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Abstract

Consider an Itô process X satisfying the stochastic differential equation
dX = a(X) dt + b(X) dW where a, b are smooth and W is a multidimensional
Brownian motion. Suppose that Wn has smooth sample paths and that Wn

converges weakly to W . A central question in stochastic analysis is to un-
derstand the limiting behaviour of solutions Xn to the ordinary differential
equation dXn = a(Xn) dt+ b(Xn) dWn.

The classical Wong-Zakai theorem gives sufficient conditions under which
Xn converges weakly to X provided that the stochastic integral

∫
b(X) dW

is given the Stratonovich interpretation. The sufficient conditions are auto-
matic in one dimension, but in higher dimensions the correct interpretation of∫
b(X) dW depends sensitively on how the smooth approximation Wn is chosen.

In applications, a natural class of smooth approximations arise by setting
Wn(t) = n−1/2

∫ nt
0 v ◦ φs ds where φt is a flow (generated for instance by an

ordinary differential equation) and v is a mean zero observable. Under mild
conditions on φt we give a definitive answer to the interpretation question for
the stochastic integral

∫
b(X) dW . Our theory applies to Anosov or Axiom A

flows φt, as well as to a large class of nonuniformly hyperbolic flows (including
the one defined by the well-known Lorenz equations) and our main results do
not require any mixing assumptions on φt.

The methods used in this paper are a combination of rough path theory
and smooth ergodic theory.

1 Introduction

Let X be a d-dimensional Itô process defined by a stochastic differential equation
(SDE) of the form

dX = a(X) dt+ b(X) dW, (1.1)
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where a : Rd → Rd is C1+, b : Rd → Rd×e is C2+, and W is an e-dimensional Brownian
motion with e× e-dimensional covariance matrix Σ.

Given a sequence of e-dimensional processes Wn with smooth sample paths, we
consider the sequence of ordinary differential equations (ODEs)

dXn = a(Xn) dt+ b(Xn) dWn, (1.2)

where dWn = Ẇn dt. We suppose that an initial condition ξ ∈ Rd is fixed throughout
and consider solutions X and Xn satisfying X(0) = Xn(0) = ξ.

Let T > 0. The sequence Wn is said to satisfy the weak invariance principle (WIP)
ifWn →w W in C([0, T ],Re). Assuming the WIP, a central question in stochastic anal-
ysis is to determine whether Xn →w X in C([0, T ],Rd) for a suitable interpretation
of the stochastic integral

∫
b(X) dW implicit in (1.1). The Wong-Zakai theorem [53]

gives general conditions under which convergence holds with the Stratonovich inter-
pretation for the stochastic integral. These conditions are automatically satisfied in
the one-dimensional case d = e = 1, but may fail in higher dimensions. See also
Sussmann [51]. In two dimensions, McShane [30] gave the first counterexamples, and
Sussmann [52] provided numerous further counterexamples.

From now on, we replace (1.1) by the SDE

dX = a(X) dt+ b(X) ∗ dW, (1.3)

to emphasize the issue with the interpretation of the stochastic integral. General prin-
ciples suggest that the limiting stochastic integral should be Stratonovich modified
by an antisymmetric drift term:

b(X) ∗ dW = b(X) ◦ dW +
1

2

∑
α,β,γ

Dβγ∂αbβ(X)bαγ(X) dt.

Here, and throughout the paper, we sum over 1 ≤ α ≤ d, 1 ≤ β, γ ≤ e, and bαγ

and bβ denote the (α,γ)’th entry and β’th column respectively of b. Moreover {Dβγ}
is an antisymmetric matrix that is to be determined. (Hence an alternative to (1.3)
would be to consider dX = ã(X) dt+ b(X) dW with the emphasis on determining the
correct drift term ã.)

In applications, smooth processes Wn that approximate Brownian motion arise
naturally from differential equations as follows [18, 21, 35, 41, 42]. Let φt : M → M
be a smooth flow on a finite-dimensional manifold M preserving an ergodic measure
ν and let v : M → Re be a smooth observable with

∫
M
v dν = 0. Define

Wn(t) = n−1/2

∫ t

0

v ◦ φs ds. (1.4)

For large classes of uniformly and nonuniformly hyperbolic flows [11, 32, 34, 20], it
can be shown that Wn satisfies the WIP. In this paper we consider such flows, and
give a definitive answer to the question of how to correctly interpret the stochastic
integral

∫
b(X) ∗ dW in order to ensure that Xn →w X.
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An important special case Let d = e = 2 and take a ≡ 0, b(x1, x2) =
( 1 0

0 x1

)
.

The ODE (1.2) becomes

dX1
n = dW 1

n , dX2
n = X1

n dW
2
n ,

so with the initial condition ξ = 0 we obtain X1
n ≡ W 1

n and X2
n(t) =

∫ t
0
W 1
n dW

2
n .

Weak convergence of Wn to W does not determine the weak limit of
∫ t

0
W 1
n dW

2
n .

However according to rough path theory [28], this is the key obstruction to solving
the central problem in this paper. Generally, define the family of smooth processes
Wn ∈ C([0,∞),Re×e),

Wβγ
n (t) =

∫ t

0

W β
n dW

γ
n , 1 ≤ β, γ ≤ e. (1.5)

The theory of rough paths implies that under some mild moment estimates, the
weak limit of (Wn,Wn) determines the weak limit of Xn in (1.2) and the correct
interpretation for the stochastic integral in (1.3).

Hence a large part of this paper is dedicated to proving an iterated WIP for the
pair (Wn,Wn).

Anosov and Axiom A flows One well-known class of flows to which our results
apply is given by the Axiom A (uniformly hyperbolic) flows introduced by Smale [50].
This includes Anosov flows [3]. We do not give the precise definitions, since they
are not needed for understanding the paper, but a rough description is as follows.
(See [47, 45, 6] for more details.)

Let φt : M →M be a C2 flow defined on a compact manifold M . A flow-invariant
subset Ω ⊂ M is uniformly hyperbolic if for all x ∈ Ω there exists a Dφt-invariant
splitting transverse to the flow into uniformly contracting and expanding directions.
The flow is Anosov if the whole of M is uniformly hyperbolic. More generally, an
Axiom A flow is characterised by the property that the dynamics decomposes into
finitely many hyperbolic equilibria and finitely many uniformly hyperbolic subsets
Ω1, . . . ,Ωk, called hyperbolic basic sets, such that the flow on each Ωi is transitive
(there is a dense orbit).

If Ω is a hyperbolic basic set, there is a unique φt-invariant ergodic probability
measure (called an equilibrium measure) associated to each Hölder function on Ω. (In
the special case that Ω is an attractor, there is a distinguished equilibrium measure
called the physical measure or SRB measure (after Sinai, Ruelle, Bowen).)

In the remainder of the introduction, we assume that Ω is a hyperbolic basic set
with equilibrium measure ν (corresponding to a Hölder potential). We exclude the
trivial case where Ω consists of a single periodic orbit.

We can now state our main results. For u : Ω → Rq, we define Eν(u) ∈ Rq and
Covν(u) ∈ Rq×q by setting Eν(u) =

∫
Ω
u dν and Covβγν (u) = Eν(uβuγ)−Eν(uβ)Eν(uγ).
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Theorem 1.1 (Iterated WIP) Suppose that Ω ⊂ M is a hyperbolic basic set with
equilibrium measure ν and that v : Ω → Re is Hölder with

∫
Ω
v dν = 0. Define Wn

and Wn as in (1.4) and (1.5). Then

(a) (Wn,Wn)→w (W,W) in C([0,∞),Re × Re×e) as n→∞, where

(i) W is an e-dimensional Brownian motion with covariance matrix Σ =
Cov(W (1)) = limn→∞Covν(Wn(1)).

(ii) Wβγ(t) =
∫ t

0
W β ◦ dW γ + 1

2
Dβγt where D = 2 limn→∞ Eν(Wn(1))− Σ.

(b) If in addition the integral
∫∞

0

∫
Ω
vβ vγ ◦ φt dt exists for all β, γ, then

Σβγ =

∫ ∞
0

∫
Ω

(vβvγ ◦ φt + vγvβ ◦ φt) dν dt,

and

Dβγ =

∫ ∞
0

∫
Ω

vβvγ ◦ φt − vγvβ ◦ φt) dν dt.

Theorem 1.2 (Convergence to SDE) Suppose that Ω ⊂ M is a hyperbolic basic
set with equilibrium measure ν and that v : X → Re is Hölder with

∫
Ω
v dν = 0. Let

Wn, W and D be as in Theorem 1.1. Let a : Rd → Rd be C1+ and b : Rd → Rd×e be
C2+, and define Xn to be the solution of the ODE (1.2) with Xn(0) = ξ.

Then Xn →w X in C([0,∞),Rd) as n→∞, where X satisfies the SDE

dX =
{
a(X) +

1

2

∑
α,β,γ

Dβγ∂αbβ(X)bαγ(X)
}
dt+ b(X) ◦ dW, X(0) = ξ.

Mixing assumptions on the flow The only place where we use mixing assump-
tions on the flow is in Theorem 1.1(b) to obtain closed form expressions for the
diffusion and drift coefficients Σ and D. In general, these integrals need not converge
for Axiom A flows even when v is C∞.

Dolgopyat [12] proved exponential decay of correlations for Hölder observables
v of certain Anosov flows, including geodesic flows on compact negatively curved
surfaces. This was extended by Liverani [26] to Anosov flows with a contact structure,
including the case of geodesic flows in all dimensions. Theorem 1.1(b) holds for the
flows considered in [12, 26]. Nevertheless, for typical Anosov flows, the extra condition
in Theorem 1.1(b) is not known to hold for Hölder observables.

Dolgopyat [13] introduced the weaker notion of rapid mixing, namely decay of
correlations at an arbitrary polynomial rate, and proved that typical Axiom A flows
enjoy this property. By [16], an open and dense set of Axiom A flows are rapid mixing.
However, this theory applies only to observables v that are sufficiently smooth, and the
degree of smoothness is not readily computable. On the positive side, Theorem 1.1(b)
holds for typical Axiom A flows provided v is C∞.
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In the absence of a good theory of mixing for flows, we have chosen (as in [35])
to develop our theory in such a way that the dependence on mixing is minimized.
Instead we rely on statistical properties of flows, which is a relatively well-understood
topic.

A more complicated closed form expression for Σ and D that does not require
mixing conditions on the flow can be found in Corollary 8.1.

Beyond uniform hyperbolicity In this introduction, for ease of exposition we
have chosen to focus on the case of uniformly hyperbolic flows (Anosov or Axiom A).
However, our results hold for large classes of nonuniformly hyperbolic flows. In par-
ticular, Young [54] introduces a class of nonuniformly hyperbolic diffeomorphisms,
that includes uniformly hyperbolic (Axiom A) diffeomorphisms, as well as Hénon-like
attractors [5]. For flows with a Poincaré map that is nonuniformly hyperbolic in the
sense of [54], Theorems 1.1 and 1.2 go through unchanged.

The nonuniformly hyperbolic diffeomorphisms in [54] (but not necessarily the
corresponding flows) have exponential decay of correlations for Hölder observables.
Young [55] considers nonuniformly hyperbolic diffeomorphisms with subexponential
decay of correlations. Many of our results go through for flows with a Poincaré map
that is nonuniformly hyperbolic in the more general sense of [55]. In particular, our
results are valid for the classical Lorenz equations.

These extensions are discussed at length in Section 10.

Structure of the proofs In the smooth ergodic theory literature, there are numer-
ous results on the WIP where Wn →w W . Usually such results are obtained first for
processes Wn arising from a discrete time dynamical system. Results for flows are then
obtained as a corollary of the discrete time case, see for example [44, 36, 32, 34, 9, 39].
Hence it is natural to solve the discrete time analogue of Theorem 1.1 first before ex-
tending to continuous time. This is the approach followed in this paper. We first
prove the discrete time iterated WIP, Theorem 2.1 below. Then we derive the con-
tinuous time WIP, Theorem 1.1, as a consequence, before obtaining Theorem 1.2
using rough path theory. For completeness, we also state and prove the discrete time
analogue of Theorem 1.2 (see Theorem 2.2 below), even though this is not required
for the proof of Theorem 1.2.

For the proof of the discrete time iterated WIP, it is convenient to use the standard
method of passing from invertible maps to noninvertible maps. So we prove the
iterated WIP first for noninvertible maps, then for invertible maps, and finally for
continuous time systems.

Structure of the paper The remainder of this paper is organised as follows. Sec-
tions 2 to 5 deal with the discrete time iterated WIP. Section 2 states our main results
for discrete time. In Section 3, we present a result on cohomological invariance of
weak limits of iterated processes. This result seems of independent theoretical inter-
est but in this paper it is used to significantly simplify calculations. In Sections 4
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and 5, we prove the iterated WIP for discrete time systems that are noninvertible
and invertible respectively.

In Section 6, we return to the case of continuous time and prove a purely proba-
bilistic result about lifting the iterated WIP from discrete time to continuous time.
In Section 7, we state and prove some moment estimates that are required to apply
rough path theory. In Section 8, we prove the iterated WIP stated in Theorem 1.1.
Then in Section 9, we prove Theorem 1.2 and its discrete time analogue.

In Section 10, we discuss various generalisations of our main results that go be-
yond the Axiom A case. In particular, we consider large classes of systems that are
nonuniformly hyperbolic in the sense of [54, 55].

