j(Q(s + h)n) −

(∂jQ(s)
n)∥ ≪ nδn2 |h|α−1ℓ̃(1/|h|) ≪ δn1 |h|α−1ℓ̃(1/|h|) as required.

Corollary 3.8 (i) Let α ∈ (0, 1)∪ (1, 2]. There exists C > 0 such that for all |h| ≤ ϵ,∫
Π2ϵ

∥R(s)k∥∥R(s+ h)m∥ ds ≤ Ca−d
n for all k,m ≥ 0, n ≥ 1 with k +m = n.

(ii) Let α ∈ (1, 2]. There exists C > 0 such that∫
Π2ϵ

∥∂j(R(s)n)∥ ds ≤ Cna−d
n for all n ≥ 1, j = 1, . . . , d.

Proof (i) By (3.3),

∥R(s)k∥ ∥R(s+ h)m∥ ≪ |λ(s)|k|λ(s+ h)|m ≪ |λ(s)|n + |λ(s+ h)|n.

Also, by Lemma 3.7, ∥∂j(R(s)n)∥ ≪ n|λ(s)|n−1. Hence both parts follow from Corol-
lary 3.6,

3.3 Proof of the operator stable LLD

In this subsection, we prove Theorem 3.2. Define r : R → R as in Section 2.2. Recall
that r is C2, even, and supported in Πϵ.

Lemma 3.9 1{vn∈Π1(x)} ≤
∫
Πϵ
e−is·xr(s)eis·vn ds for n ≥ 1, x ∈ Rd.
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Proof Define γ : Rd → [0,∞) as in Section 2.2. Since γ ≥ 0 and γ|Π2(0) ≥ 1,

1{vn∈Π1(x)} =
1

2d

∫
Π1(x)

1{vn∈Π1(x)} dy

≤ 1

2d

∫
Π1(x)

1{vn∈Π2(y)} dy ≤ 1

2d

∫
Π1(x)

γ(y − vn) dy.

Using the Fourier inversion formula (2.1),

1{vn∈Π1(x)} ≤
1

(4π)d

∫
Πϵ

(∫
Π1(x)

e−is·y dy
)
γ̂(s)eis·vn ds =

∫
Πϵ

e−is·xr(s)eis·vn ds

by Fubini.

Proof of Theorem 3.2 By Lemma 3.9 and positivity of R,

Rn1{vn∈Π1(x)} ≤
∫
Πϵ

e−is·xr(s)Rneis·vn ds = An,x1

where

An,x =

∫
Πϵ

e−is·xr(s)R(s)n ds.

Since 1 ∈ B,

|Rn1{vn∈Π1(x)}|∞ ≤ |An,x1|∞ ≤ ∥An,x1∥ ≤ ∥An,x∥ ∥1∥ ≪ ∥An,x∥.

Hence it suffices to estimate ∥An,x∥.
Since r is bounded and supported in Πϵ, it follows that ∥An,x∥ ≪

∫
Πϵ

∥R(s)∥n ds.
By (3.3) and Corollary 3.6,

∥An,x∥ ≪
∫
Πϵ

|λ(s)|n ds≪ a−d
n .

Hence, for n≫ (1 + |x|α)/ℓ̃(|x|), we obtain the required estimate ∥An,x∥ ≪ n
adn

ℓ̃(|x|)
1+|x|α .

As in the proof of Theorem 1.6, it remains to prove that ∥An,x∥ ≪ n
adn

ℓ̃(|x|)
|x|α for

an ≤ |x|, |x| ≥ π/ϵ.

The case α ∈ (0, 1). Let h = πx/|x|2. The same modulus of continuity argument as
in the i.i.d. case (cf. (2.3)) yields ∥An,x∥ ≤ I1 + I2 where

I1 =

∫
Rd

|r(s)− r(s− h)| ∥R(s)n∥ ds≪ |x|−1

∫
Π2ϵ

∥R(s)n∥ ds,

I2 =

∫
Rd

|r(s− h)| ∥R(s)n −R(s− h)n∥ ds≪
∫
Π2ϵ

∥R(s)n −R(s− h)n∥ ds.
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By Corollary 3.8(i), I1 ≪ |x|−1a−d
n ≪ n

adn

ℓ(|x|)
|x|α .

Next,

∥R(s)n −R(s− h)n∥ ≤
n−1∑
k=0

∥R(s)k∥ ∥R(s)−R(s− h)∥ ∥R(s− h)n−k−1∥,

so by (H2)(ii) and Corollary 3.8(i),

I2 ≪
ℓ(|x|)
|x|α

n−1∑
k=0

∫
Π2ϵ

∥R(s)k∥ ∥R(s− h)n−k−1∥ ds≪ n

adn

ℓ(|x|)
|x|α

.

