Drift bifurcations of relative equilibria
and transitions of spiral waves *

Peter Ashwin [an Melbourne
Dept. of Maths and Stats Department of Mathematics
University of Surrey University of Houston

Guildford GU2 5XH, UK Houston, TX 77204-3476, USA

Matthew Nicol
Department of Mathematics
UMIST
Manchester, M60 1QD, UK

February 25, 1999

Abstract

We consider dynamical systems that are equivariant under a noncompact
Lie group of symmetries and the drift of relative equilibria in such systems. In
particular, we investigate how the drift for a parametrized family of normally
hyperbolic relative equilibria can change character at what we call a ‘drift
bifurcation’. To do this, we use results of Arnold to analyze parametrized
families of elements in the Lie algebra of the symmetry group.

We examine effects in physical space of such drift bifurcations for planar
reaction-diffusion systems and note that these effects can explain certain aspects
of the transition from rigidly rotating spirals to rigidly propagating ‘retracting
waves’. This is a bifurcation observed in numerical simulations of excitable
media where the rotation rate of a family of spirals slows down and gives way
to a semi-infinite translating wavefront.
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1 Introduction

Let ' be a finite-dimensional Lie group (not necessarily compact) and suppose that
uy = F(u) is an evolution equation equivariant with respect to an action of I'. A
dynamically invariant subset X in phase space is called a relative equilibrium if X
consists of a single group orbit under the action of I'. Equivalently, X reduces to
an ordinary equilibrium for the dynamics induced on the orbit space. The notion of
relative equilibrium includes the case of a group orbit of equilibria and also includes
rotating waves. A rotating wave is a flow-invariant group orbit on which the flow is
periodic with time evolution corresponding to drift along the group orbit.

A relative equilibrium that is normally hyperbolic persists under small perturba-
tions of the evolution operator and hence it is the dynamics on the relative equilibrium
X itself that is of interest. We suppose (for simplicity of exposition) that X consists of
points of trivial isotropy, and also that the group orbit X is diffeomorphic to the group
['. (This last assumption is automatically satisfied for smooth actions of compact Lie
groups I'.) For compact groups, the typical dynamics on X has been classified by
Field [5] and Krupa [10]. The relative equilibrium is foliated by closed flow-invariant
subsets that are copies of a torus K C I' and the dynamics on these subsets consists
of a transitive (irrational) linear flow. From their work, one finds that generically, K
is a maximal torus in I'.

In recent work [2], we obtained analogous results for I' noncompact. There is now
the possibility that the closed subgroup K is isomorphic to a copy of R. Indeed,
generically K is a maximal torus or K = R. Further results are group-dependent.
For the Euclidean groups E(n) with n even, generically K is a maximal torus but
K = R occurs as a codimension one phenomenon. In contrast, when I' = E(n), n
odd, generically K = R and with codimension one K is a maximal torus. (A third
possibility, which is realized for the symplectic groups, is that maximal tori and copies
of R are both codimension zero.)

The above discussion suggests the notion of drift bifurcation whereby the subgroup
K determining the drift on the relative equilibrium X varies as a parameter is varied.
We assume normal hyperbolicity throughout, so the only bifurcation that occurs is in
the drift on X. A particularly intriguing example, which motivated this work, occurs
when I' = E(2). By [2], generically we have a rotating wave (the maximal torus here
is a circle) and atypically we have linear translation drift (corresponding to a copy of
R). As a parameter is varied, the speed of rotation may pass through zero leading to a
change from counterclockwise to clockwise rotation. A simple calculation, reproduced
in Section 6(a), shows that at the bifurcation point there is linear translation drift
with nonzero speed. Moreover as the bifurcation point is approached, the center of
rotation diverges to infinity. This behavior is strongly reminiscent of a bifurcation
observed in numerical simulations of excitable media by Jahnke and Winfree [9], see



also Mikhailov and Zykov [12] and Barkley and Kevrekidis [3].

In this paper, we classify drift bifurcations for noncompact symmetry groups and
we explore the implications for applications such as the phenomena described in [12].
We consider the bifurcations both for relative equilibria and for periodic orbits. Our
work should be contrasted with the recent work of [4, 8, 14, 16] which focuses on bi-
furcations from relative equilibria (and relative periodic orbits [15]) where the context
is loss of normal hyperbolicity of the underlying relative equilibrium.

With regard to the example described above, a natural question is how significance
can be attached to the center of rotation diverging to infinity. By choosing a different
symmetrically placed initial condition, the center of rotation could be normalized
‘without loss of generality’ to the origin. The answer is that this normalization would
be singular at the bifurcation point. The situation is completely analogous to the one
described in Arnold [1]: in a parametrized family of matrices, it is not appropriate to
suppose that each member of the family is in Jordan normal form without taking into
account the dependence of the similarity transformations on parameters. Instead, it
is shown in [1] how to construct a single normal form for the entire matrix family
under smoothly varying similarity transformations.