We conclude this introduction by mentioning related work of Dolgopyat [14, Theo-
rem 5], and [15, Theorem 3(b)]. These results, which rely on very different techniques
from those developed here, prove the analogue of Theorem 1.2 for a class of partially
hyperbolic discrete time dynamical systems. The intersection with our work con-
sists of Anosov diffeomorphisms and time-one maps of Anosov flows with better than
summable decay of correlations. As discussed above, our main results do not rely
on mixing for flows, only the formulas require mixing. Also, we consider the entire
Axiom A setting (including Smale horseshoes and flows that possess a horseshoe in
the Poincaré map) and our results apply to systems that are nonuniformly hyperbolic
in the sense of Young (including Hénon and Lorenz attractors).

Notation As usual, we let
∫
b(X) dW and

∫
b(X) ◦ dW denote the Itô and

Stratonovich integrals respectively.
We use the “big O” and � notation interchangeably, writing an = O(bn) or

An � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 Statement of the main results for discrete time

In this section, we state the discrete time analogues of our main Theorems 1.1 and 1.2.
Let f : M → M be a C2 diffeomorphism defined on a compact manifold M .

Again we focus on the case where Λ ⊂ M is a (nontrivial) hyperbolic basic set with
equilibrium measure µ. The definitions are identical to those for Axiom A flows,
with the simplification that the direction tangent to the flow is absent. We assume
in this section that Λ is mixing: limn→∞

∫
Λ
w1w2 ◦ fn dµ =

∫
Λ
w1 dµ

∫
Λ
w2 dµ for all

w1, w2 ∈ L2 (this assumption is relaxed in Section 10).
Let v : Λ → Re be Hölder with

∫
Λ
v dµ = 0. Define the cadlag processes Wn ∈

D([0,∞),Re), Wn ∈ D([0,∞),Re×e),

Wn(t) = n−1/2

[nt]−1∑
j=0

v ◦ f j, Wβγ
n (t) =

∫ t

0

W β
n dW

γ
n = n−1

∑
0≤i<j≤[nt]−1

vβ ◦ f i vγ ◦ f j. (2.1)
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Since our limiting processes have continuous sample paths, throughout we use the
sup-norm topology on D([0,∞),Re) unless otherwise stated.

Theorem 2.1 (Iterated WIP, discrete time) Suppose that Λ ⊂ M is a mixing
hyperbolic basic set with equilibrium measure µ, and that v : Λ → Re is Hölder
with

∫
Λ
v dµ = 0. Define Wn and Wn as in (2.1). Then (Wn,Wn) →w (W,W) in

D([0,∞),Re × Re×e) as n→∞, where

(i) W is an e-dimensional Brownian motion with covariance matrix Σ =
Cov(W (1)) = limn→∞Covµ(Wn(1)) given by

Σβγ =

∫
Λ

vβ vγ dµ+
∞∑
n=1

∫
Λ

(vβvγ ◦ fn + vγvβ ◦ fn) dµ.

(ii) Wβγ(t) =
∫ t

0
W β dW γ + Eβγt where E = limn→∞ Eµ(Wn(1)) is given by

Eβγ =
∞∑
n=1

∫
Λ

vβvγ ◦ fn dµ.

Given a : Rd → Rd, b : Rd → Rd×e, we define Xn ∈ D([0,∞),Rd), to be the
solution to an appropriately discretized version of equation (1.2). Namely, we set
Xn(t) = X[nt],n where

Xj+1,n = Xj,n + n−1a(Xj,n) + b(Xj,n)
(
Wn( j+1

n
)−Wn( j

n
)
)
, X0,n = ξ.

Theorem 2.2 (Convergence to SDE, discrete time) Suppose that Λ ⊂ M is a
mixing hyperbolic basic set with equilibrium measure µ, and that v : Λ→ Re is Hölder
with

∫
Λ
v dµ = 0. Let Wn, W and E be as in Theorem 2.1. Let a : Rd → Rd be C1+

and b : Rd → Rd×e be C2+, and define Xn ∈ D([0,∞),Rd) as above.
Then Xn →w X in D([0,∞),Rd) as n→∞, where X satisfies the SDE

dX =
{
a(X) +

∑
α,β,γ

Eβγ∂αbβ(X)bαγ(X)
}
dt+ b(X) dW, X(0) = ξ.

3 Cohomological invariance for iterated integrals

In this section, we present a result which is of independent theoretical interest but
which in particular significantly simplifies the subsequent calculations.

Let f : Λ → Λ be an invertible or noninvertible map with invariant probability
measure µ. Suppose that v, v̂ : Λ → Re are mean zero observables lying in L2.
Define Wn ∈ D([0,∞),Re) and Wn ∈ D([0,∞),Re×e) as in (2.1), and similarly define

Ŵn ∈ D([0,∞),Re) and Ŵn ∈ D([0,∞),Re×e) starting from v̂ instead of v.
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We say that v and v̂ are L2-cohomologous if there exists χ : Λ → Re lying in L2

such that v = v̂ + χ ◦ f − χ. It is then easy to see that Wn satisfies the WIP if and
only if Ŵn satisfies the WIP and moreover the weak limits of Wn and Ŵn coincide.
However, the weak limits of Wn and Ŵn need not coincide. The following result
supplies the correction factor needed to recover identical weak limits.

Theorem 3.1 Suppose that f : Λ → Λ is mixing and that v, v̂ ∈ L2(Λ,Re)
are L2-cohomologous mean zero observables. Let 1 ≤ β, γ ≤ e. Then the limit
limn→∞

∑n
j=1

∫
Λ
(vβ vγ ◦ f j − v̂β v̂γ ◦ f j) dµ exists and

Wβγ
n (t)− Ŵβγ

n (t)→ t
∞∑
j=1

∫
Λ

(vβ vγ ◦ f j − v̂β v̂γ ◦ f j) dµ a.e.,

as n→∞, uniformly on compact subsets of [0,∞).
In particular, the weak limits of the processes

Wβγ
n (t)− t

n∑
j=1

∫
Λ

vβ vγ ◦ f j dµ, Ŵβγ
n (t)− t

n∑
j=1

∫
Λ

v̂β v̂γ ◦ f j dµ,

coincide (in the sense that if one limit exists, then so does the other and they are
equal).

Proof Write v = v̂ + a, a = χ ◦ f − χ, and An(t) = n−1/2
∑[nt]−1

j=0 a ◦ f j. Then

Wβγ
n (t)− Ŵβγ

n (t) =

∫ t

0

W β
n dW

γ
n −

∫ t

0

Ŵ β
n dŴ

γ
n =

∫ t

0

Aβn dW
γ
n +

∫ t

0

Ŵ β
n dA

γ
n.

Now ∫ t

0

Aβn dW
γ
n = n−1

[nt]−1∑
j=0

j−1∑
i=0

aβ ◦ f i vγ ◦ f j = n−1

[nt]−1∑
j=0

(χβ ◦ f j − χβ) vγ ◦ f j

= n−1

[nt]−1∑
j=0

(χβvγ) ◦ f j − n−1χβ
[nt]−1∑
j=0

vγ ◦ f j,

which converges to t
∫

Λ
χβvγ dµ a.e. by the ergodic theorem.

A similar argument for the remaining term, after changing order of summation
yields that

∫ t
0
Ŵ β
n dA

γ
n → −t

∫
Λ
v̂β χγ ◦ f dµ a.e.

Hence we have shown that

Wβγ
n (t)− Ŵβγ

n (t)→ t
(∫

Λ

χβvγ dµ−
∫

Λ

v̂β χγ ◦ f dµ
)
. (3.1)
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Next,

vβ vγ ◦ f j − v̂β v̂γ ◦ f j = (χβ ◦ f − χβ) vγ ◦ f j + v̂β (χγ ◦ f − χγ) ◦ f j,

and so

n∑
j=1

∫
Λ

vβ vγ ◦ f j dµ−
n∑
j=1

∫
Λ

v̂β v̂γ ◦ f j dµ

=
n∑
j=1

∫
Λ

{
(χβ ◦ f − χβ) vγ ◦ f j + v̂β (χγ ◦ f − χγ) ◦ f j

}
dµ

=
n∑
j=1

∫
Λ

{
(χβ ◦ fn−j+1 − χβ ◦ fn−j) vγ ◦ fn + v̂β (χγ ◦ f j+1 − χγ ◦ f j)

}
dµ

=

∫
Λ

χβ vγ dµ−
∫

Λ

v̂β χγ ◦ f dµ+ Ln (3.2)

where Ln =
∫

Λ
(v̂β χγ ◦fn+1−χβ vγ ◦fn) dµ→ 0 as n→∞ by the mixing assumption.

The result is immediate from (3.1) and (3.2).

Corollary 3.2 Let f : Λ→ Λ be mixing and let v, v̂ ∈ L2(Λ,Re) be L2-cohomologous
mean zero observables.

Suppose that (Ŵn, Ŵn) →w (Ŵ , Ŵ) in D([0,∞),Re × Re×e) as n → ∞. Then

(Wn,Wn)→w (W,W) in D([0,∞),Re × Re×e) as n→∞, where W = Ŵ and

Wβγ(t) = Ŵβγ(t) + t
∞∑
j=1

∫
Λ

(vβ vγ ◦ f j dµ− vβ v̂γ ◦ f j) dµ.

Remark 3.3 For completeness, we describe the analogous result for semiflows. Again
the result is of independent theoretical interest even though we make no use of it in
this paper.

Let φt : Ω → Ω be a (semi)flow with invariant probability measure ν. Suppose
that v, v̂ : Ω → Re are mean zero observables lying in L2. Define Wn and Wn as
in (1.4) and (1.5), and similarly define Ŵn and Ŵn starting from v̂ instead of v.

We say that v and v̂ are L2-cohomologous if there exists χ : Ω → Re lying in L2

such that
∫ t

0
v ◦ φs ds =

∫ t
0
v̂ ◦ φs ds+ χ ◦ φt − χ. Again, Wn satisfies the WIP if and

only if Ŵn satisfies the WIP and the weak limits coincide. As in Theorem 3.1, we
find that the limit limn→∞

∫ n
0

∫
Ω

(vβ vγ ◦ φs − v̂β v̂γ ◦ φs) dν exists and

Wβγ
n (t)− Ŵβγ

n (t)→ t

∫ ∞
0

∫
Ω

(vβ vγ ◦ φs − v̂β v̂γ ◦ φs)dν ds a.e.,

as n→∞, uniformly on compact subsets of [0,∞). The proof is almost identical to
that of Theorem 3.1 and hence is omitted.
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4 Iterated WIP for noninvertible maps

A sufficient condition for Theorem 2.1 is that f : Λ → Λ is a mixing uniformly ex-
panding map. More generally, in this section we consider a class of nonuniformly
expanding maps with sufficiently rapid decay of correlations. The underlying hy-
potheses can be satisfied only by noninvertible maps; see Section 5 for more general
hypotheses appropriate for invertible maps.

In Subsection 4.1 we give more details on the class of maps that is considered in
this section. In Subsection 4.2, we prove the iterated WIP for these maps.

4.1 Noninvertible maps

Let f : Λ→ Λ be an ergodic measure-preserving map defined on a probability space
(Λ, µ) and let v : Λ → Rd be an integrable observable with

∫
Λ
v dµ = 0. Let P :

L1(Λ)→ L1(Λ) be the transfer operator for f given by
∫

Λ
Pw1w2 dµ =

∫
Λ
w1 Uw2 dµ

for w1 ∈ L1(Λ), w2 ∈ L1(Λ) where Uw = w ◦ f .

Definition 4.1 Let p ≥ 1. We say that v admits an Lp martingale-coboundary
decomposition if there exists m,χ ∈ Lp(Λ,Re) such that

v = m+ χ ◦ f − χ, m ∈ kerP. (4.1)

We refer to m as the martingale part of the decomposition.

Remark 4.2 The reason for calling m a martingale will become clearer in Sub-
section 4.2. For the time being, we note that it is standard and elementary that
PU = I and UP = E( · |f−1B) where B is the underlying σ-algebra. In particular
E(m|f−1B) = 0.

Our main result in this section is the following.

Theorem 4.3 Suppose that f is mixing and that the decomposition (4.1) holds with
p = 2. Then the conclusion of Theorem 2.1 is valid.

Proposition 4.4 Let p ≥ 1. A sufficient condition for (4.1) to hold is that v ∈ L∞
and there are constants C > 0, τ > p such that∣∣∣∫

Λ

v w ◦ fn dµ
∣∣∣ ≤ C‖w‖∞n−τ , for all w ∈ L∞, n ≥ 1. (4.2)

Proof By duality, ‖P nv‖1 ≤ Cn−τ . Also, ‖P nv‖∞ ≤ ‖v‖∞ and it follows that

‖P nv‖p ≤ ‖v‖1−1/p
∞ (Cn−τ )1/p which is summable.

Define χ =
∑∞

n=1 P
nv ∈ Lp, and write v = m+χ◦f −χ where m ∈ Lp. Applying

P to both sides and using the fact that PU = I, we obtain that m ∈ kerP .
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There are large classes of noninvertible maps for which the decay condition (4.2)
has been established for sufficiently regular v, see Section 10. In particular, for
uniformly expanding maps the decay is exponential for Hölder continuous v, so τ and
p can be chosen arbitrarily large.

In the remainder of this subsection we reduce Theorem 4.3 to the martingale part.
Define the cadlag processes Mn ∈ D([0,∞),Re), Mn ∈ D([0,∞),Re×e),

Mn(t) = n−1/2

[nt]−1∑
j=0

m ◦ f j, Mβγ
n (t) =

∫ t

0

Mβ
n dM

γ
n = n−1

∑
0≤i<j≤[nt]−1

mβ ◦ f imγ ◦ f j.

Theorem 4.3 follows from the following lemma.

