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Abstract

We prove convergence to a Lévy process for a class of dispersing billiards
with cusps. For such examples, convergence to a stable law was proved by
Jung & Zhang. For the corresponding functional limit law, convergence is not
possible in the usual Skorohod J1 topology. Our main results yield elementary
geometric conditions for convergence (i) in M1, (ii) in M2 but not M1.

In general, we show for a large class of nonuniformly hyperbolic systems how
to deduce functional limit laws once convergence to the corresponding stable
law is known.

1 Introduction

It is by now well-known that deterministic dynamical systems often satisfy statistical
limit theorems from classical probability theory. Following Sinai [42], a rich source
of examples is provided by dispersing billiards [15] which are based on deterministic
Lorentz gas models [33]. By [11, 12], the central limit theorem (CLT) and functional
central limit theorem or weak invariance principle (WIP) hold for planar periodic
dispersing billiards. The CLT asserts convergence to a normal distribution and the
WIP deals with convergence to the corresponding Brownian notion. These limit laws
also hold for Sinai billiards where the boundary of the table is a simple closed curve
consisting of finitely many C3 convex inwards curves with nonvanishing curvature and
nonzero angles at corner points [19]. For billiards with cusps (corner points with zero
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angle), the CLT and WIP were obtained by [3] but with the weakly superdiffusive
normalization (n log n)1/2 instead of the standard diffusion rate n1/2.

Stronger superdiffusion rates n1/α, α < 2, with limiting fluctuations governed by
an α-stable Lévy process rather than a Brownian motion, have been the focus of much
attention across the physical sciences. See for example [5, 22, 24, 31, 37, 38, 39, 41, 44,
47] and references therein. Whereas Brownian motions are continuous processes with
finite variance, Lévy processes exhibit jumps of all sizes and have infinite variance.

In this paper, we show for the first time that convergence to a Lévy process occurs
in dispersing billiards. The example is elementary to write down and the mechanism
for superdiffusion is intuitively transparent. Moreover, our analysis casts light on the
mode of convergence, an aspect which has received little attention previously.

Recently, Jung & Zhang [30] considered a class of billiards with cusps where there
is vanishing curvature at the cusp and proved convergence to totally skewed α-stable
laws with α ∈ (1, 2). However, they were unable to prove the functional WIP version
of their limit law (i.e. weak convergence to the corresponding α-stable Lévy process).

In this paper, as part of a general framework including [30], we show how to
pass from the stable law to the WIP. The standard J1 Skorohod topology [43, 47] is
always too strong for these examples, but we obtain convergence in theM1 andM2

topologies. The definition of these Skorokhod topologies is recalled in Appendix B.
It is well-known that the J1 topology is often too strong, and there are many

natural examples where the M1 topology is the appropriate one, see for example [2,
7, 37, 47]. Indeed, Whitt [47, p. xii] writes

Thus, while the J1 topology sometimes cannot be used, the M1 topology can
almost always be used. Moreover, the extra strength of the J1 topology is rarely
exploited. Thus, we would be so bold as to suggest that, if only one topology
on the function space D is to be considered, then it should be the M1 topology.

Jakubowski [27] writes

All these reasons bring interest also to the weaker Skorokhod’s topologies J2,
M1 and M2. Among them practically only the topology M1 proved to be
useful.

Nevertheless, in this paper we provide natural examples where theM1 topology is too
strong and theM2 topology is the appropriate one. The only previous such example
that we know of can be found in [6].

Example 1.1 We consider the Jung & Zhang example [30] consisting of a planar
dispersing billiard with a cusp at a flat point. A standard reference for background
material on billiards is [15].

The billiard tableQ ⊂ R2 has a boundary consisting of a finite number of C3 curves
Γi, i = 1, . . . , n0, where n0 ≥ 3 with a cusp formed by two of these curves Γ1, Γ2. In
coordinates (s, z) ∈ R2, the cusp lies at (0, 0) and Γ1, Γ2 are tangent to the s-axis
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at (0, 0). Moreover, close to (0, 0), we have Γ1 = {(s, β−1sβ)}, Γ2 = {(s,−β−1sβ)},
where β > 2. See Figure 1. 1
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Figure 1: Billiard with a cusp at a flat point as studied by Jung & Zhang.

The phase space of the billiard map (or collision map) T is given by Λ = ∂Q×[0, π],
with coordinates (r, θ) where r denotes arc length along ∂Q and θ is the angle between
the tangent line of the boundary and the collision vector in the clockwise direction.
There is a natural ergodic invariant probability measure dµ = (2|∂Q|)−1 sin θ dr dθ
on Λ, where |∂Q| is the length of ∂Q.

In configuration space, the cusp is a single point (0, 0) = Γ1 ∩Γ2. Let r′ ∈ Γ1 and
r′′ ∈ Γ2 be the arc length coordinates of (0, 0). Then in phase space Λ, the cusp is
the union of two line segments

C = {(r′, θ) : 0 ≤ θ ≤ π} ∪ {(r′′, θ) : 0 ≤ θ ≤ π}.

Let v : Λ→ R be a Hölder continuous observable with
∫

Λ
v dµ = 0 and define2

Iv(s) =
1

2

∫ s

0

{v(r′, θ) + v(r′′, π − θ)}(sin θ)1/α dθ, s ∈ [0, π]. (1.1)

where α = β
β−1
∈ (1, 2). Suppose that Iv(π) > 0 (the case Iv(π) < 0 is identical

with the obvious modifications). Let G be the totally skewed α-stable law with

1In [30], it is assumed in addition that the trajectory running out of the cusp along the s-axis
hits Γ3 perpendicularly, but this was only done for convenience and is not present in [29].

2Our definitions differ from those in [30] by constant factors, leading to simpler formulas in
Section 8.
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characteristic function

E(eiuG) = exp{−|u|ασα(1−i sgnu tan πα
2

)}, σα = (β|∂Q|2α−1)−1Iv(π)αΓ(1−α) cos πα
2
.

Jung & Zhang [30, Theorem 1.1] prove:

Theorem 1.2 n−1/α
∑n−1

j=0 v ◦ T j →d G.

Let D[0,∞) denote the set of real-valued càdlàg functions (right-continuous with
left-hand limits) on [0,∞), and let W ∈ D[0,∞) be the α-stable Lévy process with
W (1) =d G. Define

Wn : Λ→ D[0,∞), Wn(t) = n−1/α
∑[nt]−1

j=0 v ◦ T j.

Since the increments of Wn are bounded by n−1/α|v|∞ and W has jumps with proba-
bility one, Wn does not converge to W in the J1 topology. However, the weaker M1

topology allows an amalgamation of numerous small increments for Wn to approxi-
mate a single jump for W . This is analogous to the situation for intermittent maps
of Pomeau-Manneville type [40] studied in [37]. In contrast to [37], convergence in
M1 is not automatic. Instead, there is a simple geometric condition on v|C which
characterizes convergence in M1:

Theorem 1.3 Wn →w W in (D[0,∞),M1) if and only if v(r′, θ) + v(r′′, π − θ) ≥ 0
for all θ ∈ [0, π]. (Equivalently, s 7→ Iv(s) is nondecreasing on [0, π].)

We also have a sufficient condition for convergence in the even weakerM2 topol-
ogy.

Theorem 1.4 If Iv(s) ∈ [0, Iv(π)] for all s ∈ [0, π], then Wn →w W in
(D[0,∞),M2).

It is now easy to construct a Hölder continuous mean zero observable v : Λ→ R so
that convergence holds inM2 but not inM1. For example, choose v so that v(r′, θ)+
v(r′′, π−θ) is positive on [0, π

3
)∪(2π

3
, π] and negative on (π

3
, 2π

3
). See Figure 2(b). The

change of sign violates the condition for M1-convergence in Theorem 1.3, while it is
clear that if v is small enough on (π

3
, 2π

3
) comparable to its values on [0, π

3
) ∪ (2π

3
, π],

then the condition for M2-convergence in Theorem 1.4 is satisfied.

Remark 1.5 (a) After writing this paper, we learned of independent work of [29]
on billiards with several cusps at flat points. They considered the case where v has
constant sign near each cusp and proved convergence to a Lévy process in the M1

topology.

(b) In a previous version of this paper, we conjectured that the condition in The-
orem 1.4 for convergence in the M2 topology is necessary and sufficient. This has
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Figure 2: Different possible shapes of the function Iv for the Jung & Zhang example:
(a) WIP holds in theM1 (hence also in theM2) topology; (b) WIP holds in theM2

topology but not in the M1 topology; (c) the WIP does not hold even in the M2

topology.

now been shown to be the case in [28]. An interesting open question is to con-
sider alternative weaker modes of convergence in situations such as Figure 2(c) where
M2-convergence fails. (Such a weakening entails diminishing the class of continuous
functionals under which weak convergence is preserved. For example, weak conver-
gence in any of the Skorokhod topologies mentioned above implies weak convergence
of the supremum process, i.e. sup[0,t] Wn →w sup[0,t] W , see [47, Section 13.4], but this
appears unlikely in the situation of Figure 2(c).)

Strategy of proof The proof of Theorems 1.3 and 1.4 fits into a general frame-
work [18, 34] which has been used to study large classes of examples from billiards
specifically and nonuniformly hyperbolic dynamical systems in general. This frame-
work is described in Section 2. (It includes the setting of intermittent maps as a very
special case, see Remark 3.7.) Let X ⊂ Λ be a cross-section with first return time
ϕ : X → Z+ and first return map f = Tϕ : X → X as in (2.4). In Example 1.1,
X = (Γ3 ∪ · · · ∪ Γn0) × [0, π]. We require that f is modelled by a Young tower with
exponential tails [48] over a “uniformly hyperbolic” subset Y ⊂ X ⊂ Λ. Associated to
the observable v : Λ→ R, we have the induced observable V =

∑ϕ−1
`=0 v ◦T ` : X → R.

