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Lattice models for diffusion
As discussed in the main text, it is standard in the Physics litera-
ture to consider deterministic lattice models for diffusion. We refer
to [1, 2, 3, 4] and also the survey article [5]. The advantage of this
approach is that there is a straightforward correspondence between
the equations, and their solutions, for the underlying models and the
skew-product systems.

In particular, [1, 2, 3] consider deterministic models for diffusion
and anomalous diffusion on the real line, by considering 1-periodic
maps f̃ : R → R. The periodicity defines cells of length 1; the
map f̃ may map outside the cell which causes diffusion into other
cells. Such systems have discrete translation symmetry Z. We con-
sider extensions of their models to higher dimensions and carry out
numerical simulations that confirm the predictions in the main part of
our paper. There is also a reflection symmetry in the work of [1, 2, 3]
that plays no role here and is suppressed throughout. (Though see
the second to last paragraph in the Summary and discussion section
of the main text.)

The class of dynamical systems with Z symmetry on the line
is in one-to-one correspondence with the class of skew-product sys-
tems on X × Z where X = [0, 1). The identification X × Z ∼= R
is given by (x, k) 7→ x + k. Similarly, we can write f̃(y) ∈ R as
f̃(y) = f(y) + v(y) where f(y) ∈ X , v(y) ∈ Z.

In this way, we obtain the skew product on X × Z given by
(x, k) 7→ (f(x), k + v(x)) where f : X → X , v : X → Z are
given by f(x) ≡ f̃(x) mod 1 and v(x) = f̃(x)− f(x).

Note that passing from f̃ to (f, v) introduces discontinuities as
does the reverse procedure. Whereas [1, 2, 3] initially specify f̃
and then derive (f, v), we take the equivalent approach of specify-
ing (f, v) from the outset (which implies then a choice of f̃ ). This
means that we can focus on the fundamental domainX for the action
of the symmetry group Z on R. From this point of view, a conve-
nient choice of map is to take f to be the Pomeau-Manneville inter-
mittency map from the main text (eq [10]) and to take v to be any
integer-valued map that is continuous (hence constant) and nonzero
for x near the neutral fixed point at zero. This corresponds exactly to
the approach in [3]. The mechanism for superdiffusion in the skew
product formulation is as follows: The dynamics spends very long
times near the neutral fixed point for f , corresponding to ballistic
propagation under f̃ = f + v along the axis. This leads to a process
on R that is asymptotically a linear drift (typically nonzero) superim-
posed with Brownian motion for γ < 1/2 and a stable Lévy process
for γ ∈ (1/2, 1).

Deterministic model for planar diffusion. Proceeding to two dimen-
sions, we replace the Euclidean group of planar rotations and transla-
tions by the discrete groupG = Z4nZ2 where Z2 consists of transla-
tions (x1, x2) 7→ (x1 + k1, x2 + k2) for k1, k2 ∈ Z, and Z4 consists
of rotations by angle 0, π/2, π, 3π/2 about the origin. The action
of Z4 on R2 is generated by (y1, y2) 7→ (−y2, y1). A fundamental
domain for the action of G on R2 is given by X = [0, 1

2
) × (0, 1

2
]

and the identification X ×G ∼= R2 is given by (x,A, k) 7→ Ax+ k
where x ∈ X , A ∈ Z4, k ∈ Z2.

Again there is a one-to-one correspondence between G-
equivariant deterministic diffusion models on R2 and skew product
maps on X ×G of the form (x,A, k) 7→ (f(x), Ah(x), k+Av(x))
where f : X → X , h : X → Z4, v : X → Z2. To obtain
strongly/weakly chaotic dynamics on X , a simple choice is to take

f(x1, x2) = (f1(x1),
1
2
x2) , (1)

with

f1(x1) =

{
x1(1 + 4γxγ1 ), 0 ≤ x1 < 1

4

2x1 − 1
2
, 1

4
≤ x1 < 1

2

. (2)

This map has a neutral fixed point (a nonhyperbolic saddle) at (0, 0)
and the dynamics is strongly/weakly chaotic for γ ∈ [0, 1

2
) and

γ ∈ ( 1
2
, 1) respectively.

