Symmetric w-limit sets for smooth I'-equivariant
dynamical systems with 'V abelian *

Tan Melbourne T Ian Stewart
Department of Mathematics Mathematics Institute
University of Houston University of Warwick
Houston, Texas 77204-3476 Coventry CV4 7TAL
USA England

July 9, 1997

Abstract

The symmetry groups of attractors for smooth equivariant dynamical
systems have been classified when the underlying group of symmetries I'
is finite. The problems that arise when I' is compact but infinite are of a
completely different nature. We investigate the case when the connected
component of the identity I'? is abelian and show that under fairly mild
assumptions on the dynamics, it is typically the case that the symmetry
of an w-limit set contains the continuous symmetries I'?. Here, typicality
is interpreted in both a topological and probabilistic sense (genericity and
prevalence).

1 Introduction

Symmetric dynamical systems are common in models of natural or technological
systems. For symmetric dynamical systems, attention has recently been focused
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upon the question ‘what is the symmetry group of an w-limit set?” We here
consider only the case of discrete dynamics.

More precisely, let I' be a compact Lie group acting on R". As usual, we may
identify I" with a closed subgroup of the group O(n) of n x n orthogonal matrices,
so that the action is simply matrix multiplication of vectors in R". Recall that
a mapping f : R" — R" is I'-equivariant if f(yz) = vf(x) for every v € I' and
x € R"™.

Suppose that A is an w-limit set for the I'-equivariant map f. We define the
symmetry group of A to be the subgroup

Ya={yeTl, yA= A}

Since A is a closed subset, Y4 is a closed subgroup of I'. The subgroup ¥4 has a
physical interpretation as symmetry on average, see Dellnitz et al. [10, 28|.

A converse question arises: which closed subgroups of I' can be realized as
the symmetry group of such an w-limit set? This has a simple answer for two
‘classical’ cases. If A = {z} is a fixed point for f, then X, is just the isotropy
subgroup X, = {y € I, yo = z} of the point . If A is a periodic orbit, then ¥4
contains the isotropy subgroup of the points in A and is a cyclic extension of this
isotropy subgroup.

An important observation (both for theory and applications) is that for more
complicated w-limit sets the subgroup >4 may be much larger than the isotropy
subgroup of any individual point in A. Recent results of [28, 4, 15] yield a good
understanding of the case when I' is finite. In particular, for ‘most’ actions of
I' (such as the high-dimensional or infinite-dimensional actions that arise in ap-
plications) ¥4 can be any subgroup of I'. Furthermore, each subgroup of I can
be realized by an Axiom A attractor [15] and thus occurs in a structurally stable
manner.

The situation is quite different when I' is not finite. Now we can hope to
perturb f along continuous group orbits to show that certain subgroups of I' arise
as the symmetry group of an w-limit set only in degenerate situations. Hence we
are interested in classifying those subgroups that arise typically.

These problems are well-understood for relative periodic orbits, [13, 23]. Write
A = w(zy) where 25 € R". We say that A is a relative periodic orbit if A is con-
tained in the union of finitely many I'-orbits in R”. That is, if we pass to the orbit
space R"/T" then A becomes a periodic orbit. We give three examples, assuming
throughout that f is smooth and that A contains points of trivial isotropy.

Examples when A is a relative periodic orbit[13, 23]

1. If I' = SO(2) then generically ¥4 = SO(2).



2. If ' = O(2) then generically ¥4 = SO(2) or ¥4 = D; (a two element
subgroup of O(2) generated by a reflection).

3. If ' = O(3) then generically ¥4 = SO(2) or ¥4 = SO(2) @ Z§. (Here Z§ is
the two element subgroup generated by —I, where I is the identity.)

We are interested in obtaining similar results when A is an arbitrary w-limit
set. As before, we restrict to the case when f is smooth and A contains at least
one point with trivial isotropy. For the examples above, the following results are
currently known.

Examples when A is a general w-limit set
1" If ' = SO(2) then generically ¥4 = SO(2).

2" If ' = O(2) and the dynamics in A is ‘mildly irregular’ then generically
Y4 =S0(2) or ¥4 = O(2).

3 If ' = O(3) and the dynamics in A is ‘very irregular’ then generically
EA = SO(3) or EA = 0(3)

Define I'° to be the connected component of the identity in I'. In the second
set of examples, the conclusion is that generically ¥4 contains I'°. The results
in 1’ and 2’ are obtained in this paper; here I'° is abelian. Of course, for 2’
we must explain what we mean by ‘mildly irregular’. The result in 3’ is proved
in [3] (see also [11]) and ‘very irregular’ includes the cases of hyperbolic dynamics.
Stronger results concerning the lifting of ergodicity, mixing and so on, can be
found in [16]. Other relevant results in the smooth context in the ergodic theory
literature include [6, 7, 30].

Smoothness, irregularity of dynamics and typicality There are various
issues such as smooth versus nonsmooth dynamical systems, regular versus ir-
regular dynamics, and topological versus measure-theoretic ‘typicality’ that are
intertwined and require clarification.

The questions addressed in this paper are well-understood for mappings that
are measurable [24, 31] or continuous [14]: generically I'® C ¥ 4. This includes
the case when A = w(xy) is a relative periodic orbit provided zo & A. Hence, the
expected behavior of smooth and nonsmooth dynamical systems is quite different
when there is a relative periodic orbit, and it is the smooth context that is required
for applications.

Comparison of the two sets of examples above for smooth dynamical systems
indicates that the typical symmetry of A depends on the dynamics on A. More-
over, an example in [12] shows that for ‘intermediate’ situations, such as irrational
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rotations on tori, the ‘generic’ outcome and the ‘probable’ outcome for >4 may
differ. In this paper, our irregularity assumptions are such that ' C ¥4 holds
typically both in the topological sense (genericity) and in the measure-theoretic
sense (prevalence [20]).

In this paper we develop a method for attacking the case when I'’ is abelian.
Our results are particularly complete when the whole of T' is abelian (including
Example 1’ above), as we describe in the remainder of the introduction.