Also, associated to ϕ, V on X there are induced versions ϕY , V Y on Y .
The key argument of [30, Theorem 3.1] proves a stable law for ϕ : X → Z+.

Our approach deduces the WIP for v on Λ from the stable law for ϕ on X. The
idea is to first induce the stable law for ϕ to a stable law for ϕY on Y . Since the
dynamics on Y is very well-understood, this leads via results of Gouëzel [26] and
Tyran-Kamińska [46] to convergence to a Lévy process in the J1 topology for ϕY and
thereby V Y . The WIP for V Y uninduces to convergence in the M1 topology for V
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on X. Under certain conditions, this uninduces to convergence in the M1 or M2

topology for v. The strategy can be represented diagrammatically as follows:

Λ X Y

stable law for ϕ =⇒ stable law for ϕY

⇓
WIP in J1 for ϕY

⇓
WIP in M1 / M2 for v ⇐= WIP in M1 for V ⇐= WIP in J1 for V Y

The remainder of the paper is organized as follows. In Section 2, we consider the
Chernov-Markarian-Zhang framework where the underlying system has a first return
map modelled by a Young tower with exponential tails. In Section 3, we state our
main results on stable laws and WIPs for systems with a Chernov-Markarian-Zhang
structure. In Section 4, we state and prove a purely probabilistic result on uninducing
WIPs in theM1 orM2 topology, extending a result of [37]. Section 5 contains limit
laws for the return times ϕ and ϕY , and Section 6 contains some estimates for induced
Hölder observables. These are combined in Section 7 to prove our main results from
Section 3. In Section 8, we return to Example 1.1, proving Theorems 1.3 and 1.4 as
well as giving a streamlined proof of Theorem 1.2.

Notation We use the “big O” and� notation interchangeably, writing an = O(bn)
or an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Also,
we write an ≈ bn if an � bn � an. As usual, an ∼ bn as n → ∞ means that
limn→∞ an/bn = 1.

For a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}.
Recall that a sequence bn ∈ (0,∞) is regularly varying of index p > 0 if bλn/bn →

λp as n→∞ for all λ ≥ 1.

2 Preliminaries

In this section, we recall the Chernov-Markarian-Zhang framework [18, 34]. Roughly
speaking, this means that there is a convenient first return map that is modelled by
a Young tower with exponential tails [48]. The full details from Young [48] are not
required for our main theorems, so we recall here only those aspects that are needed.

2.1 Towers and return maps

In this subsection, we review a purely measure-theoretic framework of tower maps
and return maps that arises throughout this paper.
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Let F : Y → Y be a measure-preserving transformation on a probability space
(Y, µY ), and let τ : Y → Z+ be integrable. The tower ∆ = Y τ and tower map
f̂ : ∆→ ∆ are given by

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < τ(y)}, f̂(y, `) =

{
(y, `+ 1) ` ≤ τ(y)− 2

(Fy, 0) ` = τ(y)− 1
. (2.1)

Define τ̄ =
∫
Y
τ dµY . Then µ∆ = (µY × counting)/τ̄ is an f̂ -invariant probability

measure on ∆. We call f̂ : ∆→ ∆ the tower with base map F and return time τ .
Next, let f : X → X be a measure-preserving transformation on a probability

space (X,µX), and Y ⊂ X a positive measure subset. Let τ : Y → Z+ be measurable
such that f τ(y)y ∈ Y for a.e. y ∈ Y ; define F = f τ : Y → Y . Suppose that µY
is an F -invariant probability measure on Y and that τ is integrable with respect to
µY . Let f̂ : ∆ → ∆ denote the tower with base map F and return time τ , and let
π : ∆→ X be the semiconjugacy π(y, `) = f `y. Assume that µX = π∗µ∆. If all these
assumptions are satisfied, we call τ a return time and F a return map.

2.2 Young towers with exponential tails

Let f : X → X be a measure-preserving transformation defined on a metric space
(X, d) with Borel probability measure µX . Suppose that Y is a positive measure
subset of X and that τ : Y → Z+ is a return time with return map F = f τ : Y → Y .
In particular, there is an F -invariant probability measure µY on Y such that τ is µY -
integrable. Let ∆ = Y τ and f̂ : ∆→ ∆ be the tower with base map F and return time
τ as in Subsection 2.1 with f̂ -invariant probability measure µ∆ and semiconjugacy
π : ∆→ X such that µX = π∗µ∆. In addition, we assume that µY and µ∆ (and hence
µX) are ergodic. Moreover, we assume the exponential tails condition

µY (y ∈ Y : τ(y) > n) = O(e−cn) for some c > 0. (2.2)

LetWs be a cover of Y by disjoint measurable subsets (called “local stable leaves”)
and let W s

y denote the local stable leaf containing y. We require that F (W s
y ) ⊂ W s

Fy

for all y ∈ Y . Let Ȳ be the quotient space obtained from Y by quotienting along
local stable manifolds and denote by π̄ : Y → Ȳ the corresponding projection. The
probability measure µ̄Y = π̄∗µY is ergodic and invariant under the quotient map
F̄ : Ȳ → Ȳ , and π̄ defines a measure-preserving semiconjugacy between F and F̄ .

Let {a} be an at most countable measurable partition of Ȳ . Define s(y, y′) to be
the least integer n ≥ 0 such that F ny, F ny′ lie in distinct partition elements. It is
assumed that s(y, y′) = ∞ if and only if y = y′. We require that F̄ |a : a → Ȳ is a
measurable bijection for all a and that there are constants C > 0, θ ∈ (0, 1) such that

| log dµ̄Y
dµ̄Y ◦F̄

(y)− log dµ̄Y
dµ̄Y ◦F̄

(y′)| ≤ Cθs(y,y
′) for all y, y′ ∈ a and all a.

Under these conditions, F̄ : Ȳ → Ȳ is called a (full branch) Gibbs-Markov map [1].
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We require that τ : Y → Z+ is constant on π̄−1a for all a. Hence τ is well-defined
on Ȳ and constant on partition elements.

Finally, assume that there are constants C > 0, γ0 ∈ (0, 1) such that

d(F ny, F ny′) ≤ Cγn0 for all y, y′ ∈ Y , y′ ∈ W s
y , n ≥ 0. (2.3)

Under these assumptions, we say that f : X → X is modelled by a Young tower
∆ = Y τ with exponential tails.

2.3 Chernov-Markarian-Zhang framework

Let T : Λ→ Λ be an ergodic measure-preserving transformation defined on a metric
space (Λ, d) with Borel probability measure µ. Let X ⊂ Λ be a Borel subset of
positive measure and define the first return time ϕ : X → Z+ and first return map
f = Tϕ : X → X,

ϕ(x) = inf{n ≥ 1 : T nx ∈ X}, f(x) = Tϕ(x)x. (2.4)

Then ϕ is integrable and µX = µ|X/µ(X) is an ergodic f -invariant probability mea-
sure on X. Define ϕ̄ =

∫
X
ϕdµX .

Next, we suppose that f : X → X is modelled by a Young tower ∆ = Y τ with
exponential tails as in Subsection 2.2. Define the induced return time function

ϕY : Y → Z+, ϕY =
∑τ−1

`=0 ϕ ◦ f `.

Assume that ϕ : X → Z+ is constant on f `π̄−1a for all 0 ≤ ` < τ(a) and all a. Then
ϕY is well-defined on Ȳ and constant on partition elements.

The final condition is somewhat technical and is based on [4, Lemma 5.4] which is

itself based on [48, Sublemma, p. 612]. Given h ∈ Cη(Λ), define HY =
∑ϕY −1

`=0 h◦T ` :
Y → R. Let B be the σ-algebra generated by Ws. Then E(HY |B) = ζ ◦ π̄ where
ζ ∈ L1(Ȳ ). It is immediate that

|ζ(y)| ≤ |h|∞ϕY(a) for all y ∈ a and all a. (2.5)

We require that there are constants C > 0, γ0 ∈ (0, 1) such that

|ζ(y)− ζ(y′)| ≤ CϕY(a)γ
s(y,y′)
0 for all y, y′ ∈ a and all a. (2.6)

Under these assumptions, we say that T : Λ → Λ possesses a Chernov-Markarian-
Zhang structure.

Remark 2.1 The exponential tail condition for τ is assumed for convenience, but
the abstract results require only that µY (τ > n) = O(n−q) for q sufficiently large.
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Remark 2.2 The method of choosing a first return map modelled by a Young tower
with exponential tails arises in various contexts in the literature, see for example [9, 10]
in the noninvertible context. However, the method plays a special role in the context
of billiards as we now briefly recall.

Young [48] introduced Young towers with exponential tails as a general method
for dealing with diffeomorphisms with singularities; the initial landmark application
was to prove exponential decay of correlations for planar finite horizon dispersing
billiards. Chernov [14] simplified the construction of exponential Young towers and
used this to prove exponential decay of correlations for planar dispersing billiards
with infinite horizon. Then Young [49] studied examples with subexponential decay
of correlations using Young towers with subexponential tails. Markarian [34], noting
that Chernov’s simplification no longer applies in the subexponential case, devised
the method outlined in this section: namely to construct a first return map for which
Chernov [14] applies. This was used to prove the decay of correlations bound O(1/n)
for Bunimovich stadia. The method was extended and simplified by Chernov &
Zhang [18] who applied it to a large class of billiard examples. Subsequent applications
of the method include [16, 17] as well as Zhang [50] who analysed the examples
discussed in this paper.

3 Statement of main results

Throughout this section, we suppose that T : Λ→ Λ possesses a Chernov-Markarian-
Zhang structure as in Section 2.3, with first return map f = Tϕ : X → X modelled
by a Young tower with exponential tails.