The case α ∈ (1, 2]. Choose j so that |xj| = max{|x1|, . . . , |xd|}. Integrating by
parts, An,x = E1 + E2 where

E1 =
1

ixj

∫
Rd

e−is·x∂jr(s)R(s)
n ds, E2 =

1

ixj

∫
Rd

e−is·xr(s)∂j(R(s)
n) ds.

Integrating by parts once more and using that r is C2 and supported in Πϵ,

∥E1∥ ≤ 1

x2j

∫
Rd

|∂2j r(s)| ∥R(s)n∥ ds+
1

x2j

∫
Rd

|∂jr(s)| ∥∂j(R(s)n)∥ ds

≪ 1

x2j

∫
Πϵ

∥R(s)n∥ ds+ 1

x2j

∫
Πϵ

∥∂j(R(s)n)∥ ds.

By Corollary 3.8,

∥E1∥ ≪ 1

adn

1

|x|2
+

n

adn

1

|x|2
≪ n

adn

ℓ̃(|x|)
|x|α

.

Next, we exploit the modulus of continuity of r∂j(R
n), writing h = πx−1

j ej and

∥E2∥ ≪ 1

|xj|

∫
Rd

|r(s)− r(s− h)| ∥∂j(R(s)n)∥ ds

+
1

|xj|

∫
Rd

|r(s− h)| ∥∂j(R(s)n)− ∂j(R(s− h)n)∥ ds

≪ 1

|x|2

∫
Π2ϵ

∥∂j(R(s)n)∥ ds+
1

|x|

∫
Π2ϵ

∥∂j(R(s)n)− ∂j(R(s− h)n)∥ ds.

Again 1
|x|2

∫
Π2ϵ

∥∂j(R(s)n)∥ ds≪ n
adn

1
|x|2 ≪ n

adn

ℓ̃(|x|)
|x|α so it remains to estimate

J =
1

|x|

∫
Π2ϵ

∥∂j(R(s)n)− ∂j(R(s− h)n)∥ ds.

By (3.1),

∂j(R(s)
n) = nλ(s)n−1∂jλ(s)P (s) + λ(s)nP ′(s) + ∂j(Q(s)

n).
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Relabel {s, s− h} = {s1, s2} where |λ(s1)| ≤ |λ(s2)|. Then J ≤ F1 + · · ·+ F6 where

F1 =
n

|x|

∫
Π2ϵ

|λ(s1)n−1 − λ(s2)
n−1| |∂jλ(s2)| ∥P (s2)∥ ds,

F2 =
n

|x|

∫
Π2ϵ

|λ(s2)|n−1|∂jλ(s1)− ∂jλ(s2)|∥P (s2)∥ ds,

F3 =
n

|x|

∫
Π2ϵ

|λ(s2)|n−1|∂jλ(s2)|∥P (s1)− P (s2)∥ ds,

F4 =
1

|x|

∫
Π2ϵ

|λ(s1)n − λ(s2)
n|∥P ′(s2)∥ ds,

F5 =
1

|x|

∫
Π2ϵ

|λ(s2)|n∥P ′(s1)− P ′(s2)∥ ds,

F6 =
1

|x|

∫
Π2ϵ

∥∂j(Qn)(s1)− ∂j(Q
n)(s2)∥ ds.

The hardest term F1 is estimated in the same way as J2 in the proof of Theorem 1.6
so we write the calculation without the justifications:

F1 ≪
n2

|x|

∫
Π2ϵ

|λ(s1)− λ(s2)| |λ(s2)|n−2|∂jλ(s2)| ds

≪ n2

|x|2

∫
Π2ϵ

|∂jλ(s∗)| |∂jλ(s2)| |λ(s2)|n−2 ds

≪ n2

|x|2

∫
Π2ϵ

|∂jλ(s∗)− ∂jλ(s2)| |∂jλ(s2)| |λ(s2)|n−2 ds+
n2

|x|2

∫
Π2ϵ

|∂jλ(s2)|2|λ(s2)|n−2 ds

≪ n2ℓ̃(|x|)
|x|α+1

∫
Π3ϵ

|s|α−1ℓ̃(1/|s|)|λ(s)|n−2 ds+
n2

|x|2

∫
Π3ϵ

|s|2(α−1)ℓ̃(1/|s|)2|λ(s)|n−2 ds

≪ n

adn

ℓ̃(|x|)
|x|α

( an
|x|

+
a2−α
n ℓ̃(an)

|x|2−αℓ̃(|x|)

)
≪ n

adn

ℓ̃(|x|)
|x|α

.

