Instantaneous Symmetry and Symmetry on
Average in the Couette-Taylor and Faraday
Experiments *

Ian Melbourne #
Institut Non Linéaire de Nice
1361, route des Lucioles
06560 Valbonne
France

November 16, 1993

Abstract

We describe some recent results on symmetry of attractors for dy-
namical systems with symmetry and consider the implications for the
Couette-Taylor experiment and the Faraday surface wave experiment.
In particular, we explore the relationship between symmetry of solu-
tions at a fixed instant in time, and symmetry in the time-averaged
solution. This leads to predictions that are somewhat surprising and
which we believe require careful experimental exploration.

1 Introduction

Many physical interesting situations, including Rayleigh-Bénard convection
and the Couette-Taylor experiment, are modeled by PDEs that have symme-
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tries, that is they are equivariant with respect to the action of a symmetry
group I'. Equilibrium and periodic solutions to these PDEs may be invariant
as a subset of phase space under some of these symmetries. In this case,
there is a well understood connection between the symmetries in phase space
and symmetries in physical space [17].

Recently, there has been interest in interpreting the symmetry of a solu-
tion in physical space corresponding to a chaotic attractor in phase space,
see [6, 8]. Thought of as a subset A of phase space, there are (at least) two
ways in which A can be symmetric. There is a subgroup > 4 of elements of I'
that fix A as a set, and a smaller subgroup 7’4 of elements of I" that fix each
point in A, see Section 2 below.

There are also two ways of interpreting the symmetry of the solution in
physical space, the instantaneous symmetry which measures the symmetry at
each moment in time, and the symmetry on average which is the symmetry
in the time-averaged solution. Clearly, we may interpret 7’4 to be the instan-
taneous symmetry. The suggestion in Dellnitz et al [8] is that ¥4 should be
identified with the symmetry on average. We shall make this identification,
but note that this has been justified rigorously only under the assumption
that the attractor A has an SBR measure.

The motivating example for the work of Chossat and Golubitsky [6] on
symmetric attractors was provided by a chaotic state in the Couette-Taylor
experiment that is known as turbulent Taylor vortices, see Brandstater and
Swinney [5]. A picture of turbulent Taylor vortices at an instant in time is
shown in Figure 1(a). The usual interpretation for this state is that there is no
instantaneous symmetry, even though on average [22] there is the symmetry
of the steady state Taylor vortices, Figure 1(b). More recently, experiments
have been performed by Gollub and coworkers [16] on the Faraday surface
wave experiment in square and circular geometries. Instantaneous and time-
averaged pictures of states that they find are shown in Figures 2 and 3. Again
there is evidence of symmetry that exists only on average.

The existence of symmetry only on average has been verified numeri-
cally [8] and is well-understood theoretically [3, 14]. One purpose of the
present paper is to point out that the experimental evidence for symmetry
only on average is not as conclusive as has been believed. In particular, we
argue that the motivating example of turbulent Taylor vortices does not ex-
hibit symmetry only on average, but that the symmetry in the time average
is already present at each instant of time. In this paper we highlight those
aspects of recent results about symmetric attractors in [14, 19] that have
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implications for PDEs, and then use these results to make predictions for
experiments. As already indicated, these predictions are often contrary to
intuition.

In Section 2 we define the instantaneous symmetry and symmetry on
average for a subset A. Also, we state some elementary results including
a normality condition that will prove crucial in the remainder of the paper.
Then in Section 3 we describe some of the results in [14] concerning attractors
for ODEs that have a finite group of symmetries I'. To make the connection
with PDEs, we introduce a class of ‘high-dimensional’ ODEs that includes
discretizations of PDEs. As a preliminary application, we interpret these
results for the Faraday experiment in a square container, taking I' = D, the
symmetry group of the square.

In Section 4 we consider some results for continuous groups of symmetries
and consider the implications for experiments. In particular, we consider the
Faraday experiment in a circular container, and the Couette-Taylor experi-
ment — the latter under the assumption of periodic boundary conditions.

Returning to the Faraday experiment in a square container, it is evident
that the time-averaged state in Figure 2(b) has more structure than can be
explained within the context of the symmetry group I' = D,: there appear
to be additional discrete translation symmetries parallel to the sides of the
square container. Using the trick of embedding Neumann boundary condi-
tions in periodic boundary conditions we are able to explain this structure
but only if the structure is already present at any instant in time. A similar
story is true for turbulent Taylor vortices if we assume Neumann boundary
conditions rather than periodic boundary conditions. These issues are taken
up in Section 5.