For random elements Xn, X taking values in a metric space, we write Xn →w X
if P(Xn ∈ B)→ P(X ∈ B) for all Borel sets B with P(X ∈ B) = 0. When the metric
space is R, we write →d instead of →w. When the metric space is R and X = 0,
then this is equivalent to the simpler concept, convergence in probability, denoted
Xn →p 0. For background on stable laws and Lévy processes, we refer to [41].

We assume that there exists α ∈ (1, 2) such that the first return time ϕ : X → Z+

satisfies the limit law

1

n1/α

( n−1∑
j=0

ϕ ◦ f j − n
∫
X

ϕdµX

)
→d G on (X,µX), (3.1)

where G is an α-stable law. Since ϕ ≥ 1, this stable law is totally skewed to the right.
Let v : Λ → R be a Hölder observable with

∫
Λ
v dµ = 0. Define the associated

induced observable V : X → R given by V (x) =
∑ϕ(x)−1

`=0 v(T `x). We assume that

V − Iϕ ∈ Lp(X) for some I 6= 0, p > α. (3.2)

Define vn =
∑n−1

j=0 v ◦ T j : Λ→ R.
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Theorem 3.1 (Stable law) Suppose that T : Λ → Λ possesses a Chernov-
Markarian-Zhang structure and that v : Λ → R is a Hölder mean zero observable.
Assume (3.1) and (3.2). Then n−1/αvn →d (ϕ̄)−1/αIG.

Next, let W ∈ D[0,∞) be the α-stable Lévy process with W (1) =d G. Define
Wn : Λ→ D[0,∞) by Wn(t) = n−1/αv[nt].

Define M1, M2 : X → [0,∞),

M1 = max
1≤`′≤`≤ϕ

(v`′ − v`) ∧ max
1≤`′≤`≤ϕ

(v` − v`′),

M2 =
{

max
0≤`≤ϕ

(−v`) + max
0≤`≤ϕ

(v` − V )
}
∧
{

max
0≤`≤ϕ

v` + max
0≤`≤ϕ

(V − v`)
}
.

Note that M1 = 0 if and only if excursions between returns to X are monotone [37],
and M2 = 0 if and only if excursions starting at x ∈ X remain between 0 and V (x).

Theorem 3.2 (WIP) Suppose that T : Λ → Λ possesses a Chernov-Markarian-
Zhang structure and that v : Λ→ R is a Hölder mean zero observable. Assume (3.1)
and (3.2).

(a) If n−1/α maxj≤nM1 ◦ f j →p 0 on (X,µX), then Wn →w (ϕ̄)−1/αIW on (Λ, µ)
in (D[0,∞),M1).

(b) If n−1/α maxj≤nM2 ◦ f j →p 0 on (X,µX), then Wn →w (ϕ̄)−1/αIW on (Λ, µ)
in (D[0,∞),M2).

The theorem asserts that whenever excursions satisfy a mild monotonicity condi-
tion (n−1/α maxj≤nM1◦f j →p 0), or lie within a controlled distance from its endpoints
(n−1/α maxj≤nM2 ◦ f j →p 0), then we obtain the WIP in the M1 or M2 topology
respectively.

Remark 3.3 Let (Ω,P) be a probability space and Rn : Ω→ S a sequence of Borel
measurable maps where S is a metric space. Strong distributional convergence of Rn

to a random element R on (Ω,P) means that Rn →w R in S on the probability space
(Ω,P′) for all probability measures P′ � P.

In the context of Theorem 3.2, strong distributional convergence on (Λ, µ) is au-
tomatic. Let T be an ergodic measure-preserving transformation on a probability
space (Λ, µ) and let µ′ be an absolutely continuous probability measure. Based on
ideas of [21], it was shown in [52, Theorem 1 and Corollary 3] that distributional
convergence in (D[0,∞),J1) holds on (Λ, µ) if and only if it holds on (Λ, µ′). Hence
distributional convergence in D[0,∞) with the J1 topology on (Λ, µ) is equivalent to
strong distributional convergence. As pointed out in [37, Proposition 2.8], this carries
over immediately to weaker topologies on D[0,∞) such as M1 and M2.
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Remark 3.4 A more concise formula for M2 can be obtained by noting that

M2 =
{
− min

0≤`≤ϕ
v` + max

0≤`≤ϕ
v` − V

}
∧
{

max
0≤`≤ϕ

v` + V − min
0≤`≤ϕ

v`

}
= max

0≤`≤ϕ
v` − min

0≤`≤ϕ
v` − |V |.

The next result, proved in Section 5, extends and significantly improves [37, Propo-
sition 2.7].

Proposition 3.5 Let i ∈ {1, 2}. Suppose that there are constants C > 0, δ ∈ (0, 1)
such that Mi ≤ Cϕδ almost everywhere. Then the assumption on Mi in Theorem 3.2
is satisfied.

In Section 8, we require the following converse result for theM1 topology. (There
is no such converse result for M2.)

Proposition 3.6 If Wn →w IW in (D[0,∞),M1) for some constant I 6= 0, then
n−1/α max0≤j≤nM1 ◦ f j →p 0.

Proof Without loss, I = 1. Fix c > 0. Define ∆W (t) = W (t)−W (t−). The stable
law G is totally skewed with Lévy measure supported in (0,∞), so P{∆W (t) <
−c for some 0 ≤ t ≤ 2ϕ̄} = 0.

For δ > 0, define

Eδ = {u ∈ D[0, 2ϕ̄] : u(t)− u(t′) < −c for some 0 ≤ t′ < t < (t′ + δ) ∧ 2ϕ̄}.
Since Wn →w W in M1, for any ε > 0 there exists δ > 0, n0 ≥ 1 such that

µ(Wn ∈ Eδ) < ε for n ≥ n0.

Let ϕn =
∑n−1

j=0 ϕ ◦ f j. Since ϕ is integrable, it follows from the ergodic theorem

that n−1ϕn → ϕ̄ a.e. and so n−1ϕ ◦ fn → 0 a.e. It follows easily that n−1 maxj≤n ϕ ◦
f j → 0 a.e. Hence there exists n1 ≥ n0 such that

µ
(
n−1 max

j≤n
ϕ ◦ f j ≥ δ

)
+ µ(n−1ϕn ≥ 2ϕ̄) < ε for n ≥ n1.

Now,

n−1/α max
j≤n

M1 ◦ f j ≤ n−1/α max
j≤n

max
0≤`′<`<ϕ◦fj

(v`′ − v`) ◦ f j ≤ max∗(Wn(t′)−Wn(t)),

where max∗ is the maximum over 0 ≤ t′ < t < (t′ + n−1 maxj≤n ϕ ◦ f j) ∧ n−1ϕn.
It follows that for n ≥ n1,

µ
{
n−1/α max

j≤n
M1 ◦ f j > c

}
≤ µ

{
max∗(Wn(t′)−Wn(t)) > c

}
≤ µ(n−1ϕn ≥ 2ϕ̄) + µ

(
n−1 max

j≤n
ϕ ◦ f j ≥ δ

)
+ µ
(

max
0≤t′<t<(t′+δ)∧2ϕ̄

(Wn(t′)−Wn(t)) > c
)

< ε+ µ(Wn ∈ Eδ) < 2ε.

11



Hence n−1/α maxj≤nM1 ◦ f j →p 0.

Remark 3.7 Convergence results in the M1 topology for nonuniformly hyperbolic
maps were considered previously by [37] with applications to Markov Pomeau-
Manneville intermittent maps [40]. Such maps fall into a greatly simplified version of
the Chernov-Markov-Zhang framework. Fix α ∈ (1, 2) and set Λ = [0, 1]. A proto-

typical example [32] is the map T : Λ→ Λ given by Tx =

{
x(1 + 21/αx1/α) x < 1

2

2x− 1 x > 1
2

,

but the method applies equally to the general class of intermittent Markov maps con-
sidered by [45]. Taking X = [1

2
, 1], the first return map f = Tϕ : X → X is already

Gibbs-Markov, so there is no need to consider an induced return map F = Tϕ
Y

, nor
to quotient along stable leaves. In other words, X = Y = Ȳ . For these examples,
condition (3.1) holds by [24]. Condition (3.2) and condition (a) in Theorem 3.2 were
verified in [37, Section 4].

Theorem 3.2(a) also applies to non-Markovian intermittent maps T : Λ→ Λ: the
so-called AFN maps studied by [51]. A specific example is given by Tx = x(1 +
bx1/α) mod 1 which is not Markov when the positive constant b is not an integer. As
far as we know, the WIP for stable laws has not been previously studied for such
maps. Since this is a much simpler situation than for our main billiard example,
we just sketch the details. (In fact, the situation lies in between those for Markov
intermittent maps and billiards: quotienting along stable leaves is not required, but
we do need to consider an induced map F = Tϕ

Y
.)

TakeX to be the interval of domain of the rightmost branch of T . Let v : Λ→ R be
Hölder with v(0) 6= 0 and define V =

∑ϕ−1
`=0 v◦T ` where ϕ : X → Z+ is the first return

time. The same calculations as in the Markov case show that µX(ϕ > n) ∼ cn−α for
some c > 0 and that V − v(0)ϕ ∈ Lp(X) for some p > α. Hence (3.2) is satisfied.
Also condition (a) of Theorem 3.2 holds as in the Markov case. By [10, Section 9],
f = Tϕ is modelled by a Young tower with exponential tails so these maps fall into
the Chernov-Markarian-Zhang framework.

It remains to verify the stable law (3.1). One method is to proceed as in [30,
Section 3], but alternatively we can make use of the fact proved in [10] that ϕY

inherits the tail asymptotic satisfied by ϕ. Since F : Y → Y is Gibbs-Markov and ϕY

is constant on partition elements, a stable law for ϕY is immediate by [1, Theorem 6.1].
This yields the desired stable law for ϕ by Theorem A.1.

