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Abstract

These notes are not intended for publication. However, it seemed useful to
have the arguments in Section 6 of L.-S. Young, Statistical properties of dy-
namical systems with some hyperbolicity, Ann. of Math. 147 (1998) 585–650
written in a simplified form, in preparation for the case of flows (I. Melbourne
and P Varandas, Good inducing schemes for uniformly hyperbolic flows, and ap-
plications to exponential decay of correlations, Ann. Henri Poincaré 26 (2025)
921–945.) One definition is simplified, therefore bypassing an unclear argument.

1 Uniformly expanding maps

Let f : Rd → Rd be a C1+ map1 and let Λ ⊂ Rd be a compact f -invariant subset with
IntΛ = Λ. We assume that f : Λ → Λ is a transitive uniformly expanding map with
adapted norm | |, so there exists λ ∈ (0, 1) such that |Df(x)−1| ≤ λ for all x ∈ Λ.

Theorem 1.1 (Young [3]) There exists an open disk Y ⊂ Int Λ and a function
R : Y → Z+ ∪ {∞} such that

(i) Leb(R > n) = O(γn) for some γ ∈ (0, 1);

(ii) Each connected component of {R = n} is mapped diffeomorphically by fn

onto Y .2

∗Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
†CMUP and Departamento de Matemática, Universidade Federal da Bahia, 40170-110 Salvador,

Brazil
1A map is C1+ if it is C1 and Df is Hölder continuous.
2This is in the sense that fn is defined on an open neighbourhood of the connected component,

which gets mapped diffeomorphically by fn onto an open neighbourhood of Y .

1



Remark 1.2 Let P be the partition of Y consisting of connected components of
{R = n} for n ≥ 1. (It follows from Theorem 1.1(i) that P is a partition of Y mod 0.)
The induced map F = fR : Y → Y is a full-branch Gibbs-Markov map with partition
P and the partition elements are C1+-diffeomorphic to disks.

Our proof of Theorem 1.1 is essentially the same as in [3, Section 6] but we closely
follow the treatment in [1] which provides many of the details of arguments sketched
in [3]. Moreover, the definition of UL

nj below is slightly modified, leading to a simplified
proof, see Remark 1.5.

Remark 1.3 The combinatorics in the proof of Theorem 1.1 are identical to those
in [3, Section 6], [1] and [2]. Generally, the accompanying arguments are simpler here
since the setting of uniformly expanding maps is simpler. The only aspect that is
more complicated (also in [1]) is the need to consider invertibility domains since the
dynamics is not invertible.

Choice of constants Let Br(y) = {z ∈ Λ : |y − z| < r} for y ∈ Λ, r > 0. Choose
δ0 > 0 corresponding to invertibility domains. This means that for any y ∈ Λ,
x ∈ f−1y, there exists an inverse branch

f−1
x : Bδ0(y) → f−1

x Bδ0(y) ⊂ Bδ0(x).

As f is uniformly expanding and log | detDf | is Hölder continuous, we can choose δ0
so that the following bounded distortion property holds: there exists C1 ≥ 1 so that

| detDfn(x)|
| detDfn(y)|

≤ C1 (1.1)

for every n ≥ 1 and all x, y ∈ Λ such that |f jx − f jy| < 4δ0 for all 0 ≤ j ≤ n. Fix
L > 11 sufficiently large that

C1
2d − 1

(L− 1)d
<

1

4
(1.2)

and set δ = δ0/(L+ 1). By the assumptions on f , we can choose p ∈ Int Λ such that⋃
i≥1 f

−ip is dense in Λ. If necessary, shrink δ0 so that BLδ(p) ⊂ Λ. Choose N1 ≥ 1

such that
⋃N1

i=1 f
−ip is δ-dense in Λ. Finally, fix

ε ∈ (0, δ0/4) ∩ (0, δ(λ−1 − 1)). (1.3)

Construction of the partition We consider various small neighbourhoods De =
Beδ(p) with e ∈ {1, 2, L − 1, L}. Take Y = D1 to be the inducing set. Define a
partition {Ik : k ≥ 1} of D2 \ D1,

Ik =
{
y ∈ D2 : δ(1 + λk) ≤ |y − p| < δ(1 + λk−1)

}
.
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We define sets Yn and functions tn : Yn → N, and R : Y → Z+ inductively, with
Yn = {R > n}. Define Y0 = Y and t0 ≡ 0. Inductively, suppose that Yn−1 = Y \{R <
n} and that tn−1 : Yn−1 → N is given. Write Yn−1 = An−1 ∪̇Bn−1 where

An−1 = {tn−1 = 0}, Bn−1 = {tn−1 ≥ 1}.