Lemma 4.5 Suppose that f is ergodic and that m ∈ L2(Λ,Re) with Pm = 0.
Then (Mn,Mn) →w (W, I) in D([0,∞),Re × Re×e), as n → ∞, where W is an
e-dimensional Brownian motion with covariance matrix Cov(W (1)) =

∫
Λ
mmT dµ

and Iβγ(t) =
∫ t

0
W β dW γ.

Proof of Theorem 4.3 We apply Corollary 3.2 with v̂ = m. Note that
∫

Λ
mmT ◦

f j dµ =
∫

Λ
P jmmT dµ = 0 for all j ≥ 1. By Theorem 3.1, E =

∑∞
j=1 v v

T ◦ f j dµ is a
convergent series. By Corollary 3.2, (Wn,Wn) →w (W,W) where Σ = Cov(W (1)) =∫

Λ
mmT dµ and W(t) = I(t) + Et

It remains to prove that Σβγ = limn→∞Covβγµ (Wn(1)) =
∫

Λ
vβ vγ dµ +∑∞

n=1

∫
Λ
(vβvγ ◦ fn + vγvβ ◦ fn) dµ and that E = limn→∞ Eµ(Wn(1)).

Define vn =
∑n−1

j=0 v ◦ f j, mn =
∑n−1

j=0 m ◦ f j. Then∫
Λ

mnm
T
n dµ =

∑
0≤i,j≤n−1

∫
Λ

m ◦ f i(m ◦ f j)T dµ = nΣ.

Equivalently, cTΣc = n−1
∫

Λ
(cTmn)2 dµ for all c ∈ Re, n ≥ 1. Let ‖ ‖2 denote the L2

norm on (Λ, µ). We have that n
1
2 (cTΣc)

1
2 = ‖cTmn‖2. By (4.1), vn−mn = χ◦fn−χ.

Using f -invariance of µ,∣∣‖cTvn‖2 − n
1
2 (cTΣc)

1
2

∣∣ =
∣∣‖cTvn‖2 − ‖cTmn‖2

∣∣ ≤ ‖cT (vn −mn)‖2 ≤ 2‖cTχ‖2,

and hence limn→∞ n
− 1

2‖cTvn‖2 = (cTΣc)
1
2 . Equivalently,

Σ = lim
n→∞

n−1

∫
Λ

vn v
T
n dµ = lim

n→∞
Covµ(Wn(1)). (4.3)

Let ar =
∫

Λ
v ◦ f r vT dµ and sk =

∑k
r=1 ar. Compute that

∑
0≤j<i≤n−1

∫
Λ

v ◦ f i−j vT dµ =
∑

1≤r<n

(n− r)
∫

Λ

v ◦ f r vT dµ =
∑

1≤r<n

(n− r)ar =
n∑
k=1

sk.

11



Hence

lim
n→∞

n−1
∑

0≤j<i≤n−1

∫
Λ

v ◦ f i−j vT dµ = lim
n→∞

n−1

n∑
k=1

sk = lim
n→∞

sn

=
∞∑
r=1

∫
Λ

v ◦ f r vT dµ. (4.4)

Similarly,

lim
n→∞

n−1
∑

0≤i<j≤n−1

∫
Λ

v (v ◦ f j−i)T dµ =
∞∑
r=1

∫
Λ

v (v ◦ f r)T dµ. (4.5)

Write

n−1

∫
Λ

vnv
T
n dµ = n−1

∑
0≤i,j≤n−1

∫
Λ

v ◦ f i(v ◦ f j)T dµ

=

∫
Λ

vvT dµ+ n−1
∑

0≤j<i≤n−1

∫
Λ

v ◦ f i−j vT dµ+ n−1
∑

0≤i<j≤n−1

∫
Λ

v (v ◦ f j−i)T dµ.

By (4.3), (4.4), (4.5), Σ =
∫

Λ
v vT dµ+

∑∞
r=1

∫
Λ
(v ◦ f r vT + v (v ◦ f r)T ) dµ.

Finally, Eµ(Wn(1)) = n−1
∑

0≤i<j≤n−1

∫
Λ
v (v ◦ f j−i)T dµ, so it follows from (4.5)

that limn→∞ Eµ(Wn(1)) = E.

4.2 Proof of Lemma 4.5

Remark 4.6 The Mn →w W part of Lemma 4.5 is standard but we give the proof
for completeness. The statement can be obtained from the proof of Lemma 4.5
by ignoring the Mn component. In particular, our use of this fact in the proof of
Lemma 4.8 below is not circular.

Recall that m is B-measurable and m ∈ kerP so E(m|f−1B) = 0. Similarly, m◦f j
is f−jB-measurable and E(m ◦ f j|f−(j+1)B) = E(m|f−1B) ◦ f j = 0. If the sequence
of σ-algebras f−jB formed a filtration, then Mn would be a martingale and we could
apply Kurtz & Protter [23, Theorem 2.2] to obtain a limit for (Mn,Mn).

In fact the σ-algebras are decreasing: f−jB ⊃ f−(j+1)B for all j. To remedy
this, we pass to the natural extension f̃ : Λ̃ → Λ̃. This is an invertible map with
ergodic invariant measure µ̃, and there is a measurable projection π : Λ̃ → Λ such
that πf̃ = fπ and π∗µ̃ = µ. The observable m : Λ → Re lifts to an observable
m̃ = m ◦ π : Λ̃ → Re and the joint distributions of {m ◦ f j : j ≥ 0} are identical to
those of {m̃ ◦ f̃ j : j ≥ 0}.

Define

M̃n(t) = n−1/2

[nt]−1∑
j=0

m̃ ◦ f̃ j, M̃βγ
n (t) =

∫ t

0

M̃β
n dM̃

γ
n = n−1

∑
0≤i<j≤[nt]−1

m̃β ◦ f̃ i m̃γ ◦ f̃ j.

12



Then (M̃n, M̃n) = (Mn,Mn) ◦ π and π is measure preserving, so it is equivalent to
prove that

(M̃n, M̃n)→w (W, I) in D([0,∞),Re × Re×e). (4.6)

Let B̃ = π−1B. Again f̃−jB̃ ⊃ f̃−(j+1)B̃ but this means that {Fj, j ≥ 1} =

{f̃ jB̃, j ≥ 1} is an increasing sequence of σ-algebras. Moreover, m̃ ◦ f̃−j is Fj-
measurable and E(m̃ ◦ f̃−j|Fj−1) = 0. Hence the “backwards” process

M̃−
n (t) = n−

1
2

−1∑
j=−[nt]

m̃ ◦ f̃ j

forms an ergodic stationary martingale. Similarly, define

M̃βγ,−
n (t) =

∫ t

0

M̃β,−
n dM̃γ,−

n = n−1
∑

[−nt]≤j<i≤−1

m̃β ◦ f̃ i m̃ ◦ f̃ j.

Note that
∫

Λ̃
m̃ m̃T dµ̃ =

∫
Λ
mmT dµ.

Proposition 4.7 (M̃−
n , M̃−n )→w (W, I) in D([0,∞),Re × Re×e) as n→∞.

Proof We verify the hypotheses of Kurtz & Protter [23, Theorem 2.2] (with δ =∞
and An ≡ 0). We have already seen that M̃−

n is a martingale. Also, by the calculation

in the proof of Theorem 4.3, E(M̃γ,−
n (t)2) = n−1‖

∑[nt]
j=1 m̃

γ ◦ f̃−j‖2
2 = t

∫
Λ̃
(m̃γ)2 dµ̃

independent of n, so condition C2.2(i) in [23, Theorem 2.2] is trivially satisfied.
The WIP for stationary ergodic L2 martingales (eg [8, 29]) implies that M−

n →w W

in D([0,∞),Re). In particular, (M̃β,−
n , M̃γ,−

n )→w (W β,W γ) in D([0,∞),R2). Hence,
the result follows from [23, Theorem 2.2].

It remains to relate weak convergence of (M̃−
n , M̃−n ) and (M̃n, M̃n). It suffices to

work in D([0, T ],Re × Re×e) for each fixed integer T ≥ 1.

Lemma 4.8 Let g(u)(t) = u(T )−u(T−t) and h(u, v)(t) = u(T−t)(v(T )−v(T−t)).
Let ∗ denote matrix transpose in Re×e. Then

(M̃n, M̃n) ◦ f̃−nT =
(
g(M̃−

n ),
(
g(M̃−n )− h(M̃−

n )
)∗)

+ Fn,

where supt∈[0,T ] Fn(t)→ 0 a.e.

Proof In this proof we suppress the tildes. First we show that Mn◦f−nT = g(M−
n )+

F 0
n , where supt∈[0,T ] F

0
n(t)→ 0 a.e.
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We have

Mn(t) ◦ f−nT = n−
1
2

[nt]−1∑
j=0

m ◦ f j ◦ f−nT = n−
1
2

[nt]−1−nT∑
j=−nT

m ◦ f j

= M−
n (T )−M−

n (T − t) + F 0
n(t),

Here, F 0
n consists of at most one term and we can write

|F 0
n(t)| ≤ n−

1
2

∣∣ max
j=1,...,nT

m ◦ f−j
∣∣.

It suffices to work componentwise, so suppose without loss that e = 1. By the ergodic
theorem, n−1

∑n
j=1m

2 ◦ f−j →
∫

Λ
m2 dµ, and so n−1m2 ◦ f−n → 0. It follows that

n−1 maxj=0,...,nT m
2 ◦ f−j → 0 a.e. and so supt∈[0,T ] F

0
n(t)→ 0 a.e.

Next, we show that Mn◦f−nT =
(
g(M−n )−h(M−

n )
)∗

+Fn, where supt∈[0,T ] Fn(t)→
0 a.e. We have

Mβγ
n (t) = n−1

[nt]−1∑
j=0

( j−1∑
i=0

mβ ◦ f i
)
mγ ◦ f j,

Mβγ,−
n (t) = n−1

−1∑
j=−[nt]+1

( j−1∑
i=[−nt]

mγ ◦ f i
)
mβ ◦ f j.

Hence

Mβγ
n (t) ◦ f−nT = n−1

[nt]−1−nT∑
j=−nT

j−1∑
i=−nT

mβ ◦ f imγ ◦ f j

= n−1
( −nT∑
j=−nT

+
−1∑

j=−nT+1

−
−1∑

j=[nt]−nT+1

−
[nt]−nT∑
j=[nt]−nT

) j−1∑
i=−nT

mβ ◦ f imγ ◦ f j

= F 1
n(t) + Mγβ,−

n (T )− En(t)− F 2
n(t), (4.7)

where

F 1
n(t) = n−1

−nT−1∑
i=−nT

mβ ◦ f imγ ◦ f−nT ,

F 2
n(t) =

(
n−

1
2

[nt]−nT−1∑
i=−nT

mβ ◦ f i
)(
n−

1
2mγ ◦ f [nt]−nT

)
,

En(t) = n−1

−1∑
j=[nt]−nT+1

j−1∑
i=−nT

mβ ◦ f imγ ◦ f j.
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Now F 1
n(t) consists of only two terms and clearly converges to 0 almost everywhere.

The first factor in F 2
n converges weakly to W β (see Remark 4.6) and the second factor

converges to 0 almost everywhere by the ergodic theorem. Hence supt∈[0,T ] Z|F r
n(t)| →

0 a.e. for r = 1, 2. Moreover,

En(t) = n−1

−1∑
j=[nt]−nT+1

(−nT+[nt]−1∑
i=−nT

+

j−1∑
i=−nT+[nt]

)
mβ ◦ f imγ ◦ f j

= Hn(t) + Mγβ,−
n (T − t) + F 3

n(t), (4.8)

where

Hn(t) =
(
n−

1
2

−1∑
j=[nt]−nT

mγ ◦ f j
)(
n−

1
2

−nT+[nt]−1∑
i=−nT

mβ ◦ f i
)

= Mγ,−
n (T − t)

(
Mβ,−

n (T )−Mβ,−
n (T − t)

)
, (4.9)

and F 3
n(t) = n−1

∑−nT+[nt]−1
i=−nT mβ ◦ f imγ ◦ f [nt]−nT+1. Again, supt∈[0,T ] |F 3

n(t)| → 0 a.e.
by the ergodic theorem. The result follows from (4.7), (4.8), (4.9).

Proposition 4.9 Let D̃([0, T ],Rq) denote the space of caglad functions from [0, T ]
to Rq with the standard Skorokhod J1 topology. Suppose that An = Bn + Fn where
An ∈ D([0, T ],Rq), Bn ∈ D̃([0, T ],Rq), and Fn → 0 uniformly in probability. If

Z has continuous sample paths and Bn →w Z in D̃([0, T ],Rq), then An →w Z in
D([0, T ],Rq).

Proof It is clear that the limiting finite distributions of An coincide with those of
Bn, so it suffices to show that An inherits tightness from Bn. One way to see this
is to consider the following Arzela-Ascoli-type characterisation [49], valid in both

D([0, T ],Rq) and D̃([0, T ],Rq).

Tightness of Bn in D̃([0, T ],Rq) implies that for any ε > 0, k ≥ 1, there exists
C > 0, δk > 0, nk ≥ 1 such that P (|Bn|∞ > C) < ε for all n ≥ 1 and P (ω(Bn, δk) >
1/k) < ε for all n ≥ nk, where

ω(ψ, δ) = sup
t−δ<t′<t<t′′<t+δ

min{|ψ(t)− ψ(t′)|, |ψ(t)− ψ(t′′)|},

(where t, t′, t′′ are restricted to [0, T ]). These criteria are also satisfied by Fn for trivial
reasons, and hence by An establishing tightness of An in D([0, T ],Rq).

