THE EQUIVARIANT DARBOUX THEOREM

MICHAEL DELLNITZ AND IAN MELBOURNE

ABSTRACT. The classical Darboux Theorem states that symplectic forms are
locally constant up to isomorphism, or equivalently that any two symplec-
tic forms are locally isomorphic. We consider the corresponding results for
symplectic forms that are invariant under the action of a compact Lie group.
In this context, it is still true that symplectic forms are locally constant up
to isomorphism but it is not true that any two symplectic forms are locally
isomorphic.

1. INTRODUCTION

The Darboux theorem plays a fundamental role in the theory of Hamiltonian
systems. Roughly speaking, the theorem states that locally all finite-dimensional
symplectic manifolds of the same dimension look the same. The equivariant Dar-
boux theorem plays an analogous role for Hamiltonian systems that are equivariant
with respect to a symplectic action of a compact Lie group of symmetries, see for
example [8], [2].

It will be convenient to divide the Darboux theorem and its equivariant coun-
terpart into two parts. Suppose that X is a finite-dimensional manifold with sym-
plectic form w. In the absence of symmetry, the following statements are valid:

(a) Locally, there is a change of coordinates so that the transformed symplectic
form is constant.

(b) There is a further change of coordinates yielding the ‘canonical’ symplectic
form

i dg; A dp;.
im1

Together statements (a) and (b) imply

(¢) Any two symplectic forms on symplectic manifolds of the same dimension are
locally isomorphic.

In the literature, either (a) or (c) is called the Darboux Theorem. We shall distin-
guish these statements by referring to (a) as the ‘locally constant’ result and (c) as
the ‘locally isomorphic’ result. We note that statement (b) follows from a standard
result in linear algebra.

Our aim in this paper is to clarify the corresponding results in the equivariant
context where there is a compact group of symmetries present. Although results
corresponding to statements (a) and (b) can be found in the literature, nowhere
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are they stated together correctly. We note first that the ‘locally constant’ result
still holds. This is an easy consequence of the Darboux-Weinstein Theorem, see
Guillemin and Sternberg [5, Theorem 22.1]. However, the analog of the ‘locally
isomorphic’ result ([5, Theorem 22.2]) is false as is implicit in the work of Montaldi,
Roberts and Stewart [8]. In short, statement (a) holds but statements (b) and (c)
are invalid. On the other hand it is possible to classify the nonisomorphic symplectic
forms that fill the role of the single canonical symplectic form in (b), see [8].

The existence of nonisomorphic symplectic forms is intimately related to the
representation of the group of symmetries I'. Indeed, statement (c) is valid if and
only if none of the irreducible representations that appear in the representation of
T are of complex type (that is, each irreducible representation that occurs is of real
or quaternionic type). For example, this is the case for the groups 1 (no symmetry),
0(2), SO(3) and O(3) which have only real representations, and SU(2) which has
only real and quaternionic representations.

However the nontrivial representations of the circle group SO(2) are of complex
type and so uniqueness fails for nontrivial actions of SO(2). For example, suppose
that SO(2) is acting in the standard way on R? which we identify with C. Then
the (real) SO(2)-invariant symplectic forms 1(dz A idz) and —1(dz A idZ) are not
isomorphic (see Section 2 for an explicit verification of this fact).

The existence of nonisomorphic symplectic forms (in particular symplectic forms
that are not isomorphic to the usual canonical symplectic form) is of some signifi-
cance in the local bifurcation theory for equivariant Hamiltonian vector fields. For
example, certain symplectic forms force spectral stability of equilibria (cyclospec-
trality in [8]) and the existence of Liapunov centers (weak cyclospectrality in [7]).
Also, the expectation that certain collisions of eigenvalues will be dangerous in the
sense of Krein is dependent on the symplectic structure present (see [2]).

In Section 2 we show by direct computation that the locally isomorphic result
cannot be valid when there is symmetry. In Section 3 we state the Darboux-
Weinstein theorem and deduce from this the locally constant result. Then in Section
4 we describe the nonisomorphic symplectic forms to which a symplectic form may
locally be transformed by an equivariant change of coordinates. We illustrate our
results by listing the nonisomorphic symplectic forms for an action of SO(2) on
R™.

2. NONISOMORPHIC SYMPLECTIC FORMS ON ]R2

In this section, we illustrate by explicit calculation the failure of the ‘locally
isomorphic’ result (statement (c)) in the equivariant context. The simplest example
is the standard action of the circle group SO(2) on RZ.