Consider the neighbourhood

A
(ε)
n−1 =

{
y ∈ Yn−1 : dist(f

ny, fnAn−1) < ε
}

of the set An−1 and define UL
nj, j ≥ 1, to be the connected components of A

(ε)
n−1∩f−nDL

that are mapped diffeomorphically onto DL and satisfy

(fn|UL
nj)

−1(DL−1) ⊂ An−1.

Let
U e
nj = UL

nj ∩ f−nDe for e = 1, 2, L− 1.

(By construction, UL−1
nj ⊂ An−1.) Define R|U1

nj = n for each U1
nj and take Yn =

Yn−1 \
⋃

j U
1
nj. Finally, define tn : Yn → N as

tn(y) =


k, y ∈

⋃
j U

2
nj and fny ∈ Ik for some k ≥ 1

0, y ∈ An−1 \
⋃

j U
2
nj

tn−1(y)− 1, y ∈ Bn−1

and take An = {tn = 0}, Bn = {tn ≥ 1} and Yn = An ∪̇Bn.

Remark 1.4 By construction, property (ii) of Theorem 1.1 is satisfied. It remains
to verify that Leb(R > n) decays exponentially.

Remark 1.5 Our definition of UL
nj is different from what is written in [3]: we stip-

ulate that UL−1
nj is contained in An−1 whereas in [3] (see also [1]) it is seen as being

an immediate consequence of the other definitions for ε sufficiently small. As pointed
out in [2, Figure 2], this is not particularly obvious. In [2, Proposition 2.4], we at-
tempted to write a proof but this is also flawed. In the end, it turns out that the
slightly modified definition given here (which may well be what was intended in the
first place) sidesteps the issue altogether.

Visualisation of Bn. The set Bn is a disjoint union Bn =
⋃n

m=1Cn(m) where
Cn(m) is a disjoint union of collars around each component of {R = m}. Each
collar in Cn(m) is homeomorphic under fm to

⋃
k≥n−m+1 Ik with outer ring homeo-

morphic under fm to In−m+1, and the union of outer rings is the set {tn = 1}. Since
U2
nj ⊂ UL−1

nj ⊂ An−1, each new generation of collars Cn(n) does not intersect the
set

⋃
1≤m≤n−1Cn−1(m) of collars in the previous generations. A sample visualisation

after 7 generations is shown in Figure 1.
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R=2

Y

R=7

Figure 1: Visualisation of Y after 7 generations where there is one return at time 2
and one return at time 7. The pink region B7 consists of collars around the sets
{R = 2} and {R = 7} that have made a return. The two outermost shells {t7 = 1}
and {t7 = 2} of each collar are shown. The collars in B7 are diffeomorphic by f 2 and
f 7 respectively to an annulus; in reality the collar around {R = 2} should be slightly
distorted and the collar around {R = 7} more so (and smaller).

Proposition 1.6 For all n ≥ 1,

(a) A
(ε)
n−1 ⊂ {y ∈ Yn−1 : tn−1(y) ≤ 1}; and

(b) f−nBε(f
nx) ⊂ A

(ε)
n−1 for all x ∈ An−1.

Proof (a) Suppose for contradiction that y ∈ A
(ε)
n−1 but tn−1(y) ≥ 2. In particular,

y is contained in a collar in Cn−1(n − k) from the (n − k)’th generation for some
k ≥ 1. Let Q denote the outer ring of this collar with outer boundary Q1 and inner
boundary Q2. Then tn−1|Q ≡ 1 and tn−1(y) ≥ 2, so y lies inside the region bounded
by Q2.

Since y ∈ A
(ε)
n−1, we can choose x ∈ An−1 with |fnx− fny| < ε. Let ℓ be the line

segment connecting fnx to fny and define qj ∈ Qj ∩ f−nℓ for j = 1, 2.
Recall that Q is homeomorphic under fn−k to Ik. Moreover, fn−kqj lie in distinct

components of the boundary of Ik, so by (1.3)

|fn−kq1 − fn−kq2| ≥ δ(λk−1 − λk) = δ(λ−1 − 1)λk > ελk.