4 Inducing functional limit laws

The proof of Theorem 3.2(a) makes use of a purely probabilistic result [37, Theo-
rem 2.2] on inducing functional limit laws on D[0,∞) with the M1 topology. The
result in [37] is stated in a slightly generalised form in Theorem 4.1 below. The proof
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of Theorem 3.2(b) makes use of the corresponding result in theM2 topology. In this
section, it is not required that W is a Lévy process.

We assume the set up in Section 2.1 but with different notation (this simplifies
the application of Theorem 4.1 in Sections 5 and 7). Let S : Ω → Ω be an ergodic
measure-preserving transformation on a probability space (Ω, µΩ) and fix a positive
measure subset Ω0 ⊂ Ω. Let µΩ0 be a probability measure on Ω0 and let r : Ω0 → Z+

be an integrable return time such that the return map (not necessarily the first return)
S0 = Sr : Ω0 → Ω0 is measure-preserving and ergodic. Define r̄ =

∫
Ω0
r dµΩ0 . Let

Ŝ : ∆→ ∆ denote the tower with base map S0 and return time r, and let π : ∆→ Ω
be the semiconjugacy π(y, `) = S`y. We assume that µ∆ = (µΩ0 × counting)/r̄ is
ergodic and that π∗µ∆ = µΩ.

Let φ : Ω → R be measurable, with induced observable Φ : Ω0 → R given by
Φ =

∑r−1
`=0 φ ◦ S`. Let bn be a sequence of positive numbers. Define càdlàg processes

ψn on Ω and Ψn on Ω0:

ψn(t) =
1

bn

[nt]−1∑
j=0

φ ◦ Sj, Ψn(t) =
1

bn

[nt]−1∑
j=0

Φ ◦ Sj0.

Let W ∈ D[0,∞) and define W̃ (t) = W (r̄t). (If W is an α-stable Lévy process,

α ∈ (0, 2], then W̃ = r̄1/αW .) Also, define φ` =
∑`−1

j=0 φ ◦ Sj and

M1 = max
1≤`′≤`≤r

(φ`′ − φ`) ∧ max
1≤`′≤`≤r

(φ` − φ`′),

M2 =
{

max
0≤`≤r

(−φ`) + max
0≤`≤r

(φ` − Φ)
}
∧
{

max
0≤`≤r

φ` + max
0≤`≤r

(Φ− φ`)
}
.

Theorem 4.1 Let i ∈ {1, 2}. Suppose that on (Ω0, µΩ0)

1. Ψn →w W̃ in (D[0,∞),Mi) and

2. 1
bn

max0≤j≤nMi ◦ Sj0 →p 0.

Then ψn →w W in (D[0,∞),Mi) on (Ω, µΩ).

Proof of Theorem 4.1 for i = 1. Under the additional assumptions that bn is
regularly varying and r is the first return time, this is is precisely [37, Theorem 2.2].
(The conclusion in [37, Theorem 2.2] is stated slightly differently using that r̄−1 =
µΩ(Ω0) for first return times.) It is easily checked that the proof in [37] does not use
any properties of the sequence bn.

It remains to drop the assumption that r is the first return time to Ω0. Note that
Ω0 ⊂ Ω is naturally identified with ∆0 = {(y, 0) : y ∈ Ω0} ⊂ ∆ and r : ∆0 → R is now

the first return to ∆0 for the dynamics on ∆. Define Ŝ0 : ∆0 → ∆0, Ŝ0(y, 0) = (S0y, 0).
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The observable φ : Λ → R lifts to an observable φ̂ = φ ◦ π : ∆ → R. Define the
corresponding càdlàg process ψ̂n(t) = b−1

n

∑[nt]−1
j=0 φ̂ ◦ Ŝj on ∆. Also, we define Φ̂, Ψ̂n,

M̂1 on ∆0 (corresponding to Φ, Ψn, M1 on Ω0) using φ̂, Ŝ, Ŝ0 instead of φ, S, S0, so

Φ̂ =
r̂−1∑
`=0

φ̂◦ Ŝ`, Ψ̂n(t) =
1

bn

[nt]−1∑
j=0

Φ̂◦ Ŝj0, M̂1 = max
1≤`′≤`≤r̂

(φ̂`′− φ̂`)∧ max
1≤`′≤`≤r̂

(φ̂`− φ̂`′),

where φ̂` =
∑`−1

j=0 φ̂ ◦ Ŝj and r̂(y, 0) = r(y).
Note that

Φ̂(y, 0) = Φ(y), Ψ̂n(t)(y, 0) = Ψn(t)(y), M̂1(y, 0) = M1(y).

In particular, the assumptions 1 and 2 for Ψn and M1 on Ω0 imply the corresponding
assumptions for Ψ̂n and M̂1 on ∆0. Since r̂ : ∆0 → Z+ is the first return time,
ψ̂n →w W on (∆, µ∆) in (D[0,∞),M1) by [37, Theorem 2.2]. The result follows
since π is a measure-preserving semiconjugacy.

Proof of Theorem 4.1 for i = 2. The strategy here is similar to the one of [37,
Theorem 2.2]. As in the proof for i = 1, by considering the associated tower we may
suppose without loss that r : Ω0 → Z+ is the first return time.

Write ψn = Un +Rn, where

Un(t) =
1

bn

N[nt]−1∑
`=0

Φ ◦ S`0 and Rn(t) =
1

bn

( [nt]−rN[nt]
−1∑

`=0

φ ◦ S`
)
◦ SN[nt]

0 .

Here, rk =
∑k−1

j=0 r ◦Sj and Nk(x) = max{` ≥ 1 : r`(x) ≤ k} is the number of returns
of x to the set Ω0, under iteration by S, up to time k.

By [37, Lemma 3.4], Un →w (W̃ (r̄−1t))t≥0 = W in (D[0,∞),M2). (The hypothe-
ses of [37, Lemma 3.4] are with respect to the M1 topology. However, most of the
proof holds in any separable metric space and the only ingredient that relies on the
specific topology is [47, Theorem 13.2.3] which is formulated for both M1 and M2.)

We claim that dM2,[0,K](ψn, Un) → 0 as n → ∞ for each K ∈ N. Then by [8,
Theorem 3.1], ψn →w W in (D[0, K],M2) for each K ∈ N, and the result follows.

It remains to verify the claim. This means taking into account the contribution
of the final incomplete excursion from Ω0 (if any) encoded by Rn. Following [37,
Lemmas 3.5 and 3.6], given x ∈ Ω0, n ≥ 1, write gj(t) = ψn(t)(x)|[tj ,tj+1] for every
0 ≤ j ≤ Kn+ 1, where tj = 1

n
rj ∧K. Then

dM2,[0,K](ψn(·)(x), Un(·)(x)) ≤ max
0≤j≤Kn+1

dM2,[tj ,tj+1](gj, ḡj),

where ḡj = Un|[tj ,tj+1] = gj|[tj ,tj+1) + 1{tj+1}gj(tj+1).
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By Lemma B.1,

dM2,[tj ,tj+1](gj, ḡj) ≤ tj+1 − tj + Aj ∧Bj ≤
1

n
r(Sj0x) + Aj ∧Bj,

where

Aj = sup
t∈[tj ,tj+1]

(gj(tj)− gj(t)) + sup
t∈[tj ,tj+1]

(gj(t)− gj(tj+1))

= sup
t∈[tj ,tj+1]

(ψn(tj)(x)− ψn(t)(x)) + sup
t∈[tj ,tj+1]

(ψn(t)(x)− ψn(tj+1)(x))

=
1

bn
max

0≤`≤r(Sj0x)
(−φ`(Sj0x)) +

1

bn
max

0≤`≤r(Sj0x)
(φ`(S

j
0x)− Φ(Sj0x)),

and similarly

Bj = sup
t∈[tj ,tj+1]

(gj(t)− gj(tj)) + sup
t∈[tj ,tj+1]

(gj(tj+1)− gj(t))

=
1

bn
max

0≤`≤r(Sj0x)
φ`(S

j
0x) +

1

bn
max

0≤`≤r(Sj0x)
(Φ(Sj0x)− φ`(Sj0x)).

In particular, Aj ∧Bj ≤ 1
bn
M2(Sj0x). Hence we have shown that

dM2,[0,K](ψn, Un) ≤ 1

n
max

0≤j≤Kn+1
r ◦ Sj0 +

1

bn
max

0≤j≤Kn+1
M2 ◦ Sj0.

The first term converges to zero a.e. by ergodicity, and the second term converges to
zero in probability by the assumption on M2.

5 Limit laws for ϕ and ϕY

Recall that T : Λ → Λ is assumed to possess a Chernov-Markarian-Zhang structure,
with first return map f = Tϕ : X → X modelled by a Young tower ∆ = Y τ with
exponential tails and induced return time ϕY =

∑τ−1
`=0 ϕ ◦ f ` : Y → Z+.

In this section, we show how to pass from the stable law (3.1) for ϕ to a stable
law for ϕY and WIPs for ϕ and ϕY . We also prove Proposition 3.5.

Note that
∫
Y
ϕY dµY = ϕ̄τ̄ . Define the centered return times

ϕ̃ = ϕ− ϕ̄, ϕ̃Y = ϕY − τϕ̄, ϕ̃Y = ϕY − τ̄ ϕ̄.

Define càdlàg processes An and AYn on X and Y ,

An(t) = n−1/α
∑[nt]−1

j=0 ϕ̃ ◦ f j, AYn (t) = n−1/α
∑[nt]−1

j=0 ϕ̃Y ◦ F j. (5.1)
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Lemma 5.1 Assume that (3.1) holds and let W be the α-stable Lévy process corre-
sponding to the totally skewed α-stable law G in (3.1). Then

(a) n−1/α
∑n−1

j=0 ϕ̃
Y ◦ F j → (τ̄)1/αG on (Y, µY ).

