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Abstract. Let f : X → X be the restriction to a hyperbolic basic set of a smooth
diffeomorphism. We show that in the class of Cr, r > 0, cocycles with fiber special
Euclidean group SE(n) those that are transitive form a residual set (countable
intersection of open dense sets). This result is new for n ≥ 3 odd.

More generally, we consider Euclidean-type groups GnRn where G is a compact
connected Lie group acting linearly on Rn. When FixG = {0}, it is again the
case that the transitive cocycles are residual. When FixG 6= {0}, the same result
holds on restriction to the subset of cocycles that avoid an obvious and explicit
obstruction to transitivity.

1. Introduction

In this paper we continue to study topological transitivity in various classes of
noncompact group-extensions of hyperbolic systems. Consider a continuous transfor-
mation f : X → X, a Lie group Γ, and a continuous map β : X → Γ called a cocycle.
These determine a skew product, or Γ-extension,

fβ : X × Γ→ X × Γ, fβ(x, γ) = (fx, γβ(x)).

It is assumed throughout the paper that X is a hyperbolic basic set. The Γ-extension
fβ is called topologically transitive, or simply transitive, if it has a dense orbit. Of
interest to us is whether noncompact Lie group extensions of a hyperbolic basic set
are typically topologically transitive.

Let (M,dM) be a smooth manifold endowed with a Riemannian metric. Let f :
M →M be a smooth diffeomorphism and X ⊂M a compact and f -invariant subset
of M . We say that X is hyperbolic if there exists a continuous Df -invariant splitting
Es ⊕ Eu of the tangent bundle TXM and constants C1 > 0, 0 < λ < 1, such that for
all n ≥ 0 and x ∈ X we have:

‖(Dfn)xv‖ ≤ C1λ
n‖v‖, v ∈ Es

x

‖(Df−n)xv‖ ≤ C1λ
n‖v‖, v ∈ Eu

x .
(1.1)
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We say that X is locally maximal if there exists an open neighborhood U of X
such that every compact f -invariant set of U is contained in X. A locally maximal
hyperbolic set X is a basic set for f : M →M if f : X → X is transitive and X does
not consist of a single periodic orbit.

Given a connected Lie group Γ and a cocycle β : X → Γ, we consider the Γ-
extension fβ : X × Γ → X × Γ given by fβ(x, γ) = (fx, γβ(x)). For brevity, we say
that the cocycle β is transitive if the Γ-extension fβ is transitive. In [5] we proposed
a general conjecture about transitivity in the class of Hölder cocycles: namely that
modulo obstructions appearing from the fact that the range of the cocycle is included
in a semigroup, transitivity is open and dense. The conjecture is proved for various
classes of Lie groups, mostly semidirect products of compact and Euclidean, in [2, 4,
5, 6, 8]. In addition [5] exhibits open sets of Cr transitive cocycles with fiber Sp(n).

An important test case is presented by cocycles with fiber the special Euclidean
group SE(n) = SO(n) n Rn. It is shown in [4, 5, 6] that when n is even the set
of cocycles that are transitive is Hölder-open and Cr-dense. The conjecture remains
unsolved for n ≥ 3 odd.

Here we show that for SE(n), n ≥ 3 odd, the transitive Cr cocycles form a residual
subset (actually, by Remark 1.3(b), a countable intersection of open dense subsets)
of the space of all Cr cocycles for all r > 0. In other words, transitivity is Cr-generic
for such extensions. The proof introduces a number of new ideas.

Theorem 1.1. Let X be a basic hyperbolic set for f : X → X. Let r > 0 and let
n ≥ 3 be odd. Amongst the Cr cocycles β : X → SE(n), the transitive cocycles form
a residual set.

More generally, we consider Euclidean-type groups of the form Γ = G n Rn where
G is a compact connected Lie group acting linearly (and orthogonally) on Rn and the
group multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2).

Let FixG = {v ∈ Rn : gv = v for all g ∈ G}. Set π : Γ→ FixG to be the projection
onto the Rn-component and then orthogonal projection onto FixG. If FixG 6= {0},
then there is an obvious obstruction to transitivity namely that πβ : X → FixG
takes values in a halfspace. Recall that two cocycles β, β′ : X → R

d are said to be
cohomologous if there exists P : X → R

d continuous such that β′(x) = P (fx) +
β(x)− P (x), x ∈ X. More generally, if πβ is cohomologous to a cocycle with values
in a half space, then fβ is not transitive. This is the only obstruction in generalising
Theorem 1.1 to general Euclidean-type groups.

Theorem 1.2. Let X be a basic hyperbolic set for f : X → X and let Γ = GnRn be
a Euclidean-type group. Let r > 0. Define S to be the space of Cr cocycles β : X → Γ
for which πβ : X → FixG is not cohomologous to a cocycle with values in a halfspace.

Then S is an open subset of the space of Cr cocycles, and the transitive cocycles
β : X → Γ form a residual subset of S.

Remark 1.3. (a) If FixG = 0, then there is no obstruction to transitivity, so Theo-
rem 1.1 is a special case of Theorem 1.2.
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(b) By a standard argument, the set of transitive Cr cocycles can be written as a
countable intersection of Cr-open sets. Hence it suffices to prove density in Theo-
rems 1.1 and 1.2. We include the argument below:

Choose a countable basis {Uk}k of the topology on X × Γ and denote by Cr
k,` the

Cr cocycles β ∈ S for which there is an integer n such that fnβ (Uk)∩U` 6= ∅. Each set
Cr
k,` is clearly Cr-open, and f is transitive if and only if β is in each of the sets Cr

k,`.

Let GnRn be a Euclidean-type group. We can write Rn as a sum of G-irreducible
representations V` which we divide into three types:

Class I: V` 6⊂ FixG and V` ∩ Fix g 6= {0} for all g ∈ G.
Class II: V` ⊂ FixG.
Class III: V` ∩ Fix g = {0} for some g ∈ G.

(Here, Fix g = {v ∈ Rn : gv = v}.)
We say that the Euclidean-type group Gn Rn is of class I if all the G-irreducible

representations V` are of class I. This includes the groups in Theorem 1.1. The main
task in this paper is to prove Theorem 1.2 for the class I groups. The general result
is then proved by incorporating ideas of [4, 8].

The remainder of the paper is organized as follows. In Section 2, we recall some
general results from [5]. In Section 3, we introduce a new construction that seems
particularly useful for cocycles that satisfy a subexponential growth condition. In
Section 4, this construction is specialized to the setting of Euclidean-type groups. A
second key new idea for Euclidean-type extensions appears in Section 5. In Section 6,
we prove Theorem 1.1. We include the proof for this particular class I group because
it contains the main steps, but avoids the technicalities of the general case. The
proof of Theorem 1.2 is given for general class I groups in Section 7 and for general
Euclidean-type groups in Section 8.

2. Criterion for transitivity

Let Γ be a connected Lie group with Lie algebra LΓ. We denote by eΓ the identity
element of Γ. Let Ad denote the adjoint representation of Γ on LΓ. Let ‖ · ‖ be a
norm on LΓ. There is a metric d on Γ with the following properties (see Pollicott
and Walkden [10]):

(1) d(γγ1, γγ2) = d(γ1, γ2);
(2) d(γ1γ, γ2γ) ≤ ‖Ad(γ)‖d(γ1, γ2);

for any γ, γ1, γ2 ∈ Γ.