Hence
|fnq1 − fnq2| ≥ λ−k|fn−kq1 − fn−kq2| > ε.

But |fnq1 − fnq2| ≤ |fny − fnx| < ε so we obtain the desired contradiction.

(b) Let x ∈ An−1 and y ∈ f−nBε(f
nx). Note that y ∈ A

(ε)
n−1 if and only if y ∈ Yn−1.

Hence we must show that y ∈ Yn−1. If not, then there exists k ≥ 1 such that
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y ∈ {R = n− k}. Define Q ⊂ Cn−1(n− k) to be the outer ring of the corresponding
collar. Choosing q1 and q2 as in part (a) we again obtain a contradiction.

Lemma 1.7 There exists a1 > 0 such that for all n ≥ 1,

(a) Leb(Bn−1 ∩ An) ≥ a1 Leb(Bn−1).

(b) Leb(An−1 ∩Bn) ≤ 1
4
Leb(An−1).

(c) Leb(An−1 ∩ {R = n}) ≤ 1
4
Leb(An−1).

Proof (a) By construction, Bn−1 ∩ An = {tn−1 = 1}. Let Q ⊂ Cn−1(n− k) ⊂ Bn−1

be a collar (1 ≤ k ≤ n) with outer ring Q ∩ An = Q ∩ {tn−1 = 1}. Then fn−k maps
Q diffeomorphically onto

⋃
i≥k Ii and Q ∩ {tn−1 = 1} diffeomorphically onto Ik. In

particular, diam f jQ ≤ diam fn−kQ ≤ diamD2 = 4δ < 4δ0 for all 0 ≤ j ≤ n − k.
By (1.1),

Leb(Q)

Leb(Q ∩ An)
=

Leb(Q)

Leb(Q ∩ {tn−1 = 1})
≤ C1

Leb(
⋃

i≥k Ii)

Leb(Ik)
= C1D(d, λ, k)

where D(d, λ, k) =
(1 + λk−1)d − 1

(1 + λk−1)d − (1 + λk)d
. Since limk→∞D(d, λ, k) = (1− λ)−1, we

obtain that Leb(Q) ≤ C1D Leb(Q ∩ An) where D = supk≥1D(d, λ, k) is a constant
depending only on d and λ. Summing over collars Q, it follows that Leb(Bn−1) ≤
C1D Leb(Bn−1 ∩ An).

(b) By construction, U2
nj ⊂ UL−1

nj ⊂ An−1 for each j. It follows that An−1 ∩ Bn =⋃
j U

2
nj \ U1

nj. Again, diam fmUL−1
nj ≤ diam fnUL−1

nj = diamDL−1 ≤ 2(L − 1)δ < 2δ0
for all 0 ≤ m ≤ n− k, so by (1.1) and (1.2),

Leb(U2
nj \ U1

nj)

Leb(UL−1
nj )

≤ C1
Leb(D2 \ D1)

Leb(DL−1)
= C1

2d − 1

(L− 1)d
<

1

4
.

Hence
Leb(An−1 ∩Bn)

Leb(An−1)
≤

∑
j Leb(U

2
nj \ U1

nj)∑
j Leb(U

L−1
nj )

<
1

4
.

(c) Proceeding as in part (b) with U2
nj \ U1

nj replaced by U1
nj, leads to the estimate

Leb(An−1 ∩ {R = n})
Leb(An−1)

≤
∑

j Leb(U
1
nj)∑

j Leb(U
L−1
nj )

≤ C1

(L− 1)d
<

1

4
.

Corollary 1.8 For all n ≥ 1,

(a) Leb(An−1 ∩ An) ≥ 1
2
Leb(An−1).

5



(b) Leb(Bn−1 ∩Bn) ≤ (1− a1) Leb(Bn−1).

(c) Leb(Bn) ≤ 1
4
Leb(An−1) + (1− a1) Leb(Bn−1).

(d) Leb(An) ≥ 1
2
Leb(An−1) + a1 Leb(Bn−1).

