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Abstract

We present a general framework for weak convergence to decorated Lévy
processes in enriched spaces of càdlàg functions for vector-valued processes aris-
ing in deterministic systems. Applications include uniformly expanding maps
and unbounded observables as well as nonuniformly expanding/hyperbolic
maps with bounded observables. The latter includes intermittent maps and
dispersing billiards with flat cusps. In many of these examples, convergence
fails in all of the Skorohod topologies. Moreover, the enriched space picks up
details of excursions that are not recorded by Skorohod or Whitt topologies.

1 Introduction

The classical central limit theorem (CLT) asserts convergence to a normal distribution
with standard diffusion rate n1/2. Donsker’s weak invariance principle (WIP) gives
weak convergence to the corresponding Brownian motion. Brownian motion has con-
tinuous sample paths, so weak convergence can be taken in the space of continuous
functions with the supremum norm.

There has been much interest across the physical sciences (see for example [BL,
GW, G2, KGS+, MZ, MJCB, PVHS, ST, SWS, W]) in “anomalous diffusion” and
in particular in superdiffusive rates n1/α, α ∈ (0, 2), with convergence to an α-stable
Lévy process. Such process have infinite variance and a dense set of discontinuities,

∗Centro de Matemática & Faculdade de Economia da Universidade do Porta, Rua Dr. Roberto
Frias, 4200-464 Porto, Portugal
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exhibiting jumps of all sizes. It is customary to consider weak convergence in the space
D of càdlàg functions (right continuous with left limits). Skorohod [Sk] introduced
various topologies for convergence in D, and for a long time the Skorohod J1 topology
was the topology of choice.

Eventually, it became apparent that convergence in the J1 topology is too restric-
tive. The first such examples were [AT, BKS] in the probability literature and [MZ] in
the dynamical systems literature, where convergence fails in J1 but holds in the weaker
Skorohod M1 topology on D. Based on [AT], Whitt [W, p. xii] and Jakubowski [J]
respectively wrote:

Thus, while the J1 topology sometimes cannot be used, the M1 topology can
almost always be used. Moreover, the extra strength of the J1 topology is rarely
exploited. Thus, we would be so bold as to suggest that, if only one topology
on the function space D is to be considered, then it should be the M1 topology.

All these reasons bring interest also to the weaker Skorokhod’s topologies J2,
M1 and M2. Among them practically only the topology M1 proved to be useful.

On the other hand, Whitt [W] anticipated the need to move beyond the Skorohod
topologies, and furthermore to replace D by an enriched space of “decorated” càdlàg
functions. The enriched spaces in [W] were denoted by E and F . These spaces permit
weak convergence in situation where convergence fails in any Skorohod topology.
Moreover, they keep track of various details which are lost in the usual Skorohod
topologies.

The picture changed further as a result of the papers [BK, MV] which gave first
examples where the M2 topology is the appropriate one. Moreover, the examples
considered in [MV], namely dispersing billiards with flat cusps, demonstrate emphat-
ically that none of the Skorohod topologies are adequate in general. Examples from
one-dimensional dynamics where convergence again fails in all Skorohod topologies
are given in [FFT].

In this paper, we prove a general result on weak convergence to α-stable Lévy
processes in a decorated càdlàg space. Our framework is general enough to incorpo-
rate all known examples arising in uniformly and nonuniformly hyperbolic dynamics.
In particular, we cover intermittent maps and billiards with flat cusps (bounded ob-
servables) and uniformly expanding maps (unbounded observables). Our results are
formulated using a space F ′ introduced in [FFT] which improves upon the spaces
in [W] and achieves three goals:

(i) We obtain weak convergence results when none are possible using the Skorohod
topologies. For billiards with one flat cusp as considered in [MV], we obtain
convergence in F ′ to a decorated Lévy process for typical Hölder observables,
whereas such a result is false for the Skorohod topologies [JMP+].
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(ii) We keep track of fine behaviour concerning excursions during jumps, as partially
illustrated in Figure 1. This includes behaviour that is not detected by the
spaces in [W].

(iii) Restricting to d = 1 for convenience, the Skorohod topologies have the property
that important functionals such as ψ(u)(t) = sups∈[0,t] u(s) are continuous on D
and hence preserve weak convergence. Many of our examples in Section 2 have
“overshoots” (as illustrated in Figures 2 and 3) meaning that weak convergence
cannot be preserved by such functionals. Consequently, the processes in such
examples cannot converge in a Skorohod topology (nor in any topology on D
for which such functionals are continuous). However, such functionals ψ are
continuous on the enriched space F ′ (see Remark 4.2) and so we obtain a large
class of functionals that preserve weak convergence of enriched processes.

The approach in this paper, building on [FFT], is to consider decorated Lévy
process obtained by attaching suitable profiles P : [0, 1] → Rd that keep precise track
of the excursion during each jump.

Remark 1.1 For intermittent map examples, considered in [MZ] for scalar observ-
ables and [CFKM] for vector-valued observables, our general theory applies when the
observable v is nonvanishing at at least one of the most neutral fixed points.

For dispersing billiards with flat cusps, we require moreover that the excursions
at all of the flattest cusps are in distinct directions. The general case is the topic of
work in progress.