Definition 2.1. Let f : X → X be a map and β : X → Γ a cocycle. For k ≥ 1, we
write fkβ (x, γ) = (fkx, γβ(k, x)) where

β(k, x) = β(x)β(fx) · · · β(fk−1x) =
k−1∏
j=0

β(f jx).

(Occasionally, we use the last formula to keep notation simple; its meaning is the
ordered product given by the middle expression).
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If Q is a trajectory of f of length k (i.e. Q = {x, f(x), . . . , fk−1(x)} for some x),
then we define the height of β over Q to be β(Q) = β(k, x). In particular, if x is a
periodic point of period `, then the height of the corresponding periodic orbit P is
β(P ) = β(`, x).

By abuse of notation, we often refer to “the periodic orbit P” instead of “the orbit
of the periodic point x” when x is clear from the context.

Definition 2.2. Given a cocycle β : X → Γ over f : X → X, define µ ≥ 1 to be

µ = max
{

lim
n→∞

sup
x∈X
‖Ad(β(n, x))‖1/n, lim

n→∞
sup
x∈X
‖Ad(β(n, x))−1‖1/n

}
.

For f fixed, we say that the cocycle β has subexponential growth if µ = 1.

Remark 2.3. The subexponential growth condition is automatically satisfied for
any cocycle if the group Γ is compact, nilpotent, or a semidirect product of compact
and nilpotent. In particular, cocycles with values in Euclidean-type groups have
subexponential growth.

One of the key notions used in this paper was introduced in [5]:

Definition 2.4. Let Γ be a connected Lie group, X a basic hyperbolic set for f :
X → X, β : X → Γ a cocycle, and fβ : X × Γ → X × Γ the skew-extension. Given
x ∈ X, let

Lβ(x) = {γ ∈ Γ : there exist xk ∈ X and nk > 0 such that

xk → x and fnkβ (xk, eΓ)→ (x, γ)}.

That is, the set Lβ(x) consists of the possible limits limk→∞ β(nk, xk), subject to
xk → x and fnk(xk)→ x. Note that we do not require that nk →∞ or that xk 6= x.
Clearly Lβ(x) is a closed subset of Γ.

The following theorem is a special case of [5, Lemma 3.1, Theorem 3.3].

Theorem 2.5. Assume that X is a hyperbolic basic set for f : X → X, that Γ is a
connected Lie group and β : X → Γ a Hölder cocycle that has subexponential growth.
Then

(a) Lβ(x) is a closed semigroup of Γ for each x ∈ X.
(b) If there exists a point x0 ∈ X such that Lβ(x0) = Γ then β is a transitive

cocycle.

Recall that W s(x) and W u(x) denote the stable and unstable leaves of f through x.
The next lemma is a consequence of [9, Appendix A].

Lemma 2.6. Assume that X is a hyperbolic basic set for f : X → X, that Γ is
a connected Lie group and β : X → Γ an α-Hölder cocycle that has subexponential
growth. Then the Γ-extension fβ : X × Γ → X × Γ admits stable and unstable
foliations which are α-Hölder and invariant under right multiplication by elements of
Γ. The stable and unstable leaves of fβ through (x, eΓ) ∈ X × Γ are the graphs of the
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functions

γsx : W s(x)→ Γ, γsx(y) = lim
n→∞

β(n, x)β(n, y)−1,

γux : W u(x)→ Γ, γux(y) = lim
n→∞

β(−n, x)β(−n, y)−1.

These functions are α-Hölder and vary continuously with the cocycle β in the following
sense: if βk → β in C0-topology and βk remains Cα-bounded, then on W s

loc(x), γsk,x →
γsx and γuk,x → γux in C0-topology.

We call the values of the functions γsx, γ
u
x holonomies along stable/unstable leaves.

The following lemma is a special case of [5, Lemma 2.2].

Lemma 2.7. Assume that X is a hyperbolic basic set for f : X → X, that Γ is
a connected Lie group and β : X → Γ a α-Hölder cocycle that has subexponential
growth. Then there is a constant C5 > 0 with the following property.

Given ε > 0 sufficiently small and n ≥ 1, assume that there are two trajectories
xk = fk(x0), yk = fk(y0), such that dM(xk, yk) < ε for 0 ≤ k ≤ n− 1. Then

d(β(n, x0), β(n, y0)) ≤ C5(‖Ad(β(n, x0))‖+ 1)εα. (2.1)

Moreover, if Γ is compact, then

d(β(n, x0), β(n, y0)) ≤ C5ε
α. (2.2)

3. Admissible sequences of products of holonomies

Throughout this section, (M,dM) is Riemannian manifold, X ⊂ M is a basic
hyperbolic set for f : X → X with contraction constant λ ∈ (0, 1) satisfying (1.1),
Γ a connected Lie group and β : X → Γ a α-Hölder cocycle that has subexponential
growth.

Definition 3.1. By a periodic heteroclinic cycle we mean a cycle consisting of points
p1, . . . , pk that are periodic for the map f , have disjoint trajectories, and such that
pj is transverse heteroclinic to pj+1 through a point ζj ∈ W u(pj) ∩ W s(pj+1), for
j = 1, . . . , k (where pk+1 = p1).

Let P1, . . . , Pk be the corresponding periodic orbits and denote the periods by
`1, . . . , `k. Denote by Oj the heteroclinic trajectory from pj to pj+1 (of the point ζj
chosen above), and by Hj the holonomy along this heteroclinic connection (that is,
along W u(pj) from pj to ζj and then along W s(pj+1) from ζj to pj+1).

Replace the heteroclinic orbit Oj from pj to pj+1 by the trajectory Qj of length
`jMj + `j+1Mj+1 that spends time `jMj in the first half of Oj and time `j+1Mj+1 in
the second half of Oj; that is, Qj = {fn(ζj) | −`jMj ≤ n < 0} ∪ {fn(ζj) | 0 ≤ n <
`j+1Mj+1}). For the trajectory connecting pk to pk+1, we allow M1 and Mk+1 to be
distinct. The positive integers Mj will be chosen later.

Consider the heights β(Pj) and β(Qj) over the periodic orbits Pj and trajectories
Qj (see Definition 2.1).

Lemma 3.2. For j = 1, . . . , k, the limit

lim
Mj ,Mj+1→∞

β(Pj)
−Mjβ(Qj)β(Pj+1)−Mj+1 = Hj
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exists and is the product of the holonomies along the unstable and stable leaves of Oj,
from pj to pj+1.

Proof. This follows from Lemma 2.6. �

Definition 3.3. Consider a sequence of vectors N(1), N(2) . . . ∈ Nk+1 whose entries
are positive integers. Write N(i) = (M1(i), . . . ,Mk+1(i)). The sequence is admissible
if there is a constant C2 ≥ 1 such that Mp(i)/Mq(i) ≤ C2 for all p, q = 1 . . . , k + 1
and all i ≥ 1.

If N = (M1, . . . ,Mk+1) is a sequence of vectors, we write N → ∞ if Mp → ∞ for
each p = 1, . . . , k+ 1. (For an admissible sequence, it is equivalent that Mp →∞ for
at least one value of p.)

Theorem 3.4. Let N = (M1, . . . ,Mk+1) ∈ Nk+1. Define

A(N) = β(P1)M1H1 β(P2)2M2H2 · · · β(Pk)
2MkHk β(P1)Mk+1 .