Corollary 4.10 (M̃n, M̃n) →w

(
g(W ),

(
g(I) − h(W )

)∗)
in D([0, T ],Re × Re×e) as

n→∞.
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Proof Recalling the notation from Lemma 4.8, observe that the functional χ :
D([0, T ],Re × Re×e)→ D̃([0, T ],Re × Re×e) given by χ(u, v) = (g(u), (g(v)− h(u))∗)
is continuous. Hence it follows from Proposition 4.7 and the continuous map-
ping theorem that (g(M̃−

n ), (g(M̃−n ) − h(M̃−
n ))∗) →w (g(W ), (g(I) − h(W ))∗) in

D̃([0, T ],Re × Re×e). The result is now immediate from Lemma 4.8 and Proposi-
tion 4.9.

Lemma 4.11 (g(W ), (g(I)− h(W ))∗) =d (W, I) in D([0, T ],Re × Re×e).

Proof Step 1 g(W ) =d W in D([0, T ],Re). To see this, note that both processes are
Gaussian with continuous sample paths and g(W )(0) = W (0) = 0. One easily verifies
that Cov(g(W )(t1), g(W )(t2)) = t1Σ for all 0 ≤ t1 ≤ t2 ≤ T . Hence g(W ) =d W .

Step 2 Introduce the process J(t) =
∫ t

0
g(W ) dg(W ). We claim that (g(W ), J) =d

(W, I). To see this, let Yn(t) =
∑[nt]−1

j=0 W (j/n)(W ((j+1)/n)−W (j/n)) so (W,Yn)→w

(W, I). Similarly, let Zn(t) =
∑[nt]−1

j=0 g(W )(j/n)(g(W )((j + 1)/n) − g(W )(j/n)) so
(g(W ), Zn)→w (g(W ), J). It is clear that (W,Yn) =d (g(W ), Zn) so the claim follows.

Step 3 We complete the proof by showing that J = (g(I)−h(W ))∗. Let 1 ≤ β, γ ≤ e.
We show that g(I)βγ − h(W )βγ = Jγβ.

Now Jγβ(t) =
∫ t

0
g(W )γ dg(W )β = limn→∞ Sn where the limit is in probability

and

Sn =

[nt]−1∑
k=0

g(W )γ( k
n
)
(
g(W )β(k+1

n
)− g(W )β( k

n
)
)
.

=

[nt]−1∑
k=0

(
W γ(T )−W γ(T − k

n
)
)(
W β(T − k

n
)−W β(T − k+1

n
)
)

=

[nt]−1∑
k=0

k−1∑
j=0

(
W γ(T − j

n
)−W γ(T − j+1

n
)
)(
W β(T − k

n
)−W β(T − k+1

n
)
)

=

[nt]−2∑
j=0

[nt]−1∑
k=j+1

(
W β(T − k

n
)−W β(T − k+1

n
)
)(
W γ(T − j

n
)−W γ(T − j+1

n
)
)

=

[nt]−2∑
j=0

(
W β(T − j+1

n
)−W β(T − [nt]

n
)
)(
W γ(T − j

n
)−W γ(T − j+1

n
)
)
.
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On the other hand, {g(I)−h(W )}βγ(t) =
∫ T
T−t(W

β−W β(T−t)) dW γ = limn→∞ Tn
where

Tn =
nT−1∑

i=[n(T−t)]

(
W β( i

n
)−W β(T − t)

)(
W γ( i+1

n
)−W γ( i

n
)
)

=

−[−nt]−1∑
j=0

(
W β(T − j+1

n
)−W β(T − t)

)(
W γ(T − j

n
)−W γ(T − j+1

n
)
)
.

We claim that limn→∞(Tn − Sn) = 0 a.e. from which the result follows. When nt
is an integer, Sn = Tn. Otherwise, Tn − Sn = An +Bn where

An =

[nt]−2∑
j=0

(
W β(T − t)−W β(T − [nt]

n
)
)(
W γ(T − j

n
)−W γ(T − j+1

n
)
)

=
(
W β(T − t)−W β(T − [nt]

n
)
)(
W γ(T )−W γ(T − ( [nt]−1

n
)
)

and

Bn =
(
W β(T − ( [nt]+1

n
)−W β(T − t)

)(
W γ(T − [nt]

n
)−W γ(T − ( [nt]+1

n
)
)
.

The claim follows since An → 0 and Bn → 0 as n→∞.

Proof of Lemma 4.5 This follows from Corollary 4.10 and Lemma 4.11.

5 Iterated WIP for invertible maps

In this section, we prove an iterated WIP for invertible maps, and as a special case
we prove Theorem 2.1.

For an invertible map f : Λ→ Λ, the transfer operator P is an isometry on Lp for
all p, so the hypotheses used in Section 4 are not applicable. We require the following
more general setting.

Suppose that in addition to the underlying probability space (Λ, µ) and measure-
preserving map f : Λ → Λ, there is an additional probability space (Λ̄, µ̄) and
measure-preserving map f̄ : Λ̄ → Λ̄, and there is a semiconjugacy π : Λ → Λ̄ with
π∗µ = µ̄ such that π ◦ f = f̄ ◦ π. (The system on Λ̄ is called a factor of the system
on Λ.) We let P denote the transfer operator for f̄ .

Definition 5.1 Let v : Λ → Re be of mean zero and let p ≥ 1. We say that v
admits an Lp martingale-coboundary decomposition if there exists m,χ ∈ Lp(Λ,Re),
m̄ ∈ Lp(Λ̄,Re), such that

v = m+ χ ◦ f − χ, m = m̄ ◦ π, m̄ ∈ kerP. (5.1)

17



The definition is clearly more general than Definition 4.1, but the consequences
are unchanged.

Theorem 5.2 Suppose that f is mixing and that the decomposition (5.1) holds with
p = 2. Then the conclusion of Theorem 2.1 is valid.

Proof By Theorem 3.1, we again reduce to considering the martingale part m. De-
fine the cadlag processes (Mn,Mn) and (Mn,Mn) starting from m and m̄ respectively.
Then (Mn,Mn) = (Mn,Mn) ◦ π. Hence we reduce to proving the iterated WIP for
(Mn,Mn) = (Mn,Mn). Since m̄ ∈ kerP , we are now in the situation of Section 4,
and the result follows from Lemma 4.5.

For the remainder of this paper, hypotheses about the existence of a martingale-
coboundary decomposition refer only to the more general decomposition in (5.1).

5.1 Applications of Theorem 5.2

We consider first the case of Axiom A (uniformly hyperbolic) diffeomorphisms. By
Bowen [6], any (nontrivial) hyperbolic basic set can be modelled by a two-sided sub-
shift of finite type f : Λ→ Λ. The alphabet consists of k symbols {0, 1, . . . , k−1} and
there is a transition matrix A ∈ Rk×k consisting of zeros and ones. The phase space
Λ consists of bi-infinite sequences y = (yi) ∈ {0, 1, . . . , k − 1}Z such that Ayi,yi+1

= 1
for all i ∈ Z, and f is the shift (fy)i = yi+1.

For any θ ∈ (0, 1) we define the metric dθ(x, y) = θs(x,y) where the separation
time s(x, y) is the greatest integer n ≥ 0 such that xi = yi for |i| ≤ n. Define
Fθ(Λ) to be the space of dθ-Lipschitz functions v : Λ → Re with Lipschitz constant
|v|θ = supx 6=y |x−y|/dθ(x, y) and norm ‖v‖θ = |v|∞+ |v|θ where |v|∞ is the sup-norm.
For each θ, this norm makes Fθ(Λ) into a Banach space.

As usual, we have the corresponding one-sided shift f̄ : Λ̄ → Λ̄ where Λ̄ =
{0, 1, . . . , k − 1}{0,1,2,... }, and the associated function space Fθ(Λ̄). There is a natural
projection π : Λ → Λ̄ that is a semiconjugacy between the shifts f and f̄ , and
Lipschitz observables v̄ ∈ Fθ(Λ̄) lift to Lipschitz observables v = v̄ ◦ π ∈ Fθ(Λ).

A k-cylinder in Λ̄ is a set of the form [a0, . . . , ak−1] = {y ∈ Λ̄ : yi =
ai for all i = 0, . . . , k − 1}, where a0, . . . , ak−1 ∈ {0, 1, . . . , k − 1}. The underlying
σ-algebra B is defined to be the σ-algebra generated by the k-cylinders. Note that
f : Λ̄ → Λ̄ is measurable with respect to this σ-algebra. We define B to be the
smallest σ-algebra on Λ such that π : Λ→ Λ̄ and f : Λ→ Λ are measurable.

For any potential function in Fθ(Λ̄) we obtain a unique equilibrium state µ̄. This
is an ergodic f -invariant probability measure defined on (Λ̄,B). Define µ on (Λ,B)
to be the unique f -invariant measure such that π∗µ = µ̄. Again, µ is an ergodic
probability measure.

We assume that there is an integer m ≥ 1 such that all entries of Am are nonzero.
Then the shift f is mixing with respect to µ.
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Proof of Theorem 2.1 To each y ∈ Λ̄ associate a y∗ ∈ Λ such that (i) y∗i = yi for
all i ≥ 0 and (ii) x0 = y0 implies that x∗i = y∗i for each i ≤ 0 (eg for the full shift,
take y∗i = 0 for i < 0).

Given the observable v ∈ Fθ(Λ), define χ1(x) =
∑∞

n=0 v(fnx∗) − v(fnx). Then
χ1 ∈ L∞ and v = v̂ + χ1 ◦ f − χ1 where v̂ “depends only on the future” and projects
down to an observable v̄ : Λ̄→ R. Moreover, by Sinai [48], v̄ ∈ Fθ1/2(Λ̄). It is standard
that there exist constants a, C > 0 such that |

∫
Λ
v̄ w ◦ fn dµ| ≤ C‖v̄‖θ1/2‖w‖1e

−an for
all w ∈ L1, n ≥ 1. By Proposition 4.4, (4.1) holds for all p (even p = ∞). That is,
there exist m̄, χ̄2 ∈ L∞(Λ̄) such that v̄ = m̄+ χ̄2 ◦ f̄ − χ̄2 where m̄ ∈ kerP . It follows
that v̂ = m + χ2 where m = m̄ ◦ π, χ2 = χ̄2 ◦ π. Setting χ = χ1 + χ2, we obtain
an L∞ martingale-coboundary decomposition for v in the sense of (5.1). Now apply
Theorem 5.2.

Our results hold for also for the class of nonuniformly hyperbolic diffeomorphisms
studied by Young [54]. The maps in [54] enjoy exponential decay of correlations for
Hölder observables.

More generally, it is possible to consider the situation of Young [55] where the
decay of correlations is at a polynomial rate n−τ . Provided τ > 2 and there is
exponential contraction along stable manifolds, then the conclusion of Theorem 2.1
goes through unchanged. These conditions can be relaxed further, see Section 10.

6 Iterated WIP for flows

In this section, we prove a continuous time version of the iterated WIP by reducing
from continuous time to discrete time. Theorem 6.1 below is formulated in a purely
probabilistic setting, extending the approach in [36, 19, 39].

We suppose that f : Λ → Λ is a map with ergodic invariant probability measure
µ. Let r : Λ → R+ be an integrable roof function with r̄ =

∫
Λ
r dµ. We suppose

throughout that r is bounded below (away from zero). Define the suspension Λr =
{(x, u) ∈ Λ× R : 0 ≤ u ≤ r(x)}/ ∼ where (x, r(x)) ∼ (fx, 0), Define the suspension
flow φt(x, u) = (x, u + t) computed modulo identifications. The measure µr = µ ×
Lebesgue/r̄ is an ergodic invariant probability measure for φt. Using the notation of
the introduction, we write (Ω, ν) = (Λr, µr).

Now suppose that v : Ω → Re is integrable with
∫

Ω
v dν = 0. Define the smooth

processes Wn ∈ C([0,∞),Re), Wn ∈ C([0,∞),Re × Re×e),

Wn(t) = n−
1
2

∫ nt

0

v◦φs ds, Wβγ
n (t) =

∫ t

0

W β
n dW

γ
n = n−1

∫ nt

0

∫ s

0

vβ ◦φr vγ ◦φs dr ds.

Define ṽ : Λ → Re by setting ṽ(x) =
∫ r(x)

0
v(x, u) du, and define the cadlag
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processes W̃n ∈ D([0,∞),Re), W̃n ∈ D([0,∞),Re×e),

W̃n(t) = n−
1
2

[nt]−1∑
j=0

ṽ ◦ f j, W̃βγ
n (t) =

∫ t

0

W̃ β
n dW̃

γ
n = n−1

∑
0≤i<j≤[nt]−1

ṽβ ◦ f iṽγ ◦ f j.

We assume that the discrete time case is understood, so we have that

(W̃n, W̃n)→w (W̃ , W̃), in D([0,∞),Re × Re×e), (6.1)

where W̃ is e-dimensional Brownian motion and W̃βγ(t) =
∫ t

0
W̃ β dW̃ γ + Ẽβγt. Here

the probability space for the processes on the left-hand-side is (Λ, µ).
Define H : Ω→ Re by setting H(x, u) =

∫ u
0
v(x, s) ds.

Theorem 6.1 Suppose that ṽ ∈ L2(Λ) and |H||v| ∈ L1(Ω). Assume (6.1) and that

n−1/2 sup
t∈[0,T ]

|H ◦ φnt| →w 0 in C(0,∞),Re), (6.2)

lim
n→∞

n−1
∥∥∥ max

1≤k≤nT

∣∣∣ ∑
1≤i≤k

ṽ ◦ f i
∣∣∣ ∥∥∥

2
= 0. (6.3)

Then (WnWn)→w (W,W) in C([0,∞),Re×Re×e) where the probability space on the
left-hand-side is (Ω, ν), and

W = (r̄)−1/2W̃ , Wβγ(t) =

∫ t

0

W β dW γ + Eβγt, Eβγ = (r̄)−1Ẽβγ +

∫
Ω

Hβvγ dν.