The remainder of this paper is organised as follows. Section 2 provides an informal
and nontechnical description of numerous examples covered by our theory. This serves
as an illustration of the differences between the various Skorohod topologies on D, as
well as the improvements arising from the theory in this paper. In Section 3, we recall
background material on regular variation in Rd. In Section 4, we define the topological
space F ′ of decorated càdlàg functions [FFT]. Our main result, Theorem 5.1, on weak
convergence in F ′ is stated and proved in Section 5. In Section 6, we revisit various
examples covered by Theorem 5.1.

Notation We use “big O” and ≪ notation interchangeably, writing an = O(bn) or
an ≪ bn if there are constants C > 0, n0 ≥ 1 such that an ≤ Cbn for all n ≥ n0. As
usual, an = o(bn) means that an/bn → 0 and and an ∼ bn means that an/bn → 1.

For càdlàg functions u : [0, 1] → Rd and τ ∈ (0, 1], we let u(τ−) = limϵ↓0 u(t − ϵ)
denote the left hand limit of u at τ .

We denote by pk : Rd → R the projection onto the k-th coordinate for k = 1, . . . , d.
Let x, y ∈ R. Throughout this paper, x∧ y = min{x, y}, x∨ y = max{x, y} and [x, y]
is the line segment [x ∧ y, x ∨ y]. For x, y ∈ Rd, we define the product segment
[[x, y]] = [p1x, p1y]× · · · × [pdx, pdy].
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2 Informal description and illustrative examples

Throughout this section, T : M → M is a measure-preserving dynamical system
defined on a probability space (M,µ) and v : M → Rd is a measurable observable.
For specified α ∈ (0, 2), we define the sequence of càdlàg processesWn ∈ D([0, 1],Rd),

Wn(t) = n−1/α

[nt]∑
j=0

v ◦ T j,

on M .

2.1 One dimensional maps

One-dimensional maps T : M → M , M = [0, 1], already provide a wide variety
of different weak convergence properties. We begin with three examples, each of
which exhibits convergence in the Skorohod M1 topology, but for which much further
information is gained by considering convergence in the enriched space F ′.

Example 2.1 Tyran-Kamińska [T] initiated the study of weak convergence to α-
stable Lévy processes in deterministic dynamical systems, focusing on the standard
Skorohod J1 topology on D. A specific example studied in [T] is the Gauss map
T1x = 1/x mod 1 which arises in the study of continued fractions. For the scalar
observable v(x) = [1/x], it was shown taking α = 1 that Wn converges weakly (after
appropriate centring) in the J1 topology to a totally-skewed (one-sided) 1-stable Lévy
process.

Example 2.2 Our second example is a class of Pomeau-Manneville intermittent
maps [PM] studied in [LSV]

T2x =

{
x(1 + 21/αx1/α) 0 ≤ x < 1

2

2x− 1 1
2
≤ x ≤ 1

.

These maps possess a neutral fixed point at x = 0 (with T ′
2(0) = 1) that becomes

stickier as α decreases resulting in anomalous behaviour. For α > 1, there is a unique
absolutely continuous invariant probability measure µ. Let v be a scalar Hölder
observable with

∫
v dµ = 0 and v(0) ̸= 0. For α ≥ 2, we have central limit theorem

behaviour with normalisation n1/2 for α > 2 and normalisation (n log n)1/2 for α = 2.
In the case of interest here, α ∈ (1, 2), Gouëzel [G2] proved that Wn(1) converges in
distribution to a totally-skewed α-stable law. Convergence to the corresponding α-
stable Lévy process was proved in the Skorohod M1 topology in [MZ]. It had already
been noted in [T] that convergence was impossible in the J1 topology.
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In the first example, large jumps for Wn(t) arise at separated times t = j/n
whenever T j

1x is near zero. In the second example, increments of Wn are small
(bounded by n−1/α|v|∞). However, when T j

2x is near the neutral fixed point at 0, there
are several successive values of j for which the increments are all close to n−1/αv(0)
and these accumulate into a large jump. In J1, large jumps in the limit have to be
approximated by large jumps of almost the same size at almost the same instant of
time, so the J1 topology is appropriate for the first example but not the second.

Example 2.3 Our third example, considered in [G1], is provided by the doubling
map T3 = 2x mod 1 with scalar observable v(x) = x−1/α where α ∈ (0, 1). Again,
Wn(1) converges in distribution to a totally-skewed α-stable law and Wn converges
to the corresponding Lévy process in the M1 topology but not in J1. However, the
situation is quite different from that for T2 where the increments for Wn during an
excursion near the neutral fixed point at 0 limit on a vertical line segment. For T3,
the increments near the hyperbolic fixed point at 0 limit on a sequence of a large
jumps, decreasing geometrically in size at rate 2−1/α (see Example 6.1 for details).

For the three examples above, the limiting excursions are (1) a pair of points, (2)
a line segment, (3) a geometric sequence of points. These are illustrated in Figure 1.
Note that all three examples converge in M1. The first example is distinguished by
converging also in J1. However, the second and third examples cannot be distin-
guished at the level of Skorohod topologies, nor by the spaces in [W] as discussed
in [FFT, Section 2.3]. This is the issue addressed by the space F ′ in [FFT].