If the limit A = limN→∞A(N) exists along an admissible sequence N(1), N(2), . . . ,
then A ∈ Lβ(p1).

Remark 3.5. We can rewrite the expression A(N) as

A(N) = β̄M1
1 β̄2M2

2 · · · β̄2Mk
k β̄

Mk+1

k+1 H̄k+1,

where H̄1 = eΓ, H̄j = H1H2 · · ·Hj−1 for j = 2, . . . , k + 1, and β̄j = H̄j β(Pj)H̄
−1
j .

(Note that β̄k+1 is related to β̄1 but the remaining β̄js can be modified independently.)

In the remainder of this section, we prove Theorem 3.4. From now on we assume
for notational simplicity that Pj = pj are fixed points (so `j = 1).

Given N = (M1, . . . ,Mk+1) ∈ Nk+1, define

|N | = (M1 +Mk+1)/2 +
k∑
j=2

Mj,

minN = min{M1, . . . ,Mk+1}, maxN = max{M1, . . . ,Mk+1}.
Note that for an admissible sequence N , we have maxN ≤ C2 minN .

Define
Hj(N) = β(Pj)

−Mjβ(Qj)β(Pj+1)−Mj+1 .

By Lemma 3.2, limN→∞Hj(N) = Hj (independent of the sequence N). Moreover, by
[9, proof of Theorem 4.3(g)], there is δ0 ∈ (0, 1) such that

d(Hj(N), Hj) = O(δminN
0 ). (3.1)

Recall that Qj is a trajectory of length Mj + Mj+1 that shadows the heteroclinic
connection from pj to pj+1. Concatenate these trajectories to form a periodic pseudo-
orbit Q = Q1 . . . Qk of length 2|N |. Then Q is a δ-pseudo-orbit with δ ≤ C3λ

minN ,
where C3 > 0 is a constant (depending on f : X → X) and λ is the contraction
constant. By hyperbolicity of X, there is a periodic orbit Q̃ of length 2|N | that
ε-shadows Q with ε ≤ C4λ

minN , where C4 > 0 is a constant. See [7, page 74] for
standard shadowing techniques.
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Proposition 3.6.

(a) β(Q) = β(P1)M1H1(N) β(P2)2M2H2(N) · · · β(Pk)
2MkHk(N) β(P1)Mk+1.

(b) limN→∞ d(β(Q), β(Q̃)) = 0 along admissible sequences N .
(c) limN→∞ d(β(Q), A(N)) = 0 along admissible sequences N .

Proof. Part (a) is a direct calculation, namely

β(Q) =
k∏
j=1

β(Qj) =
k∏
j=1

β(Pj)
MjHj(N)β(Pj+1)Mj+1 .

Next, write Q̃ = Q̃1 . . . Q̃k where Q̃j has length Mj+Mj+1. Define γj = β(Qj), γ̃j =

β(Q̃j). Note that Qj and Q̃j have length at most 2 maxN , and that Q̃j ε-shadows Qj

with ε ≤ C4λ
minN . It follows from Lemma 2.7 that d(γi, γ̃i) ≤ CλαminN(‖Ad(γi)‖+1)

where C = Cα
4 C5. Hence, using the properties of the metric on Γ and the fact that β

has subexponential growth, we have

d(β(Q), β(Q̃)) = d(γ1γ2 · · · γk, γ̃1γ̃2 · · · γ̃k)
≤ d(γ1γ2 · · · γk, γ̃1γ2 · · · γk) + d(γ̃1γ2γ3 · · · γk, γ̃1γ̃2γ3 · · · γk)+
· · ·+ d(γ̃1γ̃2 · · · γ̃k−1γk, γ̃1γ̃2 · · · γ̃k−1γ̃k)

≤ d(γ1, γ̃1)‖Ad(γ2 . . . γk)‖+ d(γ2, γ̃2)‖Ad(γ3 . . . γk)‖+ · · ·+ d(γk, γ̃k)

≤ CλαminN [(1 + η)2 maxN + 1][(1 + η)2 maxN + · · ·+ (1 + η)2(k−1) maxN ],

where η > 0 can be chosen arbitrarily small and ‖Ad(β(n, x))‖ ≤ (1 + η)n for n large
enough. Restricting to admissible sequences, minN and maxN are comparable and
part (b) follows. The proof of part (c) is similar using (3.1). �

Proof of Theorem 3.4. By assumption, A(N) → A. Hence by Proposition 3.6(b,c),
β(Q̃)→ A. We conclude that A ∈ Lβ(p1) by definition of Lβ(p1). �

4. Construction for Euclidean-type groups

In this section, we specialise the construction in Section 3 to the case of the
Euclidean-type group Γ = G n Rn. We denote the identity element in G by eG.
Define β̄j as in Remark 3.5 and write

β̄j = (gj, vj), j = 1, . . . , k + 1. (4.1)

For each j, we have the orthogonal decomposition Rn = Fix gj ⊕ (Fix gj)
⊥ where

Fix gj = ker(gj − I). Write

vj = wj ⊕ w′j, wj ∈ Fix gj, w′j ∈ (Fix gj)
⊥. (4.2)

Define
hj = gn1

1 g2n2
2 . . . g

2nj−1

j−1 , uj = hjwj, (4.3)

and let

Z(u1, . . . , uk+1) = {α1u1 + · · ·+ αk+1uk+1 : α1, . . . , αk+1 > 0} ⊂ Rn.
Theorem 4.1. Assume that
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(1) gj has finite order for each j = 1, . . . , k; and
(2) n1, . . . , nk are integers such that 0 ∈ Z(u1, . . . , uk+1).

Then

A = β(P1)n1H1 β(P2)2n2H2 · · · β(Pk)
2nkHk β(P1)nk+1 (4.4)

= β̄n1
1 β̄2n2

2 · · · β̄2nk
k H̄k+1 ∈ Lβ(p1).

Proof. Choose Mj such that g
Mj

j = eG and define N = (M1 +n1, . . . ,Mk +nk,Mk+1).
A calculation shows that

A(N) = (g1, v1)M1+n1(g2, v2)2M2+2n2 . . . (gk, vk)
2Mk+2nk(gk+1, vk+1)Mk+1H̄k+1

= (eG, w(N))(g1, v1)n1(g2, v2)2n2 . . . (gk, vk)
2nkH̄k+1 = (eG, w(N))A,

where w(N) = M1u1 + 2M2u2 + · · ·+ 2Mkuk +Mk+1uk+1.
We claim that there is an admissible sequence N satisfying the above constraints

such that limN→∞w(N) = 0. Then A(N) → A, and so it follows from Theorem 3.4
that A ∈ Lβ(p1).

To prove the claim, we repeat an argument used in [6, Lemma 2.12]. By condi-

tion (2), there exist α1, . . . , αk+1 > 0 such that α1u1 + 2
∑k

j=2 αjuj + αk+1uk+1 = 0.

Hence tα1u1 + 2
∑k

j=2 tαjuj + tαk+1uk+1 = 0 for each t > 0, and there is a sequence
ti → ∞ such that the fractional part of tiαj converges to zero for each j. Let
Mj(i) = q[tiαj] where q is the least common multiple of the orders of the gjs. Then
N(i) = (M1(i)+n1, . . . ,Mk(i)+nk,Mk+1(i)) is the required admissible sequence. �

Corollary 4.2. Suppose that the hypotheses of Theorem 4.1 are valid and w lies in
the semigroup generated by u1, 2u2, . . . , 2uk, uk+1. Then (eG, qw)A ∈ Lβ(p1) where q
is the least common multiple of the orders of the gjs.