In Section 2, we show how drift bifurcation for relative equilibria (and relative pe-
riodic orbits) fits into the context of [1]. In particular, we show how such bifurcations
are governed by bifurcations of parametrized families in the Lie algebra LI' of the
symmetry group I'. In Section 3 we extend the theory of Arnold [1] to the classifica-
tion of bifurcations in LI" and the computation of their versal unfoldings. Section 4
considers the case I' = O(n). Our main purpose for doing this is that the results
are required for understanding the case I' = E(n). We discuss codimension one and
two drift bifurcations for Euclidean symmetry in Section 5. Section 6 applies this to
reaction diffusion systems on the plane and in particular the spiral wave/retracting
wave transition.

2 Drift bifurcations and families in the Lie algebra

Let I' be a finite dimensional Lie group acting linearly on a Banach space B and
suppose that u; = F)(u) is a smoothly parametrized family of I'-equivariant evolution
equations, with u € B, A\ € Rf. We suppose that when A = 0, X is a relative
equilibrium for F', equivalently for ug € X, F(uy) = Eug for some & € LT

We make the following standing hypotheses.

(H1) The relative equilibrium X consists of points of trivial isotropy (that is, 3,, = 1).

(H2) The group orbit X = I'u, is an embedded submanifold of B (hence diffeomorphic
to the group I).



(H3) The relative equilibrium X is normally hyperbolic.

As discussed at the end of this section, hypotheses (H1) and (H2) are easily relaxed,
whereas hypothesis (H3) is somewhat problematic.

The time-evolution of ug is given by wu(t) = exp(t&)uo where £ is an element
in LI". The subgroup K C I' mentioned in the introduction is the closure of this
one-parameter subgroup: K = {exp(t{) : t € R}.

First, we make explicit the dependence of the element & € LI' on the initial
condition uy € X. We recall the usual notation Ad : I' — Aut(LT") for the adjoint
action of I on LI

Proposition 2.1 Suppose that X s a relative equilibrium and ug,u1 € X, so uqy =
yug for some v € I'. If F(ug) = Euyg, then F(ur) = (Ad,&)u;.

Proof Compute that

F(uy) = F(yuo) = vF(uo) = v€uo = v€y 'yup = (Ad,&)us. |

By Proposition 2.1, the adjoint orbit of £ under I' is independent of the choice of
initial condition uy € X and the dynamics on X is classified by the adjoint orbits for
the action of I' on LI'. For example, to compute the time evolution of trajectories
on X, that is to exponentiate &, we can suppose without loss that & is a particularly
simple representative of its adjoint orbit. Such a representative £ is called a ‘normal
form’.

It follows from normal hyperbolicity (H3) that X extends to a smooth family of
relative equilibria X, = Tug(\) for F), giving rise to a smooth family £(\) € LT,
£(0) = &, defined by F(ug(A\)) = £(N)uo(A). Although F, X, ug and £ depend
smoothly on A, the adjoint orbit of £ and hence the dynamics on X may undergo
bifurcations.

The above discussion indicates that such bifurcations in the dynamics on X, or
drift bifurcations, are understood as bifurcations in the Lie algebra. The ideas of
Arnold [1] can be used to compute normal forms for families of Lie algebra elements,
to classify families by codimension, and to compute versal unfoldings. These ideas are
recalled in Section 3. In particular, we require that the simplifying transformations
via the adjoint action on the family £(\) depend smoothly on parameters.

Relative periodic orbits Recall that a flow-invariant I'-invariant set P is called
a relative periodic orbit if the orbit space P/I is an ordinary periodic orbit. As in
the case of relative equilibria, we assume that P is a normally hyperbolic embedded
submanifold of B consisting of points of trivial isotropy.



The flow on relative periodic orbits is classified for I' compact by Krupa [10] and
Field [6] and for I" noncompact by Ashwin and Melbourne [2]. Let 7" be the period of
the periodic solution on the orbit space P/T. If u(0) = ug € P, then u(T) = ~yu, for
some v € ['. Let H be the closed subgroup generated by . Generically, H is either
a Cartan subgroup or a copy of R and the relative periodic orbit P is foliated either
by irrational torus flows of dimension dim H + 1 or by copies of R with unbounded
linear flow. See [2] for details.

The element v € T' is well-defined, independent of the choice of uy € P, up to
conjugacy in I'. Hence the dynamics on P is classified by conjugacy classes in I". Drift
bifurcations for relative periodic orbits are governed by bifurcations of parametrized
families of Lie group elements and the corresponding normal form theory requires
that the families of conjugacies depend smoothly on parameters.

For groups where the exponential map LI' — T is surjective (necessarily mean-
ing that ' is connected), as is the case when I' = SE(n), the classifications for
parametrized families of Lie algebra elements and Lie group elements are identical.
For groups where the exponential map is not surjective (e.g. SL(n)) the classification
for relative periodic orbits could in principle include more cases than one can find
for relative equilibria. It follows that for such groups, the drift bifurcations asso-
ciated with relative periodic orbits are different from those associated with relative
equilibria.