We obtain decorated processes in F ′ by associating to each jump, a profile, namely
a càdlàg function P : [0, 1] → R with P (0) = 0 and |P (1)| = 1, as shown in Figure 1.
Our main result, Theorem 5.1, gives convergence in F ′ of Wn to the decorated Lévy
process.

The limiting Lévy process in these three examples are totally-skewed with jumps
that all have the same sign (positive for T1 and T3 and sgn v(0) for T2). The next
example includes two-sided Lévy processes as well as the vector-valued case.

Example 2.4 Continuing Example 2.2, let T4 : M → M , M = [0, 1] be an
intermittent map with finitely many neutral fixed points x1, . . . , xk ∈ M where
T4x ≈ x + cj(x − xj)

1+1/αj for x ≈ xj (cj > 0), where α1 = minαj ∈ (1, 2). For
an explicit example, see [CFKM, eq. (1.5) and Lemma 6.3]. Let v : M → R be
Hölder with v(x1) ̸= 0. Then we obtain convergence in M1 to an α1-stable Lévy
process. If α1 = α2 and v(x1)v(x2) ̸= 0, then the Lévy process is two-sided.

Now define profiles P±(t) ≡ ±t. We attach P+ to each positive jump and P− to
each negative jump, scaled by the size of the jump. Our results guarantee convergence
in F ′ to the Lévy process enriched in this manner. Note that it is not required that
v(xj) ̸= 0 for all j; it suffices that v(xj) ̸= 0 for at least one neutral fixed point xj
with αj least.
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Figure 1: Limiting excursions (first row) at some time τ and profiles (second row)
for the three one-dimensional examples T1 (Gauss map), T2 (intermittent map with
v(0) > 0), T3 (doubling map). Each excursion/profile corresponds to one jump of the
limiting Lévy process. Each excursion is a subset of a vertical line and is the image
of the corresponding profile P = PI(τ) : [0, 1] → R suitably scaled (I(τ) picks the
correct profile at τ and is defined in Section 5).

We can also consider vector-valued observables v : M → Rd with d ≥ 2 as
in [CFKM]. Let i ∈ I be the set of indices i ∈ {1, . . . , k} such that αi = α1 least
and v(xi) ̸= 0. We assume that I ̸= ∅. By [CFKM], we obtain convergence in M1

to an α1-stable Lévy process with jumps in the directions ωi = v(xi)/|v(xi)|, i ∈ I.
We attach the profile Pi(t) ≡ tωi to jumps in directions ωi, scaled by the size of the
jump. As shown in Example 6.9, the results in this paper yield convergence in F ′ to
this enriched Lévy process.

TheM1 topology suffices for the examples mentioned so far. Moreover, the profiles
can be recovered from the excursion combined with the knowledge that convergence
holds in M1. In our next example, convergence fails in all Skorohod topologies and
the profile contains information that cannot be gleaned from the excursion.

Example 2.5 Consider the map T5 :M →M studied in [FFT, Example 2.7],

T5x = 3x mod 1, v(x) = |x− 1
8
|−2 − |x− 3

8
|−2.
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Large values of v with alternating sign arise when T j
5x is close to the repelling period

two orbit {1
8
, 3
8
}.

In this example, Wn(1) converges to a symmetric 1
2
-stable law, and the normalised

excursions consist of the points {1 − (−1
9
)j; j = 0, 1, 2, . . .} ∪ {1} at positive jumps

and {−1+(−1
9
)j; j = 0, 1, 2, . . .}∪{−1} at negative jumps. Note that the excursions

span [0,±10
9
], thereby overshooting the span [0,±1] of the jumps. The excursion and

profile for positive jumps are shown in Figure 2. The profile contains considerable
extra information, indicating that the size of the steps during one jump decrease in
size with oscillating sign; the limiting excursion records the size of the steps but not
the order in which they occur. See Example 6.4 for further details.

Let Lα denote the corresponding 1
2
-stable Lévy process. The functional

ψ : D → D, ψ(u)(t) = sup
s∈[0,t]

u(s),

is continuous in the Skorohod topologies. In examples like the current one, with
overshooting excursions, it is clear that the limit of ψ(Wn) is unrelated to ψ(Lα)
since Lα does not see the overshoots. Hence it follows from the continuous mapping
theorem that Wn does not converge weakly to Lα in any Skorohod topology on D.
However, the enriched process records the overshoots and we recover continuity of
such functionals from F ′ to D.

τ 0 1

PI(τ) = P1

Figure 2: Limiting excursion (left) and profile (right) at a positive jump for Exam-
ple 2.5. The profile P1 : [0, 1] → R with P1(0) = 0, P1(1) = 1 corresponds to jumps
initiated at x = 1

8
(see Example 6.4); the other possibility being negative jumps ini-

tiated at x = 3
8
(with profile P−1 = −P1). The second horizontal line in the profile is

at height 10
9
, overshooting the range [0, 1] of the profile.

Remark 2.6 In situations where the results in this paper apply, we obtain necessary
and sufficient conditions for convergence in the M1 and M2 topologies by arguments

7



in [MV] for M1 and in [JMP+] for M2. Convergence holds in M2 if and only if P (t) is
contained in the line segment ℓP joining 0 to P (1) for all t ∈ (0, 1) and each profile P .
Convergence holds in M1 if and only if in addition t 7→ P (t), t ∈ [0, 1] is monotone
in ℓP for each P .