Suppose that I' C O(n) is an abelian compact Lie group and that f : R" — R"
is a [-equivariant mapping with w-limit set A = w(xg). A I'-cocycle is a map
¢ : R* — I'%. We form a perturbation of f by defining fs(z) = ¢(z)f(z).
Note that fy is automatically I'-equivariant (since I is abelian) and has the same
dynamics as f up to displacements along the continuous part of the group. Let
Ay denote the w-limit set of 2y under fy.

Let Z; denote the space of compactly supported C* I'-cocycles.

Theorem 1.1 For each nonnegative integer k, there is a residual and prevalent
subset Z C 2y such that Y4, contains I'% for each ¢ € Z.

The definitions of residual and prevalent are given in §3.2. Roughly speaking, the
prevalence property means that ¥4, contains I'% for ‘almost every’ C* I'-cocycle
0.

As indicated in [26], Theorem 1.1 reduces to showing that if {sx} is an un-
bounded sequence of real numbers then the set {szf mod 1} is dense in [0, 1) for
almost every # € [0,1). In the special case when s, = 2¥ we have the orbit {2%6}
of an initial condition # under the expanding circle map g : S* — S* that doubles
angles. It is a well known fact from dynamical systems theory that almost every
point in S! has a dense orbit under g. Hence it is natural to use dynamical sys-
tems methods for general sequences {s;} and to consider the ezpanding sequence
of maps defined by g, (0) = s;0.

In §2 we consider such expanding sequences and their generalization to se-
quences of d x d matrices with real entries applied to # € [0,1)%. In particular, we
prove that such sequences are mixing when a suitable expansivity condition is sat-
isfied. This result generalizes (and relies on) a theorem of Berend and Bergelson [5]
formulated in the case when the matrices have integer entries. (The theorem of [5]
in turn generalizes the classical result which states that expanding endomorphisms
of tori are mixing.)

In §3, we give a precise statement and proof of Theorem 1.1. In §4 we obtain
fairly powerful results when I'? is abelian but I' is not necessarily abelian. Finally,
in §5 we generalize our results to include w-limit sets lying in fixed-point subspaces
corresponding to isotropy subgroups of I'.
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2 Expanding sequences on the torus

Throughout this section, A denotes Lebesgue (or Haar) measure on [0,1)? or T¢.
Consider the expanding map on the circle S' = T' defined by ¢g(#) = 20. The map
g preserves Haar measure and it is well known that g is ergodic. A consequence
is that A-almost every point has a dense orbit in S' under iteration by g. Said
differently, the sequence {2%6} is dense in S* for almost every 0 € S*.

Now suppose that {n;} is an arbitrary sequence of integers. We can ask the
question: is the sequence {n;f} dense in S' for almost every 6?7 It is clearly
necessary that the sequence {n;} is unbounded and this turns out also to be
sufficient.

Even more generally, we consider an arbitrary sequence of real numbers {s}.
The sequence {sif} is no longer well defined but we show that {syf mod 1} is
dense in [0,1) for almost every 6§ € [0,1) if and only if {s,} is unbounded. We
also consider analogous questions on higher-dimensional tori (or [0,1)%).

In later sections of this paper, we shall draw heavily on the results of this
section. However, much of the time the considerably simpler one-dimensional
case will suffice. This case is covered in §2.1 and the higher-dimensional case in
§2.2.

2.1 Expanding sequences on the circle

Definition 2.1 Suppose that {s;} is a sequence of real numbers and |s;| — oc.
Then the sequence of mappings g : [0,1) — [0,1) defined by gx(f) = s, mod 1
is an ezpanding sequence on [0, 1).

Theorem 2.2 Suppose that {gx} is an expanding sequence on [0,1). Then A\(EN
9 (F)) = ME)XF) as k — oo for all measurable sets E, F C [0,1).

Proof This result is a special case of Theorem 2.6 below and can also be proved
by a direct computation. |

Theorem 2.2 states that expanding sequences on [0, 1) are strong mixing, where
the usual notion of strong mixing for maps is extended in the obvious way. Namely,
if p is a probability measure on X then a sequence of measurable maps g; : X — X
is strong maixing if

WEN g (F) = u(B)u(F)

as k — oo for all measurable sets E, FF C X. (We do not require that the maps
gk are measure preserving.)



Some (but not all, see [5]) of the standard properties of strong mixing maps
go through for strong mixing sequences. Two that we require are the following.

Proposition 2.3 Suppose that the sequences g : X — X and hy : Y — Y are
strong mizing with respect to measures px and jy. Then

(a) If the support of ux is the whole of X, then the orbit {gi(x)} is dense in X
for ux-almost every x € X.

(b) The cartesian product g, X hy, : X XY — X x Y is strong mizing (with
respect to the product measure px X py ).

Proof Asin the case of strong mixing maps, these properties for strong mixing
sequences follow directly from the definitions. |

Corollary 2.4 Suppose that {sx} is a sequence of real numbers. For each 6 €
[0,1) consider the orbit {si0} computed modl. This orbit is dense in [0,1) for
A-almost every 0 € [0,1) if and only if {sx} is unbounded.

Proof If {s;} is bounded, then the orbit {s;f} is bounded away from 1/2 for 8
small enough and in particular is not dense. Conversely, if {s;} is unbounded, we
can pass without loss to a subsequence so that |s;| — oco. The resulting sequence
of maps is expanding and hence strong mixing by Theorem 2.2. The required
conclusion follows from Proposition 2.3(a). |

Thanks to Proposition 2.3(b) we have an immediate extension to higher-
dimensional tori.

Corollary 2.5 Suppose that {sy} is a sequence of real numbers. For each 6 €
[0,1)¢ consider the orbit {sx0} where each of the d components is computed mod 1.
This orbit is dense in [0,1)¢ for A-almost every 0 € [0,1)? if and only if {si} is
unbounded.

2.2 Expanding sequences on higher-dimensional tori

Suppose that g: T¢ — T? is a continuous homomorphism of the torus. Then
it is well known, see for example [25], that g can be represented uniquely as a
linear map § on R? with integer coefficients. More precisely, 7§ = gm where
7: R —» T = Rd/Zd is the canonical projection. The map g preserves Haar
measure and is ergodic (and strong mixing) if and only if no eigenvalue of § is



a root of unity. If each eigenvalue has absolute value greater than one, then the
map g is said to be expanding.