Discussion of the hypotheses Hypothesis (H1) is unnecessary and can be lifted
using the following standard argument. Suppose that uy € X has isotropy subgroup
¥ = X,,. This subgroup is well-defined up to conjugacy since X,,, = 7X,,7"'. Hence
we can speak of the isotropy subgroup X of the relative equilibrium X. Let N ()
denote the normalizer of ¥ in I" The quotient G = N(X)/X governs the drifts on X.
((H2) is altered slightly: T'ug is now diffeomorphic to I'/¥). Hence the generic drift
corresponds to either a maximal torus in G or a copy of R [5, 10, 2]. Similarly, the
results on drift bifurcations described in this paper go through by replacing I' with
G=N(%)/%.

Next, we consider hypothesis (H2). This is satisfied for finite-dimensional com-
pact Lie group actions and for many settings involving infinite-dimensional actions
and noncompact groups. Provided I' acts smoothly on ug, the group orbit X is an
immersed submanifold of B. To ensure that X is embedded, we must exclude the
presence of ‘approximate symmetries’ [2]. (A sequence {7,} € I'/X is an approximate
symmetry if there are no convergent subsequences and yet y,uq — uo.) The condition
that I' acts smoothly on ug, and hence X, is very natural since drift on a relative
equilibrium corresponds to time evolution and hence is smooth. If I' does not act
smoothly on ug, we can replace G = N(X)/3 by a closed subgroup H C G that does



act smoothly. The condition on approximate symmetries is not so easily dealt with
but will not cause any problems in the applications considered in this paper.

Finally, we consider hypothesis (H3). Of course, this hypothesis is generic for
finite-dimensional actions of compact Lie groups and for many infinite-dimensional
actions. The generalization to noncompactness and infinite-dimensionality lead to
two different issues.

The first issue, which is unimportant for our purposes (though significant for bi-
furcations from relative equilibria [15]) arises from noncompactness of I and concerns
the possibility of nonneutral eigenvalues along the group directions. Recall that for
a compact Lie group, the spectrum of the linearized vector field in the directions
along the group orbit consists of purely imaginary eigenvalues. As pointed out in [8,
Appendix], this is no longer automatically true for noncompact Lie groups, though
it is true for the Euclidean groups (and for any group with an invariant metric [15]).
If there are such nonneutral eigenvalues, it is immediate that normal hyperbolicity is
not a generic condition (though it may be an open condition).

The second issue arises for spatially-extended systems of PDEs. An in-depth
discussion can be found in Sandstede, Scheel and Wulff [15]. For reaction-diffusion
equations in R", it follows from [15, Lemma 6.2] that ‘localized solutions’ that decay
at infinity are generically normally hyperbolic. Unfortunately, solutions that do not
decay at infinity to some constant are never normally hyperbolic [15, Lemma 6.3] due
to the presence of essential spectrum (the complement in the spectrum of the set of
isolated eigenvalues of finite multiplicity) intersecting the imaginary axis.

This discussion indicates that hypothesis (H3) is justified for localized solutions
and is unjustified for nonlocalized solutions. As far as we know, the variation of rela-
tive equilibria that are nonhyperbolic due to the essential spectrum is not understood
even away from bifurcation points. Nevertheless, the apparent robustness of spiral
waves in excitable media suggests that with certain modifications (that we have not
determined) the predictions obtained by assuming (H3) should still be meaningful.

3 Normal forms and versal unfoldings in LI'

In this section, we recall the ideas of Arnold [1] on parametrized families of Lie algebra
elements. We recall the usual notation Ad : I' — Aut(LI') and ad : LI' — End(LI)
for the adjoint actions of I" and LI" on LI'. Also the Lie bracket of elements A, B € LI’
is given by [A, B] = ad4(B) and the centralizer of A € LT is defined to be

Z(A)={B € LI':[A,B] = 0}.

Let Ay € LT and consider the adjoint group orbit AdrAg C LI'. We define the



codimension of Ay to be the codimension of the group orbit, so
codim Ay = codim Adr Ay = dim L' — dim Adr A4, = dim Z(Ay).

The codimension of Aj is equal to the minimum number of unfolding parameters
required in a versal unfolding of Ay [1].
Let <, > be an inner product on LI" and define

B(Ap) = (adrA¢)*t = {B € LT :< B,[Ay,C] >= 0 for all C € LT'}.
If {By,---, By} is a basis for B(Ay), then a versal unfolding of A, is given by
Ao+ M By + -+ + A\ By.

In computing Z(Ay) and B(Ap), we can of course first apply transformations in
Adr to reduce Ay to a simpler (normal) form. A further simplification is possible in
certain circumstances: namely when the Lie algebra LI" can be embedded in the Lie
algebra M,, of real matrices in such a way that A7 (which is defined in M,,) lies in
LI'. We take the inner product on LI" to be the one induced by the inner product
< A, B >=tr ABT on M,,. In this case, we recover the following result of [1].

Proposition 3.1 Suppose that LI' is identified with o subspace of M, as above. If
AT € LT, then B(Ao) = Z(AY).

Proof Let B,C € LI'. We compute that
< B,[Aq, O] >=tr B(A)C — CAy)T = tr(A] B — BAT)CT =< AB — BA],C > .