Proof. Let Mj(i) = q[tiαj] be as in the proof of Theorem 4.1 and choose m1 . . . ,mk+1

such that w = m1u1 + 2
∑k

j=2 mjuj + mk+1uk+1. Define N(i) = (M1(i) + qm1 +

n1, . . . ,Mk(i) + qmk + nk,Mk+1(i) + qmk+1). Then N(i) is an admissible sequence
and A(N)→ (eG, qw)A. �

5. Perturbing the heteroclinic cycle

Let Γ = G n Rn be a Euclidean-type group. Write β : X → Γ as β = (βG, βRn) :
X → GnRn. By [2], the compact group extension fβG : X×G→ X×G is transitive
for an open dense set of Cr cocycles β : X → Γ.

In this section we show that we can specify the G-component of a particular β̄j
without significantly changing the remaining β̄js by modifying the heteroclinic cycle
p1, . . . , pk. (The cocycle itself is unchanged during this modification of the heteroclinic
cycle.)

Lemma 5.1. Let Γ = G n Rn be a Euclidean-type group. Assume that the compact
group extension fβG : X × G → X × G is transitive. Suppose that p1, . . . , pk is
a periodic heteroclinic cycle in X with associated elements β̄j = (gj, vj) in (4.1),
j = 1, . . . , k + 1.
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Let j0 ∈ {2, . . . , k}, r > 0, and ḡ ∈ G. Then there is a periodic point p′j0 arbitrarily
close to pj0 such that the periodic heteroclinic cycle p′1, p

′
2, . . . , p

′
k obtained by replacing

pj0 with p′j0 has associated elements β̄′j = (g′j, v
′
j) that satisfy:

(i) d(β̄′j, β̄j) < r for j = 1, . . . , k + 1, j 6= j0, and
(ii) d(g′j0 , ḡ) < r.

Note that for the new cycle p′1, p
′
2, . . . , p

′
k we keep the same heteroclinic points,

ζ ′j = ζj, except for ζ ′j0−1 and ζ ′j0 which are obtained by continuity using the new p′j0.

Proof. By compactness, there exists a constant K ≥ 1 such that ‖Ad(g)‖ ≤ K for all
g ∈ G. Recall that H̄j = H1H2 . . . Hj−1 ∈ Γ is the product of holonomies associated
with the heteroclinic trajectories between p1, p2, . . . , pj. Let h be the G-component
of H̄j0 and define ĝ = h−1ḡh.

Let δ > 0. By transitivity of X × G, there exists x ∈ X and an integer m ≥ 1
such that x and fmx are δ-close to pj0 and d(βG(m,x), ĝ) < r/4. By Anosov’s closing
lemma [3], there is a periodic point p′j0 of period m such that dM(f ip′j0 , f

ix) < Cδ
for i = 0, . . . ,m, where C is independent of the periodic orbit. We can arrange that
p′j0 has orbit disjoint from p1, . . . , pk. Define p′j = pj for j 6= j0 to obtain the new
heteroclinic cycle p′1, . . . , p

′
k. By (2.2), d(βG(m, p′j0), βG(m,x)) ≤ CC5δ

α (independent
of the period m of p′j0). Choosing δ sufficiently small, we obtain

d(βG(m, p′j0), ĝ) < r/(3K).

Let H ′j denote the holonomies for the cycle p′1, . . . , p
′
k and set H̄ ′j = H ′1 . . . H

′
j−1.

For δ small enough, we ensure that d(H̄ ′j, H̄j) is as small as required for all j (in fact
at most two of the Hj are changed).

For j 6= j0, we compute using the properties of the metric d that

d(β̄′j, β̄j) = d(H̄ ′jβj(Pj)H̄
′−1
j , H̄jβj(Pj)H̄

−1
j )

≤ d(H̄ ′−1
j , H̄−1

j ) + d(H̄ ′jβj(Pj)H̄
−1
j , H̄jβj(Pj)H̄

−1
j )

≤ d(H̄ ′j, H̄j)‖Ad(H̄−1
j )‖+ d(H̄ ′j, H̄j)‖Ad(β(Pj)H̄

−1)‖ ≤ Cd(H̄ ′j, H̄j),

where C is a constant that depends only on β and the original heteroclinic cycle.
Part (i) follows for δ sufficiently small. Letting h′ denote the G-component of H̄ ′j0 we

choose δ small so that d(h′, h), d(h′−1, h−1) < r/(3K). Then

d(g′j0 , ḡ) = d(h′βG(m, p′j0)h′−1, hĝh−1)

≤ d(h′βG(m, p′j0)h′−1, h′ĝh′−1) + d(h′ĝh′−1, h′ĝh−1) + d(h′ĝh−1, hĝh−1)

≤ Kd(βG(m, p′j0), ĝ) + d(h′−1, h−1) +Kd(h′, h) < r,

establishing part (ii). �

6. Transitivity for Γ = SE(n), n odd

In this section we prove Theorem 1.1. The first step is to construct an open
and dense set of cocycles with periodic heteroclinic cycles satisfying condition (2) of
Theorem 4.1.
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Let Sn−1 denote the unit sphere in Rn. If P ⊂ Rn, we let coP denote the convex
hull of P . Note that coP is closed for finite P .

Write β : X → SE(n) as β = (βSO(n), βRn) : X → SO(n) n Rn. Recall from Sec-
tion 4 that for periodic heteroclinic cycles p1, . . . , pk in X and for integers n1, . . . , nk ≥
1, there is an associated set of vectors {u1, . . . , uk+1} ⊂ Rn. Condition (2) of Theo-
rem 4.1 requires that 0 ∈ Z(u1, . . . , uk+1) = {α1u1+· · ·+αk+1uk+1 : α1, . . . , αk+1 > 0}.
It suffices that 0 ∈ Int co{u2, . . . , uk} which is moreover a stable condition.

Throughout the remainder of this paper we take n1 = · · · = nk = 1.

Proposition 6.1. Let SE(n) = SO(n)nRn be a Euclidean group with n odd. Assume
that the compact group extension fβSO(n)

: X×SO(n)→ X×SO(n) is stably transitive.
Let p1 be a periodic point for f : X → X. Suppose that p1, . . . , pk is a periodic

heteroclinic cycle in X with k ≥ 2n+ 3.
Then there exist

(i) a cocycle β̃ that is arbitrarily close to β in the Cr topology and such that β̃−β
is supported in an arbitrarily small neighborhood of the points p2, . . . , pk; and

(ii) a periodic heteroclinic cycle p′1 = p1, p
′
2, . . . , p

′
k with p′j arbitrarily close to pj

for j = 1, . . . , k;

such that the set {u1, . . . , uk+1} corresponding to p′1, p
′
2, . . . , p

′
k has the property that

0 ∈ Int co{u2, . . . , uk}.
Proof. Let β̄j = (gj, vj) be the data for the cycle p1, . . . , pk with associated vectors
wj ∈ Fix gj. Since n is odd, dim Fix gj ≥ 1 and hence we can make an arbitrarily
small perturbation of β so that wj 6= 0 for all j.