This is the only term that requires Lemma 3.5(ii). The terms F2, . . . , F5 require only
the rougher estimates in Lemma 3.4 combined with Corollary 3.6 and we obtain

F2 ≪
n

adn

ℓ̃(|x|)
|x|α

, F3, F4 ≪
n

adn

1

|x|2
, F5 ≪

1

adn

ℓ̃(|x|)
|x|α

.

Finally, by Lemma 3.7, F6 ≪ δn1
ℓ̃(|x|)
|x|α which ends the proof.

3.4 Gibbs-Markov maps

Let (Λ, µ) be a probability space with an at most countable measurable partition
{Λk}, and let f : Λ → Λ be an ergodic measure-preserving transformation. Define
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s(z, z′) to be the least integer n ≥ 0 such that fnz and fnz′ lie in distinct partition
elements. It is assumed that s(z, z′) = ∞ if and only if z = z′; then dθ(z, z

′) = θs(z,z
′)

is a metric for θ ∈ (0, 1),
Let g = dµ

dµ◦f : Λ → R. We say that f is a Gibbs-Markov map if

• fΛk is a union of partition elements and f |Λk
: Λk → fΛk is a measurable

bijection for each k ≥ 1;

• infk µ(fΛk) > 0;

• There are constants C > 0, θ ∈ (0, 1) such that | log g(z)−log g(z′)| ≤ Cdθ(z, z
′)

for all z, z′ ∈ Λk, k ≥ 1.

Standard references for Gibbs-Markov maps include [1, 4].
Given ϕ : Λ → R, let

Dkϕ = sup
z,z′∈Λk, z ̸=z′

|ϕ(z)− ϕ(z′)|/dθ(z, z′), |ϕ|θ = sup
k≥1

Dkϕ.

We define the Banach space Fθ ⊂ L∞ to consist of functions ϕ : Λ → R such
that |ϕ|θ < ∞ with norm ∥ϕ∥θ = |ϕ|∞ + |ϕ|θ < ∞. For ϕ : Λ → Rd, define
|ϕ|θ = maxj=1,...,d |ϕj|θ.

Proposition 3.10 Assume f is a mixing Gibbs-Markov map and let v : Λ → Rd with∫
Λ
|v|2 dµ = ∞ and |v|θ <∞. Fix α ∈ (0, 1)∪ (1, 2] and assume that v satisfies (H1).
Then conditions (H1)–(H3) are satisfied with Banach space B = Fθ.

Proof Condition (H1) is satisfied by assumption and condition (H3) is well-known
for mixing Gibbs-Markov maps [1, 4]. It remains to verify that (H2) holds. In fact,
for any M > 0 the conditions in (H2) hold for all |s| ≤M , |h| ≤ 1. We verify this for
(H2)(iii). All the other calculations are simpler and hence omitted.

Now (∂jR(s + h) − ∂jR(s))ϕ = iR(ϕψ) where ψ = vje
is·v(eih·v − 1). A standard

calculation shows that

∥R(ϕψ)∥θ ≪
∑

kµ(Λk)
(
supk|ϕψ|+Dk(ϕψ)

)
≤ ∥ϕ∥θ

∑
kµ(Λk)

(
2 supk|ψ|+Dkψ

)
.

where supk = supΛk
and infk = infΛk

. Hence

∥∂jR(s+ h)− ∂jR(s)∥θ ≪
∑

kµ(Λk)
{
supk|vj(eih·v − 1)|+Dk

(
veis·v(eih·v − 1)

)}
.

Also, Dke
is·v ≤ |s||v|θ ≪ |s|, so ∥∂jR(s+ h)− ∂jR(s)∥θ ≪ S1 + S2 + S3 + S4, where

S1 =
∑

kµ(Λk)supk|vj(eih·v − 1)|,

S2 =
∑

kµ(Λk)supk|vj(eih·v − 1)|Dke
is·v ≪ |s|S1 ≤MS1,

S3 =
∑

kµ(Λk)supk|v|Dke
ih·v ≤ |h|

∑
kµ(Λk)supk|v|,

S4 =
∑

kµ(Λk)supk|eih·v − 1|Dkv ≪ S3.
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Next, supk|v| − infk|v| ≤ |v|θ ≪ 1. Hence∑
kµ(Λk)supk|v| ≪