(b) n−1/α
∑n−1

j=0 ϕ̃
Y ◦ F j → (τ̄)1/αG on (Y, µY ).

(c) AYn →w (τ̄)1/αW on (Y, µY ) in (D[0,∞),J1).

(d) An →w W on (X,µX) in (D[0,∞),M1).

Proof (a) Since τ : Ȳ → Z+ has exponential tails, we certainly have that τ ∈ L2.
Also τ is constant on partition elements and F̄ : Ȳ → Ȳ is Gibbs-Markov, so it is
standard (see for example [26, Theorem 1.5]) that n−1/2(

∑n−1
j=0 τ ◦ F̄ j −nτ̄) converges

in distribution (to a possibly degenerate normal distribution). Since α ∈ (1, 2),

n−1/α
( n−1∑
j=0

τ ◦ F j − nτ̄
)

=d n
−1/α

( n−1∑
j=0

τ ◦ F̄ j − nτ̄
)
→p 0. (5.2)

By assumption (3.1), the centered return time function ϕ̃ satisfies a stable law on X.
Hence condition (a) in Theorem A.1 is satisfied with bn = n1/α and it follows from
Theorem A.1 and Remark A.3 that ϕ̃Y satisfies the required stable law on Y .

(b) By (5.2) and part (a),

n−1/α

n−1∑
j=0

ϕ̃Y ◦ F j = n−1/α
( n−1∑
j=0

ϕY ◦ F j − nτ̄ ϕ̄
)

= n−1/α

n−1∑
j=0

ϕ̃Y ◦ F j + ϕ̄n−1/α
( n−1∑
j=0

τ ◦ F j − nτ̄
)
→d (τ̄)1/αG.

(c) Recall that ϕ̃Y is constant on partition elements of the Gibbs-Markov map F̄ :
Ȳ → Ȳ . By part (a), n−1/α

∑n−1
j=0 ϕ̃

Y ◦ F̄ j →d (τ̄)1/αG. By Gouëzel [26, Theorem 1.5],

ϕ̃Y lies in the domain of attraction of the stable law (τ̄)1/αG and hence has tails
that are regularly varying with index α. We have verified the hypotheses of Tyran-
Kamińska [46, Corollary 4.1]3, and so deduce that AYn →w (τ̄)1/αW in the J1 topology.

(d) We apply Theorem 4.1 with i = 1 to pass from AYn : Y → R to An : X → R via
the inducing time τ : Y → Z+. (The spaces Ω0 ⊂ Ω in Theorem 4.1 correspond to
the spaces Y ⊂ X here. Similarly φ, Φ, ψn, Ψn, r are called ϕ̃, ϕ̃Y , An, AYn , τ , and
the maps S : Ω→ Ω, S0 : Ω0 → Ω0 are called f : X → X, F : Y → Y .)

Condition 1 of Theorem 4.1 is immediate from part (c). Define M1 : Y → R,

M1 = max
1≤`′≤`≤τ

(ϕ̃`′ − ϕ̃`) ∧ max
1≤`′≤`≤τ

(ϕ̃` − ϕ̃`′),

3The hypothesis “exponentially continued fraction mixing” in [46, Corollary 4.1] is automatic for
full-branch Gibbs-Markov maps (see the discussion immediately after [46, Example 4.1]).
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where ϕ̃` =
∑`−1

j=0 ϕ̃◦f j. We claim that n−1/α max0≤j≤nM1 ◦F j → 0 a.e. This implies
condition 2 of Theorem 4.1 and the result follows.

By positivity of ϕ,

M1 ≤ max
1≤`′≤`≤τ

(ϕ̃`′ − ϕ̃`) = max
1≤`′≤`≤τ

{
(ϕ`′ − ϕ`)− (`′ − `)ϕ̄

}
≤ τϕ̄.

Since τ has exponential tails, it is certainly the case that τ ∈ Lα(Y ). By the ergodic
theorem, n−1

∑n−1
j=0 τ

α ◦ F j →
∫
Y
τα dµY a.e. and so τ ◦ F n = o(n1/α) a.e. It follows

easily that maxj≤n τ ◦ F j = o(n1/α) a.e. Hence n−1/α maxj≤nM1 ◦ F j → 0 a.e. as
required.

Corollary 5.2 Under the assumptions of Lemma 5.1, if δ ∈ (0, 1) then
n−1/α max0≤j≤n |ϕ̃|δ ◦ f j →p 0 on (X,µX).

Proof The functional χ : (D[0,∞),M1)→ R, χ(g) = sup[0,1] |g| is continuous so, by
the continuous mapping theorem applied to Lemma 5.1(d), we have χ(An)→w χ(W )
on (X,µX). Hence n−1/α max0≤j≤n |ϕ̃| ◦ f j = χ(An) converges in distribution and so
n−1/(δα) max0≤j≤n |ϕ̃| ◦ f j →p 0. The result follows.

Proof of Proposition 3.5 We have ϕ = ϕ̄+ ϕ̃� 1 + |ϕ̃|, so Mi � ϕδ � 1 + |ϕ̃|δ.
Hence n−1/α maxj≤nMi ◦ f j � n−1/α(1 + maxj≤n |ϕ̃|δ ◦ f j)→p 0 by Corollary 5.2.

Remark 5.3 As seen in the proof of Lemma 5.1(c), ϕ̃Y lies in the domain of attrac-
tion of an α-stable law, so ϕY ∈ Lq(Y ) for all q < α. It follows easily that ϕ ∈ Lq(X)
for all q < α.

6 Moment estimates for induced observables

In this section, we consider estimates for certain induced observables. We continue
to assume that T : Λ → Λ possesses a Chernov-Markarian-Zhang structure. Our
method follows [4, Section 5].

Proposition 6.1 Let H : X → R and suppose that H ∈ Lq(X) for some q > 1.
Define HY =

∑τ−1
`=0 H ◦ f `. Then HY ∈ Lp(Y ) for all p < q.

Proof Let a > 1 with 1/a+ 1/q = 1/p. Let c′ = c/a, where c > 0 is given by (2.2).
By Hölder’s inequality,

|HY |Lp(Y ) �
∑
n≥1

∣∣∣1{τ=n}

n−1∑
`=0

H ◦ f `
∣∣∣
Lp(Y )

≤
∑
n≥1

µY (τ = n)1/a
∣∣∣1{τ=n}

n−1∑
`=0

H ◦ f `
∣∣∣
Lq(Y )

≤
∑
n≥1

e−c
′n
n−1∑
`=0

∣∣∣1{τ=n}H ◦ f `
∣∣∣
Lq(Y )

�
∑
n≥1

e−c
′nn|H|Lq(X) � |H|Lq(X) <∞,
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as required.

Lemma 6.2 Let p ∈ (1, 2]. Let h ∈ Cη(Λ) with induced observables

H =

ϕ−1∑
`=0

h ◦ T ` : X → R, H̃Y =
τ−1∑
`=0

H̃ ◦ f ` : Y → R,

where H̃ = H −
∫
X
H dµX . Suppose that H ∈ Lq(X) for some q > p. Then∣∣maxj≤n |

∑j−1
i=0 H̃

Y ◦ F i|
∣∣
p
� n1/p.

Proof Following [4], we apply a Gordin type argument [23] to obtain an Lp

martingale-coboundary decomposition.
First, by Proposition 6.1 we may suppose that H̃Y ∈ Lq(Y ) for some (smaller)

q > p. Let B denote the underlying σ-algebra on Ȳ and let B = π̄−1B. Then
{F nB, n ∈ Z} defines an increasing sequence of σ-algebras on Y . We claim that

∞∑
n=0

∣∣E(H̃Y |F nB)− H̃Y
∣∣
p
<∞,

∞∑
n=1

∣∣E(H̃Y |F−nB)
∣∣
p
<∞. (6.1)

Suppose that the claim is true. Then equivalently,

∞∑
n=0

∣∣E(H̃Y ◦ F n|B)− H̃Y ◦ F n
∣∣
p
<∞,

∞∑
n=1

∣∣E(H̃Y ◦ F−n|B)
∣∣
p
<∞,

so the series

χ =
∞∑
n=0

(E(H̃Y ◦ F n|B)− H̃Y ◦ F n) +
∞∑
n=1

E(H̃Y ◦ F−n|B),

converges in Lp(Y ). Define

m = H̃Y + χ− χ ◦ F ∈ Lp(Y ). (6.2)

Then

m =
∑∞

n=−∞(gn − gn ◦ F ) =
∑∞

n=−∞(gn+1 − gn ◦ F ), (6.3)

where gn = E[H̃Y ◦ F n|B].
Now, gn is B-measurable, while gn ◦ F is measurable with respect to F−1B ⊂ B.

Hence m is B-measurable. Next, gn ◦ F = E[H̃Y ◦ F n|B] ◦ F = E[H̃Y ◦ F n+1|F−1B].
It follows that

E[gn ◦ F |F−1B] = E[H̃Y ◦ F n+1|F−1B] = E[E[H̃Y ◦ F n+1|B]|F−1B] = E[gn+1|F−1B],
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where we used again that F−1B ⊂ B. Substituting into (6.3), we obtain
E[m|F−1B] = 0. Hence {m ◦ F−n;n ∈ Z} is a martingale difference sequence with
respect to the filtration {F nB;n ∈ Z}.

By Burkholder’s inequality [13, Theorem 3.2],∣∣∣ n∑
j=1

m ◦ F−j
∣∣∣
p
�
∣∣∣( n∑

j=1

m2 ◦ F−j
)1/2∣∣∣

p
=
(∫ ( n∑

j=1

m2 ◦ F−j
)p/2)1/p

≤
(∫ n∑

j=1

|m|p ◦ F−j
)1/p

= |m|p n1/p.