Berend and Bergelson [5] considered generalizations of this result to sequences
of continuous homomorphisms g, : T¢ — T<¢. In particular, they proved that if
the sequence is ezpanding in the sense that g, ' — 0 as k — oo, then {g;} is strong
mixing.

Now suppose that § is a nonsingular linear map on R? with arbitrary real
entries. Then § induces a pseudo-homomorphism g : [0,1)% — [0,1)¢ defined by
g(0) = g(f) mod Z4. As before, we say that the sequence {gi} is expanding if
G;' — 0. We have the following generalization of the theorem of Berend and
Bergelson.

Theorem 2.6 Ezpanding sequences of pseudo-homomorphisms g, : [0,1)% —
[0,1)? are strong mizing.

Proof Define a sequence of homomorphisms hy, : T¢ — T by setting hy, : R¢ —

R? to be the linear map whose entries are the integer parts of the corresponding

entries of g - Let || || denote the operator norm with respect to the Euclidean

norm on R%. Then ||gx — hy|| < 1 and it follows that |1 — g, Al < ||91;1|| — 0.

In particular, we have that hj; is invertible, that hk g — I, and that h — 0.

The theorem of Berend and Bergelson guarantees that hy is strong mixing.
Suppressing subscript k’s, we compute that

MENg'F) = Z)\EHN_IF-H”L))
nezd
= |deth™'g| ™" Y AR 'GE N RN (F +n))
nezd

= |deth'§| AR 'GENRTIF).

(We temporarily extended the measure A to Lebesgue measure on R¢) Now,
deth™'§ — 1 as g~' — 0. In addition, we have

MATTGENRIF) = ME)AF)| < IMRYGENKIF) = MENh™LF)|
+ I MENRTF) = ME)A(F)|.

The second term in the right-hand-side converges to zero since hy, is strong mixing.
It remains to show that the first term converges to zero. But

INRTIGENRTIF) = NENR'F)| < Mh'GEAE),



which clearly converges to zero if E is compact and hence does so for all measurable
sets E C [0,1)¢. We conclude that A(ENg 'F) — ME)A(F) as g ' — 0. n

The following corollary is sufficient for the applications in the later sections.

Corollary 2.7 Suppose that {Si} is a sequence of (eventually) invertible linear
operators on R%. For each 0 € [0,1)? consider the orbit {Sxf} where the entries
are computed mod1l. This orbit is dense in [0,1)¢ for A\-almost every 6 € [0,1) if
and only if the sequence ||S; || 7! is unbounded.

Proof Mimic the proof of Corollary 2.4. |

3 The case I' abelian

In this section we prove Theorem 1.1 by following the ideas in [26], but making
them completely precise. In so doing we introduce a general method for addressing
issues concerning the subgroups that typically arise as symmetry groups of w-limit
sets.

In §3.1, we restate the main result. In particular, we define an appropriate
class of perturbations — smooth I'-cocycles — and we define typicality in terms
of sets of cocycles that are both residual and prevalent in the set of all cocycles.
These notions of residuality (or genericity) and prevalence are recalled in §3.2. Tt is
also shown that for the problem at hand, genericity is a consequence of prevalence.
The proof is given in §3.3.

3.1 Statement of the result

We begin by specifying the requisite class of perturbations. Cocycle extensions are
considered extensively in the ergodic theory literature, see for example 24, 31].
For the moment, we shall not make any assumptions on the group I

A T-cocycle is a map ¢ : R" — I'? satisfying the equivariance condition

P(vz) = yo(z)y~, (3.1)

for all v € I'. If k£ is a non-negative integer or k£ = oo we let Z; denote the space
of compactly supported C* I'-cocycles. Note that Z; is a group under pointwise
multiplication and is abelian if I'? is abelian. Moreover, Z; equipped with the C*
uniform topology has the structure of a complete metric space and a topological

group.



Now suppose that f : R" — R" is a C* I'-equivariant map and that z, € R".
Let A = w(zg) denote the w-limit set of zy under f. For each cocycle ¢ € Z; define
fs(z) = ¢(z) f(x) and let Ay denote the w-limit set of 2 under f;. The mapping
fs : R" — R" is called the extension of f by the cocycle ¢ and is I'-equivariant by
condition (3.1).

When ¢ is near the identity we think of fs as a small perturbation of f,
in which case Ay is the perturbed w-limit set. Then we are interested in the
symmetry group Y4, of Ay.

Remark 3.1 (a) Extension by a cocycle does not change the underlying dynamics
corresponding to f, only the movement along group orbits. Indeed, if we quotient
out by the connected component I'° and pass to the mapping on the orbit space
defined by f: R"/T% — R"/T° then f, = f for all ¢ € Z,.

(b) We consider cocycles with values in T'° rather than the whole of T' since we
are interested only in the effects of small perturbations.

Theorem 3.2 Let I' C O(n) be an abelian compact Lie group, and let A = w(x)
be an w-limit set for the I'-equivariant map f : R™ — R"™. Define

Z={¢€2:T°CIy} (3.2)
Then Z is a residual and prevalent subset of Zj.

Remark 3.3 (a) The statement and proof of Theorem 3.2 are valid more gener-
ally for any compact Lie group I" where I'° is central in T, that is elements of T'
commute with all elements in I'. (Note that this condition implies that T is a
torus.) In particular, I' may be any group of the form T x H where T is a torus
and H is finite.

(b) Theorem 3.2 has an ergodic-theoretic analogue (except that prevalence is
not mentioned — the notion had not been defined at the time): see Jones and
Parry [22]. The results in later sections, in particular Theorem 4.13, are not to
our knowledge to be found in the ergodic theory literature.

(c) The definitions of residual and prevalent sets are recalled in §3.2, where we
also show that it is sufficient to prove prevalence of the set Z in (3.2).