The idea is to use g2, g4, . . . , g2n+2 to rotate w3, w5, . . . , w2n+3 into appropriate po-
sitions. More precisely, since SO(n) acts transitively on Sn−1, we can find n + 1
rotations ḡ2, ḡ4, . . . , ḡ2n+2 ∈ SO(n) such that 0 ∈ Int co{ḡ2w3, ḡ4w5, . . . , ḡ2n+2w2n+3}.

Since fβSO(n)
is transitive, by Lemma 5.1 we can choose a new heteroclinic cycle

p′1 = p1, p
′
2, . . . , p

′
k, allowing us to specify g′2, g

′
4, . . . , g

′
2n+2 whilst keeping β̄′ji = (g′ji , v

′
ji

)
almost unchanged for j odd. (The cocycle β is unchanged.) Fix j ∈ {3, 5, . . . , 2n+3}.
Recall that uj = hjwj where hj = g1g

2
2 . . . g

2
j−1. By specifying g′j−1 appropriately, we

can arrange that h′j is as close to ḡj as desired. Since w′j is almost unchanged, we can
ensure that 0 ∈ Int co{u′3, . . . , u′2n+3}. �

Proposition 6.2. Theorem 1.1 follows from Proposition 6.1.

Proof. By Theorem 2.5 and Remark 1.3(b), it suffices to perturb β so that Lβ(p1)
contains elements that generate SE(n) as a closed semigroup.

By [2], the compact cocycle βSO(n) : X → SO(n) is transitive for an open dense set
of Cr cocycles β : X → SE(n). Hence, we may suppose without loss that βSO(n) is
stably transitive.

Pick a periodic point p1. By Proposition 6.1, there is a periodic heteroclinic cycle
starting at p1 and an arbitrarily small perturbation of β such that 0 ∈ Int co{u2, . . . , uk}.
This condition is stable under perturbation. Since the perturbation is localised, and
using stability of transitivity of βSO(n), we can construct a second periodic heteroclinic
cycle starting at p1 with 0 ∈ Int co{u′2, . . . , u′k}.
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We have established condition (2) of Theorem 4.1 in a stable manner. A further
small perturbation of βSO(n) guarantees that condition (1) is also satisfied. Hence, by
Theorem 4.1, we obtain two elements A1, A2 ∈ Lβ(p1).

Write Ai = (gi, vi). Since SO(n) is compact, there exists g′1, g
′
2 arbitrarily close to

g1, g2 such that the closed group, and hence the closed semigroup, generated by g′1, g
′
2

is the whole of SO(n) [11]. We show that there is an arbitrarily small perturbation
of β that perturbs g1, g2 to g′1, g

′
2.

The elements A1, A2 are computed according to (4.4):

A = β(P1)n1H1 β(P2)2n2H2 · · · β(Pk)
2nkHk β(P1)nk+1 .

We consider perturbations localized along the heteroclinic connections. The holonomies
Hj are given by explicit formulas in Lemmas 2.6 and 3.2, and depend continuously on
β. To change in a prescribed manner, say, only Hk, while keeping all the other Hjs
and the β(Pi)s fixed, it suffices to change β near only one point on the heteroclinic
orbit from pk to pk+1 = p1. The elements β̄j are modified slightly as a result but only
via conjugation, so condition (1) in Theorem 4.1 is maintained, while our construction
for condition (2) is stable and hence maintained. The effect of this change on the Ais
is described by (4.4). Hence, we obtain slightly modified elements A′1, A

′
2 ∈ Lβ(p1),

and we can arrange by this process that g1, g2 be perturbed to g′1, g
′
2, as desired.

Now we perturb again the cocycle in order to generate Rn · Ai, for i = 1, 2. In
view of Corollary 4.2, it suffices to arrange that the closed semigroup generated by
U = {u2, . . . , uk} is the whole of Rn. Moreover, U does not lie in a halfspace (since
0 ∈ Int coU) so it follows from Niţică & Pollicott [8] or [6, Lemma 2.12] that it suffices
to arrange that the closed group generated by U = {u2, . . . , uk} is the whole of Rn.
Thus, (using Kronecker’s theorem) it suffices to have {ũ1, . . . , ũn+1} ⊂ U such that
these (n + 1) vectors generate Rn over R, and writing

∑n+1
1 αjũj = 0, the scalars

{αj | 1 ≤ j ≤ n + 1} are independent over Q. Recall that the elements of U are
described by formula (4.3). Because 0 ∈ Int coU , U contains at least (n+ 1) nonzero
vectors that span Rn over R. To make the Z-span of U dense in Rn, we rescale
the Rn-component of the cocycle β near the periodic orbits Pj, while keeping βSO(n)

unchanged. This yields wj 7→ (1 + δj)wj. From formula (4.3), one sees that the effect
on U is uj 7→ (1 + δj)uj.

Since Lβ(p1) is closed, it follows from Corollary 4.2 that Rn · A1 ⊂ Lβ(p1) and
R
n · A2 ⊂ Lβ(p1). Thus (gi, 0) ∈ Lβ(p1), i = 1, 2, and consequently SO(n) × {0} ⊂
Lβ(p1). Therefore {eSO(n)} × Rn ⊂ Lβ(p1), so SE(n) ⊂ Lβ(p1). �

7. Class I groups

In this section, we prove Theorem 1.2 for groups of class I. The direct argument of
Proposition 6.1 breaks down. For example, it is well-known that the group G = SO(3)
has a (2` + 1)-dimensional irreducible representation (namely the space of spherical
harmonics of order ` [12]) for each ` ≥ 1. Being of odd dimension, such representations
are of class I. Form the corresponding Euclidean-type group Γ = SO(3)nR2`+1. Given
sufficiently many nonzero vectors w3, w5, . . . ∈ R2`+1, it is no longer obvious that
there exist ḡ2, ḡ4, . . . ∈ G such that 0 ∈ Int co{ḡ2w3, ḡ4w5, . . .}. Moreover, we have to
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account for general Euclidean-type groups of class I, allowing also for nonirreducibility
and repeated representations. Hence our argument is much more abstract.

Proposition 7.1. Suppose that G acts on Rn with FixG = {0}, and that B is a basis
for Rn. Then for any e ∈ Sn−1 there exist ḡ± ∈ G and y ∈ B such that 〈ḡ+y, e〉 > 0
and 〈ḡ−y, e〉 < 0.

Proof. Choose y such that 〈y, e〉 6= 0. We suppose for definiteness that 〈y, e〉 > 0 and
take ḡ+ = eG. If 〈gy, e〉 ≥ 0 for all g ∈ G, then 〈ȳ, e〉 > 0 where ȳ =

∫
G
gy dν and

ν is Haar measure. It follows from invariance of ν that ȳ ∈ FixG = {0} which is a
contradiction. Hence there exists ḡ− ∈ G such that 〈ḡ−y, e〉 < 0. �

Lemma 7.2. Suppose that G acts on Rn with FixG = {0}. Suppose that B1, . . . ,Bn+1

are bases for Rn. Write Bj = {y1j, . . . , ynj}, j = 1, . . . , n+1. Then there exist ḡij ∈ G,
1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, such that 0 ∈ co{ḡijyij}.