By Doob’s inequality [20] (see also [13, Equation (1.4), p. 20]),∣∣∣max
j≤n

∣∣ j−1∑
i=0

m ◦ F i
∣∣∣∣∣
p
≤ 2
∣∣∣max
j≤n

∣∣ j∑
i=1

m ◦ F−i
∣∣∣∣∣
p
� n1/p.

Also, ∫
Y

max
j≤n
|χ ◦ F j − χ|p ≤ 2

n∑
j=0

|χ ◦ F j|pp = 2(n+ 1)|χ|pp,

so
∣∣maxj≤n |χ ◦ F j − χ|

∣∣
p
� n1/p.

By (6.2),
∑n−1

j=0 H̃
Y ◦ F j =

∑n−1
j=0 m ◦ F j + χ ◦ F n − χ, so the desired estimate for

H̃Y follows from the estimates for m and χ.
It remains to verify the claim. The argument is identical to the one in [4,

Lemma 5.3] except for the order of integrability. Hence we only sketch the argu-
ment referring to [4] for the details (especially the prerequisite estimates for systems
modelled by Young towers).

If y, y′ ∈ Y lie in the same stable leaf, then |H̃Y (y) − H̃Y (y′)| � ϕY(y)d(y, y′)η.
By (2.3), the atoms of F nB have diameter at most Cγn0 for some C > 0, γ0 ∈ (0, 1).
Hence setting γ = γη0 , we have (cf. [4, Estimate (54)])

|H̃Y − E(H̃Y |F nB)| � ϕY γn.

Choose r > 1 with 1/r + 1/q = 1/p. In the case that the inducing time is large,∣∣1{ϕY >n2r}H̃
Y
∣∣
p
≤ µ(ϕY > n2r)1/r|H̃Y |q ≤ n−2|ϕY |1/r1 |H̃Y |q,

and similarly,∣∣1{ϕY >n2r}E(H̃Y |F nB)
∣∣
p
≤ n−2|ϕY |1/r1 |E(H̃Y |F nB)|q ≤ n−2|ϕY |1/r1 |H̃Y |q.

Hence
∣∣1{ϕY >n2r}{H̃Y − E(H̃Y |F nB)}

∣∣
p
≤ 2n−2|ϕY |1/r1 |H̃Y |q. On the other hand,∣∣1{ϕY ≤n2r}{H̃Y − E(H̃Y |F nB)}

∣∣
∞ � n2rγn.
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Combining the last two estimates, we obtain the first part of (6.1).

Next, write E(H̃Y |B) = ζ ◦ π̄ where ζ ∈ L1(Ȳ ). Let P : L1(Ȳ ) → L1(Ȳ ) be
the transfer operator associated to F̄ (so

∫
Ȳ
Pv w dµ̄Y =

∫
Ȳ
v w ◦ F̄ dµ̄Y for all w ∈

L∞(Ȳ )). By standard methods (see for example [35, Corollary 2.3(a)]), it follows
from integrability of ϕY and the estimates (2.5) and (2.6) that there exist constants
C > 0, γ ∈ (0, 1) such that |P nζ|∞ ≤ Cγn. Moreover E(·|F̄−nB) = (UP )n = UnP n

where Uv = v ◦ F̄ . Hence

E(H̃Y |F−nB) = E(E(H̃Y |B)|F−nB) = E(ζ ◦ π̄|F−nB)

= E(ζ ◦ π̄|π̄−1F̄−nB) = E(ζ|F̄−nB) ◦ π̄ = (UnP nζ) ◦ π̄,

and so ∣∣E(H̃Y |F−nB)
∣∣
Lp(Y )

= |UnP nζ|Lp(Ȳ ) = |P nζ|Lp(Ȳ ) ≤ |P nζ|∞ � γn.

Hence
∣∣E(H̃Y |F−nB)

∣∣
Lp(Y )

is summable, completing the proof of (6.1).

7 Proof of Theorems 3.1 and 3.2

In this section, we complete the proof of the main results in Section 3.

Proof of Theorem 3.1 Define the Hölder observable h = v − I : Λ → R. As in
the statement of Lemma 6.2, define H = V − Iϕ, H̃ = V − Iϕ̃, H̃Y = V Y − Iϕ̃Y .
By (3.2), H ∈ Lp(X) for some p > α and hence by Lemma 6.2,

n−1/α max
j≤n

∣∣∣ j−1∑
i=0

H̃Y ◦ F i
∣∣∣→p 0. (7.1)

Hence by Lemma 5.1(a),

n−1/α

n−1∑
j=0

V Y ◦ F j = n−1/α

n−1∑
j=0

(Iϕ̃Y + H̃Y ) ◦ F j →d (τ̄)1/αIG. (7.2)

As in the proof of Theorem 4.1, we can suppose without loss that F = Tϕ
Y

:
Y → Y is a first return map. As a consequence of (7.2) and Lemma 5.1(b) we can
apply [25, Theorem A.1] (see Remark A.2) and it follows that n−1/α

∑n−1
j=0 v ◦ T j →d

(
∫
Y
ϕY dµY )−1/α(τ̄)1/αIG = (ϕ̄)−1/αIG. (In applying Remark A.2, it should be noted

that T : Λ→ Λ, v, ϕY are called f : X → X, V , τ in Appendix A.)

Recall that W Y
n (t) = n−1/α

∑[nt]−1
j=0 V Y ◦ F j is a càdlàg process on Y .

Lemma 7.1 (WIP on Y ) Under the assumptions of Theorem 3.1, W Y
n →w

(τ̄)1/αIW on (Y, µY ) in (D[0,∞),J1).
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Proof Write V Y = Iϕ̃Y +H̃Y as in the proof of Theorem 3.1. Then W Y
n = IAYn +BY

n

where AYn is as in (5.1) and BY
n (t) = n−1/α

∑[nt]−1
j=0 H̃Y ◦F j. By (7.1), for every K > 0

one has that sup[0,K] |BY
n | � n−1/α maxj≤Kn |

∑j−1
i=0 H̃

Y ◦ F i| →p 0. Hence the result
follows from Lemma 5.1(c).

Next, recall that WX
n (t) = n−1/α

∑[nt]−1
j=0 V ◦ f j is a càdlàg process on X.

Lemma 7.2 (WIP on X) Under the assumptions of Theorem 3.1, WX
n →w IW on

(X,µX) in (D[0,∞),M1).

Proof We apply Theorem 4.1 (with i = 1) to pass from V Y : Y → R to V : X → R
via the inducing time τ : Y → Z+. (The spaces Ω0 ⊂ Ω in Theorem 4.1 correspond
to the spaces Y ⊂ X here. Similarly φ, Φ, ψn, Ψn, r are called V , V Y , WX

n , W Y
n , τ ,

and the maps S : Ω→ Ω, S0 : Ω0 → Ω0 are called f : X → X, F : Y → Y .)
Condition 1 of Theorem 4.1 is immediate from Lemma 7.1. Define M1 : Y → R,

M1 = max
1≤`′≤`≤τ

(V`′ − V`) ∧ max
1≤`′≤`≤τ

(V` − V`′),

where V` =
∑`−1

j=0 V ◦ f j. We claim that n−1/α max0≤j≤nM1 ◦ F j → 0 in L1(Y ). This
implies condition 2 of Theorem 4.1 and the result follows.

It remains to verify the claim. Recall that V = Iϕ + H and correspondingly
V Y = IϕY + HY . Define H` =

∑`−1
j=0H ◦ f j and H∗ = |H|Y =

∑τ−1
`=0 |H| ◦ f `. By

assumption (3.2) and Proposition 6.1, H∗ ∈ Lp(Y ) for some p > α.
Suppose that I > 0 (the case I < 0 is similar). Then Iϕ > 0 and

M1 ≤ max
1≤`′≤`≤τ

(V`′ − V`) ≤ max
1≤`′≤`≤τ

(H`′ −H`) ≤ H∗.

Hence ∫
Y

(max
j≤n

M1 ◦ F j)p dµ ≤
∫
Y

n∑
j=0

(H∗ ◦ F j)p dµ = (n+ 1)

∫
Y

H∗p dµ� n,

and so n−1/p maxj≤nM1 ◦ F j is bounded in Lp(Y ) proving the claim.

Proof of Theorem 3.2 We apply Theorem 4.1 to pass from V : X → R to
v : Λ → R via the return time ϕ : X → Z+. (This time, the spaces Ω0 ⊂ Ω in
Theorem 4.1 correspond to the spaces X ⊂ Λ here. Similarly φ, Φ, ψn, Ψn, r are
called v, V , Wn, WX

n , ϕ, and the maps S : Ω→ Ω, S0 : Ω0 → Ω0 are called T : Λ→ Λ,
f : X → X. Also, M1 and M2 are defined as in Section 3.)

(a) Conditions 1 and 2 of Theorem 4.1 with i = 1 correspond to Lemma 7.2 and the
assumption on M1 respectively.

(b) Lemma 7.2 asserts convergence in theM1 topology and hence in theM2 topology,
so condition 1 of Theorem 4.1 (i = 2) is satisfied. Condition 2 of Theorem 4.1
corresponds to the assumption on M2.
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8 Billiards with cusps at flat points

We consider the Jung & Zhang example [30] described in Example 1.1. Zhang [50]
showed that such billiard maps T : Λ → Λ fit in the Chernov-Markarian-Zhang
framework with first return map f = Tϕ : X → X where X = (Γ3∪· · ·∪Γn0)× [0, π].
Recall that α = β

β−1
∈ (1, 2). Define Iv(s) as in (1.1) for continuous functions

v : Λ→ R.
In the remainder of this section, we fix v : Λ → R Hölder continuous with mean

zero such that Iv(π) > 0. Define the strictly increasing, hence invertible, function
Ψ(s) = I1(π)−1I1(s), s ∈ [0, π].