3.2 Residual and prevalent sets

Suppose that X is a complete metric space and that R C X is a subset. The
set R is said to be residual in X if there are countably many open dense subsets
U; C X such that (), U; C R. Residual subsets are dense in X (every complete
metric space is a Baire space), and in particular they are nonempty.
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Often a property is said to hold generically in X if it holds on a residual subset.
The implicit suggestion is that residual sets are in some sense large. However it
is well known that even in R there are residual sets of Lebesgue measure zero.
In finite dimensions it is reasonable to require large sets to have large measure
(ideally their complements should have measure zero). In order to make sense of
such a requirement in infinite dimensions, Hunt, Sauer and Yorke [20] introduce
the notion of prevalence. Although formulated primarily for vector spaces, this
notion also applies to abelian topological groups [21], and we recall the definition
of prevalence in this context (see also [9]). It is also possible to define prevalence
in a reasonable way for nonabelian topological groups, see Mycielski [29].

Suppose that in addition to being a complete metric space, X is also an abelian
topological group (whose group operations are continuous with respect to the
topology induced by the metric).

Definition 3.4 A Borel subset R C X is prevalent if there is a compactly sup-
ported probability measure y defined on the Borel sets in X such that

uly € X,x+y € R)=1, forall x € X.
A general subset R C X is prevalent if it contains a prevalent Borel set.

Remark 3.5 Hunt et al. introduce additional terminology where the complement,
X — R of the prevalent set R is said to be shy and the measure pu is transverse to
X — R. We do not require these notions here.

For convenience we recall some basic properties of prevalence, see Hunt et
al. [20] for details.

Proposition 3.6 ([20]) Suppose that X has the structure of a complete metric
space and an abelian topological group.

(a) If R is prevalent then so is every translate R + z.
(b) Prevalent sets are dense.
(c) A countable intersection of prevalent sets is prevalent.

(d) If X is a compact group, then the prevalent subsets are precisely those of full
Haar measure.

The only property of prevalent sets that we shall make explicit use of in this paper

is (b).
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Proposition 3.7 ([14]) Suppose that T' C O(n) is a compact Lie group, and that
f:R" = R" is a continuous I'-equivariant map with w-limit set A = w(xy). Then
Z 1s a countable intersection of open sets.

Proof Let W = U’YEFO ~vA. Then it is clear that Ay, C W for all ¢ € Z;. Hence
Z consists of those cocycles for which A, = W. Let {WW,,} be a countable base for
W and set

Zm,n = U {(b € Zka fé(xﬂ) € Wn}

jzm

Then each of the Z,, ,, is open and Z = ﬂmn Zmn- |

Corollary 3.8 Under the assumptions of Proposition 3.7,
(a) Z is residual in Zy if and only if Z is dense.

(b) If Z is prevalent in Zy, then Z is residual.

Proof As mentioned previously, residual sets are dense. Conversely, if Z is dense
then Proposition 3.7 implies that Z is a countable intersection of open dense sets,
and hence is residual, proving (a). If I'° is abelian then part (b) is immediate
by Proposition 3.6(b). Even if T is not abelian, we can appeal to the results
of [29]. |

Remark 3.9 We have seen that prevalence of Z automatically implies that 7
is residual. The converse is not true: Eliasson [12] considers an example where
' = SO(3) and Z is residual but not prevalent. Indeed in a probabilistic sense
Z is rather small (though not of measure zero) with ¥4, = SO(2) preferred to
Y4 = SO(3). The w-limit set A in [12] is a torus with a constant irrational flow
(where the constant satisfies a Diophantine condition).

Our main interest in this paper is in the case '’ abelian, but it seems highly
plausible that the result of [12] is valid also when I' = O(2) with D; C O(2)
playing the role of SO(2) C SO(3).

Remark 3.10 Prevalence and genericity are often opposing notions, and it is
questionable how useful either notion is on its own. However, either notion implies
density and this is a standard use of the theory of residual sets. Given the remarks
in [20] it is amusing to observe that we use the fact that prevalent sets are dense
to show that the set Z defined in (3.2) is residual.

This observation has some nontrivial content when we prove genericity in the
C® topology. The perturbations that we use are C*-small for k finite but are not
C* small. We have no direct proof that Z C Z, is residual. Rather, we prove
prevalence, deduce density and apply Corollary 3.8.
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3.3 Proof of Theorem 3.2

A key step in the proof of Theorem 3.2 is to consider a class C of ‘almost constant’
cocycles in Z. In the terminology of Hunt et al. [20], these cocycles form a probe
for the prevalence of the set Z.

Let U,V C R"™ be I'-invariant open subsets with ANV # () and V C U. For
v € TY, define ¢, to have support in U and to take the value v on V. Given a
suitable smoothing on U — V, this defines uniquely a cocycle ¢, € Z.

To construct the smoothing, we make two arbitrary choices. Let L(I") denote
the Lie algebra of I'°.

(i) Choose a I'-invariant C* bump function b : R® — [0, 1] with support in U
and such that bl = 1.

(ii) Choose neighborhoods N C I'°, N’ C L(T') with 1 € N, 0 € N’, such that
the restricted map exp : N' — N is a diffeomorphism.

For each v € N we define the cocycle ¢, by

¢(z) = exp(b(z) exp () = fyb(m)‘

The resulting collection C of almost constant cocycles is in one-to-one correspon-
dence with N. Let \ denote Haar measure on I'° restricted to N and normalized
so that A(NV) = 1. In the obvious way, A transforms to a probability measure on
Z}, supported on N.

For v € N, define f, = ¢, f to be the extension of f by the almost constant
cocycle with value v and let A, be the w-limit set of z, under f,. Note that
f,(z) = %@ f(z) where 0 < b(x) < 1.

Lemma 3.11 Let I' C O(n) be a abelian compact Lie group, and let A = w(x)
be an w-limit set for the I'-equivariant map f : R™ — R™. Then I'° C Ya, for
A-almost every v € N.

Proof Let W = U’yEFO vA and observe that A, C W for every v € T'°. Hence,
e c Y4, if and only if A, = W. We show that W C A, for almost every 7 € Iro.

Let {y;} be a countable dense subset of A. We claim that there is for each i a
subset G; C I'? with A(G;) = 1, such that I'y; C A, for v € G;. Let G = G;.
Then A\(G) =1 and TIy; C A, for v € G. Since the w-limit set A, is closed, we
have

W= JTI%: c 4,
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for all v € GG, as required.