∑
kµ(Λk)(1 + infk|v|) ≤ 1 +

∫
Λ

|v| dµ,

and we obtain S3, S4 ≪ |h|.
Finally,

supk|vj(eih·v−1)| ≪
(
1+infk|v|

)(
|h|+infk|eih·v−1|

)
≪ |h|

(
1+infk|v|

)
+infk|vj(eih·v−1)|,

and so

S1 ≪
∑

kµ(Λk)
(
|h|(1 + infk|v|) + infk|vj(eih·v − 1)|

)
≤ |h|

(
1 +

∫
Λ

|v| dµ
)
+

∫
Λ

|vj(eih·v − 1)| dµ≪ |h|+
∫
Λ

|vj(eih·v − 1)| dµ.

The conditions on v are the same as those on X in Theorem 1.6, so∫
Λ

|vj(eih·v − 1)| dµ = E|Xj(e
ih·X − 1)| ≪ |h|α−1ℓ̃(1/|h|)

by the proof of Lemma 2.2(ii). Hence S1, S2 ≪ |h|+ |h|α−1ℓ̃(1/|h|).
Altogether, ∥∂jR(s + h) − ∂jR(s)∥θ ≪ |h| + |h|α−1ℓ̃(1/|h|) ≪ |h|α−1ℓ̃(1/|h|) as

required.

3.5 AFU maps

Let Λ = [0, 1] with measurable partition {I} consisting of open intervals. A map
f : Λ → Λ is called AFU if f |I is C2 and strictly monotone for each I, and

(A) (Adler’s condition) f ′′/(f ′)2 is bounded on
⋃
I.

(F) (finite images) The set of images {fI} is finite.

(U) (uniform expansion) There exists ρ > 1 such that |f ′| ≥ ρ on
⋃
I.

A standard reference for such maps is [18] (see also [3]). Since AFU maps are not
necessarily Markov, the Hölder spaces F are not preserved by the transfer operator of
f and it is standard to consider the space of bounded variation functions. Accordingly,
we define the Banach space B = BV ⊂ L∞ to consist of functions ϕ : Λ → R such
that Varϕ <∞ with norm ∥ϕ∥ = |ϕ|∞ +Varϕ. Here

Varϕ = sup
0=z0<···<zk=1

k∑
i=1

|ϕ(zi)− ϕ(zi−1)|

denotes the variation of ϕ on Λ. Also, we let VarI ϕ denote the variation of ϕ on I.
For ϕ : Λ → Rd, define Varϕ = maxj=1,...,d Varϕj.

We suppose that f : Λ → Λ is topologically mixing. Then there is a unique
absolutely continuous f -invariant probability measure µ, and µ is mixing.
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Proposition 3.11 Assume f is a topologically mixing AFU map and let v : Λ → Rd

with
∫
Λ
|v|2 dµ = ∞ and supI VarI v <∞. Fix α ∈ (0, 1) ∪ (1, 2] and assume that the

tails of v satisfy (H1).
Then conditions (H1)–(H3) are satisfied with Banach space B = BV.

Proof The proof essentially goes word for word as the proof of Proposition 3.10
with minor changes. Condition (H1) is satisfied by assumption and condition (H3) is
well-known for mixing AFU maps. It remains to verify that (H2) holds. Fix M > 0.
As before, we verify (H2)(iii) for all |s| ≤ M , |h| ≤ 1; the other calculations being
simpler.

Again, (∂jR(s + h) − ∂jR(s))ϕ = iR(ϕψ) where ψ = vje
is·v(eih·v − 1), and a

standard calculation shows that

∥R(ϕψ)∥ ≪ ∥ϕ∥
∑

Iµ(I)(supI |ψ|+VarI ψ).

Also, VarI e
is·v ≤ |s|VarI v ≪ |s|, so ∥R′(s+ h)−R′(s)∥ ≤ S1 + S2 + S3 + S4 where

S1 =
∑

Iµ(I)supI |vj(eih·v − 1)|
S2 =

∑
Iµ(I)supI |vj(eih·v − 1)|VarI eis·v ≪ |s|S1 ≤MS1,

S3 =
∑

Iµ(I)supI |v|VarI eih·v ≤ |h|
∑

Iµ(I)supI |v|,

S4 =
∑

Iµ(I)supI |eih·v − 1|VarI v ≪ S3.

The calculation continues exactly as in Proposition 3.10 and we omit the remaining
details.
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