Proposition 8.1 Let δ = η/(β − 1) where η is the Hölder exponent of v. There is a
constant C > 0 such that for all 0 ≤ ` ≤ ϕ(x), x ∈ X,

v`(x) = ϕ(x)I1(π)−1Iv ◦Ψ−1(`/ϕ(x)) + E`(x), |E`(x)| ≤ Cϕ(x)1−δ.

Proof Let ṽ(θ) = 1
2
{v(r′, θ) + v(r′′, π − θ)}. Proceeding as in [30, Section 6: Proof

of Lemma 4.4], for 0 ≤ ` ≤ ϕ/2,

v` =
`−1∑
j=0

v ◦ T j =
`−1∑
j=0

ṽ ◦Ψ−1(j/ϕ) +O(ϕ1−δ) = ϕ

∫ `/ϕ

0

ṽ ◦Ψ−1 dθ +O(ϕ1−δ)

= ϕI1(π)−1

∫ Ψ−1(`/ϕ)

0

ṽ(θ)(sin θ)1/α dθ +O(ϕ1−δ)

= ϕI1(π)−1Iv ◦Ψ−1(`/ϕ) +O(ϕ1−δ).

In particular, vϕ/2 = ϕI1(π)−1Iv(π/2) +O(ϕ1−δ).
For ϕ/2 ≤ ` ≤ ϕ, using time reversibility and the estimates in [30],

vϕ − v` =

ϕ−1∑
j=`

v ◦ T j = ϕ

∫ 1

`/ϕ

ṽ ◦Ψ−1 dθ +O(ϕ1−δ)

= ϕI1(π)−1

∫ Ψ−1(1)

Ψ−1(`/ϕ)

ṽ(θ)(sin θ)1/α dθ +O(ϕ1−δ) (8.1)

= ϕI1(π)−1{Iv(π)− Iv ◦Ψ−1(`/ϕ)}+O(ϕ1−δ).

In particular, vϕ − vϕ/2 = ϕI1(π)−1{Iv(π) − Iv(π/2)} + O(ϕ1−δ), so vϕ =
ϕI1(π)−1Iv(π) + O(ϕ1−δ). Substituting the final estimate into (8.1) completes the
proof.

Lemma 8.2 Conditions (3.1) and (3.2) hold.
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Proof Condition (3.1) holds by [30, Theorem 3.1]. Taking ` = ϕ(x) in Proposi-
tion 8.1, V = Iϕ+E where I = Iv(π)/I1(π) and |E| � ϕ1−δ for some δ > 0. Choose
p ∈ (α, α/(1 − δ)). Then ϕ(1−δ)p is integrable by Remark 5.3 and

∫
X
|E|p dµX �∫

X
ϕ(1−δ)p dµX , so (3.2) is satisfied.

Note that Theorem 1.2 is an immediate consequence of Theorem 3.1 and
Lemma 8.2.

Corollary 8.3 The conditions on Iv(s) in Theorems 1.3 and 1.4 are sufficient for
the WIP. In particular, Theorem 1.4 holds.

Proof We verify the assumptions of Theorem 3.2. Conditions (3.1) and (3.2) hold
by Lemma 8.2. Hence it suffices to prove that n−1/α maxj≤nMi ◦ f j →p 0 where
i ∈ {1, 2} respectively.

First suppose that s 7→ Iv(s) is nondecreasing. Note that Ψ is increasing, so
v` − E` is a nondecreasing function of `. Hence by Proposition 8.1,

M1 ≤ max
1≤`′≤`≤ϕ

(v`′ − v`) ≤ max
1≤`′≤`≤ϕ

(E`′ − E`) ≤ 2Cϕ1−δ.

By Proposition 3.5, n−1/α maxj≤nM1 ◦ f j →p 0.
Next suppose that Iv(s) ∈ [0, Iv(π)] for all s. Then v` ≥ E` and vϕ− v` ≥ Eϕ−E`

for 0 ≤ ` ≤ ϕ. By Proposition 8.1,

M2 ≤ max
0≤`≤ϕ

(−v`) + max
0≤`≤ϕ

(v` − vϕ) ≤ max
0≤`≤ϕ

(−E`) + max
0≤`≤ϕ

(E` − Eϕ) ≤ 3Cϕ1−δ.

Again, it follows from Proposition 3.5 that n−1/α maxj≤nM2 ◦ f j →p 0.

It remains to prove necessity of the conditions for the WIP in Theorem 1.3. We
require one further result from [30].

Proposition 8.4 n−1/α max0≤j≤n ϕ ◦ f j 6→p 0.

Proof Define νn =
∑n

j=1 δn−1/αϕ◦fj . This is the expression in [30, Eq. (3.15)].
By [30, Eq. (3.7) and Section 3.2], µ(νn((1,∞)) = 0) → c < 1. In particular,
µ(n−1/α maxj≤n ϕ ◦ f j > 1) = µ(νn(1,∞) ≥ 1) 6→ 0.

Proof of Theorem 1.3 Suppose that Iv(s) is not monotone. Then there exists
0 < s1 < s2 < π such that Iv(s2) < Iv(s1).

For each x ∈ X, set `r(x) = [ϕ(x)Ψ(sr)] for r = 1, 2. Then 0 ≤ `1 ≤ `2 ≤ ϕ. By
Proposition 8.1, v`r = ϕIv(sr) +O(ϕ1−δ), so

v`1 − v`2 = c1ϕ+O(ϕ1−δ), V = c2ϕ+O(ϕ1−δ),

where c1, c2 > 0. Hence M1 ≥ cϕ+O(ϕ1−δ) where c = c1∧c2 > 0. By Proposition 8.4,
n−1/α maxj≤nM1 ◦ f j 6→p 0. By Proposition 3.6, Wn 6→w W in M1. The other
direction was proved in Corollary 8.3 so this completes the proof.
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A Inducing stable laws in both directions

We assume the set up from Section 2.1 with measure-preserving transformations
f , F = f τ and f̂ on probability spaces (X,µX), (Y, µY ) and (∆, µ∆) respectively.
Let π : ∆ → X be the measure-preserving semiconjugacy π(y, `) = f `y and set
τ̄ =

∫
Y
τ dµY . We assume in addition that the probability measures µX , µY , µ∆ are

ergodic.
In the following result, based on [25, 36], we relate limit theorems on X and Y .

Theorem A.1 Let V ∈ L1(X) with
∫
X
V dµX = 0. Define the induced observable

V Y : Y → R, V Y =
∑τ−1

`=0 V ◦ f `,

and the Birkhoff sums

Vn =
∑n−1

j=0 V ◦ f j, V Y
n =

∑n−1
j=0 V

Y ◦ F j, τn =
∑n−1

j=0 τ ◦ F j, n ≥ 1.

Let G be a random variable. Let bn > 0 be a sequence with bn → ∞, such that
infn≥1 bn/b[τ̄−1n+cbn] > 0 for each c > 0. Assume that b−1

n (τn − nτ̄)→p 0 as n → ∞.
Then the following are equivalent:

(a) b−1
n Vn →d G on (X,µX) as n→∞.

(b) b−1
n V Y

[n/τ̄ ] →d G on (Y, µY ) as n→∞.

Remark A.2 It is a special case of [25, Theorem A.1] that (b) implies (a). Moreover,
instead of condition b−1

n (τn − nτ̄) →p 0 it suffices that b−1
n (τn − nτ̄) is tight in [25,

Theorem A.1].

Proof Note that∫
Y

|V Y | dµY ≤
∫
Y

τ−1∑
`=0

|V ◦ f `| dµY =

∫
Y

τ(y)−1∑
`=0

|V ◦ π(y, `)| dµY (y)

= τ̄

∫
∆

|V | ◦ π dµ∆ = τ̄

∫
X

|V | dµX <∞.

So V Y ∈ L1(Y ) and similarly
∫
Y
V Y dµY = 0.

Define V̂ = V ◦π : ∆→ R and V̂n =
∑n−1

j=0 V̂ ◦ f̂ j. Since π is a measure-preserving
semiconjugacy, condition (a) is equivalent to

(a′) b−1
n V̂n →d G on (∆, µ∆) as n→∞.

Note that µY can be viewed as a probability measure on ∆ supported on Y . As
such, µY � µ∆. By Remark 3.3, we obtain that condition (a′) is equivalent to
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(a′′) b−1
n V̂n →d G on (Y, µY ) as n→∞.

The lap number Nn : Y → Z+ is defined by the relation

τNn(y)(y) ≤ n < τNn(y)+1(y).

For initial conditions y ∈ Y , we write

V̂n(y) = V Y
Nn(y)(y) +H(f̂ny),

where H : ∆→ R is given by H(y, `) =
∑`−1

`′=0 V̂ (y, `′). Now

µY (y ∈ Y : b−1
n |H(f̂ny)| ≥ a) = τ̄µ∆(y ∈ Y : b−1

n |H(f̂ny)| ≥ a)

≤ τ̄µ∆(x ∈ ∆ : b−1
n |H(f̂nx)| ≥ a) = τ̄µ∆(x ∈ ∆ : b−1

n |H(x)| ≥ a)→ 0

as n→∞ since H is measurable. Hence condition (a′′) is equivalent to

(a′′′) b−1
n V Y

Nn
→d G on (Y, µY ) as n→∞.