It remains to prove the claim. Since y € w(xy), there is a strictly increasing
sequence {n;} of integers such that f™(zy) — y. For v € N, we have f7'*(xo) =
8k f (z9) where sy = b(xo) + b(f(z0)) + -+ -+ b(f™ *(x0)). The sequence {sy} is
unbounded since b(f™(x¢)) = 1 infinitely often (whenever f"(z¢) C V). Let R(7)
denote the set of limit points of the sequence {7**}. Then clearly R(y)y C A,.
Translating Corollary 2.5 from additive to multiplicative notation, we have that
R(v) =T for almost every v € T'°, as required. |

Proof of Theorem 3.2 By Corollary 3.8 it is enough to prove prevalence of
the set Z defined by (3.2). Recall that we defined the probability measure A on
C C Z;. By the definition of prevalence, it is sufficient to prove that

A{pez: ogrvez))=1

for each ¢ € Z;. Equivalently, for each ¢ € Z,

A{d, €C: ¢+, € 2}) =1. (3.3)

Let f and A satisfy the hypotheses of Theorem 3.2 (and Lemma 3.11) and
suppose that ¢ € Z; is given. Set f' = f;, A’ = A, and observe that f’ and A’
also satisfy these hypotheses. Hence by Lemma 3.11, ' ¢ Ar for A-almost every
yE€N. But A = A4,4,, 50

AMyeN:T°C%y,,, =1

This is equivalent to equation (3.3), and the theorem is proved. |

4 The case I'° abelian

In this section, we generalize Theorem 3.2 to the case when only I'° is assumed to
be abelian. As mentioned in the introduction, it is necessary to take into account
the underlying dynamics. In addition, many of our results have simpler statements
when the w-limit set A is assumed to be topologically transitive, that is, A = w(z)
for some z € A.

In §4.1 we describe some simple extensions of our main theorems that do
not require assumptions on the underlying dynamics. Then, in the main part
of this section, we focus on the group I' = O(2). Passing to the SO(2)-orbit
space yields a Zs-equivariant dynamical system. In preparation, we consider in
§4.2 such systems as defining a ‘Zo-symmetric deterministic game’. We describe
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what we mean for such a game to be completely ruinous and argue that this is a
weak condition on the ‘chaoticity’ of the dynamics. In §4.3 we prove that if the
associated game is completely ruinous then we obtain the required conclusion that
typically SO(2) C ¥ 4. Finally, in §4.4 we derive an analogous result for arbitrary
groups I' with I'° abelian.

4.1 Simple extensions of Theorem 3.2

We observed in Remark 3.3(a) that Theorem 3.2 is valid for compact Lie groups
[ such that T is central in T'. Equivalently, C(I'’) = T" where C(I'°) denotes the
centralizer of I'° in I". In this section, we consider the problems that arise when
the centralizer condition fails.

Proposition 4.1 Let I' € O(n) be a compact Lie group with T° abelian, and let
A = w(xg) be an w-limit set for the T'-equivariant map f : R" — R". Assume that
there is a point z € A such that vz & A for all v € I' — C(I'°). Define

Z={¢€2,:T°CIy,}

Then Z 1s a residual and prevalent subset of Zj.

Proof Take z as in the statement of the proposition and let U C R" be a I'-
invariant open subset containing I'z. Let U° denote the connected component of
U that contains z. Then U? is I'-invariant and we can choose U small enough so
that YU NU® =P forall y € ' = I Let U’ = U,ccro)7U°. Then it follows
from the hypothesis on z that, for U small enough, f"(xy) ¢ U — U’ for all n > 0.
Moreover, since cocycles take values only in I'’ we have

fo(xo) U —U' for all g € Z¢, n > 0. (4.1)

Now proceed as in §3 to define a class of almost constant cocycles taking values
v € T% on Up. (As before, we must smooth the cocycle by a bump function b and
restrict the values of v to a small neighborhood N of the identity.) The only
difference is that the cocycle restricted to U° determines the cocycle on U — U°.
This causes no problem by (4.1). |

The statement of Proposition 4.1 is simpler for topologically transitive sets,
thanks to the following proposition.

Proposition 4.2 Suppose that A = w(z) where z € A. Then o € ¥4 if and only
if oz € A.
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Corollary 4.3 Let I' be compact with T'° abelian and suppose that A is a topo-
logically transitive set satisfying Y4 C C(T°). Then typically (in the senses of
genericity and prevalence) T° C ¥ 4.

Remark 4.4 It follows from the corollary that if A is topologically transitive and
Y4 C I'°, then typically ¥4 = I'°. In particular, if I'° is nontrivial, then typically
Ya#1.

4.2 Deterministic Zo-symmetric games

Let Z4 act linearly on R™ and denote the nontrivial element of Zy by p. Suppose
that ¢ : R" — R" is a smooth Zs-equivariant map with a Zs-symmetric w-limit
set A = w(xp). Assume that there is a point z € A with trivial isotropy. Using
the initial condition xy, we construct a deterministic game as follows.

Let U, C R™ be an open neighborhood of z such that U_ = pU, does not
intersect U,. Choose a smaller open neighborhood V, of z such that V, C U,.
Define a smooth bump function b : R" — [0, 1] supported in U such that b|y, = 1.
Then we define B : R" — [—1, 1] supported in U = U, U U_ such that

B(z) =b(z), B(pz) = —b(z), (4.2)
for all z € U,. Set a; = B(g"(xo)) and define s, = > | a;.

Definition 4.5 The dynamical system g is ruinous if the sequence {s,} is un-
bounded (for some choice of bump function b).

Remark 4.6 The ‘deterministic’ game’ that we have described is reminiscent of
a simple symmetric random walk. For example, suppose that a player gambles
repeatedly on the outcome of tosses of a coin. In particular, suppose that the coin
is fair and that the player always chooses heads. Let a; = 1 if the 7’th toss is a
head and a; = —1 if the ¢’th toss is a tail. Then s, defined as before represents
the players cumulative profit or loss after the n’th toss. It is well-known that
for each integer L, it is certain (probability one) that s, = L infinitely often. In
particular, the player will eventually run out of money no matter the size of the
initial funds.