If there exists a profile P and a t ∈ [0, 1] such that P (t) ̸∈ ℓP then convergence
fails in all the Skorohod topologies. This occurs naturally (and typically for d ≥ 2)
in the billiard examples in Subsection 2.2, as well as in Example 2.5.

2.2 Billiards with flat cusps

Planar dispersing billiards [CM] were introduced by Sinai [S] and are based on de-
terministic Lorentz gas models [L]. They are known to satisfy numerous classical
statistical limit laws such as the CLT and WIP [BS, BSC]. Billiards with cusps
were treated by [BCD] who obtained convergence to a normal distribution/Brownian
motion but with anomalous diffusive rate (n log n)1/2 instead of the usual n1/2 nor-
malisation.

Jung & Zhang [JZ] proved convergence to an α-stable law for planar dispersing
billiards with a flat cusp. The billiard table Q ⊂ R2 has a boundary consisting of at
least three C3 curves with a cusp formed by two of these curves Γ±. In coordinates
(s, z) ∈ R2, the cusp lies at (0, 0) and Γ± are tangent to the s-axis at (0, 0). Moreover,
Γ± = {(s,±β−1sβ)} close to (0, 0), where β > 2.

The phase space of the billiard map (collision map) T is given byM = ∂Q× [0, π],
with coordinates (r, θ) where r denotes arc length along ∂Q and θ is the angle between
the tangent line of the boundary and the collision vector in the clockwise direction.
There is a natural ergodic invariant probability measure dµ = (2|∂Q|)−1 sin θ dr dθ on
M , where |∂Q| is the length of ∂Q.

Let v : M → R be a Hölder observable with
∫
M
v dµ = 0. By [JZ], Wn(1)

converges weakly to a totally-skewed α-stable law with α = β/(β − 1) ∈ (1, 2). The
case of multiple cusps was considered in [JPZ]. We refer to [JPZ] for precise details
of the configuration space; in particular it is assumed that no trajectory runs directly
between the vertices of two cusps.

Convergence to the corresponding Lévy process is considered in [MV, JPZ, JMP+].
Again, J1 convergence is impossible since the jumps are bounded. If v has constant
sign on each cusp, then convergence holds in the M1 topology. However, a much
wider range of convergence properties is possible due to the fact that the cusp (which
is a single point (0, 0) in configuration space) is a union of two line segments

{(r+, θ) : 0 ≤ θ ≤ π} ∪ {(r−, θ) : 0 ≤ θ ≤ π}

in phase space. Here, r± ∈ Γ± denotes the arc length coordinates of (0, 0).
At each of the flattest cusp (those with largest β), we associate a continuous profile

P : [0, 1] → Rd, P (t) =
1

2

∫ t

0

{v(r+, θ) + v(r−, π − θ)}(sin θ)1/α dθ,
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as depicted in Figure 3. We require that P (1) ̸= 0 for each P and normalise so
that |P (1)| = 1. In general, P may have overshoots for d = 1, see Figure 3(c),
and overshoots are typical for d ≥ 2. Hence the billiard example provides many
instances where convergence fails in all Skorohod topologies. In Section 6.2, we apply
our results to show (currently under the assumption that P (1) is distinct for distinct
flattest cusps) that convergence holds in F ′ to an enriched Lévy process.

0 1 0 1 0 1
(a) (b) (c)

Figure 3: Different possible shapes of the profile at a cusp for billiards with flat cusps
for a scalar observable v : M → R. (a) Convergence holds in the M1 topology; (b)
Convergence holds in the M2 topology but not in the M1 topology; (c) Convergence
fails in all Skorohod topologies but holds in the enriched space F ′.

3 Regular variation in Rd and spectral measures

In this section, we recall some basic material on regularly varying vector-valued func-
tions and the notion of spectral measure [ST, Section 2.3].

Let Sd−1 = {x ∈ Rd : |x| = 1} denote the unit sphere in Rd. (Throughout, | · |
denotes the Euclidean norm.)

Definition 3.1 An Rd-valued random variable Z is regularly varying with order α ∈
(0, 2) if there exists a Borel probability measure ν on Sd−1, called the spectral measure,
such that

lim
t→∞

P(|Z| > λt, Z/|Z| ∈ E)

P(|Z| > t)
= λ−αν(E)

for all λ > 0 and all Borel sets E ⊂ Sd−1 with ν(∂E) = 0.
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Taking E = Sd−1, we have that |Z| is a scalar regularly varying function. Hence
there exists a slowly varying function l : [0,∞) → (0,∞) such that

P(|Z| > t) = t−αl(t).

Suppose that Z is regularly varying as in Definition 3.1 and that either α ∈ (0, 1)
or α ∈ (1, 2) and EZ = 0. Let Z1, Z2, . . . be a sequence of i.i.d. random variables
distributed as Z. Choose bn ∼ (nl(bn))

1/α. Then

b−1
n

n−1∑
j=0

Zj →w Gα,

where Gα is a d-dimensional α-stable law with characteristic function

E eis·Gα = exp
{
−

∫
Sd−1

|s · x|α
(
1− i sgn(s · x) tan πα

2

)
cos

πα

2
Γ(1− α) dν(x)

}
for s ∈ Rd. The random variable Z is said to be in the domain of attraction of Gα.