Hence, B € B(Ay) precisely when Al B— BAY is orthogonal to LT". However, A} € LT’
implies that AT B — BAl = [Al, B] € LI'. It follows that B € B(4,) if and only if
[AT, B] = 0. i

Remark 3.2 Arnold [1] concentrates on the case I' = GL(n) where the hypotheses
of Proposition 3.1 are satisfied for all Ay. This is true also for any compact Lie group,
for the symplectic group Sp,, [7, 11], for the special linear group SL(n), and for
the real classical Lie groups [13]. However, the hypotheses of the proposition are
not satisfied for the Euclidean group E(n) considered in Section 5. Instead, we are
forced to work directly with the definition of B(A4p). Of course, codim Ay can still be
computed using centralizers.



There is a parallel theory for parametrized families of Lie group elements. Here,
we consider group orbits ®rv, where &5 denotes conjugation by 6. Then

codim yy = dim Zr (),

where Zr(y) = {0 € ' : 679 = 706} denotes the centralizer of v, in I

Let T(v) = (T,,®ry0)7; " denote the tangent space at y, transported by right
multiplication to e. In particular, T'(7) C LI'. Again, we choose an inner product
on LI" and define

B(v) =T(%)" = {B€Ll:< B,C —Ad,,C >=0 for all C € LT}.
If {By,---, B} is a basis for B(7p), then a versal unfolding of ~, is given by
exp(A1 By + - - + A Bk ) %o

Finally, suppose that I' C GL(n) is a matrix group (so that 7 is defined as an
invertible matrix). Then LI is identified with a subspace of M,, with the trace inner
product and we have the characterization

B(y) ={B€Ll': B—AdsBeLl"}.

In particular, if 43 € T, then B(v,) consists of those matrices in LI' that commute
with the matrix ] .

4 Versal unfoldings with orthogonal symmetry

In this section, we apply the methods of Section 3 to the group I' = O(n) of n x n
orthogonal matrices. The Lie algebra LO(n) consists of n X n skew-symmetric ma-
trices. Obviously, the transpose of a skew-symmetric matrix is skew-symmetric, so
Proposition 3.1 applies. Moreover, we have the simplification that B(A4y) = Z(Ao).
0 —w

0
direct sum of s copies of R,,. Also 0,, denotes the m x m zero matrix. It is a standard
result in linear algebra that every skew-symmetric matrix can be transformed by an
orthogonal change of coordinates into a matrix of the form

For w > 0, we define the 2 x 2 matrix R, = > Let R, s denote the

AO = Rwlysl D Rw2,82 DD RUJ’(‘,S’I‘ @ Oma (41)

where the w; > 0 are distinct and 2(s; + -+ + s,) +m = n. Moreover, this ‘normal
form’ is unique up to ordering of the wj.



Proposition 4.1 The codimension of the matriz Ay in (4.1) is given by

codim Ay = dim Z(Ay) = dim Z(Ry, 5,) + - - - + dim Z(R,, 5, ) + dim Z(0,,)
=8+ +s-+m(m—1)/2.

Proof Commuting matrices preserve the eigenspaces of Ay so we have the direct
sum

Z(AO) = Z(Rw1,81) OO Z(Rw,sr) ©® Z(Om)-

Clearly, Z(0,,) consists of all mxm skew-symmetric matrices and hence has dimension
m(m — 1)/2. It remains to show that dim Z(R, ;) = s*. Observe that any matrix
that commutes with R, s can be written as an s X s matrix of 2 x 2 blocks each

of which commutes with R,. Such blocks have the form ( g _aﬁ ) So far, we

have computed the dimension to be 2s2, but it is easily seen that the skew-symmetry
condition results in the required dimension s®. (The diagonal blocks have o = 0 and
the nondiagonal blocks are related in pairs.) |

The eigenvalues +iw; of Ay are moduli preserved by the adjoint action of O(n)
on LO(n). It is desirable to suppress their contribution to the codimension of A,.
Following Arnold [1], we consider the totality of normal forms that have the same
structure as Ay (same values for si,...,s,;) but with different values for the w;.
The corresponding set of adjoint orbits forms a ‘bundle’ in LO(n) and the bundle
codimension codim,Aq of Ay is defined to be the codimension of this bundle in LO(n).
Thus we obtain

codimyAg = (s7 — 1) + -+ (s2 = 1) + m(m — 1)/2. (4.2)

We use formula (4.2) to compute bundles of low codimension. Note that for
' = O(n), codim,Ay is additive over the summands of Ay and moreover that the
versal unfolding of Ay is the direct sum of the versal unfoldings of the summands.
Hence, we can restrict our computations to the cases Ay = R, ; and Ay = 0,, which
have codimension s? —1 and m(m —1)/2 respectively. The summands of codimension
zero are R, ; and 0;. We obtain the result that codimyAy; = 0 if and only if all
eigenvalues of A, are simple. (In particular, Ay is invertible when n is even and has
a single zero eigenvalue when n is odd.)

There is one summand of codimension one, namely 0,. Hence bundles of codimen-
sion one occur only when n is even and have the form Ay =R, ®&---® Ry, @02
with w; distinct. The versal unfolding is of course given by R,, ®---® Ry, _, , D Rx.