A ruinous Zo-symmetric game is a deterministic version of a simple symmetric
random walk. The Zo-symmetry, as preserved by condition (4.2), ensures that
the game is ‘fair’. The hypothesis that the game is ‘ruinous’ implies that s, > L
infinitely often (this is no longer a probabilistic statement). As shown in the
two examples below, a Zs-symmetric deterministic game is often, but not always,
ruinous.
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Example 1 Suppose that A is a period two point, A = {z,pz}. After a
transient, we have s, = (—1)" and the game is not ruinous.

Example 2  Suppose that z € A is point of trivial isotropy and that g(z) = z.
Then the dynamical system is ruinous, as can be seen by choosing the bump
function b so that z € V. Since z € w(xp), the iterates of xy under g lie in V
for arbitrarily long periods of time. Hence, there are arbitrary large blocks in
which a, = 1 and this is enough to imply that {s,} is unbounded. (There are also
arbitrarily large blocks in which @, = —1 but this does not affect the argument.)

In Theorem 4.8 below, we generalize Example 2 considerably. The upshot is
that many Z,-symmetric systems are ruinous.

Proposition 4.7 Let {a,} be a sequence of real numbers with sequence of partial
sums {sn}. Then {s,} is unbounded if and only if for any L > 0 there exist
integers N' > N > 1 such that

‘Zz]'\iN.H an| > L. (4.3)

Proof It is clear that the given condition is necessary for {s,} to be unbounded.
To prove sufficiency, it is enough to show that for each ny there exists n; such
that |sp, | — [sne| > 1.

Let L = 2(|sp,| + 1), with corresponding integers N’ > N > 1. Without
loss of generality we can assume that ZZN:'NH an, > L. If sy < —|[sp,| — 1 then
|sn| > |sno| + 1 and we simply take n; = N.

The other case to consider is when sy > —|sp,| — 1. Set ny = N’ and compute
that

Sn1 = SN’ = SN —|-L > _(|Sn0| + 1) +2(|5n0‘ + 1) = |8n0‘ + 1’

and again we obtain the required inequality. |

Theorem 4.8 Let A = w(xzg) be an w-limit set and let x1 € A. Suppose that
w(xy) is ruinous. Then A is ruinous.

Proof Choose z € w(x) and bump function b so that the sequence {a,, } obtained
from considering the iterates g"(z;) has unbounded partial sums. In particular,
condition (4.3) is satisfied.

Let {a],} denote the corresponding sequence for zy. Since z; € w(xy), finite
segments of arbitrarily length of the sequence {a,} are present also in {a,} (up
to any specified accuracy). Hence, condition (4.3) is also satisfied for {a!}. Now
apply Proposition 4.7. |
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Corollary 4.9 Suppose that Ay is a closed dynamically-invariant subspace of A
and that Ay is not Zo-symmetric. Then A is ruinous.

Now we complicate the situation somewhat. Let W be an open subset of R"
that intersects A. We say that the system is ruinous with respect to W if the
subsequence {s, : g"(zo) € W} is unbounded. In terms of the game, this means
that the player keeps track of the score s, as before but interprets this quantity
as a profit or loss only at times n when ¢"(xy) € W. We say that the system is
completely ruinous if it is ruinous with respect to all open sets W that intersect
A.

We feel that it is counterintuitive that in a ruinous system it is possible to
choose W so that the profits balance the losses (within some bound) every time
the trajectory g™(zo) happens to lie in W. At the very least it would appear to be
a rather strong restriction on the dynamics. Unfortunately, we have few results to
substantiate our intuition (short of assuming that there is a symbolic dynamics).
Thus we pose the following problem.

Open Problem Find reasonable conditions on a ruinous dynamical system A such
that the system is completely ruinous. (The bump function b may be modified if
necessary. )

Associate to each y € A a strictly increasing sequence {ng(y)} with
g W (x0) — y. Let s5(y) = Snyw)- Then {sp(y)} is a subsequence of {s,}.
Let

Y ={ye A: {ng(y)} can be chosen so that {sg(y)} is unbounded}.

Proposition 4.10 With the above notation,
(a) Y is closed.
() (Y)Y,
(c) IfY contains a point y with w(y) = A then Y = A.
(d) If A is compact then A is ruinous if and only if Y # ().
(e) A is completely ruinous if and only if Y = A.
Proof [t is clear that Y is closed. Suppose that y € Y. Then we can choose

an increasing sequence {n;} such that {s} is unbounded and ¢ (z,) — y. Let
n} = ng + 1 so that g™ (z¢) — g(y). Then |s, — si| < 1 for all k, so that {s}} is
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unbounded and ¢(y) € Y proving part (b). Part (c) is immediate from parts (a)
and (b).

Next we prove part (d). If Y is nonempty, then {s,} has an unbounded
subsequence and hence is itself unbounded. Conversely, if {s,} is unbounded, we
can pass to a monotone unbounded subsequence {snj}. By compactness of A we
may pass if necessary to a further (necessarily unbounded) subsequence so that
9" (zo) = y € A. By construction y € Y.

Finally, it follows from part (a) that Y = A if and only if Y is dense in A. But
this is precisely the condition that A is completely ruinous. |

Recall that A is minimal if w(z) = A for every z € A.

Proposition 4.11 If A is minimal and compact, then A is ruinous if and only if
A is completely ruinous.

Proof Since A is compact and ruinous, Proposition 4.10(d) implies that Y is
nonempty. Choose y € Y. By part (c) of the proposition, w(y) C Y. But A is
minimal, so w(y) = A CY. |

4.3 The group I' = O(2)

Remark 4.4 implies that if I' = O(2) and A is topologically transitive then either
¥4 =S0O(2) or ¥4 contains (some conjugate of) Dy, that is, ¥4 is (conjugate to)
Dy, for some k. In particular the cyclic subgroups Z; C SO(2) are not expected to
be realized as the symmetry group of A. Note also that both the subgroups SO(2)
and Iy are realized by relative periodic orbits (example 2 in the introduction).
In this subsection, we show that if A contains a point z with isotropy subgroup
>, = 1 and if the dynamics in A is sufficiently complicated, then typically ¥, =
SO(2) or ¥4 = O(2). (In §5 we relax the condition that some z has ¥, = 1.)