Proof. Let M = n(n + 1). For each M -tuple {ḡij} ∈ GM , we associate the convex
set Kḡ = co{ḡijyij}. The map from GM to convex sets Kḡ is continuous. Let d =
minḡ∈GM dist{Kḡ, 0} and suppose for contradiction that d > 0. Choose ḡ ∈ GM and
x ∈ Kḡ such that d(x, 0) = d. Since x ∈ ∂Kḡ, by Caratheodory’s theorem there
exist h1, . . . , hn ∈ {ḡij} with corresponding z1, . . . , zn ∈ {yij} such that x ∈ co{h`z`}.
There is at least one basis Bj∗ that does not include any of the z`. By Proposition 7.1,
we can redefine one of the ḡij∗ so that 〈ḡij∗yij∗ , x〉 < 0. The new convex set K ′

contains x and intersects the hyperplane through 0 orthogonal to x. It follows that
dist(K ′, 0) < d yielding the required contradiction. �

Proposition 7.3. Suppose that Rn is a G-irreducible representation of class I. Then
for any g1, . . . , gn ∈ G and any δ > 0 there exist hi ∈ Bδ(eG) and zi ∈ hi Fix gi such
that {z1, . . . , zn} is a basis for Rn.

Proof. Inductively, for k < n, suppose we have chosen hi ∈ Bδ(eG) and zi ∈ hi Fix gi,
i = 1, . . . , k, such that {z1, . . . , zk} are linearly independent. Let Z = R{z1, . . . , zk}.
Since G acts irreducibly and Fix gk+1 6= {0}, the set GFix gk+1 spans Rn and hence

there exists ĥ ∈ G such that ĥFix gk+1 6⊂ Z. Write ĥ = exp η where η ∈ LG, and
let h(t) = exp tη. If h(t) Fix gk+1 ⊂ Z for all t close to zero, then differentiating
repeatedly at t = 0, we obtain ηn Fix gk+1 ⊂ Z for all integers n ≥ 0. In particular

ĥFix gk+1 ⊂ Z which contradicts the choice of ĥ. It follows that we can choose hk+1 =
h(t0) ∈ Bδ(eG) so that hk+1 Fix gk+1 6⊂ Z. Now choose zk+1 ∈ (hk+1 Fix gk+1) \Z. �

Recall that we write the elements of an Euclidean-type group as (g, v), with v =
w ⊕ w′ where w ∈ Fix g. See (4.2).

Corollary 7.4. Let G n Rn be a Euclidean-type group of class I. Then for any
(g1, v1), . . . , (gn+1, vn+1) ∈ G n Rn and δ > 0, there exist (g̃i, ṽi) ∈ Bδ(gi, vi) such
that co{w̃1, . . . , w̃n+1} has nonempty interior.

Proof. Writing Rn = V1 ⊕ · · · ⊕ Vs as a sum of G-irreducible representations, we let
d` = dimV`, ` = 1, . . . , s, so that d1 + · · · + ds = n. By Proposition 7.3, there exist
hi ∈ Bδ/2(eG) and zi ∈ hi Fix gi∩V1, i = 1, . . . , d1, such that {z1, . . . , zd1} is a basis for
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V1. Similarly, there exist hi ∈ Bδ/2(eG) and zi ∈ hi Fix gi ∩ V2, i = d1 + 1, . . . , d1 + d2,
such that {zd1+1, . . . , zd1+d2} is a basis for V2. Continuing in this way, we obtain
hi ∈ Bδ/2(eG) and zi ∈ hi Fix gi, i = 1, . . . , n, such that {z1, . . . , zn} is a basis for Rn.

Conjugating (gi, vi) by (hi, 0) yields g̃i = higih
−1
i and ṽi = hivi, with corre-

sponding vectors w̃i = hiwi ∈ Fix g̃i = hi Fix gi. The next step is to perturb so
that {w̃1, . . . , w̃n} is a basis for Rn. Define w̃i(ε) = w̃i + εzi. Note that P (ε) =
det
(
w̃1(ε)| . . . |w̃n(ε)

)
is a polynomial of order n in ε and the coefficient of εn is

det
(
z1| . . . |zn

)
which is nonzero. Hence P (ε0) 6= 0 for some ε0 ∈ (0, δ/2) and we ob-

tain elements (g̃i, ṽi + ε0zi) ∈ Bδ(gi, vi) with corresponding vectors w̃i + ε0zi ∈ Fix(g̃i)
forming a basis for Rn. Relabelling, we may suppose that {w̃1, . . . , w̃n} is a basis for
R
n.
Finally, if necessary (i) perturb vn+1 so that wn+1 6= 0 and (ii) rescale vn+1 to ṽn+1 =

(1 +λ)vn+1 with |λ| < δ so that the rescaled w̃n+1 does not belong to co{w̃1, . . . , w̃n}.
�

Lemma 7.5. Let G n Rn be a Euclidean-type group of class I. Set L = n(n + 1)2.
For any (g1, v1), . . . , (gL, vL) ∈ Gn Rn and any δ > 0, there exist (g̃i, ṽi) ∈ Bδ(gi, vi)
and ḡi ∈ G, i = 1, . . . , L, such that 0 ∈ Int co{ḡ1w̃1, . . . , ḡLw̃L}.

Proof. Relabel the pairs (gi, vi) as (gijk, vijk) where 1 ≤ i ≤ n, 1 ≤ j, k ≤ n + 1. For
each i, j consider the (n+1)-tuple k = 1, . . . , n+1. Let Kij = co{wijk, 1 ≤ k ≤ n+1}.
Applying Corollary 7.4, we may suppose after a δ-small perturbation that each Kij

has nonempty interior.
We construct bases B1, . . . ,Bn+1 as follows: For each j = 1, . . . , n + 1, set Bj =

{y1j, . . . , ynj} where yij ∈ IntKij, i = 1, . . . , n. By Lemma 7.2, there exist ḡij ∈ G,
1 ≤ i ≤ n, 1 ≤ j ≤ n+1, such that 0 ∈ co{ḡijyij}i,j. Hence 0 ∈ Int co{ḡijwijk}i,j,k. �

Proof of Theorem 1.2 for class I groups. We now proceed as in Section 6 replacing
SE(n) by Γ and SO(n) by G. Let k ≥ 2L + 1. Using Lemma 7.5, we can repeat
the final paragraph of the proof of Proposition 6.1. The proof of Proposition 6.2 is
unchanged. �

8. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. In Subsection 8.1, we
consider the case where there are summands of class II in addition to the summands
of class I. In Subsection 8.2, we consider the general case.

8.1. Summands of class II. Suppose that Rn is a mixture of representations of class
I and II. Then Rn = W1 ⊕ FixG where W1 is the sum of irreducible representations
of class I. Let π1 : Rn → W1 and π2 : Rn → FixG be the associated projections. Let
d1 = dimW1, d2 = dim FixG, d1 + d2 = n.

We generalise Proposition 6.1 as follows:

Theorem 8.1. Let GnRn be a Euclidean-type group with summands of class I and
II. Assume that the compact group extension fβG : X×G→ X×G is stably transitive.
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Assume further that π2β : X → FixG is not cohomologous to a cocycle with values
in a halfspace.