Remark 6.2 The regularity conditions on ṽ and |H||v| are satisfied if v ∈ L∞(Ω,Re)
and r ∈ L2(Λ,R), or if v ∈ L2(Ω,Re) and r ∈ L∞(Λ,R). Moreover, assumption (6.2)
is satisfied under these conditions by Proposition 6.6(b).

If ṽ admits an L2 martingale-coboundary decomposition (5.1), then condition (6.3)
holds by Burkholder’s inequality [10].

In the remainder of this section we prove Theorem 6.1. Recall the notation vt =∫ t
0
v ◦ φs ds, ṽn =

∑n−1
j=0 ṽ ◦ f j, rn =

∑n−1
j=0 r ◦ f j. For (x, u) ∈ Ω and t > 0, we define

the lap number N(t) = N(x, u, t) ∈ N:

N(t) = max{n ≥ 0 : rn(x) ≤ u+ t}.

Define gn(t) = N(nt)/n.

Lemma 6.3 (W̃n, W̃n) ◦ gn →w

(
(r̄)−1/2W̃ , (r̄)−1W̃

)
in D(([0,∞),Re × Re×e).

Proof By (6.1), (W̃n, W̃n)→w (W̃ , W̃) on (Λ, µ). Extend (W̃n, W̃n) to Ω by setting

W̃n(x, u) = W̃n(x), W̃n(x, u) = W̃n(x).
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We claim that (W̃n, W̃n) →w (W̃ , W̃) on (Ω, ν). Define ḡ(t) = t/r̄. By the
ergodic theorem, gn(t) = N(nt)/n = tN(nt)/(nt) → ḡ(t) almost everywhere on

(Ω, ν). Hence (W̃n, W̃n, gn) →w (W̃ , W̃, ḡ) on (Ω, ν). It follows from the continuous
mapping theorem that

{(W̃n, W̃n) ◦ gn(t), t ≥ 0} →w {(W̃ , W̃) ◦ g(t), t ≥ 0} = {(W̃ (t/r̄), W̃(t/r̄)), t ≥ 0}
= {(r̄)−1/2W̃ (t), (r̄)−1W̃(t)), t ≥ 0}

on (Ω, ν) completing the proof.
It remains to verify the claim, Let c = ess inf r and form the probability space

(Ω, µc) where µc = (µ × Lebesgue|[0,c])/c. Then it is immediate that (W̃n, W̃n) →w

(W̃ , W̃) on (Ω, µc). To pass from µc to ν, and hence to prove the claim, we apply [56,
Theorem 1]. Since µc is absolutely continuous with respect to ν, it suffices to prove
for all ε, T > 0 that

lim
n→∞

µr

(
sup
t∈[0,T ]

|Pn(t) ◦ f − Pn(t)| > ε
)

= 0, (6.4)

for Pn = W̃n and Pn = W̃n. We give the details for the latter since that is the more
complicated case. Compute that W̃βγ

n (t) ◦ f − W̃βγ
n (t) = n−1

∑
1≤i<[nt] ṽ

γ ◦ f i ṽβ ◦
f [nt] − n−1

∑
1≤j<[nt] ṽ

γ ṽβ ◦ f j and so∥∥∥sup
[0,T ]

|W̃βγ
n ◦ f − W̃βγ

n |
∥∥∥

1
≤ ‖ṽβ‖2n

−1
∥∥∥ max

1≤k≤nT

∣∣ ∑
1≤i<k

ṽγ ◦ f i
∣∣∥∥∥

2

+ ‖ṽγ‖2n
−1
∥∥∥ max

1≤k≤nT

∣∣ ∑
1≤j≤k

ṽβ ◦ f j
∣∣∥∥∥

2
→ 0

by (6.3). Hence (6.4) follows from Markov’s inequality.

It follows from the definition of lap number that

φt(x, u) = (fN(t)x, u+ t− rN(t)(x)).

We have the decomposition

vt(x, u) =

∫ N(t)

0

v(φs(x, 0)) ds+H ◦ φt(x, u)−H(x, u)

= ṽN(t)(x) +H ◦ φt(x, u)−H(x, u). (6.5)

We also require the following elementary result.

Proposition 6.4 Let an be a real sequence and b > 0. If limn→∞ n
−ban = 0, then

limn→∞ n
−b supt∈[0,T ] |a[nt]| = 0.
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Lemma 6.5 (Wn,Wn) = (W̃n, W̃n)◦gn+Fn, where Fn →w F in D([0,∞),Re×Re×e)
and F (t) =

(
0,
∫

Ω
Hβvγ dν

)
t.

Proof Using (6.5), we can write

Wn(t) = n−1/2vnt = n−1/2ṽN(t) + n−1/2H ◦ φnt − n−1/2H.

By definition, W̃n(N(nt)/n) = n−1/2ṽN(t). Hence by assumption (6.2), we obtain the
required decomposition for Wn.

Similarly,

Wβγ
n (t) =

∫ t

0

W β
n dW

γ
n =

∫ t

0

vβns v
γ ◦ φns ds

=

∫ t

0

[ṽβN(ns) +Hβ ◦ φns −Hβ]vγ ◦ φns ds = An(t) +Bn(t), (6.6)

where

An(t) =

∫ t

0

ṽβN(ns)v
γ ◦ φns ds, Bn(t) = n−1

∫ nt

0

[Hβ ◦ φs −Hβ]vγ ◦ φs ds.

By the ergodic theorem,

n−1Hβ

∫ n

0

vγ ◦ φs ds = Hβ(n)−1

∫ n

0

vγ ◦ φs ds→ Hβ

∫
Ω

vγ dν = 0.

Hence by Proposition 6.4, n−1 supt∈[0,T ] |Hβ
∫ nt

0
vγ ◦ φs ds| → 0 a.e. Similarly,

n−1

∫ n

0

Hβ ◦ φs vγ ◦ φs ds = n−1

∫ n

0

(Hβvγ) ◦ φs ds→
∫

Ω

Hβvγ dν.

Applying Proposition 6.4 with b = 1 and an =
∫ n

0
Hβ ◦ φs vγ ◦ φs ds − n

∫
Ω
Hβvγ dν,

we obtain that n−1
∫ nt

0
Hβ ◦φs vγ ◦φs ds→

∫
Ω
Hβvγ dν uniformly on [0, T ] a.e. Hence

Bn(t)→ t
∫

Ω
Hβvγ dν uniformly on [0, T ] a.e.

To deal with the term An, we introduce the return times tn,j = tn,j(x, u), with 0 =
tn,0 < tn,1 < tn,2 < · · · such that N(nt) = j for t ∈ [tn,j, tn,j+1). Note that tn,j(x, u) =
(rj(x)− u)/n for j ≥ 1. Since r is bounded below, we have that limj→∞ tn,j =∞ for
each n.

Compute that

An(t) =

N(nt)−1∑
j=0

∫ tn,j+1

tn,j

ṽβj v
γ ◦ φns ds+

∫ t

tn,N(nt)

ṽβN(nt) v
γ ◦ φns ds

=

N(nt)−1∑
j=0

ṽβj

∫ tn,j+1

tn,j

vγ ◦ φns ds+ ṽβN(nt)

∫ t

tn,N(nt)

vγ ◦ φns ds.
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For j ≥ 1, ∫ tn,j+1

tn,j

v ◦ φns ds =

∫ tn,j+1

tn,j

v(f jx, u+ ns− rj(x)) ds

= n−1

∫ r(fjx)

0

v(f jx, s) ds = n−1ṽ ◦ f j,

and similarly we can write
∫ tn,1

0
v ◦ φns ds = n−1

∫ r(x)

u
v(x, s) ds = n−1ṽ +O(1/n) a.e.

By definition, W̃n(N(nt)/n) = n−1
∑N(nt)−1

j=0 ṽj ṽ ◦ f j. Hence we have shown that

An(t) = W̃n ◦ gn(t) + Cn(t) +O(1/n) a.e., where Cβγ
n (t) = ṽβN(nt)

∫ t
tn,N(nt)

vγ ◦ φns ds.
Finally, we note that∫ t

tn,N(nt)

v ◦ φns ds =

∫ t

tn,N(nt)

v(fN(nt)x, u+ ns− rN(nt)(x)) ds

= n−1

∫ u+t−rN(nt)(x)

0

v(fN(nt)x, s) ds = n−1H(fN(nt)x, u+ t− rN(nt)(x))

= n−1H ◦ φnt.

Hence Cβγ
n = W̃ β

n ◦ gn(t) · n−1/2Hγ ◦ φnt →w 0 by Lemma 6.3 and assumption (6.2).

Proof of Theorem 6.1 This is immediate from Lemmas 6.3 and 6.5.

Proposition 6.6 Sufficient conditions for assumption (6.2) to hold are that (a) H ∈
L2+(Ω,Re), or (b) ṽ∗ ∈ L2(Λ), where ṽ∗(x) =

∫ r(x)

0
|v(x, u)| du.

Proof In both cases, we prove that n−1/2H ◦ φn → 0 a.e. By Proposition 6.4,
supt∈[0,T ] H ◦ φnt → 0 a.e.

(a) Choose δ > 0 such that H ∈ L2+δ and τ < 1
2

such that τ(2 + δ) > 1. Since
‖H ◦ φn‖2+δ = ‖H‖2+δ, it follows from Markov’s inequality that ν(|H ◦ φn| > nτ ) ≤
‖H‖2+δn

−τ(2+δ) which is summable. By Borel-Cantelli, there is a constant C > 0 such
that |H ◦ φn| ≤ Cn−τ a.e. and hence n−1/2H ◦ φn → 0 a.e.

(b) Since ṽ2
∗ ∈ L1(Λ), it follows from the ergodic theorem that n−1/2ṽ∗ ◦ fn → 0 a.e.

Moreover, N(nt)/n → 1/r̄ a.e. on (Ω, ν) and hence n−1/2ṽ∗ ◦ f [N(nt)] → 0 a.e. The
result follows since |H(x, u)| ≤ ṽ∗(x) for all x, u.

Remark 6.7 The sufficient conditions in Proposition 6.6 imply almost sure conver-
gence, uniformly on [0, T ], for the term Fn in Lemma 6.5.
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7 Moment estimates

In this section, we obtain some moment estimates that are required to apply rough
path theory. (Proposition 7.5 below is also required for part of Theorem 1.1, see the
proof of Corollary 8.3.)

7.1 Discrete time moment estimates

Let f : Λ → Λ be a map (noninvertible or noninvertible) with invariant probability
measure µ. Suppose that v : Λ→ Re is a mean zero observable lying in L∞. Define

vn =
n−1∑
j=0

v ◦ f j, Sβγn =
∑

0≤i<j<n

vβ ◦ f i vγ ◦ f j.

Proposition 7.1 Suppose that v : Λ→ Re lies in L∞ and admits an Lp martingale-
coboundary decomposition (5.1) for some p ≥ 3. Then there exists a constant C > 0
such that ∥∥max

0≤j≤n
|vj|
∥∥

2p
≤ Cn1/2,

∥∥max
0≤j≤n

|Sj|
∥∥

2p/3
≤ Cn, for all n ≥ 1.

Proof The estimate ‖vn‖2p � n1/2 is proved in [33, Equation (3.1)]. Since vn+a −
va =d vn for all a, n, the result for max0≤j≤n |vj| follows by [46, Corollary B1] (cf. [37,
Lemma 4.1]).

To estimate Sn write

Sβγn =
∑

0≤i<j<n

mβ ◦ f i vγ ◦ f j +
∑

1≤j<n

(χβ ◦ f j − χβ)vγ ◦ f j.

We have ‖
∑

1≤j<n χ
β ◦f j vγ ◦f j‖p ≤ n‖χβ vγ‖p ≤ n‖χβ‖p‖vγ‖∞ and ‖

∑
1≤j<n χ

βvγ ◦
f j‖p ≤ ‖χβ‖p‖

∑
1≤j<n v

γ ◦ f j‖∞ ≤ n‖χβ‖p‖vγ‖∞.

Next, we estimate In =
∑

0≤i<j<nm
β ◦ f i vγ ◦ f j. Passing to the natural extension

f̃ : Λ̃→ Λ̃ in the noninvertible case (and taking f̃ = f in the invertible case) we have

Ĩn =
∑

0≤i<j<n

m̃β ◦ f̃ i ṽγ ◦ f̃ j =
( ∑
−n≤i<j<0

m̃β ◦ f̃ i ṽγ ◦ f̃ j
)
◦ f̃n = Ĩ−n ◦ f̃n,

so we reduce to estimating Ĩ−n =
∑
−n≤i<j<0 ṽ

γ ◦ f̃ jm̃β ◦ f̃ i.
Now,

Ĩ−n =
n∑
k=1

Xk where Xk =
( ∑
−k<j<0

ṽγ ◦ f̃ j
)
m̃β ◦ f̃−k.
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Recall that E(m̃β ◦ f̃ i|f̃−i−1B̃) = 0. Hence E(Xk|f̃k−1B̃) = 0, and so {Xk; k ≥ 1} is
a sequence of martingale differences. For p′ > 1, Burkholder’s inequality [10] states
that ‖Ĩ−n ‖p′ � ‖(

∑n
k=1X

2
k)1/2‖p′ , and it follows for p′ ≥ 2 that

‖Ĩ−n ‖2
p′ �

n∑
k=1

‖Xk‖2
p′ . (7.1)

Taking p′ = 2p/3, it follows from Hölder’s inequality that

‖Xk‖2p/3 ≤
∥∥∥ ∑
−k<j<0

ṽγ ◦ f̃ j
∥∥∥

2p
‖m̃β ◦ f̃−k‖p = ‖vγk−1‖2p‖mβ‖p � k1/2.