To describe our results, it is convenient to quotient out the action of '’ =
SO(2). Passing to the orbit space X = R"/SO(2), we have amap g : X — X
with an w-limit set A = w(xy). The group I'/T° 2 Z, acts on the orbit space, and
g is equivariant with respect to this action. Denote the nontrivial element of Z,
by p. Our assumption on A implies that A contains a point z with trivial isotropy
(inside of Zy).

Since the orbit space X is singular, there are technical problems in talking
about smooth maps on X. To avoid these problems define Ry to consist of those
points z € R" with ¥, NSO(2) = 1. Since Ry is nonempty (by the assumption on
A) it follows that Ry is open and dense in R". Moreover, SO(2) acts fixed-point
freely on R, and the orbit space X, = Ry/SO(2) is a manifold. We shall need to
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speak about smoothness of a map on X only inside of X,. Thus the terminology
that A is ruinous or completely ruinous as defined in §4.2 makes sense inside the
orbit space X. We shall say that A is completely ruinous if A is.

Theorem 4.12 Suppose that I' = O(2) acts on R", and let A = w(xy) be an
w-limit set for the I'-equivariant map f : R" — R™. Suppose that A contains a
point of trivial isotropy and that A is completely ruinous. Define

Z={¢€ Z:80(2) C Xy}

Then Z is a residual and prevalent subset of Zj.

Proof Choose an open subset U = U, UU_ C X, and a smooth bump function b
supported on U, satisfying the conditions for A to be completely ruinous. The set
U lifts to an O(2)-invariant set U’ C R™. Also the extended bump function B lifts
uniquely to a SO(2)-invariant C*° bump function on R" with support inside U’.
Choose a neighborhood N of the identity in SO(2) as in §3. Then we can define
for each v € N an almost constant cocycle ¢ with ¢(z) = v?@). The identity

pyp 't =~"1forally €T,

together with condition (4.2) imply that ¢ satisfies the equivariance condi-
tion (3.1).

Let f, denote the corresponding cocycle extension of f. Then f,(z) =
vB@ f(z) and so f(xzo) = 7" f"(zo). Just as in §3, it suffices to prove that
for each y € A, SO(2)y C A, for almost every v € N. Let {n} be an increas-
ing sequence of integers with f"*(zo) — y. Then f7*(xq) = 7 f™ (o) where
Sk = Sny-

It is sufficient to prove that {y°*} is dense in SO(2) for almost every v € N.
Since A is completely ruinous we can assume that {s;} is unbounded. As before,
the problem transforms into a expanding sequence on the circle, and the theorem
then follows from Corollary 2.5. |

4.4 The general case I'’ abelian

In this subsection, we extend our results for the group I' = O(2) to the general case
of a compact Lie group I' C O(n) with I'® abelian. Suppose that f : R” — R" is a
[-equivariant map with an w-limit set A containing a point with trivial isotropy.
As before we quotient out the continuous symmetries I'° passing to the orbit
space X = R"/T°. Hence we reduce to a H-equivariant map ¢g : X — X where
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H =T/TY is a finite group. The map g has an w-limit set A = w(z,) containing
points of trivial isotropy.

It will be convenient to use abelian notation in I'Y from the outset. Write
H ={p1,...,pe} where p; = 1. The action of p; on I'’ by conjugation defines an
automorphism of the torus. This automorphism can be represented by an r x r
matrix B; with integer entries where r = dimI'°. We note that By is the identity
matrix.

Choose z € A with ¥, = 1. Let U; and V; be open sets with z € Vi, V; C U;.
Provided U, is small enough, p;U; NU; = 0 for j = 2,...,¢. Set U; = p,Un,
V;:p]‘/l and U:U1U"'UU[.

Next choose a C*® bump function b : U; — [0, 1] with support in U; and such
that bly; = 1. Then we can define a smooth bounded matrix-valued map B on X
with support in U by setting B(p;z) = b(x)B; for x € Uy and j =1,...¢. (When
I'= 0(2), we have H = ZQ, B, = 1, By = —1)

Define the sequence {A,} of 7 X r matrices

Ap = B(g"(xp)), n > 0.

Let {S,} be the sequence of partial sums corresponding to the sequence {A,}. We
say that A (and A) is ruinous if b can be chosen so that the sequence {||S,;*||7*}
is unbounded. From now on, things are much the same as in §4.3. We define the
subset Y C A just as before and we say that A is completely ruinous if Y = A.

Theorem 4.13 Suppose that T' C O(n) is a compact Lie group with T abelian,
and let A = w(xy) be an w-limit set for the I'-equivariant map f: R™ — R". Sup-
pose that A contains a point of trivial isotropy and that A is completely ruinous.
Define

Z={¢peZ: I’ CTy}.

Then Z is a residual and prevalent subset of Zj.

Proof The proof is almost identical to that of Theorem 4.12 up to the point
where we reduce to a expanding sequence on the torus I'’, so we just sketch the
details. The notation differs from what we used previously, in part because we
now use additive notation in I'°.

The bump function B lifts to a smooth matrix-valued map on R". We can
choose a neighborhood N of the identity in T'° small enough so that for each vy € N
the almost constant cocycle ¢(z) = B(z)(7y) is well-defined. By construction, ¢
satisfies the equivariance condition (3.1) and lies in Z.
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Let f, denote the corresponding cocycle extension of f. Then f;‘(xo) =
Sn(7)f™(xo). Suppose that y € A and let {ny} be an increasing sequence of
integers with f™ (zo) — y. Then f7(zo) = Sk(vy)f™ (7o) where Sg(y) = Sn, (7).
Since A is completely ruinous, we can assume that the corresponding subsequence
{IIS; 7} is unbounded. In the usual way, the theorem follows from Theo-
rem 2.6. |

5 w-limit sets in fixed-point subspaces

Throughout §4 we worked with w-limit sets that contain points with trivial
isotropy. This condition is violated if an w-limit set A = w(xy) lies in the fixed-
point subspace Fix(T") of a nontrivial subgroup 7" C I". In this section, we gener-
alize our results to include the case when A C Fix(T).