We end in Section 6 with some conclusions. In particular, we discuss at
some length the likelihood that turbulent Taylor vortices have no symmetry
on average except for that symmetry that is already present at any instant
in time.

2 Symmetry groups of sets

In this section, we define the symmetry of a set. At this point, we work quite
generally, and do not require mention of any dynamics. Suppose that X is a
set, and that I' is a group acting on X. If A C X, we define

Th={yel;yx=uxforalxze A},
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and
EA:{’)’EF,’)/A:A}

For reasons explained in the introduction, we call T’y the instantaneous sym-
metry and X4 the symmetry on average. Note that A is contained in the
fixed-point set of T4: A C Fix(T4). The following result is elementary, but
crucial.

Proposition 2.1 T4 is a normal subgroup of ¥ 4.

Proof Suppose that t € T4y and 0 € 4. If x € A, ox € A and hence
tox = ox. It follows that o~ 'tox = x and o~ 'to € Ty as required. ]

If T is a subgroup of I', then N(T') denotes the normalizer of T in T,
namely the largest subgroup of I" that contains 7" as a normal subgroup. An
equivalent formulation of the normality condition in Proposition 2.1 is that

Ty CXyC N(TA).

For example, suppose that I' = O(2). Up to conjugacy, the subgroups of
O(2) are

Ty, k>1, Dy, k>1, SO(2), O(2).

(In particular, Z; = 1 is the trivial group, and D; is the two element group
generated by any element xk € O(2) —SO(2).) The subgroups Zj, SO(2) and
O(2) are normal in O(2). Hence the normality condition in Proposition 2.1
comes into effect only when Ty = D, which has normalizer Dy,. It then
follows that either ¥4 = D} or ¥4 = Dy,. Proposition 2.1 can also be
applied in the opposite direction. For example if ¥4 = O(2) then we deduce
that T4 # Dy for any k.

3 Finite symmetry groups

In this section we recall results of Field et al [14] which classify the possible
symmetry groups of attractors for flows that are equivariant with respect to
the action of a finite group of symmetries I'. The points that we emphasize
here are rather different from those in [14], in particular we focus on the
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implications for applications modeled by PDEs. A consequence is that gen-
erally the representation-theoretic restrictions obtained in [14] (see also [20])
are not applicable.

Since the results in [14] are stated within the context of finite-dimensional
flows, it is necessary to make the transition between PDEs and ‘high-
dimensional’ ODEs. Note that if we were working with a PDE, we would
expect every subgroup 7" C I' to be an isotropy subgroup with fixed-point
subspace Fix(T) of infinite dimension. Moreover if I is another subgroup
and I ¢ T, then the intersection of Fix(/) with Fix(T) should be of infinite
codimension in Fix(T). Passing to a discretization of such a PDE leads to
a high-dimensional ODE and the dimensions and codimensions mentioned
above should also be very high. In particular, we expect that the following
conditions are satisfied.

(i) T is an isotropy subgroup,
(ii) dim(Fix(T)) > 5, and
(ifi) dim(Fix(T)) — dim(Fix(I) N Fix(T)) > 2 forall I C T, I ¢ T.

We shall say that a representation of I' on R" is high-dimensional if each
subgroup 7' C T satisfies conditions (i)—(iii). Also a I'-equivariant ODE or
vector field is high-dimensional if the representation of I' is high-dimensional.
Under this assumption of high-dimensionality, the normality condition in
Proposition 2.1 is necessary and sufficient.

Theorem 3.1 ([14]) Suppose that T is a finite subgroup of O(n) and that
the representation of I' on R"™ is high-dimensional. Let T and 3 be subgroups
of I'. Then there exists a C* T'-equivariant vector field on R™ possessing an
Azxiom A attractor A with Ty =T and ¥4 = X if and only if T is a normal
subgroup of X.

Remark 3.2 Axiom A attractors are structurally stable, so it follows from
the theorem that whenever 7' is a normal subgroup of ¥, attractors with
instantaneous symmetry 7" and symmetry on average Y. are unavoidable.

Application: the Faraday experiment in a square geometry Theo-
rem 3.1 can be applied to the Faraday surface wave experiment performed in
a square container [16], see Figure 2. For the time being we work only with



the naive group of symmetries which is the symmetry group of the square
' = D,. Later, in Section 5, we shall consider the issues that arise when
trying to understand the additional structure that is evident in Figure 2(b).