Now let L̃α ∈ D([0, 1],Rd) denote the d-dimensional α-stable Lévy process corre-
sponding to the stable law Gα. Also, define the process WZ

n by

WZ
n (t) = b−1

n

[nt]−1∑
j=0

Zj.

Then WZ
n →w L̃α in the Skorohod J1 topology.

Remark 3.2 The strong J1 topology on D([0, 1],Rd) is metrised by

dJ1(u1, u2) = inf
λ

(
sup
t∈[0,1]

|u1(λ(t))− u2(t)|+ sup
t∈[0,1]

|λ(t)− t|
)
,

where the infimum is over the set of continuous strictly increasing bijections λ :
[0, 1] → [0, 1]. There is also a weak J1 topology defined by working coordinatewise
(which allows d different parametrisations λ). The weak and strong topologies coin-
cide for d = 1 and are different for d ≥ 2. Throughout this paper, by J1 we mean
strong J1.

4 Decorated càdlàg space F ′

In this section, we recall the definition of the topological space F ′ = F ′([0, 1],Rd)
introduced in [FFT]. We make liberal use of the notation introduced at the end of
the Introduction.

Let D = D([0, 1],Rd) be the space of càdlàg functions defined on [0, 1]. For u ∈ D,
we denote by Discu ⊂ (0, 1) the set of discontinuities of u.

The decorated càdlàg space F ′ is defined to be the space of excursion triples(
u,S, {eτ}τ∈S

)
where
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• u ∈ D,

• S is an at most countable subset of (0, 1) containing Discu,

• eτ ∈ D satisfies eτ (0) = u(τ−) and eτ (1) = u(τ) for each τ ∈ S.

• For all ϵ > 0, there exist only finitely many τ ∈ S such that diam range eτ > ϵ.

(The second and fourth conditions are automatic for u ∈ D if S = Discu and
range eτ ⊂ [[u(τ−), u(τ)]].)

The remainder of this section is devoted to defining the appropriate topology
on F ′. To do this, it is useful to consider two further spaces E and D̃.

The space E = E([0, 1],Rd) introduced by Whitt [W, Sections 15.4 and 15.5] is
the space of triples

(
u,S, {Kτ}τ∈S

)
where

• u ∈ D,

• S is an at most countable subset of (0, 1) containing Discu,

• Kτ is a compact connected subset of Rd containing at least u(τ−) and u(τ) for
each τ ∈ S,

• For all ϵ > 0, there exist only finitely many τ ∈ S such that diamKτ > ϵ.

We may identify each element
(
u,S, {Kτ}τ∈S

)
∈ E with the set-valued function

û(t) =

{
Kt if t ∈ S

{u(t)} t ∈ [0, 1] \ S
,

and its graph Γû = {(t, z) ∈ [0, 1]× Rd : z ∈ û(t)}.
For elements of E, the associated graph Γû is a compact set. Recall that for

compact sets A,B ⊂ Rn, the Hausdorff distance between A and B is given as

H(A,B) = sup
x∈A

inf
y∈B

|x− y| ∨ sup
y∈B

inf
x∈A

|x− y|.

We endow E with the Hausdorff metric by setting

dE(û1, û2) = H(Γû1 ,Γû2), û1, û2 ∈ E.

Next, we introduce D̃ = D̃([0, 1],Rd) = D/∼ where u1 ∼ u2 if there exists a
reparametrisation λ : [0, 1] → [0, 1], i.e. a continuous strictly increasing bijection,
such that u1 ◦ λ = u2. Denote the equivalence class of u by [u]. We define

dD̃([u1], [u2]) = inf
λ

sup
t∈[0,1]

|u1(λ(t))− u2(t)|, u1, u2 ∈ D,

11



where the infimum is over the set of continuous strictly increasing bijections λ :
[0, 1] → [0, 1] (this could be thought of as the induced metric from the J1 metric on

D̃). We abuse notation within D̃ by writing u to refer to both a representative of its

equivalence class [u] and the equivalence class itself. (Note that two elements of D̃

can be close even if λ is far from the identity, so D̃ is quite different from D with the
J1 topology.)

We define projections

πE : F ′ → E, πD̃ : F ′ → D̃

as follows.
The projection πE is given by

πE
(
u,S, {eτ}τ∈S) =

(
u,S, {Kτ}τ∈S

)
where

Kτ =
[

inf
t∈[0,1]

p1e
τ (t), sup

t∈[0,1]
p1e

τ (t)
]
× · · · ×

[
inf

t∈[0,1]
pde

τ (t), sup
t∈[0,1]

pde
τ (t)

]
.

To define πD̃
(
u,S, {eτ}τ∈S

)
, write S = {τm : m ∈ κ} where κ ⊂ {1, 2, . . . } is an

at most countable (possibly empty) indexing set. Define s =
∑

m∈κm
−2. Insert an

interval Im of length m−2 after each τm to obtain an interval of length 1 + s. Define
ũ : [0, 1 + s] → Rd to coincide with u on [0, 1 + s] \

⋃
m Im

1 and to coincide with
the appropriate time-scaled version of eτm on Im. (So if Im = [a, a + m−2], then
ũ(a+ t) = eτm(m2t) for 0 ≤ t ≤ m−2.) Define πD̃

(
u,S, {eτ}τ∈S

)
(t) = ũ(t(1 + s)).