Let I' C O(n) be a compact Lie group acting on R". We do not assume that
I'% is abelian. Define the subgroup consisting of those elements of I' that fix A
pointwise:

Ty={yel:yx=xforalze A}

Then A C Fix(T4). An elementary computation [26] shows that T4 is a normal
subgroup of ¥ 4. Thus Ty C ¥4 C N(T4).

One subtlety that we must deal with is the fact that T4 is not necessarily
preserved under cocycle extensions. Observe that yA C yFix(Ty4) = Fix(7T4y ')
for all v € I'. Tt is clear when xy € A that for each v € '’ we can choose a cocycle
¢ so that Ay, = vA. At best, only the conjugacy class of T4 is preserved, and
questions about 4 make sense only in terms of conjugacy classes of I'.

However, it is not even true that the conjugacy class of T4 is preserved un-
der cocycle extensions. Indeed, in the continuous category the results of Field
et al. [14] yield the following result.

Theorem 5.1 ([14]) Let T C O(n) be a compact Lie group and f a
['- equivariant homeomorphism. Suppose that A = w(xy) where xo has trivial
1sotropy and does not lie on a relative periodic orbit. Define

Z={peZy: Tay=1andT° C Ty}
Then Z 1s a residual subset of 2.

We have already pointed out that this result gives the ‘wrong answer’ when A
is a relative periodic orbit. Similarly, caution is required when 74 # 1. Indeed,
under reasonable hypotheses T4 is stable (up to conjugacy in I') under smooth
cocycle perturbations. This is formalized in the following definition.
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Definition 5.2 An w-limit set A is rigid if T4, is conjugate to T in I' for all
¢ € Z.

Remark 5.3 An important class of rigid w-limit sets is provided by sets that
are I-hyperbolic (where for each z € A there is a hyperbolic splitting of those
directions in T,R" that are transverse to ['’z). Suppose that A is I-hyperbolic
and set A" = U'yEI‘ ~vA. As for the special case of normally hyperbolic relative
periodic orbits, there is an ‘asymptotic phase’ property, so that if w(z) C A’ then
w(z) consists of a single trajectory in A’.

The assumption of I'-hyperbolicity is unnecessarily strong. Actually, we re-
quire only that the group orbit of fixed-point subspaces |, 7Fix(7) (or some
compact submanifold that contains A’) is normally hyperbolic, see [19]. For then
a trajectory asymptotic to A’ is asymptotic to a subset of YFix(T') for a single
element v € I'.

It is not clear that the rigidity assumption is valid in the absence of normal
hyperbolicity. The resolution of this difficulty is of some importance for appli-
cations [27]. For related issues concerning w-limit sets in fixed-point subspaces,
see [1, 2].

If H, and H, are subgroups of I' we write H; < H, if H; C yHyy™! for some
v € I'. As an immediate consequence of the definition of rigidity, we have that

Ty < Sa, < N(Ty) for all ¢ € Z,. (5.1)

For example, suppose that I' = O(2) and A is a rigid w-limit set with Ty = Dy,
for some k£ > 1. The normalizer of Dy, in O(2) is Dy, and we conclude that up to
conjugacy either ¥4 = Dy or X 4 = Dy. This is in contrast to Theorem 5.1 which
states that in the C° category, generically ¥4 = SO(2) or ¥4 = O(2).

In the remainder of this section, we generalize the results of this paper to
take into account the continuous symmetries in N(74), or, more precisely, in
N(T4)/T4. Define 'y = N(T4)/T4 and Sa = X 4/T4. Observe that f restricts to
a I'4-equivariant map f4 : Fix(T4) — Fix(T4) and that condition (5.1) reduces
to the condition that SA¢ <TI'y4.

The w-limit set A is an invariant subset of Fix(74) for the restricted map
fa- We make the simplifying (but noncrucial) assumption that A is topologically
transitive. This assumption ensures that A is an w-limit set for f4. We say
that A C R" is completely ruinous if A C Fix(Ty4) is completely ruinous for the
I 4-equivariant map f4.

Theorem 5.4 Suppose that I' C O(n) is a compact Lie group and let A = w(xy)
be a rigid topologically transitive set for the I'-equivariant map f : R® — R".
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Suppose that T'4° is abelian and that A contains a point with isotropy Ta and is
completely ruinous. Let k > 1 be a positive integer or k = oo and define

Z={¢p€ 2 : 4" CTy,l}.

Then Z is a residual and prevalent subset of Zj.

Proof Choose 71 € A so that w(z1) = A. Let W =J 0 vA. Then for any
cocycle ¢ € Z, there is a y € I'? so that yz; € Ay. It follows that the w-limit
set of yz; under f, is contained in Ay. Thus it is sufficient to prove that for a
residual and prevalent subset of cocycles ¢, the w-limit set of 1 under f, is equal
to W. In particular, without loss of generality, we may assume that xq = x; € A.

The rigidity assumption implies that Ay C W for any ¢ € Z,. Thus it is
sufficient to construct a probe consisting of almost constant cocycles with the
property that W C Ay. Restrict to Fix(74) and consider almost constant cocycles
¢' supported in a I' 4-invariant neighborhood U of z. As usual, these cocycles are
in one-to-one correspondence with a small neighborhood of the identity in I'4. It
follows that W C Ay for almost every ¢'.

Since ¥, = T4 we can choose open neighborhoods U small enough so that
UN~U = for all vy € I'— N(T4). In particular, there is no difficulty with hidden
symmetries [17, 18] and each cocycle ¢ lifts to a smooth I'-cocycle on R". We
have shown that these cocycles form a probe for the prevalence of Z and hence Z
is prevalent and residual as required. |

Example Let I' = O(2) and suppose that A is a rigid topologically transitive
set. We assume that T4 is conjugate to Zj for some k > 1, otherwise I'4 is finite.
When Ty = Zyi, 'y =2 O(2). If A is a relative periodic orbit, then typically
S4 = SO(2) or S4 = Dy. In other words ¥4 = SO(2) or ¥4 = Dy. More
generally, if A is topologically transitive then ¥4 = SO(2) or ¥4 contains D;. By
the theorem, if A is completely ruinous then ¥4 = SO(2) or ¥4 = O(2).
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