Hence ‖Ĩ−n ‖2p/3 � n and so ‖Sn‖2p/3 � n.
This time we cannot apply the maximal inequality of [46] since we do not have a

good estimate for Sa+n−Sa uniform in a. However we claim that ‖Sa+n−Sa‖2p/3 �
n + n1/2a1/2. Set Aa,n = (

∑a+n
k=a+1 b

2
k)

1/2 with bk = k1/2. By the claim, ‖Sa+n −
Sa‖2p/3 � Aa,n and it follows from [40, Theorem A] (see also references therein) that
‖max0≤j≤n |Sj| ‖2p/3 � n as required.

For the claim, observe that

Sβγa+n − Sβγa =
a+n−1∑
j=a

j−1∑
i=0

vβ ◦ f i vγ ◦ f j

=
a+n−1∑
j=a

a−1∑
i=0

vβ ◦ f i vγ ◦ f j +
a+n−1∑
j=a

j−1∑
i=a

vβ ◦ f i vγ ◦ f j

= vβa v
γ
n ◦ fa + Sβγn ◦ fa.

Hence
‖Sβγa+n − Sβγa ‖q ≤ ‖vγn‖2q‖vβa‖2q + ‖Sn‖q � n1/2a1/2 + n,

for q = 2p/3. This proves the claim.

Remark 7.2 The proof of Proposition 7.1 makes essential use of the fact that
v ∈ L∞ [25, 33, 37]. Under this assumption, the estimate for max0≤j≤n |vj| re-
quires only that p ≥ 1 and is optimal in the sense that there are examples where
limn→∞ ‖n−1/2vn‖q =∞ for all q > 2p, see [37, Remark 3.7].

We conjecture that the optimal estimate for max0≤j≤n |Sj| is that
‖max0≤j≤n |Sj| ‖p � n (for p ≥ 2). Then we would only require p > 3 instead of
p > 9/2 in our main results.

Recall that Wn(t) = n−1/2
∑[nt]−1

j=0 v ◦ f j and Wβγ
n (t) =

∫ t
0
W β
n dW

γ
n . We define the

increments

Wn(s, t) = Wn(t)−Wn(s), and Wβγ
n (s, t) =

∫ t

s

W β
n (s, r) dW γ

n (r).
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Corollary 7.3 Suppose that v : Λ → Re lies in L∞ and admits an Lp martingale-
coboundary decomposition (5.1) for some p ≥ 3. Then there exists a constant C > 0
such that

‖Wn(j/n, k/n)‖2p ≤ C(|k − j|/n)1/2 and ‖Wn(j/n, k/n)‖2p/3 ≤ C|k − j|/n,

for all j, k, n ≥ 1.

Proof Let t > s > 0. By definition,

Wn(s, t) = n−1/2

[nt]−1∑
i=[ns]

v ◦ f i = n−1/2
([nt]−[ns]−1∑

i=0

v ◦ f i
)
◦ f [ns]

=d n
−1/2

[nt]−[ns]−1∑
i=0

v ◦ f i = n−1/2v[nt]−[ns].

By Proposition 7.1, assuming without loss that j < k,

‖Wn(j/n, k/n)‖2p = n−1/2‖vk−j‖2p ≤ C((k − j)/n)1/2.

Similarly,

Wn(s, t) = n−1
∑

[ns]≤i<j≤[nt]−1

vβ ◦ f i vγ ◦ f j = n−1
( ∑

0≤i<j<[nt]−[ns]−1

vβ ◦ f i vγ ◦ f j
)
◦ f [ns]

=d n
−1

∑
0≤i<j<[nt]−[ns]−1

vβ ◦ f i vγ ◦ f j = n−1Sβγ[nt]−[ns].

By Proposition 7.1,

‖Wn(j/n, k/n)‖2p/3 = n−1‖Sk−j‖2p/3 ≤ C(k − j)/n,

as required.

7.2 Continuous time moment estimates

Let φt : Ω→ Ω be a suspension flow as in Section 6, with Poincaré map f : Λ→ Λ. As
before, we write Ω = Λr, ν = µr, where r : Λ→ R is a roof function with r̄ =

∫
r dµ.

Let v : Ω→ Re with
∫

Ω
v dν = 0.

As before we suppose that r is bounded away from zero, but now we suppose in
addition that v and r lie in L∞. (These assumptions can be relaxed, but then the
assumption on p has to be strengthened in the subsequent results.)

Define

vt =

∫ t

0

v ◦ φs ds, Sβγt =

∫ t

0

∫ u

0

vβ ◦ φs vγ ◦ φu ds du.

Let ṽ : Λ → Re be given by ṽ(x) =
∫ r(x)

0
v(x, u) du (so ṽ coincides with the function

defined in Section 6). The assumptions on v and r imply that ṽ ∈ L∞(Λ, µ).
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Proposition 7.4 N(t) ≤ [t/ ess inf r] + 1 for all (x, u) ∈ Ω, t ≥ 0.

Proof Compute that

r[t/ ess inf r]+2(x) = r(x) + r[t/ ess inf r]+1(fx) ≥ u+ ([t/ ess inf r] + 1) ess inf f > u+ t.

Hence the result follows from the definition of lap number.

Proposition 7.5 Suppose that ṽ : Λ → Re admits an Lp martingale-coboundary
decomposition (5.1) for some p ≥ 3. Then there exists a constant C > 0 such that

‖vt‖2p ≤ Ct1/2, ‖St‖2p/3 ≤ Ct,

for all t ≥ 0.

Proof If t ≤ 1, then we have the almost sure estimates |vt| ≤ ‖v‖∞t ≤ ‖v‖∞t1/2
and |St| ≤ ‖v‖2

∞t
2 ≤ ‖v‖2

∞t. Hence in the remainder of the proof, we can suppose
that t ≥ 1.

For the vt estimate, we follow the argument used in [37, Lemma 4.1]. By (6.5),

vt = ṽN(t) +G(t),

where G(t)(x, u) = H ◦ φt(x, u) − H(x, u) =
∫ u

0
v(φt(x, s)) ds −

∫ u
0
v(x, s) ds. In

particular, ‖G(t)‖∞ ≤ 2‖r‖∞‖v‖∞ ≤ 2‖r‖∞‖v‖∞t1/2. By Proposition 7.4, there is a
constant R > 0 such that N(t) ≤ Rt for all t ≥ 1. Hence

|vt| ≤ max
0≤j≤Rt

|ṽj|+ 2‖r‖∞‖v‖∞t1/2.

By Proposition 7.1, ‖max0≤j≤Rt |ṽj|‖2p � t1/2. Since r is bounded above and below,
this estimate for max0≤j≤Rt |ṽj| holds equally in L2p(Λ) and L2p(Ω). Hence ‖vt‖2p �
t1/2.

To estimate St we make use of decompositions similar to those in Section 6.
By (6.5),

Sβγt =

∫ t

0

vβs v
γ ◦ φs ds =

∫ t

0

(ṽβN(s) +Gβ(s))vγ ◦ φs ds,

where ‖
∫ t

0
Gβ(s) vγ ◦φs ds‖∞ ≤ 2|r|∞|v|2∞t. Moreover, in the notation from the proof

of Lemma 6.5 with n = 1,∫ t

0

ṽβN(s) v
γ ◦ φs ds = A1(t) =

N(t)−1∑
j=0

ṽβj ṽ
γ ◦ f j − ṽβ

∫ u

0

vγ ◦ φs ds+ ṽβN(t)H
γ ◦ φt

= S̃βγN(t) − ṽ
β

∫ u

0

vγ ◦ φs ds+ ṽβN(t)H
γ ◦ φt
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where S̃n is as in Proposition 7.1. Now ‖ṽβN(t)‖∞ ≤ ‖N(t)‖∞‖ṽβ‖∞ ≤ Rt‖r‖∞‖v‖∞.
Hence by Proposition 7.1,∣∣∣∫ t

0

ṽβN(s) v
γ ◦ φs ds

∣∣∣ ≤ max
j≤Rt
|S̃βγj |+ (1 +Rt)‖r‖2

∞‖v‖2
∞ � t,

completing the proof.

Again we recall that Wn(t) = n−1/2
∫ nt

0
v ◦ φs ds and Wβγ

n (t) =
∫ t

0
W β
n dW

γ
n , and

we define the increments

Wn(s, t) = Wn(t)−Wn(s), and Wβγ
n (s, t) =

∫ t

s

W β
n (s, r) dW γ

n (r).

Corollary 7.6 Suppose that ṽ admits an Lp martingale-coboundary decomposi-
tion (5.1) for some p ≥ 3. Then there exists a constant C > 0 such that

‖Wn(s, t)‖2p ≤ C|t− s|1/2 and ‖Wn(s, t)‖2p/3 ≤ C|t− s|,

for all s, t ≥ 0.

Proof This is almost identical to the proof of Corollary 7.3.

Remark 7.7 Any hyperbolic basic set for an Axiom A flow can be written as a
suspension over a mixing hyperbolic basic set f : Λ→ Λ with a Hölder roof function
r. Since every Hölder mean zero observable ṽ : Λ → Re admits an L∞ martingale-
coboundary decomposition, it follows that Proposition 7.5 and Corollary 7.6 hold for
all p.

8 Applications of Theorem 6.1

In this section, we apply Theorem 6.1 to a large class of uniformly and nonuniformly
hyperbolic flows. In particular, we complete the proof of Theorem 1.1. Our main
results do not require mixing assumptions on the flow, but the formulas simplify in
the mixing case.

Let φt : Ω → Ω be a suspension flow as in Section 6, with mixing Poincaré map
f : Λ → Λ. As before, we write Ω = Λr, ν = µr, where r : Λ → R is a roof function
with r̄ =

∫
r dµ.

Nonmixing flows First we consider the case where φt is not mixing. (As usual,
we suppose that the Poincaré map f is mixing.)

Corollary 8.1 Suppose that f : Λ → Λ is mixing and that r ∈ L1(Λ) is bounded
away from zero. Let v ∈ L1(Ω,Re) with

∫
Ω
v dν = 0. Suppose further that |H||v| is

integrable and that assumption (6.2) is satisfied.
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Assume that ṽ admits a martingale-coboundary decomposition (5.1) with p = 2.
Then the conclusion of Theorem 6.1 is valid. Moreover,

Σβγ = CovβγW (1) = (r̄)−1

∫
Λ

ṽβ ṽγ dµ+ (r̄)−1

∞∑
n=1

∫
Λ

(ṽβ ṽγ ◦ fn + ṽγ ṽβ ◦ fn) dµ,

and Wβγ(t) =
∫ t

0
W β ◦ dW γ + 1

2
Dβγt where

Dβγ = (r̄)−1

∞∑
n=1

∫
Λ

(ṽβ ṽγ ◦ fn − ṽγ ṽβ ◦ fn) dµ+

∫
Ω

(Hβ vγ −Hγ vβ) dν.

Proof By Theorem 4.3, condition (6.1) is satisfied. Specifically, (W̃n, W̃n) →w

(W̃ , W̃) where W̃ is a Brownian motion with Covβγ(W̃ (1)) =
∫

Λ
ṽβ ṽγ dµ +∑∞

n=1

∫
Λ
(ṽβ ṽγ ◦ fn + ṽγ ṽβ ◦ fn) dµ and W̃βγ

n (t) =
∫ t

0
W̃ β dW̃ γ + Ẽβγt.

By Remark 6.2, hypothesis (6.3) is satisfied. Hence, by Theorem 6.1,

(Wn,Wn) →w (W,W) where W = (r̄)−1/2W̃ and Wβγ(t) =
∫ t

0
W β
n dW

γ
n + Eβγt. It is

immediate that Σ = Cov(W (1)) has the desired form. Moreover, by Theorems 4.3
and 6.1,

Eβγ = (r̄)−1

∞∑
n=1

∫
Λ

ṽβ ṽγ ◦ fn dµ+

∫
Ω

Hβ vγ dν.

The Stratonovich correction gives

Dβγ = 2Eβγ − Σβγ

= (r̄)−1
{ ∞∑
n=1

∫
Λ

(ṽβ ṽγ ◦ fn − ṽγ ṽβ ◦ fn) dµ−
∫

Λ

ṽβ ṽγ dµ
}

+ 2

∫
Ω

Hβ vγ dν.

To complete the proof, we show that (r̄)−1
∫

Λ
ṽβ ṽγ dµ =

∫
Ω
Hβvγ dν+

∫
Ω
Hγvβ dν.

Compute that∫
Λ

ṽβ ṽγ dµ =

∫
Λ

{∫ r(x)

0

vβ(x, u) du

∫ r(x)

0

vγ(x, s) ds
}
dµ

=

∫
Λ

∫ r(x)

0

vβ(x, u)
{∫ u

0

vγ(x, s) ds+

∫ r(x)

u

vγ(x, s) ds
}
du dµ

=

∫
Λ

∫ r(x)

0

vβ(x, u)Hγ(x, u) du dµ+

∫
Λ

∫ r(x)

0

vγ(x, s)
(∫ s

0

vβ(x, u) du
)
ds dµ

= r̄

∫
Ω

vβHγ dν +

∫
Λ

∫ r(x)

0

vγ(x, s)Hβ(x, s) ds

= r̄

∫
Ω

vβHγ dν + r̄

∫
Ω

vγ Hβ dν.

as required.
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Remark 8.2 Corollary 8.1 applies directly to Hölder observables of semiflows that
are suspensions of the uniformly and nonuniformly expanding maps considered in
Section 4, and of flows that are suspensions of the uniformly and nonuniformly hy-
perbolic diffeomorphisms considered in Section 5. In particular, this includes Axiom A
flows and nonuniformly hyperbolic flows that are suspensions over Young towers with
exponential tails.