It appears from the figure that we have a state with instantaneous sym-
metry 7' = 1 and symmetry on average > = D,. Note that this scenario is
entirely consistent with Theorem 3.1 but is only one of several possibilities
that is equally consistent with the theorem.

The subgroups of D, are

15 ZQ, Z4) ID)la ]D)Qa ]D)4-

Each of these subgroups is normal in D, with the exception of the subgroup
D; which has normalizer Dy. Hence if T" # Dy, 3 can be any subgroup of
D, that contains 7. In particular, if 7= 1 then there are no restrictions on
>.. Thus we should not be surprised by symmetry on average, but neither
should we expect it.

As a result of later considerations in this paper, it will become apparent
that the instantaneous symmetry 7" is not so easy to deduce from Figure 2(a).
However it is clear from Figure 2(b) that X = D,. Applying Theorem 3.1,
we can deduce at least that T # D;.

4 Continuous groups

In this section, we consider w-limit sets A for flows in R" that are equivariant
with respect to a continuous (nonfinite but compact) group of symmetries
' c O(n).

Theorem 3.1 states that for high-dimensional representations of a finite
group I, given T4y we can expect X4 to be any subgroup of I' that satisfies
Ty C ¥4 C N(T4). Moreover, all such possibilities for ¥4 occur in a struc-
turally stable manner (since A can be chosen to be an Axiom A attractor).

As we indicate in this section, the situation is completely different for
continuous groups. Typically there are larger lower bounds for the continuous
symmetries in 4. These bounds depend on T4 and also in a subtle way on
the dynamics in w(x).

Recall that if G is a group, we denote by G° the connected component of
the identity in G. Suppose that A = w(z) is an w-limit set for a [-equivariant
vector field on R". Then results of [2, 10, 19, 21| indicate that, provided the



dynamics in A is ‘sufficiently chaotic’, typically
(N(T4)/Ta)® C $4/Ta C N(T4)/Ta. (4.1)

We do not wish to define here precisely what is meant by ‘sufficiently
chaotic’. Tt follows from [19] that at least when '’ is abelian (which is the
case for the applications considered in this paper) it is enough that A sat-
isfies conditions that can be thought of as a equivariant generalization of
‘Devaney’s definition of chaos’ [11]. However these hypotheses are unneces-
sarily stringent and are undergoing constant revision at present.

We note that it is certainly necessary to rule out dynamics that is too
regular. For example, if A is a subset of a single group orbit (A is a rela-
tive equilibrium) then ¥4/7T, is easily seen to be abelian, typically it is a
maximal torus in N(T4)/T4, see [12, 18]. The situation is more complicated
for relative periodic orbits, see [18, 13], but ¥ 4/7T4 remains abelian. This
is not the case for general w-limit sets. For example, the existing theory
indicates that typically equation (4.1) is valid under very weak hypotheses
on the irregularity of the dynamics in A. From now on we shall assume that
equation (4.1) is valid at least for the states shown in Figures 1, 2 and 3.

Application: the Faraday experiment in a circular geometry We
consider the Faraday surface wave experiment performed in a circular geom-
etry [16], see Figure 3. The solution shown in the figure would appear to
have no instantaneous symmetry but to have full symmetry on average. In
our notation, thisis ¥ =T = O(2) and T = 1.

Actually, we cannot tell from the figure whether there is SO(2) or O(2)
symmetry on average. This is due to the fact that all subsets A C R? with
SO(2) C ¥4 automatically satisfy ¥4 = O(2). In the language of [4], the
observation that is being averaged is not a detective; it cannot distinguish
between ¥ = SO(2) and ¥ = O(2).

It turns out that the information on symmetry on average contained in
Figure 3(b) can be predicted from knowledge of the instantaneous symmetry.
This follows from the entries in Table 1 where we enumerate the subgroups
T of O(2) and then list the possibilities for ¥ that are typical according
to equation (4.1). In particular, if we know that there is no instantaneous
symmetry, then we can predict that there is at least SO(2) symmetry on
average. Hence with hindsight we can say that Figure 3(b) gives no further
information on the symmetry on average. However, averaging the correct



detective should determine whether the symmetry on average is SO(2) or
0(2).