It is convenient to identify R? with C. In these coordinates the standard action
of SO(2) is given by

z— e, 6 €S0(2).
A symplectic form w is SO(2)-invariant if
w(e?z,efw) = w(z,w),
for all # € SO(2) and z,w € R?. It is readily shown that
S(izw), —-S(izw),
are real SO(2)-invariant symplectic forms on R?. Moreover they correspond to the
putative nonisomorphic symplectic forms mentioned in Section 1.
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Two symplectic forms w; and ws on R? are SO(2)-isomorphic if there is an
invertible linear map P : R* — R? commuting with the action of SO(2) such that
w1(Pz, Pw) = wy(z,w) for all z,w € R%. Again, it is an easy computation to show
that P is given by

Pz =ke"z,
for some fixed § € SO(2) and k& > 0. Suppose now that w(z,w) = S(iZw). Then
w(Pz,Pw) = S(iPzPw)
= S(ikezkew)
= S(ik’e Yzew)
= Kuw(z,w).

In particular, w and —w are nonisomorphic as required.

3. THE DARBOUX-WEINSTEIN THEOREM

In this section we consider the equivariant analogue to the ‘locally constant’
result (statement (a)) in the classical Darboux theorem.

Definition 1. Suppose that X is a finite-dimensional manifold. A symplectic form
on X is a closed two-form w such that for each z € X, w, : T, X x T, X — R is
nondegenerate, that is if w,(v,w) = 0 for all v € T, X and some w € T, X then
w = 0.

Suppose that I' is a compact Lie group acting smoothly on a manifold X and
that w is a symplectic form on X. If x € X and v € I there is an induced linear
map Tpy : T, X — T,;X. We shall abuse notation and refer also to this induced
map as . Then we say that w is I'-invariant or that the group action is symplectic
if y*w = w for all z € X, that is

Wy (Y0, YW) = wa (v, w),
forallz € X, v,w € T, X.

If the group T' acts on manifolds X and Y, then a mapping f: X — Y is I'-
equivariant if f(yx) = vf(z) forally € T, z € X. Tt is clear that if w is a [-invariant
symplectic form on Y and that f : X — Y is a '-equivariant diffeomorphism, then
f*w is a I'-symplectic form on X.

We are now in a position to state the Darboux-Weinstein Theorem.

Theorem 1. Suppose that T is a compact Lie group acting on a finite-dimensional
manifold X and let wy, wy be two T-invariant symplectic forms on X. Suppose
that Y is o T-invariant submanifold of X and that woly = wi|y. Then there

ezists an open I'-invariant neighborhood U of Y and a I'-equivariant diffeomorphism
f:U = X such that f|y = Idy and f*wi = wp.

If we take the submanifold Y to consist of a single point 2 we obtain the ‘locally
constant’ theorem (cf [1, Theorem 8.1.2] in the nonequivariant context).

Corollary 2. Suppose that T is a compact Lie group acting on o finite-dimensional
manifold X and let w be a T-invariant symplectic form on X. Let x € X be a T'-
invariant point and let w' denote the constant symplectic form that agrees with w
at . Then there is an open I'-invariant neighborhood U of x and a T-equivariant
diffeomorphism f : U — X such that f(x) = x and f*w =u'.
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Observe that since z € X is I'-invariant, the action of the group I" on X induces
a linear group action of " on T, X.

4. CANONICAL SYMPLECTIC FORMS

Suppose that w is a symplectic form on an m-dimensional manifold X, and let
x € X. Then w is locally constant and isomorphic to the canonical (and constant)
symplectic form

n
Z dg; N dp;
i=1
where n =m/2.

In this section we describe the canonical symplectic forms in the presence of a
compact Lie group I'. As mentioned in the introduction, it is not necessarily the
case that there is a unique canonical symplectic form. However, by Corollary 2
we may assume that the symplectic form is locally constant, and thus reduce the
problem to one of listing the possible ‘canonical’ symplectic forms for the action of
T" on a finite-dimensional vector space.

The classification of I'-invariant symplectic forms was first stated in Montaldi,
Roberts and Stewart [8] and follows from Lie-theoretic results in [6]. The result
is also an immediate consequence of the linear-algebraic results in Melbourne and
Dellnitz [7]. Of course the Lie-theoretic proof is more direct and intrinsic. Here we
simply state the results and refer to [8] and [6], or alternatively [7], for the proofs.

In Subsection 4.1 we recall some basic representation theory, see for example
[4]. This allows us to reduce to working with symplectic forms over a real division
ring. There are three nonisomorphic division rings: the reals, complexes, and
quaternions. Then in Subsection 4.2 we list the canonical symplectic forms over
each division ring. It is the complexes that lead to nonisomorphic symplectic forms.

4.1. Some representation theory. Suppose that I' is a compact Lie group acting
on a vector space V. Define Homr (V') to be the vector space of T'-equivariant real
matrices

Homp (V) ={L:V — V linear; yL = L~y for all vy € T'}.