There are no summands of codimension two, but there are two summands of
codimension three: R, s (which can occur for n > 4) and 03 (which can occur for
n > 3 odd). Versal unfoldings are given by

0 —Ww —)\2 —/\3 0 —)\ )
w 0 As —A2 and A 0 1 —)\2
)\2 _)\3 0 _(UJ+)\1) )\1 )\ 03
A A wH N\ 0 27

5 Versal unfoldings with Euclidean symmetry

In this section, we consider the Euclidean group I' = E(n). Recall the standard iden-
tification of E(n) with the subgroup of GL(n+ 1) consisting of matrices ( ]g 11] ) =
(R,v) where R € O(n) and v € R". The Lie algebra LE(n) then consists of

(n+1) x (n+ 1) matrices A = 61 = (4, a) where A € LO(n) and a € R".

a
0
Note that this representation of LE(n) does not satisfy the transpose hypothesis of
Proposition 3.1. B

We proceed to compute the codimensions of the elements Aq € LE(n). The
following proposition lists convenient normal forms for these elements. Recall from

Section 4, the definitions of R, s, w > 0, and 0,,. Also, let e, = (0,...,0,1)" € R".

Proposition 5.1 Every element of LE(n) can be tmlzsformed under the adjoint ac-
tion of E(n) into one of the following normal forms Ay = (Ao, ag):

AO = Rw1,51 D---D Rwr,sr @ 0,
for distinct w; > 0 and 2(sy +---+s,) + m =n; and
ap=0 ifm=0, ay = ey, >0, ifm>0.

The normal forms are unique up to ordering of the w;.

Proof Conjugating by pure rotations and reflections (R, 0) € E(n), we can arrange
that Ay € LO(n) is in the normal form described in Section 4. Conjugating by pure
translations (/,v) we can assume that ag € ker Ag. In particular, if m = 0 so Ay is
invertible, we have ag = 0. Finally, if m > 0, we consider a pure rotation (R, 0) where
R is the identity on the range of Ay. Such a rotation preserves Ay, and restricts to an
arbitrary rotation on ker A;. Hence, we can rotate ag onto the final coordinate axis.
Also, we can reflect ag if necessary so that a > 0. |

10



Proposition 5.2 Suppose that g@ = (Ao, a0) € LE(n) and let Zrowm)(Ao) denote the
centralizer of Ay in LO(n). Then B = (B,b) € Z(Ay) if and only if

B e ZLO(n) (A()) and A()b = BCL().

Moreover, if ZO is in normal form as in Proposition 5.1, then Agb = Bag = 0.

Proof The first statement of the proposition is a direct calculation. Suppose that
Ay is in normal form. Then, in particular, ay € ker Ay. The condition that B €
Z10(n)(Ao) guarantees that B preserves ker Ag. Hence, Bag € ker A;. At the same
time, Bag = Agb € range Ay. Since Ay is skew-symmetric, we have Bag = 0. |

In the next result, we proceed directly to the computation of codimbgo. We define
two normal forms A, and Aj to be bundle equivalent if Ay and Aj, are equivalent as in
Section 4 (so the values of w; may vary but sy, ..., s, are fixed) and in addition ao, a;,
either both vanish or are both nonzero. (Thus we allow scalings of ag by a positive
scalar.)

Corollary 5.3 Suppose that ;[0 = (Ay,ap) is in normal form as in Proposition 5.1.
Then

codimpAg = (s> = 1) +---+ (=) +m(m+1)/2 ifay =0,
and

codimpAg = (s> = 1) +---+ (s = 1) +m(m—1)/2 ifay #0.

Proof We compute dim Z(A) using Proposition 5.2. The conditions B € Z1,0(n)(Ao)
and Agb = 0 yield the dimension (s? +---+ s2 + m(m — 1)/2) + m. When ay = 0,
there are no further constraints and we obtain the dimension s?+- - -+s24+m(m+1)/2.
The formula for the bundle codimension follows. When ay # 0, the additional con-
straint Bag = 0 forces m—1 independent coefficients in B to vanish hence reducing the
dimension by m—1. The bundle codimension is reduced further by one corresponding
to the scaling of ag. |

Proposition 5.4 Suppose that AVO = (Ao, ag) is in normal form as in Proposition 5.1.
When ao = 0, we have that B = (B,b) € B(A,) if and only if B € Z1o(n)(Ao)
and b € ker Ag. When ay # 0, we have that B = (B,b) € B(ZO) if and only if
B e ZLO(n) (AO) and b € R{en}.

11



Proof The case ay = 0 is straightforward: AT € LE(n) and hence by Proposition 3.1
we have B(A) = Z (AT) leading to the required characterization of B(Ay).

The case ag # 0 is more difficult since Proposition 3.1 does not apply. However,
a calculation starting from the definition of B(A4y) shows that B = (B,b) € B(Ay) if
and only if

tr(AoB — BA())C + (A()C - Ca()) -b= 0,

for all C = (C,¢) € LE(n). It is clear that this condition is satisfied when B €
Zio(n)(Ap) and b € R{e,}. Moreover, a dimension count using the proof of Corol-

lary 5.3 shows that we have accounted for the whole of B(A,). |

Corollary 5.5 The classification of low codimension normal forms is as follows.