We can now define a pseudometric on F ′ by setting

dF ′(ǔ1, ǔ2) = dE(πEǔ1, πEǔ2) + dD̃(πD̃ǔ1, πD̃ǔ2), ǔ1, ǔ2 ∈ F ′.

Remark 4.1 The space F ′ with the topology defined here is separable (but not
complete), see [FFT, Proposition A.3(a)].

Remark 4.2 For d = 1, consider the maximum process functional ψ : F ′ → D, given
by

ψ(ǔ)(t) = sup
s∈[0,t]

max{(πEǔ)(s)}, ǔ ∈ F ′, t ∈ [0, 1].

This is continuous, showing that we recover a suitable class of continuous functionals
preserving weak convergence in F ′. See [W, eq. (5.5) and Theorem 15.5.1] for the
corresponding situation in the Whitt space E.

1In formulas, let φ : [0, 1] → [0, 1 + s] \
⋃

m Im be the piecewise smooth bijection with φ′ = 1 on
[0, 1] \ S. Then ũ(t) = u(φ−1(t)) on [0, 1 + s] \

⋃
m Im.
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5 Main theorem

In this section, we state and prove the main theoretical result of the paper.
Let T :M →M be an ergodic measure-preserving transformation on a probability

space (M,µ) and let X ⊂M be a measurable subset with µ(X) > 0. Define the first
return time

R : X → Z+, R(x) = inf{n ≥ 1 : T nx ∈ X}

and the first return map

f = TR : X → X, fx = TR(x)x.

We assume throughout that R ∈ L1. The normalised restriction µX of µ restricted
to X is an ergodic f -invariant probability measure on X.

Fix finitely many unit vectors ωi ∈ Sd−1, i ∈ I, where I is a finite indexing set.
For notational convenience, suppose that 1 ∈ I. Also, we fix a finitely supported
spectral measure

ν =
∑
i∈I

aiδωi

on Sd−1, where ai > 0 and
∑

i∈I ai = 1. Choose bn ∼ (nl(bn))
1/α as in Section 3, and

let L̃α denote the α-stable Lévy process with spectral measure ν.
Let v : M → Rd be a vector-valued observable, and set vk =

∑k−1
j=0 v ◦ T j. We

define the induced observable

V = vR : X → Rd, V =
R−1∑
j=0

v ◦ T j.

Also, define the processes Wn, W
V
n ∈ D([0, 1],Rd) on M and X respectively,

Wn(t) = b−1
n

[nt]−1∑
j=0

v ◦ T j, W V
n (t) = b−1

n

[nt]−1∑
j=0

V ◦ f j. (5.1)

Our main hypothesis is that W V
n →µX

L̃α in D with the J1 topology.2

Define the α-stable Lévy process Lα =
( ∫

X
RdµX

)−1/α
L̃α. Our aim is to prove

weak convergence in F ′ of Wn to Lα. To make sense of this, we first need to embed
Wn and Lα as decorated processes W F ′

n and LF ′
α in F ′.

2We write →µX
to denote weak convergence, emphasising the probability space on which WV

n

are defined.
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Embedding of Wn in F ′. We embed Wn in F ′ in a somewhat arbitrary (harmless)
manner by attaching trivial excursions. Given u ∈ D, let ∆u(τ) = u(τ)− u(τ−). We
define elements W F ′

n ∈ F ′ on (M,µ),

W F ′

n =
(
Wn,Sn, {eτn}τ∈Sn

)
where Sn = { j

n
, 1 ≤ j ≤ n− 1} and eτn : [0, 1] → Rd is given by

eτn(t) = Wn(
j−1
n
) + 1[ 1

2
,1](t)∆Wn(

j
n
) for τ = j

n
∈ Sn.

Embedding of Lα in F ′. Let Pi, i ∈ I, be a finite collection of profiles, namely
càdlàg functions Pi ∈ D([0, 1],Rd) with Pi(0) = 0 and Pi(1) = ωi. We now de-
scribe how to embed Lα in F ′ by adjoining the profiles Pi, suitably scaled, at each
discontinuity of Lα.

Let S = DiscLα . For each τ ∈ S, we can express ∆Lα(τ) uniquely in the form
∆Lα(τ) = |∆Lα(τ)|ωI(τ) with I(τ) ∈ I. Define

LF ′

α =
(
Lα,S, {eτ}τ∈S

)
where the excursion eτ : [0, 1] → Rd, τ ∈ S, is given by

eτ (t) = Lα(τ
−) + |∆Lα(τ)|PI(τ)(t).

Hypotheses. As already mentioned, our main hypothesis is that W V
n →µX

L̃α in
D with the J1 topology. We require one more assumption linking the dynamics to
the profiles. Define Π : Rd → D by setting Π(y) = Pi when y/|y| is closest to ωi. If
y/|y| is equidistant from two distinct ωi, or y = 0, set Π(y) = 0. We define functions
ξ, ζ ∈ D([0, 1],Rd) on X,

ξ(t) = v[tR], ζ(t) = |V |Π(V )(t) + t
{
V − |V |Π(V )(1)

}
.