Set L = d1(d2 +1)(n+1)2, k = 2L+1, and let p1 be a periodic point for f : X → X.
Then there exist

(i) a periodic heteroclinic cycle p1, . . . , pk in X;

(ii) a cocycle β̃ that is arbitrarily close to β in the Cr topology and such that β̃−β
is supported in an arbitrarily small neighborhood of the points p2, . . . , pk; and

(iii) a periodic heteroclinic cycle p′1 = p1, p
′
2, . . . , p

′
k with p′j arbitrarily close to pj

for j = 1, . . . , k;

such that the set {u1, . . . , uk+1} corresponding to p′1, p
′
2, . . . , p

′
k has the property that

0 ∈ Int co{u2, . . . , uk}.
Moreover, there are arbitrarily many heteroclinic cycles of this type that are disjoint,

except for the common point p1.

In the remainder of this subsection, we prove Theorem 8.1. Proposition 8.2,
Lemma 8.3 and Proposition 8.4 are the analogues of Proposition 7.1, Lemma 7.2
and Corollary 7.4, respectively. To improve the readability, certain arguments are
repeated from Section 7.

As usual, to each (g, v) ∈ GnRn, there is an associated vector w ∈ Fix g, see (4.2).
Note that π2v = π2w.

Proposition 8.2. Let yij ∈ Rn, 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 + 1. Suppose that

(a) For each i the set {π2yij : 1 ≤ j ≤ d2 + 1} does not lie in a halfspace in FixG;
(b) Any collection of d1 vectors in {π1yij}i,j is a basis for W1.

Then for any e ∈ Sn−1, there exist y± ∈ {yij}i,j and ḡ± ∈ G such that 〈ḡ+y+, e〉 > 0
and 〈ḡ−y−, e〉 < 0.

Proof. Assume first that π2e 6= 0. By assumption (a), for each i there exists yi± ∈
{yij : 1 ≤ j ≤ d2 + 1} such that 〈π2yi+, π2e〉 > 0 and 〈π2yi−, π2e〉 < 0. By assump-
tion (b), the collections B± = {π1y1±, . . . π1yd1±} are bases forW1. By Proposition 7.1,
there exist y± ∈ B± and ḡ± ∈ G such that 〈π1ḡ+y+, π1e〉 > 0 and 〈π1ḡ−y−, π1e〉 < 0.
It follows that 〈ḡ+y+, e〉 > 0 and 〈ḡ−y−, e〉 < 0.

If π2e = 0 the above conclusion still holds, ignoring the FixG components. �

Lemma 8.3. Let yijk ∈ Rn, 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 + 1, 1 ≤ k ≤ n+ 1. Suppose that

(a) For each i, k the set {π2yijk : 1 ≤ j ≤ d2 + 1} does not lie in a halfspace in
FixG;

(b) For each k, any collection of d1 vectors in {π1yijk}i,j is a basis for W1.

Then there exist ḡijk ∈ G such that 0 ∈ co{ḡijkyijk}i,j,k.

Proof. Let M = d1(d2 + 1)(n + 1). For each M -tuple {ḡijk} ∈ GM , we associate the
convex set Kḡ = co{ḡijkyijk}. The map from GM to convex sets Kḡ is continuous. Let
d = minḡ∈GM dist{Kḡ, 0} and suppose for contradiction that d > 0. Choose ḡ ∈ GM

and x ∈ Kḡ such that d(x, 0) = d. Since x ∈ ∂Kḡ, by Caratheodory’s theorem
there exist h1, . . . , hn ∈ {ḡijk}i,j,k with corresponding ỹ1, . . . , ỹn ∈ {yijk}i,j,k such that
x ∈ co{h`ỹ`}. There is at least one d1(d2 +1)-tuple {yijk∗ : 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 +1}
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that does not include any of the ỹ`. Assumptions (a) and (b) in the statement of the
lemma translate into the corresponding hypotheses for Proposition 8.2, and hence
we can redefine one of the ḡijk∗ so that 〈ḡijk∗yijk∗ , x〉 < 0. The new convex set K ′

contains x and intersects the hyperplane through 0 orthogonal to x. It follows that
dist(K ′, 0) < d yielding the required contradiction. �

Proposition 8.4. Let (g1, v1), . . . , (gn+1, vn+1) ∈ G n Rn and δ > 0. Suppose that
{π2v1, . . . , π2vn+1} does not lie in a closed halfspace in FixG. Then there exist
(g̃i, ṽi) ∈ Bδ(gi, vi) such that co{w̃1, . . . , w̃n+1} has nonempty interior.

Proof. Without loss, we may suppose that {π2wd1+1, . . . , π2wn} is a basis for FixG.
As in Proposition 7.3, we can perturb g1, . . . , gd1 slightly (by conjugation) so that
there is a basis {z1, . . . , zd1} for W1 formed of vectors zi ∈ Fix gi ∩ W1. Define
w̃i(ε) = wi + εzi for 1 ≤ i ≤ d1 and w̃i(ε) = wi for d1 + 1 ≤ i ≤ n. The coefficient of
εd1 in det

(
w̃1(ε)| . . . |w̃n(ε)

)
is given by det

(
z1| . . . |zd1

)
× det

(
π2wd1+1| . . . |π2wn

)
6= 0.

Hence we can choose w̃i = w̃i(ε0) with ε0 arbitrarily small such that {w̃1, . . . , w̃n} is a
basis for Rn. Finally, perturb/scale wn+1 slightly if necessary to obtain the required
result. �

Proposition 8.5. Suppose that π2β : X → FixG is not cohomologous to a cocycle
with values in a halfspace. Then

(i) There exist periodic orbits P1, . . . , Pd2+1 ∈ X such that the vectors π2β(P1), . . . ,
π2β(Pd2+1) do not lie in a halfspace in FixG.

(ii) Set v∗` = π2β(P`)/|π2β(P`)|, ` = 1, . . . , d2 + 1. Then for any k ≥ 1 and
any ε > 0, there exist periodic orbits Pi` with disjoint orbits, 1 ≤ i ≤ k,
1 ≤ ` ≤ d2 + 1, such that π2β(Pi`)/|π2β(Pi`)| ∈ Bε(v

∗
` ) for all i, `.

Proof. The positive Livšic theorem of Bousch [1, Section 4] and the compactness of
the set of hyperplanes imply that there are finitely many periodic orbits P ′j , 1 ≤
j ≤ F , such that the set {π2β(P ′j) : 1 ≤ j ≤ F} does not lie in a halfspace of
FixG, and thus 0 ∈ Int co{π2β(P ′j) : 1 ≤ j ≤ F}. For any non-negative integers
nj that are not all zero, one can use shadowing arguments (see, for example [8,
Sections 5 and 6]) to obtain disjoint periodic orbits Q(n, nj) such that π2β(Q(n, nj)) =

n(
∑F

j=1 njπ2β(P ′j))+O(1). The periodic orbit Q(n, nj) starts at a point q(n, nj), that
is away from the periodic orbits P ′j , then shadows nnj times the orbit Pj for all j ∈ F ,
and finally returns to q(n, nj).