Finally, applying Table 1 in the reverse direction, we can deduce that if
Y4 contains SO(2) then either there are no reflection symmetries present
instantaneously or there is full symmetry instantaneously. (This is an appli-
cation of the normality condition in Proposition 2.1.)

T N [ N(T)/T |5/T >

Zi, k>1]0(2) |O(2) SO(2), O(2) | SO(2), O(2)
Dy, k>1 | Doy | Zo 1, Zy Dy, Dy
so@) |0@) |z, 1, Z, SO(2), 0(2)
o2 |o@® |1 1 0(2)

Table 1: This table shows the interaction between instantaneous symmetry
T and symmetry on average ¥ for w-limit sets in ODEs with O(2) symme-
try. For each subgroup 7" C O(2) we list the typical possibilities for ¥ as
guaranteed by equation (4.1).

Application: the Couette-Taylor experiment In the Couette-Taylor
experiment, the underlying symmetry group is I' = O(2) x SO(2) where
SO(2) corresponds to the azimuthal rotations and O(2) corresponds to the
axial translations together with the mid-cylinder flip. Here we are assuming
periodic boundary conditions at the ends of the cylinder. In Section 5 we
shall consider what happens if we make the more reasonable assumption of
Neumann boundary conditions at the ends of the cylinder. Our predictions
are then unchanged though the analysis is completely different.

First observe that the center of I' is SO(2), and it follows that N(T)
contains SO(2) for all subgroups 7. Hence we can predict that on average all
solutions will have full azimuthal symmetry, independent of the instantaneous
symmetry.

Our second prediction is more interesting and concerns the solution known
as turbulent Taylor vortices which is shown in Figure 1. Thanks to the
previous prediction, we may as well factor out the azimuthal symmetry so
that I' = O(2). The current trend is to believe that turbulent Taylor vortices
have no instantaneous symmetry but have the symmetry of Taylor vortices



on average, namely ¥ = D (or Dy x SO(2) if we reinstate the azimuthal
symmetry). However, by Table 1, if we take 7" = 1 then we expect ¥ = SO(2)
or O(2). But then the averaged solution is totally homogeneous (Couette
flow), which is clearly not the case. On the other hand, if we have Ty = Dy,
then N(T4) = Dy, and we would expect either ¥4 = Dy or ¥4 = Dy.
Based on this calculation, we propose that turbulent Taylor vortices have
T=X=D,.

5 Embedding Neumann boundary conditions
in periodic boundary conditions

In Section 3 we considered the Faraday surface wave experiment in a square
domain (Figure 2) but only taking into account the naive symmetry group
[' = D4. On the other hand, the time-averaged solution shown in Figure 2(b)
clearly has additional structure that cannot be explained in terms of elements
of Dy.

Recently there has been much interest in problems satisfying certain
boundary conditions, in particular Neumann boundary conditions (NBC),
that admit the possibility of embedding the problem in a larger problem (on
a larger domain) where the solutions satisfy periodic boundary conditions
(PBC). The extra symmetry that arises in the PBC problem imposes con-
straints on the original NBC problem and changes the generic behavior of
the associated dynamical system as well as increasing the available range
of symmetries for the solutions. See Crawford et al [7] which expands upon
work of Fujii, Mimura and Nishiura [15] and Armbruster and Dangelmayr [1].

In this section, we review the construction and then reconsider the
Couette-Taylor and Faraday experiments in this light. Since we are inter-
ested in global dynamics, the implications for genericity do not concern us.
However the additional symmetries will be of great importance.

Suppose that we have a Euclidean-equivariant PDE on the unit interval
[0,1] and that we impose NBC at the ends of the interval. Then the only
Euclidean transformation that preserves the domain is the flip x — 1 — =«
which generates the symmetry group D!'. By reflecting a solution across 0
we obtain a solution that satisfies the PDE on [—1, 1]. Moreover the solution
satisfies PBC on this larger domain. (There is a technical problem concerning
regularity of the solution obtained in this way but in many cases, including



the ones that we shall consider, regular solutions to the NBC problem on
[0, 1] extend to regular solutions to the PBC problem on [—1,1].)