(a) For each n there is a unique normal form of codimension zero:

Ay=R, ®---® Ry, ,, a=0, (n even)

Ao=R, & @Ry, _,,®0, a =ae, a>0, (n odd)

(b) For each n there is a unique normal form of codimension one with versal un-
folding:

Ao =Ry & ® Ry, 5, ® Ry, ao=ae,, a>0, (n even)

Ay=Ry @ ® Ry, D01, ag = Aep, (n odd)
(¢) There are no normal forms of codimension two.

Proof Restricting to codimension less than three, we see immediately that s; = ... =

= 1. Suppose that ag = 0 so that codimy Ay = m(m +1)/2. The values m = 0 and
m = 1 give low codimension normal forms for n even and n odd respectively. When
ag # 0, we have codimyAy = m(m — 1)/2 where m > 1 (since ker Ay 3 ag). The
values m = 1 and m = 2 give low codimension normal forms for n odd and n even
respectively. The versal unfoldings are easily computed by Proposition 5.4. |

The normal forms and versal unfoldings for E(2) and E(3) are shown in Tables 1
and 2 respectively. Note that the low codimension normal forms of Corollary 5.5
occur as well as two normal forms of codimension three and one of codimension six.
Further normal forms of codimension three occur for n > 4 with purely imaginary
eigenvalues of multiplicity two.

12



;4vo = (Ao, ap) codimb}lvo versal unfolding
0 —w 0 0 0 —w 0
w 0 ’ 0 w 0 ’ 0
00 0 1 0 =X 0
0 0)’ Q A0 ’ o}
00 0 3 0 -\ Ao
00 )’ 0 M0 )7 A3

Table 1: Versal unfoldings in LE(2)

Ay = (Ao, ag) codimy A, | versal unfolding
0 —w 0 0 0 —w 0 0
w 0 0|, 0 0 w 0 0], 0
0 0 0 o 0 0 0 o
0 —w 0 0 0 —w 0 0
w 0 0|, 0 1 w 0 0], 0
0 0 0 0 0 0 0 A
000 0 0 -\ —X 0
000, 0 3 M0 =X |, 0
000 a A2 A3 0 o
000 0 0 XA =X A4
000 ]|, 0 6 A0 =X ), As
000 0 XA A3 0 As

Table 2: Versal unfoldings in LE(3)
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6 Drift bifurcations in planar evolution equations

We now investigate the appearance of drift bifurcations for Euclidean-equivariant evo-
lution equations on the plane and their connections with planar pattern formation.
The bifurcation itself is described in Subsection (a). In Subsection (b), we make the
connection with the spiral wave-retracting wave transition mentioned in the intro-
duction. It turns out that many, though not all, of the features of this transition
can be explained by the drift bifurcation of Subsection (a). However, the discrepan-
cies between our theory and numerical simulations suggest that Hypothesis (H3) of
Section 2 breaks down. Alternative, but related, scenarios are described in Subsec-
tions (c) and (d). It appears that, though of interest in their own right, the latter
scenarios do not explain the spiral wave-retracting wave transition.

(a) A drift bifurcation in the plane

In Section 5, we showed that there was a single codimension one drift bifurcation
of relative equilibria in systems with E(2) symmetry. Using complex notation, we
identify £ € LSE(2) with the matrix

w B
5=(0 0>,

where w € R and 8 € C. For the codimension one bifurcation, we require that
w(0) =0, w'(0) # 0, B(0) # 0. A versal unfolding is given in Table 1:

=1 %)

for some fixed a € R, o # 0. Exponentiating, we obtain

ixt Xoine _
expté(N) = ( eo’\t )\(e . 1 ) i

We deduce that this bifurcation occurs for rotating waves with slow speed of ro-
tation A\. In the limit of zero rotation A\ = 0, the rotating wave is replaced by a
translating wave translating with nonzero speed a. On the other side of the bifurca-
tion point, we have a wave rotating slowly in the opposite direction.

At first sight, it is not clear how such a transition could be continuous in a system
of PDEs. We now show that at least in principle, there is no obstruction to such a
transition in planar PDEs.

We consider relative equilibria for systems of Euclidean equivariant PDEs in the
plane, for instance reaction diffusion equations. Suppose that X = E(2) - uy is a
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relative equilibrium satisfying hypotheses (H1)-(H3) from Section 2. By [2] we can
say that the state u generically rotates rigidly and exceptionally (codimension one)
translates in some fixed direction.

Now suppose that ug = ug(\) depends on a parameter A € R. As \ varies, the
drift on the relative equilibrium varies. The time evolution is given by

u(A, t) = exp(t€(X))ug(A).

where £()) is as given above. By normal hyperbolicity (H3) of the relative equilibrium,
both ¢ and the shape ug depend smoothly on .

At this point, we introduce the spatial dependence uy = ug(z, A) where z € R? &
C. When A # 0, the solution is rotating with slow speed A\. The center of rotation
c(A) € C is given by the solution to the equation

exp(t§)c = c,
that is,
ee + g(ei)‘t -1)=c
A
Solving this equation, we obtain
oY
A)=——.
W) =-5

We conclude that as the speed of rotation approaches zero, the center of rotation of
the rigidly rotating solution diverges to infinity. In the limit, there is pure translation
with finite speed of propagation and the center of rotation then comes back in from
infinity from the opposite direction.