Choosing nj conveniently, one can obtain d2 + 1 periodic orbits P` such that 0 ∈
Int co{π2β(P`) : 1 ≤ ` ≤ d2 + 1}, proving (i). Given one of the periodic orbits P` in
(i), the above shadowing arguments yield a sequence of disjoint periodic orbits Qn

with π2β(Qn) = nπ2β(P`) +O(1), proving (ii). Again, the periodic orbit Qn starts at
a point qn, that is away from the periodic orbit P`, then shadows n times the orbit
P` and finally returns to qn. �

Proof of Theorem 8.1. We focus attention first on the L periodic points p3, p5, . . . , p2L+1,
relabelling these as pijk`, 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 + 1, 1 ≤ k, ` ≤ n + 1. Let
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β̄ijk` = (gijk`, vijk`) be the data for the cycle. By Proposition 8.5, we can choose the
periodic points pijk`, unit vectors v∗1, . . . , v

∗
d2+1 ∈ FixG, and ε > 0, such that

• v′1, . . . , v′d2+1 do not lie in a halfspace for all v′j ∈ Bε(v
∗
j )∩FixG, 1 ≤ j ≤ d2+1;

and
• π2vijk`/|π2vijk`| ∈ Bε/2(v∗j ) for all i, j, k, `.

Let Kijk = co{wijk` : 1 ≤ ` ≤ n + 1}. By Proposition 8.4, we can perturb so that
coKijk has nonempty interior. Choose yijk ∈ IntKijk satisfying the requirement that
whenever 1 ≤ j ≤ d2 + 1 we have π2yijk/|π2yijk| ∈ Bε/2(π2vijkj/|π2vijkj|) ⊂ Bε(v

∗
j ).

Then condition (a) of Lemma 8.3 is satisfied. Modify the choices if necessary so
that condition (b) is also satisfied. By Lemma 8.3, there exist ḡijk` ∈ G such that
0 ∈ Int co{ḡijk`wijk`}.

Next, we consider the L periodic points p2, p4, . . . , p2L, relabelling them as qijk`
(with corresponding periodic orbit Qijk`), where qijk` is the periodic point immediately
preceding pijk`. Since X × G is transitive, by Lemma 5.1 we can choose a new
heteroclinic cycle p′1 = p1, p

′
2, . . . , p

′
k, allowing us to specify βG(Qijk`) whilst keeping

the data (gijk`, vijk`) for pijk` almost unchanged. (The cocycle β is unchanged.) As
in the proof of Proposition 6.1, we can ensure that 0 ∈ Int co{u′3, . . . , u′2L+1}. �

8.2. The general case. Finally, we consider the general case with summands of
classes I, II and III. Write Rn = W1 ⊕ FixG⊕W3 where W1 contains the irreducible
representations of class I and W3 those of class III. Let d1 = dimW1, d2 = dim FixG,
d3 = dimW3, d1 + d2 + d3 = n.

Denote G0 = {g ∈ G | Fix(g) ∩W3 = {0}}. By the following Proposition 8.6, the
set G0 is open and dense in G.

Proposition 8.6. Suppose that V is a G-irreducible representation of class III. Then
the set U = {g ∈ G : Fix g = {0}} is open and dense in G.

Proof. Note that g ∈ U if and only if 1 is not an eigenvalue, which is an open condition.
By the definition of class III, there exists g0 ∈ U . Let T denote a maximal torus in
G containing g0. Then FixT = {0}, therefore Fix g = {0} for any generator g of T.
The set of elements of G that generate maximal tori is dense and all maximal tori are
conjugate, hence U is dense. �

We generalise Proposition 6.1 and Theorem 8.1 as follows:

Theorem 8.7. Let G n Rn be a general Euclidean-type group. Assume that the
compact group extension fβG : X × G → X × G is stably transitive. Assume further
that πβ : X → FixG is not cohomologous to a cocycle with values in a halfspace.

Set L = d1(d2 + 1)(d1 + d2 + 1)2, k = 2L + 1 and let p1 be a periodic point for
f : X → X. Then there exist

(i) a periodic heteroclinic cycle p1, . . . , pk in X;

(ii) a cocycle β̃ that is arbitrarily close to β in the Cr topology and such that β̃−β
is supported in an arbitrarily small neighborhood of the points p2, . . . , pk; and

(iii) a periodic heteroclinic cycle p′1 = p1, p
′
2, . . . , p

′
k with p′j arbitrarily close to pj

for j = 1, . . . , k;
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such that for any cocycle sufficiently Cr-close to β̃, the set {u1, . . . , uk+1} corre-
sponding to p′1, p

′
2, . . . , p

′
k has the property that u2, . . . , uk ∈ W1 ⊕ FixG and 0 ∈

Z(u2, . . . , uk).
Moreover, there are arbitrarily many heteroclinic cycles of this type that are disjoint,

except for the common point p1.

Proof. Let π̂ : Rn → W1⊕FixG be the orthogonal projection onto summands of class
I and II, and let π3 : Rn → W3 be the complementary projection. Let β̄j = (gj, vj)
be the data for the cycle p1, . . . , pk with associated vectors wj ∈ Fix gj.

By Theorem 8.1, we can make the choices in (i), (ii) and (iii), so that 0 ∈
Int co{π̂u2, . . . , π̂uk} ⊂ W1 ⊕ FixG where {u1, . . . , uk+1} is the set corresponding to
p′1, . . . , p

′
k. In particular, 0 ∈ Z(π̂u2, . . . , π̂uk) and this condition is stable to further

perturbations of the cocycle β̃.
By Proposition 8.6, we can perturb β̃ if necessary so that each gj lies in the open

dense subset G0. For each j, we have π3wj = 0 and so π3uj = 0. It follows that
Z(π3u2, . . . , π3uk) = {0} in a stable manner. Hence 0 ∈ Z(u2, . . . , uk) and this

condition is stable to further perturbations of the cocycle β̃. �

Let Γ3 = GnW3 be the Euclidean-type group corresponding to the summands of
class III.

Proposition 8.8. The set of (d3 + 3)-tuples in Γd3+3
3 that generate Γ3 as a closed

semigroup is residual.

Proof. This follows from [4, Equation (2.1) and Proposition 2.4]. �

Proof of Theorem 1.2. Following the proof of Proposition 6.2, starting with Theo-
rem 8.7 instead of Proposition 6.1, we obtain elements Aj = (gj, vj) ∈ Lβ(p1) that
can be perturbed independently and vary continuously with the cocycle. This time,
we construct d3 + 3 such elements Aj (rather than just 2 elements).

Let v′j ∈ W3 be the W3-component of vj, and consider A′j = (gj, v
′
j) ∈ GnW3. As

in the proof of Proposition 6.2, we adjust the holonomies Hj so that the perturbed
A′j, 1 ≤ j ≤ d3 + 3, generate G nW3 (whereas in Proposition 6.2 we required only
that the perturbed gj generate G). In view of Proposition 8.8, this can be done by
an arbitrarily small change.

We now rescale locally the (W1⊕FixG)-component of the cocycle (compared with
the Rn-component previously) to obtain from Corollary 4.2 that (W1⊕FixG) ·Aj ⊂
Lβ(p1) for each Aj. Note that A′j is unchanged by this rescaling and satisfies A′j ∈
(W1 ⊕ FixG) · Aj ⊂ Lβ(p1) for each j. Hence GnW3 ⊂ Lβ(p1).

In particular, (A′1)−1 ∈ GnW3 ⊂ Lβ(p1). Noting that A1(A′1)−1 ∈ W1⊕FixG, we
obtain W1 ⊕ FixG = (W1 ⊕ FixG) · Aj(A′j)−1 ⊂ Lβ(p1). This completes the proof
that Lβ(p1) = Γ. �
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