Proof Recall that An−1 ⊂ Yn−1 = Yn ∪̇ {R = n} = An ∪̇Bn ∪̇ {R = n}. Hence by
Lemma 1.7(b,c),

Leb(An−1) = Leb(An−1 ∩ An) + Leb(An−1 ∩Bn) + Leb(An−1 ∩ {R = n})
≤ Leb(An−1 ∩ An) +

1
2
Leb(An−1),

proving (a). Similarly, by Lemma 1.7(a),

Leb(Bn−1) = Leb(Bn−1 ∩ An) + Leb(Bn−1 ∩Bn) + Leb(Bn−1 ∩ {R = n})
≥ a1 Leb(Bn−1) + Leb(Bn−1 ∩Bn),

proving (b).
Next, recall that Bn = Bn ∩ Yn−1 = Bn ∩

(
An−1 ∪̇Bn−1

)
. Hence part (c) follows

from Lemma 1.7(b) and part (b). Similarly, An = An ∩
(
An−1 ∪̇Bn−1

)
and part (d)

follows from Lemma 1.7(a) and part (a).

Corollary 1.9 There exists a0 > 0 such that Leb(Bn) ≤ a0 Leb(An) for all n ≥ 0.

Proof Let a0 =
2 + a1
2a1

. We prove the result by induction. The case n = 0 is trivial

since B0 = ∅. For the induction step from n−1 to n, we consider separately the cases
Leb(Bn−1) >

1
2a1

Leb(An−1) and Leb(Bn−1) ≤ 1
2a1

Leb(An−1).

Suppose first that Leb(Bn−1) >
1

2a1
Leb(An−1). By Corollary 1.8(c),

Leb(Bn) <
{

1
2
a1 + (1− a1)

}
Leb(Bn−1) = (1− 1

2
a1) Leb(Bn−1) < Leb(Bn−1).

By Corollary 1.8(d),

Leb(An) > (1
2
+ a1

1
2a1

) Leb(An−1) = Leb(An−1).

Hence by the induction hypothesis,

Leb(Bn) < Leb(Bn−1) ≤ a0 Leb(An−1) < a0 Leb(An),

establishing the result at time n.
Finally, suppose that Leb(Bn−1) ≤ 1

2a1
Leb(An−1). By Corollary 1.8(a,c),

Leb(Bn) ≤ 1
4
Leb(An−1) + Leb(Bn−1) ≤ (1

4
+ 1

2a1
) Leb(An−1)

≤ (1
2
+ 1

a1
) Leb(An) = a0 Leb(An),

completing the proof.
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Lemma 1.10 There exist c1 > 0 and N ≥ 1 such that

Leb
( N⋃

i=0

{R = n+ i}
)
≥ c1 Leb(An−1) for all n ≥ 1.

Proof Fix λ ∈ (0, 1), L > 11, δ > 0, δ0 = (L + 1)δ, N1 ≥ 1 and ε > 0 as defined
from the outset. Choose N2 ≥ 1 such that λN2 < ε/δ0 and take N = N1 +N2.

We claim that

(*) For all z ∈ Λ, there exists i ∈ {1, . . . , N1} such that f i+N2Bε(z) ⊃ DL.

Fix z ∈ Λ. By the definition of N1, there exists 1 ≤ i ≤ N1 and q ∈ f−ip such
that |q− fN2z| < δ. Let y ∈ DL. By the choice of δ0 and backward contraction, there
exists x ∈ f−iy such that |x− q| ≤ |f ix− f iq| = |y − p| < Lδ. Hence

|x− fN2z| ≤ |x− q|+ |q − fN2z| < (L+ 1)δ = δ0.

By the definition of N2,

y = f ix ∈ f iBδ0(f
N2z) ⊂ f i+N2Bε(z).

This means that DL ⊂ f i+N2Bε(z) proving (*).
Next, we claim that

(**) For all z ∈ fnAn−1, n ≥ 1, there exist i ∈ {0, . . . , N} and j such that U1
n+i,j ⊂

f−nBδ0/2(z).

To prove (**), choose x ∈ An−1 with fnx = z. Fix an invertibility domain Vε with
z ∈ Vε ⊂ Λ, diffeomorphic under fn to Bε(z).