A subspace U is said to be T'-irreducible if it is invariant under T' and has no
proper invariant subspaces. If U is an irreducible subspace, then Homp(U) is a real
division ring and hence is isomorphic to R, C or H.

The space V may be written as a direct sum of irreducible subspaces

V=U & &U.

Group together those U; on which T' acts isomorphically to obtain the isotypic
decomposition

V=w&---oW,
where each isotypic component W; is the sum of isomorphic irreducible subspaces.
The isotypic decomposition is unique, and moreover each isotypic component is left
invariant by matrices in Homr (V). It follows that

Homr (V) = Homp (W) @ - - - @ Homr (W,).

Next suppose that W is an isotypic component. We may write W = U &
- ®U = @2, U where U is irreducible and Homp(U) = D = R,C or H. Let
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A € Homp(W). Then A = {Ajr}1<jk<m where Aj, : U — U. It is easy to check
that Aj, € Homr(U). Since Homr(U) = D we have shown that

Homp (W) & Hom(D™),

where Hom(D™) denotes the space of m x m matrices with entries in D. Often it
will be convenient to denote the isotypic component W by D™. We say that an
isotypic component D™ is real, complez or quaternionic depending on D. Also we
define the dimension of the isotypic component D™ to be the integer m. Note that
the dimension of the corresponding (real) subspace W is a multiple of m but is in
general not equal to m.

A symplectic form on D™ is a nondegenerate anti-symmetric bilinear map w :
D™ x D™ — R. Two symplectic forms w and w' are isomorphic (over D) if there is
a D-linear map P : D™ — D™ such that w(Pv, Pw) = w'(v,w) for v,w € D™. We
have the following result (see [3], [8] and [7]).

Proposition 3. (a) Suppose that w is a T-invariant symplectic form on V. Let
w; = w|w;. Then w; is a T'-invariant symplectic form on W;. Moreover two
[-symplectic forms w and w' on V are T'-isomorphic if and only if the corre-
sponding summands w; and w} are T'-isomorphic for each i.

(b) Suppose that W is an isotypic component for T' so that Homp(W) = D™
where D is a real division ring. Then there is a one-to-one correspondence
between (real) T-invariant symplectic forms on W and symplectic forms on
D™. Moreover, two T'-invariant symplectic forms on W are isomorphic if and
only if the corresponding symplectic forms on D™ are isomorphic (over D).

4.2. Canonical symplectic forms over real division rings. Let W = D™ be
an isotypic component of dimension m. In this subsection we list the nonisomorphic
symplectic forms on D™. Using Proposition 3 we can then construct the nonisomor-
phic I'-invariant symplectic forms on V' and hence the canonical locally constant
symplectic forms on a I'-invariant manifold.

We choose coordinates z1,...,Z,, on R™, 21,...,2, on C™, and wq,... ,w,,
on H™.

Theorem 4. Suppose that w is a symplectic form on D™. Then w is isomorphic
to precisely one of the following canonical symplectic forms.

n
D=R: Z dr; Ndxjin, m =2n even.
=1

n m
D=C: %Zde/\de+n+%p Z dzp Nidzg, 0<n<m/2, p==+l1.
j=1 k=2n+1

n
D =H: §RZ dwj AN dwjyn, m=2n even,
j=1

n
R dwj Adwjin + ydwm Aidwy, m=2n+1 odd.
j=1

Remark 1. (a) It follows from Theorem 4 that the equivariant version of Dar-
boux’s theorem described in [5] is incorrect whenever there are complex iso-
typic components in the representation of I'. In particular there are m + 1
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nonisomorphic symplectic forms on each complex isotypic component of di-
mension m.

(b) Our choices of canonical symplectic forms are somewhat different from those
in [8]. It turns out that the analysis of linear Hamiltonian vector fields is
slightly simplified when working with the symplectic forms listed here (see

[7)-

As an example we consider an action of the group SO(2) on R'’. Identify R'®
with R? x C* and choose coordinates v = (z1,%2,21,22,23,24). The action of
0 € SO(2) is given by

0

_ i0 i0 i0 i
Ov = (21,22, 21,€" 22,€" 23, €" 24).

In this case there are two isotypic components, R? corresponding to two trivial
representations of SO(2) and C* which corresponds to four copies of the standard
representation of SO(2).

Applying the results of Subsection 4.1 we can build the canonical symplectic

forms on R'° out of the canonical symplectic forms on R? and C*. There are five
canonical symplectic forms on C*:

+1(dz Aidz + dza AidZs + dzs A idZs + dzg A idZs),
Rdz; Ndzy £ %(dz3 AidZs + dzq A idZy),
§R(d21 ANdzs +dza A dZ4)

Hence there are five canonical symplectic forms on R'° given by the direct sum of
the symplectic form dz; A dzs on R? and one of the symplectic forms on .
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