It remains to prove that conditions (a′′′) and (b) are equivalent. In other words, we
must show that b−1

n (V Y
Nn
− V Y

[n/τ̄ ])→p 0 on (Y, µY ).
We recall some properties of the lap number. By the ergodic theorem,

limn→∞ n
−1Nn = τ̄−1 a.e. Also, τk ≤ n if and only if Nn ≥ k. Let c > 0 and

set k = k(n) = [n/τ̄ + cbn]. A calculation shows that if b−1
n |Nn − n/τ̄ | > c then

b−1
n |τk − kτ̄ | ≥ cτ̄ + O(b−1

n ), so b−1
k |τk − kτ̄ | ≥ cb−1

k bnτ̄ + O(b−1
k ). It follows from the

assumptions on τn and bn that

µY
(
b−1
k |τk − kτ̄ | ≥ cb−1

k bnτ̄ +O(b−1
k )
)
→ 0 as n→∞,

and hence that

b−1
n (Nn − [n/τ̄ ])→p 0 as n→∞. (A.1)

Passing to the natural extension, we can suppose without loss that F is invertible.
For n ≤ −1, we write V Y

n =
∑−1

j=n V
Y ◦ F j. Then

V Y
Nn(y)(y)− V Y

[n/τ̄ ](y) = V Y
Ñn(y)

(F [n/τ̄ ]y) where Ñn(y) = Nn(y)− [n/τ̄ ].

Since F is measure-preserving, it suffices to show that b−1
n V Y

Ñn
→p 0.

By the ergodic theorem, n−1V Y
n → 0 a.e. and hence in probability as n → ±∞.

Let ε > 0. We can choose Ỹ ⊂ Y with µY (Ỹ ) > 1 − ε and N0 ≥ 1 such that

|n−1V Y
n | < ε on Ỹ for all |n| ≥ N0.

For each n ≥ 1, define

Y ′n = {y ∈ Y : |Ñn(y)| ≤ N0}, Y ′′n = {y ∈ Y : |Ñn(y)| > N0}.
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For y ∈ Y ′n, we have |V Y
Ñn(y)
| ≤ Ψ, where Ψ(y) =

∑N0−1
j=−N0

|V Y (F jy)|. Note that

|Ψ|1 ≤ 2N0|V Y |1 <∞, so

µY (y ∈ Y ′n : |b−1
n V Y

Ñn(y)
(y)| > ε) ≤ µY (b−1

n Ψ > ε) < ε

for n sufficiently large.

For y ∈ Y ′′n ∩ Ỹ , we have
∣∣∣ 1

|Ñn|
V Y
Ñn

∣∣∣ < ε, and hence |b−1
n V Y

Ñn(y)
| < εb−1

n |Ñn|, so that

µY (y ∈ Y ′′n : |b−1
n V Y

Ñn(y)
(y)| ≥ ε) ≤ µY (b−1

n |Ñn| ≥ 1) + ε.

By (A.1), b−1
n |Ñn| →p 0. Hence b−1

n V Y
Ñn
→p 0, completing the proof.

Remark A.3 Suppose that bn is regularly varying of index 1/α with α > 1. Then
the assumptions on bn in Theorem A.1 are satisfied, and condition (b) can be restated
as b−1

n V Y
n →d τ̄

1/αG.

B The Skorohod topologies on D[0, 1]

Let D[0, 1] denote the càdlàg space of right-continuous functions g : [0, 1] → R with
left limits. The uniform topology on D[0, 1] is not suitable for many purposes; on the
theoretical side it is not separable, and for applications it is too strong since functions
must have jumps in exactly the same place in order to be close to each other.

To circumvent these issues, Skorohod [43] introduced four topologies on D[0, 1]
that are separable and sufficiently strong for theoretical purposes, whilst being suffi-
ciently weak to allow the flexibility for functions to be close to each other in reasonable
situations. The four topologies are ordered by

J1 > J2 >M2 and J1 >M1 >M2

where > means stronger than. The M1 and J2 topologies are not comparable. All
these topologies are weaker than the uniform topology. The J2 topology plays no role
in this paper; we define the remaining topologies below. For simplicity, we restrict
to the interval [0, 1]. (The differences between D[0, 1] and D[0,∞) are of a purely
technical nature.) We refer the reader to [43, 47] for more details and proofs.

The Skorohod J1 topology The first Skorohod topology, the J1 topology, is
metrizable and is defined through the metric dJ1 given by

dJ1(g1, g2) = inf
λ∈Λ

{
‖g2 ◦ λ− g1‖ ∨ ‖λ− id‖

}
for g1, g2 ∈ D[0, 1], where Λ denotes the space of strictly increasing reparametrizations
mapping [0, 1] onto itself and ‖ · ‖ denotes the uniform norm. This strong topology,
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which coincides with the uniform topology on the subspace of continuous functions
C[0, 1] ⊂ D[0, 1], is suitable to define convergence of discontinuous functions when
discontinuities and magnitudes of the jumps are close. For instance, if an → 1 then
the function gn = an1[ 1

2
− 1
n
,1] converges to the function g = 1[ 1

2
,1] in the J1 topology

as n → ∞. (Note that ‖gn − g‖ = |an| for all n, so there is no convergence in the
uniform topology.)

The Skorohod M1 topology In many situations, a single jump in the limit func-
tion g corresponds to multiple smaller jumps in the functions gn. In this paper, as
in [37], the jumps of gn are o(1) and the limit function g has jumps, so a more flexible
topology on D[0, 1] is required.

The M1 topology on D[0, 1] is again metrizable and is defined in terms of the
Hausdorff distance between completed graphs of elements of D[0, 1]. Given g ∈
D[0, 1], the completed graph of g is the set

Γ(g) = {(t, s) ∈ [0, 1]× R : s = αg(t−) + (1− α)g(t), α ∈ [0, 1]}.

Let Λ∗(g) denotes the space of parameterizations G = (λ, γ) : [0, 1]→ Γ(g) such that
t′ < t implies either λ(t′) < λ(t), or λ(t′) = λ(t) and |γ(t)−g(λ(t))| ≤ |γ(t′)−g(λ(t′))|.
Then the M1-metric is defined by

dM1(g1, g2) = inf
Gi=(λi,γi)∈Λ∗(gi)

{
‖γ1 − γ2‖ ∨ ‖λ1 − λ2‖

}
An example in the spirit of Figure 2(a) is obtained by defining gn = 3

4
1[ 1

2
− 1
n
, 1
2

)+an1[ 1
2
,1].

If an → 1 then gn converges to g = 1[ 1
2
,1] in the M1 topology as n → ∞, but not in

the J1 topology.

The SkorohodM2 topology TheM2 topology on D[0, 1] is also defined in terms
of the Hausdorff distance between completed graphs of elements of D[0, 1], namely
dM2(g1, g2) = ρ(Γ(g1),Γ(g2)) ∨ ρ(Γ(g2),Γ(g1)) where

ρ(Γ(g1),Γ(g2)) = sup
(t1,s1)∈Γ(g1)

inf
(t2,s2)∈Γ(g2)

‖(t1, s1)− (t2, s2)‖.

(Here, ‖(t1, s1)−(t2, s2)‖ = |t1−t2|+|s1−s2|.) An example in the spirit of Figure 2(b)
is obtained by defining gn = 3

4
1[ 1

2
− 1
n
, 1
2

) + 1
3
1[ 1

2
, 1
2

+ 1
n

) + an1[ 1
2

+ 1
n
,1]. If an → 1 then gn

converges to g = 1[ 1
2
,1] in the M2 topology as n→∞, but not in the M1 topology.

An example in the spirit of Figure 2(c) is obtained by defining gn = 5
4
1[ 1

2
− 1
n
, 1
2

) +
an1[ 1

2
,1], where an → 1. Then gn fails to converge in any of the Skorokhod topologies.

We end this appendix with the following instrumental lemma.

Lemma B.1 Given g ∈ D[a, b] take ḡ ∈ D[a, b] given by ḡ = 1[a,b)g(a) + 1{b}g(b).
Then

dM2,[a,b](g, ḡ) ≤ b− a+ A ∧B,
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where

A = sup
t∈[a,b]

(g(a)− g(t)) + sup
t∈[a,b]

(g(t)− g(b)),

B = sup
t∈[a,b]

(g(t)− g(a)) + sup
t∈[a,b]

(g(b)− g(t)).

Proof We assume that g(b) ≥ g(a) (the case g(b) < g(a) is entirely analogous).
Then Γ(ḡ) = {(t, g(a)) : a ≤ t ≤ b}∪{(b, s) : g(a) ≤ s ≤ g(b)}. Also Γ(g) ⊂ [a, b]×R
and intersects every horizontal line between s = g(a) and s = g(b).

For every (t, s) ∈ Γ(ḡ), there exists t′ ∈ [a, b] such that (t′, s) ∈ Γ(g). Then
‖(t, s)− (t′, s)‖ ≤ b− a and hence ρ(Γ(ḡ),Γ(g)) ≤ b− a.

It remains to estimate ρ(Γ(g),Γ(ḡ)). Let (t, s) ∈ Γ(g).

• If s ∈ [g(a), g(b)], then (b, s) ∈ Γ(ḡ) and ‖(t, s)− (b, s)‖ ≤ b− a.

• If s < g(a), then (t, g(a)) ∈ Γ(ḡ) and g(t) ≤ s < g(a), so ‖(t, s) − (t, g(a))‖ =
g(a)− s ≤ g(a)− g(t) = (g(a)− g(t)) ∧ (g(b)− g(t)) ≤ A ∧B.

• If s > g(b), then (b, g(b)) ∈ Γ(ḡ) and there exists t′ ∈ [a, b] such that g(t′) ≥
s > g(b). Hence ‖(t, s) − (b, g(b))‖ ≤ b − a + s − g(b) ≤ b − a + g(t′) − g(b) =
b− a+ (g(t′)− g(b)) ∧ (g(t′)− g(a)) ≤ b− a+ A ∧B.

In all cases, inf(t̄,s̄)∈Γ(ḡ) ‖(t, s)− (t̄, s̄)‖ ≤ b−a+A∧B so ρ(Γ(g),Γ(ḡ)) ≤ b−a+A∧B
completing the proof.
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