By Proposition 1.6(b), Vε ⊂ f−nBε(f
nx) ⊂ A

(ε)
n−1. We now consider two possible

cases.
Suppose first that Vε ⊂ An+i for all 0 ≤ i ≤ N . By claim (*), there exists

1 ≤ i ≤ N = N1 + N2 such that fn+iVε = f iBε(z) ⊃ DL, while Vε ⊂ An+i−1 by
assumption. This means that Vε ⊃ UL

n+i,j for some j. Hence

U1
n+i,j ⊂ UL

n+i,j ⊂ Vε ⊂ f−nBε(z) ⊂ f−nBδ0/4(z),

and we are done.
In this way, we reduce to the second case where there exists 0 ≤ i ≤ N least such

that Vε ̸⊂ An+i. Since i is least, Vε ⊂ A
(ε)
n+i−1. (The ε is required in case i = 0.) By

Proposition 1.6(a), Vε ⊂ {tn+i−1 ≤ 1}. Hence

Vε \ An+i = (Vε ∩Bn+i) ∪ (Vε ∩ {R = n+ i})

⊂ {tn+i−1 ≤ 1, tn+i ≥ 1} ∪ {R = n+ i} ⊂
⋃
j

U2
n+i,j.
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Since Vε \ An+i ̸= ∅, this means that there exists j so that Vε intersects U
2
n+i,j.

Recall that fn+iU e
n+i,j = De for e = 1, 2. In particular, f iBε(z) = fn+iVε intersects

D2. Choose a ∈ f iBε(z) ∩ D2 and let b ∈ D1. Since |a− b| < 3δ < δ0, we can choose
preimages a′,b′ of a,b under f i such that |a′ − b′| ≤ |a− b| < 3δ = 3δ0/(L+ 1) < δ0/4
and |a′ − z| < ε < δ0/4. It follows that |b′ − z| < δ0/2 and so b ∈ f iBδ0/2(z). This
proves that D1 ⊂ f iBδ0/2(z). Hence U1

n+i,j ⊂ f−(n+i)D1 ⊂ f−nBδ0/2(z) verifying
claim (**).

We are now in a position to complete the proof of the lemma. Let n ≥ 1, and
let Z ⊂ fnAn−1 be a maximal set of points such that the balls Bδ0/2(z) are disjoint
for z ∈ Z. If x ∈ fnAn−1, then Bδ0/2(x) intersects at least one Bδ0/2(z), z ∈ Z, by
maximality of the set Z. Hence fnAn−1 ⊂

⋃
z∈Z Bδ0(z). It follows that

An−1 ⊂
⋃
z∈Z

f−nBδ0(z).

Let z ∈ Z and let Uz = U1
n+i,j be as in claim (**). In particular, fn+iUz = D1 =

Bδ(p). Hence
Leb(Bδ(p)) = Leb(fn+iUz) ≤ |Df |id∞ Leb(fnUz).

By (1.1),
Leb(f−nBδ0(z))

Leb(Uz)
≤ C1

Leb(Bδ0(z))

Leb(fnUz)
≤ K,

where K = C1|Df |Nd
∞

Leb(Bδ0(z))

Leb(Bδ(p))
= C1|Df |Nd

∞ (δ0/δ)
d.

Finally, the sets Uz are connected components of
⋃

0≤i≤N{R = n + i} lying in
distinct disjoint sets f−nBδ0/2(z). Hence

Leb(An−1) ≤
∑
z∈Z

Leb(f−nBδ0(z)) ≤ K
∑
z∈Z

Leb(Uz) ≤ K Leb
( ⋃

0≤i≤N

{R = n+ i}
)
,

as required.

We can now complete the proof of Theorem 1.1.

Corollary 1.11 Leb(R > n) = O(γn) for some γ ∈ (0, 1).

Proof By Corollary 1.9 and Lemma 1.10,

Leb(R ≥ n) = Leb(An−1) + Leb(Bn−1)

≤ (1 + a0) Leb(An−1) ≤ d2 Leb
( N⋃

i=0

{R = n+ i}
)

where d2 = c−1
1 (1 + a0). It follows that

d−1
2 Leb(R ≥ n) ≤ Leb(R = n) + · · ·+ Leb(R = n+N)

= Leb(R ≥ n)− Leb(R > n+N).
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Hence
Leb(R > n+N) ≤ (1− d−1

2 ) Leb(R ≥ n).

In particular, Leb(R > kN) ≤ γkN with γ = (1− d−1
2 )1/N and the result follows.
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26 (2025) 921–945.

[3] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity.
Ann. of Math. 147 (1998) 585–650.

9


	Uniformly expanding maps