Conversely, solutions satisfying PBC on [—1, 1] restrict to solutions sat-
isfying NBC on [0, 1] if and only if they are invariant under the reflection x
that sends = to —z. Define DY to be the group generated by x. Now we
consider the enlarged problem of PBC on [—1, 1] but then restrict to Fix(D}")
in order to recover the NBC problem. The idea is that the PBC problem is
O(2)-equivariant and solutions in Fix(D{') may pick up symmetries in O(2)
that do not lie in the original group DY

Now, if we have a solution to the NBC problem, we may compute the
instantaneous symmetry 7" and the symmetry on average > as subgroups of
O(2) instead of DI". An important observation is that 7" must contain DY
(since solutions are assumed to satisfy Neumann boundary conditions at all
times). In particular, if there is no discernible structure at an instant in time,
then this should be interpreted as 7' = DY'.

Application: the Couette-Taylor experiment revisited In Section 4
we considered the Couette-Taylor experiment and made two predictions
based upon the assumption of periodic boundary conditions. Now we show
that these predictions are unchanged if we assume Neumann boundary con-
ditions.

The prediction concerning full azimuthal symmetry on average goes
through easily no matter what boundary conditions are assumed. Hence
we turn to the second prediction concerning turbulent Taylor vortices. As
before, we may factor out the azimuthal symmetry. Also, the radial direc-
tion plays no important role and so we may reduce to the situation of a NBC
problem on the unit interval.

We now have an O(2)-equivariant problem and we restrict attention to
those solutions with instantaneous symmetry at least ]D){V (that is, those
solutions satisfying NBC). If there is no further structure, then we have
instantaneous symmetry T = ]D){V . But then the normality condition in
Proposition 2.1 guarantees that the symmetry on average . is isomorphic to
D, or Dy, see Table 1. This is inconsistent with Figure 1(b). On the other
hand if 7" = Dy then we have ¥ = Dy or X = Dy,. We are again led to our
prediction that T = X = D).
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Application: the Faraday experiment revisited Here we consider the
Faraday experiment in a square container, but in such a way that we can
account for additional structure in the time-averaged solution that is not
accounted for by the symmetries of the square alone. The analysis here is
almost identical to that for the Couette-Taylor experiment under the assump-
tion of NBC. The corresponding questions raised by the normality condition
in Proposition 2.1 were first pointed out to me by M. Golubitsky.

Solutions to the NBC problem on the square extend to solutions
satisfying PBC on a square of four times the size. This problem is
equivariant under the semidirect product of the naive symmetries Dy
with translation symmetries in the directions parallel to the sides of the

square. So we have I' = D, + (SO(2) x SO(2)). Equivalently, we can write

' =D; + (O(2) x O(2)) which is more convenient for our purposes. Again
we restrict attention to solutions that satisfy NBC on the original square:
these solutions have instantaneous symmetry at least 7 = DY x DV,

The time-averaged solution in Figure 2(b) would seem to have sym-

metry on average X = Dy + (Dy x D) for a fairly large value of k.
The normality condition implies that if there is no instantaneous symme-
try (T = D x D)) then there is an upper bound on the symmetry on

average (X = D; + (D, x ;) which is incompatible with Figure 2(b). We
propose that 7' = ¥ = D; + (Dy, x D).

6 Conclusions

In this paper we have made the somewhat contentious proposal that turbulent
Taylor vortices have no more symmetry in the time-average than they have at
any instant in time. This is surprising since much of the work on symmetry
of attractors and on the existence of symmetry only in the time-average has
been motivated by turbulent Taylor vortices.

The obvious objection to our proposal is that this symmetry is not very
evident in Figure 1(a), and certainly not as evident as in Figure 1(b). (This
is also the case for the state observed in the Faraday experiment in a square
container, Figure 2.) A possible explanation is that the underlying symmetry
in our model is not exact in the experiment and that the instantaneous sym-
metry is necessarily approximate, hence difficult to deduce from the snapshot
at an instant in time. However on average the discrepancies (which are es-
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sentially random) may be expected to cancel out so that the symmetry is
much clearer.

There is a related state in the Couette-Taylor experiment called turbulent
wavy vortices which has a time-periodic counterpart called wavy vortices, see
Figure 4. Wavy vortices have not full but discrete azimuthal symmetry (in
fact the symmetry is the product of an azimuthal symmetry with the mid-
cylinder flip). In addition, there is the discrete axial symmetry that is present
in Taylor vortices. An intriguing question for some time has been how to
distinguish on grounds of symmetry between turbulent Taylor vortices and
turbulent wavy vortices.