Our second main hypothesis is that

b−1
n max

0≤j≤n
dD̃(ξ, ζ) ◦ f

j →µX
0. (5.2)

Theorem 5.1 Assume that W V
n →µX

L̃α in D with the Skorohod J1 topology, and
suppose that hypothesis (5.2) is satisfied. Then W F ′

n →µ L
F ′
α in F ′.

In the remainder of this section, we prove Theorem 5.1.

Remark 5.2 A more natural choice when I = {1} is to take ζ = V P1. Our definition
of ζ has the advantage that it treats all cases simultaneously. For example, in the
case d = 1, I = {±1}, ω± = ±1, we obtain ζ = |V |PsgnV .

For d = 1 with I = {1} and ω1 = 1, we have ζ(t) =

{
V P1(t) V > 0

−V P1(t) + 2tV V ≤ 0
.

The strange looking definition of ζ for V ≤ 0 is unimportant since in practice V will
be large and positive in such situations.
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Remark 5.3 We can adapt our proof to work when R is a generalised inducing time,
rather than necessarily a first return. This can be done by going to the corresponding
Young tower and considering the first return to the base as in [MV, Section 4].

5.1 Initial elements of the proof

The first step is to use ideas of strong distributional convergence [Z] to reduce from
weak convergence w.r.t. µ to weak convergence w.r.t. µX .

Lemma 5.4 dF ′(W F ′
n ◦ T,W F ′

n ) →µ 0.

Proof For t ∈ ( j
n
, j+1

n
), we have Wn(t) = b−1

n vj. Hence on this interval,

Wn ◦ T (t) = b−1
n vj ◦ T = b−1

n vj+1 − b−1
n v = Wn(t+

1
n
)− b−1

n v.

This means that the values of Wn ◦ T |(0,n−1
n

) match up with those of Wn|( 1
n
,1) within

error b−1
n |v| after a horizontal displacement of 1

n
. Hence the contribution to dE is

at most 1
n
+ b−1

n |v| and the contribution to dD̃ is at most b−1
n |v|. We also have the

estimates
sup

[n−1
n

,1]

|Wn ◦ T (t)−Wn(t)| ≤ b−1
n (|v| ◦ T n + |v|).

Hence
dF ′(W F ′

n ◦ T,W F ′

n ) ≤ 1
n
+ 2b−1

n |v|+ 2b−1
n |v| ◦ T n.

The result follows since |v| ◦ T n =µ |v| and b−1
n |v| → 0 a.e.

Corollary 5.5 To prove that W F ′
n →µ L

F ′
α in F ′, it suffices to prove that W F ′

n →µX

LF ′
α in F ′.

Proof We have verified [Z, Condition (1)] in Lemma 5.4. Hence the result follows
from [Z, Theorem 1].

For k ≥ 0, define the lap number

Nk : X → N, Nk =
k∑

ℓ=1

1X ◦ T ℓ = max{n ≥ 0: Rn ≤ k} ≤ k.

where Rn =
∑n−1

j=0 R ◦ f j.

Proposition 5.6 limn→∞ n−1max1≤k≤nNk =
( ∫

X
RdµX

)−1
a.e. on (X,µX).

Proof By definition of the lap number, RNn ≤ n ≤ RNn+1 so n/Nn →
∫
X
RdµX a.e.

by the pointwise ergodic theorem. Hence n−1Nn →
( ∫

X
RdµX

)−1
a.e. and the result

follows easily.
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As in [MZ, MV, CFKM], we define the sequence of processes Un ∈ D on the
probability space (X,µX),

Un(t) = b−1
n

N[nt]−1∑
k=0

V ◦ fk.

These are rescaled versions of W V
n with jumps occurring at

tn,j = Rj/n

where j = N[tn].

Lemma 5.7 Un →µX
Lα in D with the J1 topology.

Proof This is a consequence of the fact thatW V
n →µX

L̃α in D with the J1 topology.
For completeness, we give the main steps in the argument following [MZ, Lemma 3.4].
Throughout D is endowed with the J1 topology (rather than the M1 topology used
in [MZ]).

For n ≥ 1 and t ∈ [0, 1], we let κn(t) = n−1N[tn]. Then Un(t) = W V
n (κn(t))

on X. We regard Un, W
V
n , Lα, L̃α and κn as random elements of D. Note that

κn ∈ D↑ = {g ∈ D : g(0) ≥ 0 and g nondecreasing}. Let κ denote the constant
random element of D given by κ(t)(x) = t/

∫
X
RdµX . By Proposition 5.6, κn(·)(x) →

κ(·)(x) uniformly on [0, 1] for µX-a.e. x ∈ X. Hence, κn →µX
κ in D. But then we

automatically get (W V
n , κn) →µX

(L̃α, κ) in D
2 since W V

n →µX
L̃α in D and the limit

κ of the second component is deterministic.
The composition mapD×D↑ → D, (g, v) 7→ g◦v, is continuous at every pair (g, v)

with v ∈ C⇑ = {g ∈ D : g(0) ≥ 0 and g strictly increasing and continuous}. By the
continuous mapping theorem Un = W V

n ◦ κn →µX
L̃α ◦ κ = Lα in D as required.

Define the functional

χ : D → F ′, χu = (u,Discu, {eτu}τ∈Discu),

where eτu : [0, 1] → Rd, τ ∈ Discu, is given by

eτu(t) = u(τ−) + |∆u(τ)|Π(∆u(τ))(t) + t
{
∆u(τ)− |∆u(τ)|Π(∆u(τ))(1)

}
.