Mixing flows Under additional conditions, we obtain the formulas for Σ and D
promised in Theorem 1.1(b).

Corollary 8.3 Assume the set up of Corollary 8.1. Suppose further that v ∈ L∞,
and that ṽ admits a martingale-coboundary decomposition (5.1) with p = 3. If the
integral

∫∞
0

∫
Ω
vβ vγ ◦ φt dν dt exists, then

Σβγ =

∫ ∞
0

∫
Ω

(vβvγ ◦ φt + vγvβ ◦ φt) dν dt,

and

Dβγ =

∫ ∞
0

∫
Ω

vβvγ ◦ φt − vγvβ ◦ φt) dν dt.

Proof It follows from [10] that ‖Wn‖p = O(1) and hence that Eν |Wn|q → E|W |q for
all q < p. In particular, taking q = 2, we deduce that Covν(Wn(1))→ Σ. Moreover,
the calculation in the proof of Theorem 4.3 shows that Σβγ =

∫∞
0

∫
Ω

(vβ vγ ◦ φt +

vγ vβ ◦ φt) dν dt. Similarly Eν(
∫ 1

0
W β
n dW

γ
n )→

∫∞
0

∫
Ω
vβ vγ ◦ φt dν dt.

Since v ∈ L∞ and p = 3, it follows from Proposition 7.5 that ‖
∫ 1

0
W β
n dW

γ
n ‖2 =

O(1). (In fact, we require only that ‖
∫ 1

0
W β
n dW

γ
n ‖q = O(1) for some q > 1.) Hence

Eν(
∫ 1

0
W β
n dW

γ
n )→ Eβγ, and so

Dβγ = 2Eβγ − Σβγ = 2

∫ ∞
0

∫
Ω

vβ vγ ◦ φt dν dt−
∫ ∞

0

∫
Ω

(vβ vγ ◦ φt + vγ vβ ◦ φt) dν dt)

=

∫ ∞
0

∫
Ω

(vβ vγ ◦ φt − vγ vβ ◦ φt) dν dt,

as required.

Proof of Theorem 1.1 We use the fact that every hyperbolic basic set for an
Axiom A flow can be written as a suspension over a mixing hyperbolic basic set
f : Λ→ Λ with a Hölder roof function r. Any Hölder mean zero observable v : Λ→ Re

admits an L∞ martingale-coboundary decomposition. Hence Theorem 1.1 follows
from Corollaries 8.1 and 8.3.
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9 Smooth approximation theorem

In this section, we prove Theorems 1.2 and 2.2. To do so, we need a few tools from
rough path theory that allow us to lift the iterated WIP into a convergence result for
fast-slow systems. We do not need to introduce much new terminology since the tools
we need are to some extent prepackaged for our purposes. For the continuous time
results, we use the standard rough path theory [28], but for the discrete time results
we use results of [22].

9.1 Rough path theory in continuous time

Let Un : [0, T ]→ Re be a path of bounded variation. Then we can define the iterated
integral Un : [0, T ]→ Re×e by

Un(t) =

∫ t

0

Un(r) dUn(r), (9.1)

where the integral is uniquely defined in the Riemann-Stieltjes sense. As usual, we
define the increments

Un(s, t) = Un(t)− Un(s) and Un(s, t) =

∫ t

s

Un(s, r) dUn(r).

Suppose that a : Rd → Rd is C1+ and b : Rd → Rd×e is C3, and let Xn be the solution
to the equation

Xn(t) = ξ +

∫ t

0

a(Xn(s)) ds+

∫ t

0

b(Xn(s)) dUn(s), (9.2)

which is well-defined for each n and moreover has a unique solution for every initial
condition ξ ∈ Rd. To characterise the limit of Xn, we use the following standard tool
from rough path theory.

Theorem 9.1 Suppose that (Un,Un)→w (U,U) in C([0,∞),Re ×Re×e), where U is
Brownian motion and where U can be written

U(t) =

∫ t

0

U(s) ◦ dU(s) +Dt, (9.3)

for some constant matrix D ∈ Re×e. Suppose moreover that there exist C > 0 and
q > 3 such that

‖Un(s, t)‖2q ≤ C|t− s|1/2 and ‖Un(s, t)‖q ≤ C|t− s|, (9.4)

hold for all n ≥ 1 and s, t ∈ [0, T ]. Then Xn →w X in C([0,∞),Rd), where

dX =
(
a(X) +

∑
α,β,γ

Dβγ∂αbβ(X)bαγ(X)
)
dt+ b(X) ◦ dW. (9.5)

If (9.4) holds for all q <∞, then the C3 condition on b can be relaxed to C2+.
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This result has been used in several contexts [7, 24], so we only sketch the proof.

Proof First suppose that a ∈ C1+, b ∈ C3. By [17, Theorem 12.10] we know that
the map (Un,Un) 7→ Xn is continuous with respect to the ργ topology (ie. the rough
path topology) for any γ > 1/3. In particular, the estimates (9.4), combined with the
iterated invariance principle, guarantee that (Un,Un) →w (U,U) in the ργ topology
for some γ > 1/3. It follows that Xn →w X where X satisfies the rough differential
equation

X(t) = X(0) +

∫ t

0

a(X(s))ds+

∫ t

0

b(X(s))d(U,U)(s).

By definition of rough integrals, and the decomposition (9.3), X satisfies (9.5).
Similarly, if the estimates (9.4) hold for all q <∞, then we can apply [17, Theorem

12.10] under the relaxed condition a ∈ C1+, b ∈ C2+.

Now let φt : Ω → Ω be a suspension flow as in Section 6, with Poincaré map
f : Λ → Λ. As before, we write Ω = Λr, ν = µr, where r : Λ → R is a roof
function with r̄ =

∫
r dµ. Let v : Ω → Re with

∫
Ω
v dν = 0 and define ṽ : Λ → Re,

ṽ(x) =
∫ r(x)

0
v ◦ φt dt.

Corollary 9.2 Suppose that f : Λ → Λ is mixing and that r ∈ L∞(Λ) is bounded
away from zero. Suppose that a ∈ C1+ and b ∈ C3. Let v ∈ L∞(Ω,Re) with∫

Ω
v dν = 0. If ṽ admits a martingale-coboundary decomposition (5.1) with p > 9

2
,

then the conclusion of Theorem 1.2 is valid.

Proof Recall that Xn satisfies (9.2) with Un = Wn. By Corollary 8.1, (Wn,Wn)→w

(W,W) where W is Brownian motion and Wβγ(t) =
∫ t

0
W β dW γ+Dβγt. Moreover, the

estimates (9.4) hold by Corollary 7.6. The result follows directly from Theorem 9.1.

Proof of Theorem 1.2 Again we use the fact that every hyperbolic basic set for
an Axiom A flow can be written as a suspension over a mixing hyperbolic basic
set f : Λ → Λ with a Hölder roof function r. Any Hölder mean zero observable
v : Λ→ Re admits an L∞ martingale-coboundary decomposition. Hence Theorem 1.2
follows from Corollary 9.2 together with the last statement of Theorem 9.1 (to allow
for the weakened regularity assumption on b).

9.2 Rough path theory in discrete time

In this section, we introduce tools [22] that are the discrete time analogue of those
introduced in the continuous rough path section. Let Un : [0, T ] → Re be a step
function defined by

Un(t) =

[nt]−1∑
j=0

∆Un,j
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We also define the discrete iterated integral Un : [0, T ]→ Re×e by

Un(t) =

∫ t

0

Un(r) dUn(r) =
∑

0≤i<j<[n−2t]

∆Un,i∆Un,j. (9.6)

Note that, as usual, we use the left-Riemann sum convention. We define the incre-
ments

Un(s, t) =

[nt]−1∑
j=[ns]

∆Un,j and Un(s, t) =
∑

[ns]≤i<j<[n−2t]

∆Un,i ∆Un,j

Suppose that a : Rd → Rd is C1+ and b : Rd → Rd×e is C3, and let Xn,j be defined
by the recursion

Xn,j+1 = Xn,j + n−1a(Xn,j) + b(Xn,j)∆Un,j (9.7)

with initial condition Xn,0 = ξ ∈ Rd. We then define the path Xn : [0, T ] → Rd by
the rescaling Xn(t) = Xn,[nt]. The following theorem is the discrete time analogue of
Theorem 9.1 and is proved in [22].

Theorem 9.3 Suppose that (Un,Un)→w (U,U) in D([0,∞),Re×Re×e), where U is
Brownian motion and where U can be written

U(t) =

∫ t

0

U(s) dU(s) + Et,

for some constant matrix E ∈ Re×e. Suppose moreover that there exist C > 0 and
q > 3 such that

‖Un(j/n, k/n)‖2q ≤ C

∣∣∣∣j − kn
∣∣∣∣1/2 and ‖Un(j/n, k/n)‖q ≤ C

∣∣∣∣j − kn
∣∣∣∣ , (9.8)

hold for all n ≥ 1 and j, k = 0, . . . , n. Then Xn →w X in D([0,∞),Rd), where

dX =
(
a(X) +

∑
α,β,γ

Eβγ∂αbβ(X)bαγ(X)
)
dt+ b(X) dW.

If (9.8) holds for all q <∞, then the C3 condition on b can be relaxed to C2+.

Corollary 9.4 Suppose that f : Λ→ Λ is mixing and that a ∈ C1+, b ∈ C3. Let v ∈
L∞(Ω,Re) with

∫
Ω
v dν = 0. If v admits a martingale-coboundary decomposition (5.1)

with p > 9
2
, then the conclusion of Theorem 2.2 is valid.
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Proof We have that Xn is defined by the recursion (9.7) with ∆Un,j = n−1/2v ◦ f j.
In particular, Un = Wn and Un = Wn, as defined in Section 2. By Theorem 2.1,
(Wn,Wn)→w (W,W) where W is Brownian motion and Wβγ(t) =

∫ t
0
W β dW γ+Eβγt.

Moreover, the estimates (9.8) follows immediately from Corollary 7.3. Hence the
result follows from Theorem 9.3.

Proof of Theorem 2.2 Again, any Hölder mean zero observable v : Λ → Re

admits an L∞ martingale-coboundary decomposition. Hence Theorem 2.2 follows
from Corollary 9.4 together with the last statement of Theorem 9.3.

10 Generalisations

Our main results, Theorems 1.1, 1.2 for continuous time, Theorems 2.1, 2.2 for discrete
time, are formulated for the well-known, but restrictive, class of uniformly hyper-
bolic (Axiom A) diffeomorphisms and flows. In this section, we extend these results
to a much larger class of systems that are nonuniformly hyperbolic in the sense of
Young [54, 55]. Also, as promised, we show how to relax the mixing assumption in
Theorems 2.1 and 2.2.

In Subsection 10.1, we consider the case of noninvertible maps modelled by Young
towers. Then in Subsections 10.2 and 10.3 we consider the corresponding situations
for invertible maps and continuous time systems.

10.1 Noninvertible maps modelled by Young towers

In the noninvertible setting, a Young tower f : ∆→ ∆ is defined as follows. First we
recall the notion of a Gibbs-Markov map F : Y → Y .

Let (Y, µY ) be a probability space with a countable measurable partition α, and
let F : Y → Y be a Markov map. Given x, y ∈ Y , define the separation time s(x, y)
to be the least integer n ≥ 0 such that F nx, F ny lie in distinct partition elements of
α. It is assumed that the partition separates orbits. Given θ ∈ (0, 1) we define the
metric dθ(x, y) = θs(x,y).

If v : Y → R is measurable, we define |v|θ = supx 6=y |v(x) − v(y)|/dθ(x, y) and
‖v‖θ = ‖v‖∞ + |v|θ. The space Fθ(Y ) of observables v with ‖v‖θ < ∞ forms a
Banach space with norm ‖ ‖θ.

Let g denote the inverse of the jacobian of F for the measure µY . We require the
good distortion property that | log g|θ < ∞. The map F is said to be Gibbs-Markov
if it has good distortion and big images: infa∈α µY (Fa) > 0. A special case of big
images is the full branch condition Fa = Y for all a ∈ α. Gibbs-Markov maps with
full branches are automatically mixing,

If F : Y → Y is a mixing Gibbs-Markov map, then observables in Fθ(Y ) have
exponential decay of correlations against L1 observables. In particular, Theorems 2.1
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and 2.2 apply in their entirety to mean zero observables v : Y → Re with components
in Fθ(Y ) for mixing Gibbs-Markov maps.

Given a full branch Gibbs-Markov map F : Y → Y , we now introduce a return
time function ϕ : Y → Z+ assumed to be constant on partition elements. We suppose
that ϕ is integrable and set ϕ̄ =

∫
Y
ϕdµY . Define the Young tower

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < ϕ(y)},

and define the tower map f : ∆→ ∆ by setting

f(y, `) =

{
(y, `+ 1) ` ≤ ϕ(y)− 2

(Fy, 0) ` = ϕ(y)− 1
. (10.1)

Then µ = µY ×Lebesgue/ϕ̄ is an ergodic f -invariant probability measure on ∆. Note
that the system (∆, µ, f) is uniquely determined by (Y, µY , F ) together with ϕ.