(b) Transition from spiral waves to retracting waves

In numerical simulations [9], a transition from a slowly rotating spiral wave to a re-
tracting wave has been observed on reducing excitability. This transition is illustrated
in Mikhailov and Zykov [12, Figure 6] and is reproduced in Figure 1. As a parameter
is varied, the spiral slows down, the curvature of the wave fronts becomes small as
the spiral unwinds, the core of the spiral becomes unboundedly large, and the center
of rotation goes to infinity. In the limit, there is a traveling pulse translating with
finite nonzero speed. As the bifurcation parameter is varied further, the traveling
pulse appears to continue to translate linearly with nonzero speed. The sequence of
apparently stable asymptotic states is shown in Figure 1. It is convenient to con-
sider the ‘spiral tip’ as a feature of the pattern that stays approximately unchanged
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Figure 1: Observed bifurcation of a spiral wave to a retracting wave on reducing the
excitability of the medium. The four diagrams depict several snapshots of a single
spiral wave at different instants in time for four different values of the bifurcation
parameter. The spiral wave in (a) has a core size that grows (b) on approaching the
bifurcation point. In the far field it is a source of outwardly propagating waves. At the
bifurcation point (c), and beyond (d), it takes the form of a semi-infinite translating
wave. Adapted with permission from [12, Figure 6].
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throughout the bifurcation and to interpret the bifurcation in terms of the motion of
this tip.

Certain features of this transition are captured by our results in Subsection (a).
In particular, we obtain as a codimension one phenomenon that the center of rotation
goes to infinity and that the limiting motion is translation with finite nonzero speed.

The vanishing curvature and the infinite core are easily accounted for by com-
bining our results with the kinematic theory of excitable media. In excitable media,
it is assumed that wave fronts propagate in the normal direction to the front with
magnitude determined by the curvature of the front. Often the kinematic theory is
used to determine the motion of wave fronts given their curvature. For relative equi-
libria, the motion is determined by an element in the three-dimensional Lie algebra
LSE(2) and it seems fruitful to apply the kinematic theory in reverse — regarding
the curvature of the wave fronts as determined by the motion of the fronts. It is
now an easy kinematic-style argument to see that the drift bifurcation in the motion
drives the vanishing curvature and the growth of the core.

Unfortunately, our theory breaks down on the other side of the bifurcation point.
Under our assumptions, we predict that the spiral will begin to rotate slowly in the
opposite direction and hence by the kinematic theory, we obtain a reverse-wound
spiral, as shown in Figure 2. This does not appear to be what is observed in the
numerical simulations and leads us to conclude that (H3) is not satisfied at the bi-
furcation. In other words, a complete description of the transition must take into
account the non-localized nature of the spiral and retracting waves.

Multi-armed spirals Consider a multi-armed spiral with Z, spatial symmetry,
¢ > 2. Hypothesis (H1) is no longer satisfied and hence the effective symmetry group
is not the whole of SE(2). As explained at the end of Section 2, we replace the
group SE(2) by N(Z,)/Z, = SO(2). The drift bifurcations are then determined by
the results in Section 4. In particular, assuming Hypothesis (H3) to be valid, the
center of rotation is fixed and the limiting state is stationary. It then follows from
the reverse kinematic argument that the wave fronts straighten out, just as for a
one-armed spiral. However, we predict that in the case of a multi-armed spiral, the
core remains of finite size and the center of the core remains stationary throughout
the transition. After the transition, the spiral rotates in the opposite direction.
Since Hypothesis (H3) is problematic, it is unclear what will transpire in practice
after the bifurcation point. However, since the center of rotation is fixed, the core
remains finite as long as we remain in relative equilibrium. Moreover, with a finite
core, it is difficult to see how there can be a transition to retracting waves. Hence, the
case of a multi-armed spiral is quite different from the case of a single armed spiral.
We note that the kinematic theory alone does not clearly distinguish between
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Figure 2: A reverse-wound spiral. In a drift bifurcation, we predict the sequence of
diagrams (a), (b) and (c) in Figure 1. However, instead of diagram (d), we infer the
existence of a reverse-wound spiral wave as shown here.

multi-armed spirals and one-armed spirals, whereas these cases are clearly distin-
guished (in terms of the movement of the center of rotation) on grounds of symmetry.
This adds strength to our argument for applying the kinematic theory in reverse;
using symmetry to predict motion and then kinematics to predict curvature of fronts.

(c) A codimension two bifurcation: simultaneous drift bifur-
cation and transcritical bifurcation

In Subsection (b), we demonstrated that many features of the spiral wave-retracting
wave transition could be explained in terms of a codimension one drift bifurcation. In
particular, this explanation accounts for parts (a), (b) and (c) of Figure 1 (up to and
including the bifurcation point) but not part (d) (after the bifurcation point). In this
subsection, we present an alternative scenario that completely reproduces Figure 1.