In the strongly chaotic case, we predict normal diffusion. In the
anisotropic case (so h ≡ I2) this will be superimposed on a linear
drift; in the isotropic case where rotation symmetry is present, typi-
cally the drift term will vanish.

In the weakly chaotic case, we predict superdiffusion superim-
posed on a linear drift in the anisotropic case. In the isotropic
case, again the linear drift vanishes but moreover we predict that
the anomalous diffusion is suppressed in favour of Brownian mo-
tion. These predictions are borne out by the numerical experiments
described below.

Deterministic model for three-dimensional diffusion. Next, we con-
sider the three-dimensional case, replacing the Euclidean group of ro-
tations and translations by the discrete group G = OnZ3 where Z3

consists of translations (x1, x2, x3) 7→ (x1 + k1, x2 + k2, x3 + k3)
for k1, k2, k3 ∈ Z, and O is the 24 element group consisting of rota-
tion symmetries of the cube. The action of O on R3 is generated by
(x1, x2, x3) 7→ (−x2, x1, x3) and (x1, x2, x3) 7→ (x1,−x3, x2).
A fundamental domain for the action of G on R3 is given by X =
{x ∈ [0, 1

2
]2 : x2 ≤ x1, x3 ≤ x1} (we choose to be imprecise with

regard to the boundaries; this is unimportant since the dynamics sees
the boundary only for a set of initial conditions of measure zero) and
the identification X × G ∼= R3 is given by (x,A, k) 7→ Ax + k
where x ∈ X , A ∈ O, k ∈ Z3.

Once again there is a one-to-one correspondence between G-
equivariant deterministic diffusion models on R3 and skew product
maps on X ×G of the form (x,A, k) 7→ (f(x), Ah(x), k+Av(x))
where f : X → X , h : X → O, v : X → Z3. An example of a map
that generates strongly/weakly chaotic dynamics is

f(x1, x2, x3) =



 x1(1 + 4γxγ1 )
1
2
x2

1
2
x3

 0 ≤ x1 < 1
4

 2x1 − 1
2

min(2x1 − 1
2
, 1
2
x2)

min(2x1 − 1
2
, 1
2
x3))

 1
4
≤ x1 < 1

2

.

In the strongly chaotic case γ ∈ [0, 1
2
) and in the anisotropic case,

our predictions are the same as in two dimensions. However for weak
chaos γ ∈ ( 1

2
, 1) in the isotropic case, we predict that the anomalous

diffusion persists despite the rotation symmetry and that there is a
stable Lévy process.

Numerical experiment.We carry out a numerical verification of
our predictions in the case of weakly chaotic dynamics for two-
dimensional systems. For the base dynamics f : X → X , we use
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the map defined in (1), (2). In the numerics, we compute a dynami-
cal orbit (xn, An, kn) in the skew product and plot the sequence of
points yn = Anxn + kn on the R2-plane. We do this for both the
anisotropic case (h ≡ I2) and the isotropic case (where we choose
h to be rotation by π/2 independent of x). In both cases, we take
v = (v1, v2) with

v1(x) =

{
1 0 ≤ x1 ≤ 0.15

−2 0.15 < x1 ≤ 0.5

v2(x) =

{
3 0 ≤ x1 ≤ 0.33

1 0.33 < x1 ≤ 0.5

The results for the anisotropic and isotropic cases are shown in Fig-
ures 1 and 2 respectively confirming our theoretical results. In the
anisotropic case, the Lévy process is completely anti-symmetric for
f an intermittent map with a single neutral fixed point (just as in the
one dimension case (see Figure 2 of the main text). Hence the Lévy
flights are concentrated along a single direction in the plane.
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Fig. 1. Anisotropic case: Coordinate y1 as a function of time for a Z2 skew product driven by the Pomeau-Manneville map (1), (2) with γ = 0.7. Shown are the full
dynamics including the linear drift (left) and with the linear drift eliminated by subtracting the mean from the data (right).
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Fig. 2. Isotropic case: Coordinates y1 (left) and (y1, y2) (right) as functions of time for a Z4 n Z2 skew product driven by the Pomeau-Manneville map (1), (2) with
γ = 0.7.
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