The separation time s(x, y) extends to the tower by setting s((x, `), (y, `′)) = 0 for
` 6= `′ and s((x, `), (y, `)) = s(x, y). The metric dθ extends accordingly to ∆ and we
define the space Fθ(∆) of observables v : ∆→ R that lie in L∞(∆) and are Lipschitz
with respect to this metric.

The tower map f : ∆→ ∆ is mixing if and only if gcd{ϕ(a) : a ∈ α} = 1. In the
mixing case, it follows from Young [54, 55] that the rate of decay of correlations on
the tower ∆ is determined by the tail function

µ(ϕ > n) = µ(y ∈ Y : ϕ(y) > n).

In [54] it is shown that exponential decay of µ(ϕ > n) implies exponential decay of
correlations for observables in Fθ(∆), and [55] shows that if µ(ϕ > n) = O(n−β)
then correlations for such observables decay at a rate that is O(n−(β−1)). For systems
that are modelled by a Young tower, Hölder observables for the underlying dynamical
system lift to observables in Fθ(∆) (for appropriately chosen θ) and thereby inherit
the above results on decay of correlations. Similarly, if we define Fθ(∆,Re) to consist
of observables v : ∆ → Re with components in Fθ(∆), then results on weak conver-
gence for vector-valued Hölder observables are inherited by the lifted observables in
Fθ(∆,Re) and so it suffices to prove everything at the Young tower level.

Theorem 10.1 Suppose that f : ∆ → ∆ is a mixing Young tower with return time
function ϕ : Y → Z+ satisfying µ(ϕ > n) = O(n−β). Let v ∈ Fθ(∆,Re) with∫

∆
v dµ = 0. Then

(a) Iterated WIP: If β > 3, then the conclusions of Theorem 2.1 are valid.

(b) Convergence to SDE: If β > 11
2

, then the conclusions of Theorem 2.2 are
valid for all a ∈ C1+, b ∈ C3.
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In particular, Theorems 2.1 and 2.2 are valid for systems modelled by Young towers
with exponential tails for all a ∈ C1+, b ∈ C2+.

Proof In the setting of noninvertible (one-sided) Young towers [55], given v ∈ Fθ(∆)
with mean zero, there is a constant C such that∣∣∣∫

∆

v w ◦ fn dµ
∣∣∣ ≤ C‖w‖∞, for all w ∈ L∞, n ≥ 1.

Hence by Proposition 4.4, there is an Lp martingale-coboundary decomposition (4.1)
for any p < β − 1. The desired results follow from Theorem 4.3 and Corollary 9.2
respectively.

If β > 2, or more generally ϕ ∈ L2, the WIP is well-known. In fact ϕ ∈ L2 suffices
also for the iterated WIP and the mixing assumption on f is unnecessary, as shown in
the next result. These assumptions are optimal, since the ordinary CLT is generally
false when ϕ 6∈ L2.

Theorem 10.2 Suppose that ∆ is a Young tower with return time function ϕ ∈ L2.
Let v ∈ Fθ(∆,Re) with

∫
∆
v dµ = 0. Then (Wn,Wn) →w (W,W) where W is an

e-dimensional Brownian motion with covariance matrix

Σβγ = CovβγW (1) = (ϕ̄)−1

∫
Y

ṽβ ṽγ dµY + (ϕ̄)−1

∞∑
n=1

∫
Y

(ṽβ ṽγ ◦ F n + ṽγ ṽβ ◦ F n) dµY ,

and Wβγ(t) =
∫ t

0
W β dW γ + Eβγt where

Eβγ = (ϕ̄)−1

∞∑
n=1

∫
Y

ṽβ ṽγ ◦ F n dµY +

∫
∆

Hβ vγ dµ, H(y, `) =
`−1∑
j=0

v(y, j).

If moreover µ(ϕ > n) = O(n−β) for some β > 11
2

, then the conclusion of Theo-
rem 2.2 (convergence to SDE) holds for all a ∈ C1+, b ∈ C3.

Proof We use the discrete analogue of the inducing method used in the proof of
Theorem 6.1. Define ṽ : Y → Re by setting ṽ(y) =

∑ϕ(y)−1
j=0 v(f jy). Then ṽ lies in L2

and
∫
Y
ṽ dµY = 0. Let P denote the transfer operator for F : Y → Y . Although ṽ 6∈

Fθ(Y,Re) an elementary calculation [32, Lemma 2.2] shows that P ṽ ∈ Fθ(Y,Re). In
particular, P ṽ has exponential decay of correlations against L1 observables. It follows
that χ =

∑∞
j=1 P

j ṽ converges in L∞ and hence following the proof of Proposition 4.4,

we obtain that ṽ admits an L2 martingale-coboundary decomposition.
Define the cadlag processes W̃n, W̃n as in (2.1) using ṽ instead of v. It follows

from Theorem 4.3 that (W̃n, W̃n)→w (W̃ , W̃) where W̃ is an e-dimensional Brownian

motion and W̃βγ(t) =
∫ t

0
W̃ β dW̃ γ + Ẽβγt with

Covβγ W̃ (1) =

∫
Y

ṽβ ṽγ dµY +
∞∑
n=1

∫
Y

(ṽβ ṽγ ◦ F n + ṽγ ṽβ ◦ F n) dµY ,
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and Ẽβγ =
∑∞

n=1

∫
Y
ṽβ ṽγ ◦ F n dµY .

Arguing as in the proof of Theorem 6.1, and noting Remark 6.2, we obtain that
(Wn,Wn)→w (W,W) where

W = (ϕ̄)−1/2W̃ , Wβγ(t) =

∫ t

0

W β dW γ + Eβγt, Eβγ = (ϕ̄)−1Ẽβγ +

∫
∆

Hβvγ dµ.

Finally, to prove the last statement of the theorem, it suffices by Corollary 9.2
to show that v admits an Lp martingale-coboundary decomposition with p > 9

2
. We

already saw that this holds for ∆ mixing, equivalently d = gcd{ϕ(a) : a ∈ α} = 1. If
d > 1, then ∆ can be written as a disjoint union of d towers ∆k each with a Gibbs-
Markov map that is a copy of F and return time function 1∆k

ϕ/d. Each of these d
towers is mixing under fd, and the towers are cyclically permuted by f . Hence

∞∑
m=1

Pmṽ =
∞∑

k,r=1

∞∑
m=0

Pmd+r
(

1∆k
ṽ − d

∫
∆

1∆k
ṽ dµ

)
.

But ‖Pmd(1∆k
ṽ− d

∫
∆

1∆k
ṽ dµ)‖p � m−β. Hence we can define χ =

∑∞
m=1 P

mṽ ∈ Lp
yielding the desired decomposition ṽ = m+ χ ◦ f − χ.

Example 10.3 A prototypical family of nonuniformly expanding maps are intermit-
tent maps f : [0, 1]→ [0, 1] of Pomeau-Manneville type [43, 27] given by

fx =

{
x(1 + 2αxα), x ∈ [0, 1

2
)

2x− 1, x ∈ [1
2
, 1]

.

For each α ∈ [0, 1), there is a unique absolutely continuous invariant probability
measure µ. For α ∈ (0, 1), there is a neutral fixed point at 0 and the system is
modelled by a mixing Young tower with tails that are O(n−β) where β = α−1.

Hence the results of this paper apply in their entirety for α ∈ [0, 2
11

). Further, it
is well-known that the WIP holds if and only if α ∈ [0, 1

2
), and we recover this result,

together with the iterated WIP, for α ∈ [0, 1
2
).

10.2 Invertible maps modelled by Young towers

A large class of nonuniformly hyperbolic diffeomorphisms (possibly with singularities)
can be modelled by two-sided Young towers with exponential and polynomial tails.
For such towers, Theorems 10.1 and 10.2 go through essentially without change. The
definitions are much more technical, but we sketch some of the details here.

Let (M,d) be a Riemannian manifold. Young [54] introduced a class of nonuni-
formly hyperbolic maps T : M → M with the property that there is an ergodic T -
invariant SRB measure for which exponential decay of correlations holds for Hölder
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observables. We refer to [54] for the precise definitions, and restrict here to provid-
ing the notions and notations required for understanding the results presented here.
In particular, there is a “uniformly hyperbolic” subset Y ⊂ M with partition {Yj}
and return time function ϕ : Y → Z+ (denoted R in [54]) constant on partition
elements. For each j, it is assumed that Tϕ(j)(Yj) ⊂ Y . We define the induced map
F = Tϕ(j) : Y → Y .

Define the (two-sided) Young tower ∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < ϕ(y)} and
define the tower map f : ∆→ ∆ using the formula (10.1).

It is assumed moreover that there is an F -invariant foliation of Y by “stable disks”,
and that this foliation extends up the tower ∆. We obtain the quotient tower map
f̄ : ∆̄→ ∆̄. The hypotheses in [54] guarantee that

Proposition 10.4 There exists an ergodic T -invariant probability measure ν on M ,
and ergodic invariant probability measures µ∆, µ∆̄, µY , µȲ defined on ∆, ∆̄, Y , Ȳ
respectively such that

(a) The projection π : ∆→M given by π(y, `) = T `y, and the projections π̄ : ∆→
∆̄ and π̄ : Y → Ȳ given by quotienting, are measure preserving.

(b) The return time function ϕ : Y → Z+ is integrable with respect to µY (and
hence also with respect to µȲ when regarded as a function on Ȳ ).

(c) µ∆ = µY × counting/
∫
Y
ϕdµ and µ∆̄ = µȲ × counting/

∫
Y
ϕdµ.

(d) The system (Ȳ , F̄ , µȲ ) is a full branch Gibbs-Markov map with partition α =
{Ȳj}. Hence f̄ : ∆̄→ ∆̄ is a one-sided Young tower as in Subsection 10.1.

(e) µY (ϕ > n) = O(e−an) for some a > 0.

(f) Let v : M → R be Hölder with
∫
M
v dν = 0. Then v ◦ π = v̄ ◦ π̄ + χ1 ◦ f − χ1

where χ1 ∈ L∞(∆) and v̄ ∈ Fθ(∆̄) for some θ ∈ (0, 1).

Proof Parts (a)–(e) can be found in [54]. For part (f), see for example [31, 32].

Corollary 10.5 Theorems 2.1 and 2.2 are valid for Hölder mean zero observables of
systems modelled by (two-sided) mixing Young towers with exponential tails.

Proof By Proposition 10.4(d) and the proof of Theorem 10.1, for any p we can
decompose v̄ ∈ Fθ(∆) as v̄ = m̄+ χ̄2 ◦ f̄ − χ̄2 where m̄, χ̄2 ∈ L∞(∆̄) and m̄ lies in the
kernel of the transfer operator corresponding to F̄ : ∆̄→ ∆̄. Now let m = m̄ ◦ π̄ and
χ = χ1 + χ̄2◦ π̄ where χ1 is as in Proposition 10.4(f). We have shown that v◦π admits
an L∞ martingale-coboundary decomposition (5.1). By Theorem 5.2, we obtain the
required results for v ◦ π and hence for v.
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By [5], this includes the important example of Hénon-like attractors. Again the
results hold with the appropriate modifications (in the formulas for Σ and E) for
nonmixing towers with exponential tails.

A similar situation holds for systems modelled by (two-sided) Young towers with
polynomial tails where Proposition 10.4(a)–(d) are unchanged and part (e) is replaced
by the condition that µY (ϕ > n) = O(n−β). In general, part (f) needs modifying.
The simplest case is where there is sufficiently fast uniform contraction along stable
manifolds (exponential as assumed in [2, 31, 32], or polynomial as in [1]). Then
part (f) is unchanged allowing us to reduce to the situations of Theorem 10.1 in the
mixing case, β > 3, and Theorem 10.2 in the remaining cases.

In the general setting of Young towers with subexponential tails, there is con-
traction/expansion only on visits to Y and Proposition 10.4(f) fails. In this case an
alternative construction [38] can be used to reduce from M to Y and then to Ȳ .

Define the induced observable ṽ on Y by setting ṽ(y) =
∑ϕ(y)−1

`=0 v(T `y). If ϕ ∈ Lp
(which is the case for all p < β) then it is shown in [38] that ṽ = m̄ ◦ π̄ + χ ◦ F − χ
where m̄ ∈ Lp(Ȳ ) lies in the kernel of the transfer operator for F̄ : Ȳ → Ȳ and
χ ∈ Lp(Y ). Thus if ϕ ∈ L2, we obtain the iterated WIP for ṽ and hence for v.

10.3 Semiflows and flows modelled by Young towers

Finally, we note that the results for noninvertible and invertible maps modelled by
a Young tower pass over to suspension semiflows and flows defined over such maps.
Using the methods in Sections 6 and 7 we reduce from observables defined on the
flow to observables defined on the Young tower, where we can apply the results from
Subsections 10.1 and 10.2. We refer to [32] for a description of numerous examples
of flows that can be reduced to maps in this way,

We mention here the classical Lorenz attractor for which Theorems 1.1 and 1.2
follow as a consequence of such a construction. There are numerous methods to
proceed with the Lorenz attractor, but probably the simplest is as follows. The
Poincaré map is a Young tower with exponential tails, but the roof function for the
flow has a logarithmic singularity and hence is unbounded. An idea in [4] is to
remodel the flow as a suspension with bounded roof function over a mixing Young
tower ∆ with slight worse, namely stretched exponential, tails. In particular, the
return time function for ∆ still lies in Lp for all p. Hölder observables for the flow can
now be shown to induce to observables in Fθ(∆), thereby reducing to the situation of
Section 10.2. Moreover, the flow for the Lorenz attractor has exponential contraction
along stable manifolds, and this is inherited by each of the Young tower models
described above. Hence we can reduce to the situation in Theorem 10.1 with β
arbitrarily large.
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