Wulff [16] introduced the space Ceyq of uniformly continuous functions on which
E(2) acts as a strongly continuous group. We suppose that the shape ug in the pre-
vious section lies in Cg,q for all values of A and slows down as before as A approaches
zero. We suppose in addition that this family of relative equilibrium consists of sinks
inside of Cgyq for all A\. However, we suppose that as A passes through zero, there
is a loss of stability (with zero eigenvalue) in directions outside Cey. Thus there is
a transcritical bifurcation out of Cg,. Translations act continuously on the whole
of Clypnir but rotations act continuously only on Cey. Hence the bifurcating states
cannot rotate, but generically translate with nonzero speed.

The prediction is that there are unstable traveling pulses before the bifurcation
and unstable rotating spirals after the bifurcation. The unstable spirals are stable
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within Coycr-

Unfortunately, the experimental behavior appears to be codimension one, whereas
our scenario has codimension two. We do not know of a mechanism whereby bifur-
cation out of Cyy should occur precisely when the speed of rotation goes to zero.

(d) Pitchfork bifurcation from a reflection-symmetric pulse

We consider a possible codimension one bifurcation from a symmetric state that
causes a bifurcation to generic drift of the bifurcating symmetry broken solutions. For
this, we consider evolution on a space where rotations act continuously, for example
L?(R?), Cy(R?) or the space Ceyq considered in Wulff [16].

Suppose that we have a family of (localized) reflection symmetric relative equilibria
uo(A) that undergo a reflection symmetry breaking steady-state bifurcation at A = 0.

It follows from [2] that the pulses undergo translation drift parallel to the axis
of reflection with generically nonzero speed. In contrast, the branching asymmetric
states generically rotate with nonzero speed.

More information on the drifting of pulses and spirals near the bifurcation can
be obtained by performing a center bundle reduction [14, 8]. Let a € C denote the
translation speed of the pulses at the bifurcation point. Generically, o # 0. If we
choose coordinates, so that the reflection fixing the pulse state acts on C as p — p,
then a € R.

Proposition 6.1 There is a reduction to an E(2)-equivariant vector field on a four-
dimensional center bundle Y = S x C x R, where the action of E(2) is given by

(0,0) - (¢, p2) = (p+0,6°p+v,2), K- (¢,p,2) = (—¢,p, ),
for (,v) € SE(2), k € Dy, and (¢,p,x) € Y.

Proof Since the pulse solution ug has isotropy Dy, the group orbit E(2)u, is diffeo-
morphic to E(2)/D; = SE(2) = S' x C. The normal vector field is D;-equivariant
and has a one-dimensional center manifold R. Since the steady-state bifurcation is
assumed to be symmetry-breaking, the action of ID; on R is given by z — —uz.

Center bundle reduction leads to a four-dimensional center bundle with base space
S' x C and fiber R. The action of D; on R extends to an action of E(2) on R (where
vz =z for x € SE(2) and yz = —z for x € E(2) — SE(2)). Hence, it follows from [8]
that the center bundle is a trivial bundle S' x C x R. Moreover, the action of E(2)
on R is as given.

The action of SE(2) on S! x C is given by group multiplication. Finally, observe
that - (¢,p) = (—¢,kp) - K = (—¢,p) - k. Hence k(o, p)ug = (—¢,p)ug. This gives
the action of Dy on S x C. []
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Proposition 6.2 The equations on the center bundle have the form

¢ =zfa’, N
p=e{g1(z* ) +izga(2®, \)}
i = zh(z?,\)

where f,g1,92,h : R x R — R and ¢1(0,0) = a.

Proof Write the vector field in the form (F¢, F?, F*). Tt follows from SE(2)-
equivariance that F¢ = F?¢(z), FP(z) = €%g(x), F* = h(zx) (this is the same cal-
culation as in [4] or [8]). Finally, the action of D; forces F'* and h to be odd in z,
and in addition g(—z) = g(). |

We suppose also that hy(0,0) > 0 and h,2(0,0) < 0, thus ensuring that the pulse
state is asymptotically stable for A < 0 and that there is a loss of stability at A =0
resulting in a supercritical pitchfork bifurcation of asymmetric states.

The nontrivial zeroes of the 4 equation are given by z(\) = +kv/A+0O(A\*/?) where
k is a positive constant. Substituting into the (;5 equation, and integrating, we obtain

o(t) = £E£(0,0)V At + O(N¥/?),
Finally, we have

B = 1(0,0)e** O L O(),
so that

_ @ +ik £(0,0)V/At
) = —— e + O(N).
P = 0o 2

It follows that the rotation frequency of the spiral state decreases to 0 at the
bifurcation point and is of order v/A. In addition, the radius of rotation goes to
infinity.

The analysis above explains calculations of Barkley and Kevrekidis [3] but suffers
from the difficulty, in common with [3], that the introduction of reflection symmetry
is artificial (since the retracting waves are asymmetric). We note that the scenario in
this subsection leads to quite different predictions to the scenarios in the previous two
subsections. In particular, the speed of rotation scales as v/A (just as in [3]) whereas
in Subsections (b) and (c) the speed of rotation scales linearly with the bifurcation
parameter. In all cases, the rate of growth of the center of rotation is inversely
proportional to the speed of rotation.
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