Again, it is often claimed that turbulent wavy vortices have no instanta-
neous symmetry. We propose that turbulent wavy vortices have wavy vortex
symmetry instantaneously. Then our prediction that there is always full
azimuthal symmetry in the time average leads to the expectation that on av-
erage there is Taylor vortex symmetry. In particular, we have that symmetry
on average does not distinguish between turbulent Taylor vortices and turbu-
lent wavy vortices. However, the instantaneous symmetry does distinguish
between the two states.

In principle it is not difficult to devise an experimental test of our pro-
posal. The primary bone of contention lies in the existence or nonexistence of
the mid-cylinder flip as a instantaneous symmetry. Consider the detective v
consisting of the absolute value of the difference of observations taken at two
reflection related points (perhaps averaged over time). For turbulent Taylor
vortices, we expect the value of v to be close to zero.

The numerical difficulty of what constitutes a value close to zero can be
overcome as in [4] by computing v during a transition from turbulent wavy
vortices to turbulent Taylor vortices. If our predictions are correct, v should
jump from a value far from zero to a value close to zero. At the same time,
if we average the difference in the observations without taking the absolute
value, we should obtain a value w near zero throughout the transition, indi-
cating the presence of the mid-cylinder flip in the time-average. Note that
because the symmetry on average should be much cleaner than the instan-
taneous symmetry, we expect w to be much closer to zero than v, even for
turbulent Taylor vortices.

A second and more difficult objection to our proposal has been raised
by M. Field. In experiments, there is typically a natural direction in the
variation of parameters. In the case of the Couette-Taylor experiment, it
is usual to consider the transitions as the Reynolds number is increased.
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Then one prechaotic scenario is that solutions lie in a low-dimensional fixed-
point subspace (Couette flow) from which there are bifurcations to solutions
lying in higher-dimensional fixed-point subspaces (such as Taylor vortices
and wavy vortices) and even to solutions with no symmetry. It is rather
difficult to imagine why there should then be a transition back to a (now
chaotic) solution in a lower-dimensional fixed-point subspace. However, this
is what we are arguing to be the case with turbulent Taylor vortices. At
present, we have no answer to this line of argument except to say that this is
all the more reason to obtain a better understanding of the states that occur
and only then to consider the transitions as parameters are varied.

We end by giving an argument in support of our proposal that we feel
is particularly compelling. In phase space, the instantaneous symmetry cor-
responds to the symmetry of a single point in an attractor, whereas the
symmetry on average corresponds to the symmetry of the whole attractor.
It is clear in this setting that the symmetry of one point yields little or no
information about additional symmetry that fixes the attractor but not the
point itself. Hence in physical space, the symmetries (or structure) visible
in the picture of a state at an instant in time should not give any clue to
additional symmetry (structure) that may be present in the time average.

Evidence for this argument is provided by Figure 3(a) where there is
no sign of the symmetry that appears on average 3(b) (but note that equa-
tion (4.1) predicts the time average symmetry in Figure 3(b) as a consequence
of the lack of structure in Figure 3(a)). Contrast this with the picture of tur-
bulent Taylor vortices in Figure 1(a) where it is already possible to ‘see’ the
putative symmetry on average.

In conclusion, we suggest that whenever it is possible to guess the exis-
tence of symmetry on average by looking at the instantaneous picture, then
that symmetry is probably there even instantaneously. To compute addi-
tional symmetry on average, it is necessary to appeal to theory (such as
equation (4.1) and/or to use detectives [4, 9]. By the same token, even the
instantaneous symmetry may not be transparent by simply observing the
solution. This suggests that it is necessary in general to use detectives to
compute the instantaneous symmetry as well as the symmetry on average.

Acknowledgment I am grateful to Michael Dellnitz, Mike Field and Marty
Golubitsky for helpful discussions.
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Figure 1: Turbulent Taylor vortices (a) and Taylor vortices (b) in the
Couette-Taylor experiment. Pictures supplied by H.L. Swinney. The state
in (a), when time-averaged, looks like the state in (b) [22].

(a) (b)
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Figure 2: Instantaneous symmetry (a) and symmetry on average (b) of a
state in the Faraday experiment in a square geometry. Pictures supplied by
J.P. Gollub.

(a)
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Figure 3: Instantaneous symmetry (a) and symmetry on average (b) of a
state in the Faraday experiment in a circular geometry. Pictures supplied by
J.P. Gollub.

(a)
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Figure 4: Wavy vortices in the Couette-Taylor experiment. Picture supplied
by H.L: Swinney.
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