In particular, LF ′
α = χLα. Moreover, Lα is a continuity point of χ with probability one.

(The discontinuity points of χ arise when ∆u(τ)/|∆u(τ)| is equidistant to distinct
ωi.)

Corollary 5.8 χUn →µX
LF ′
α in F ′.

Proof This is immediate from Lemma 5.7 by the continuous mapping theorem.
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Strategy for the remainder of the proof The interval [0, 1] splits into subin-
tervals [tn,j, tn,j+1], 0 ≤ j ≤ Nn, Notice that 1 ∈ [tn,Nn , tn,Nn+1). For simplicity, we
may suppose that 1 ∈ (tn,Nn , tn,Nn+1) since this countable set of events occurs with
probability one. It is convenient to consider the final interval with j = Nn separately.
In Subsection 5.2, we show that dF ′,[tn,Nn ,1]

(
W F ′

n , χUn

)
→µX

0. Then in Subsec-

tion 5.3, we show that dF ′,[0,tn,Nn ]

(
W F ′

n , χUn

)
→µX

0. Combined, we obtain that

dF ′
(
W F ′

n , χUn

)
→µX

0. By separability of F ′, it then follows from Corollary 5.8 that

W F ′
n →µX

LF ′
α . By Corollary 5.5, W F ′

n →µ L
F ′
α completing the proof of Theorem 5.1.

Convention Recall that dF ′(ǔ1, ǔ2) = dE(πEǔ1, πEǔ2)+dD̃(πD̃ǔ1, πD̃ǔ2) for ǔ1, ǔ2 ∈
F ′. When we write dE,J

(
πEǔ1, πEǔ2

)
, this means that we compute the graphs

πEǔ1, πEǔ2 on [0, 1], restrict the graphs to J ⊂ [0, 1], and then compute the Hausdorff
distance. Similarly for dD̃,J

(
πD̃ǔ1, πD̃ǔ2

)
and dF ′,J

(
ǔ1, ǔ2

)
.

We will require the following standard consequence of the pointwise ergodic the-
orem.

Proposition 5.9 Suppose that H ∈ Lp(X), p ≥ 1. Then n−1/p max0≤j≤nH ◦ f j = 0
a.e. on (X,µX).

5.2 Incomplete excursion on [tn,Nn
, 1]

Proposition 5.10 dF ′,[tn,Nn ,1]
(W F ′

n , χUn) →µX
0.

Proof Write tn,Nn = j∗n
n

where j∗n ∈ {0, . . . , n − 1}. Let k ∈ {1, . . . , d}. Restricted

to [ j
∗
n

n
, 1], the graph πEpkχUn ⊂ R2 consists of a single horizontal line at height

pkWn(
j∗n
n
). The graph πEpkW

F ′
n ⊂ R2 consists of horizontal line segments at height

pkWn(
j
n
), j = j∗n, . . . , n − 1, together with interpolating vertical line segments. In

particular,

dE,[tn,Nn ,1]

(
πEpkW

F ′

n , πEpkχUn

)
≤ max

j∗n≤j≤n
|pk(Wn(

j
n
)−Wn(

j∗n
n
))|

for each k and so

dE,[tn,Nn ,1]

(
πEW

F ′

n , πEχUn

)
≤ max

j∗n≤j≤n
|Wn(

j
n
)−Wn(

j∗n
n
)|.

Also, (πD̃χUn)(t) = Wn(
j∗n
n
) for t ∈ [j∗n/n, 1] while the values of πD̃W

F ′
n lie on the

graph of πEW
F ′
n . It follows that

dD̃,[tn,Nn ,1]

(
πD̃W

F ′

n , πD̃χUn

)
≤ sup

t1,t2∈[j∗n/n,1]
|(πD̃W

F ′

n )(t1)− (πD̃χUn)(t2)|

≤ max
j∗n≤j≤n

|Wn(
j
n
)−Wn(

j∗n
n
)|.
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Hence, it suffices to show that

max
j∗n≤j≤n

|Wn(
j
n
)−Wn(

j∗n
n
)| →µX

0.

To conclude, we use an argument from [G3, Appendix A]. Passing to the natural
extension, we may suppose without loss of generality that T : M → M is invertible.
Define measurable functions m :M → N, v∗ :M → Rd by

m(x) = inf{k ≥ 0 : T−kx ∈ X}, v∗(x) =

R(T−mx)∑
ℓ=0

|v(T ℓ(T−mx))|.

Notice that at time t = 1 the process Wn is in the middle of an excursion involving
the increment v ◦T n, while v∗ ◦T n is the sum of the absolute values of the increments
in that excursion. It follows that

|Wn(
j
n
)−Wn(

j∗n
n
)| ≤ b−1

n v∗ ◦ T n

for j∗n ≤ j ≤ n. Hence

max
j∗n≤j≤n

|Wn(
j
n
)−Wn(

j∗n
n
)| ≤ b−1

n v∗ ◦ T n.

Now, b−1
n v∗ → 0 a.e. on (M,µ) and v∗ ◦ T n =µ v∗, so b−1

n v∗ ◦ T n →µ 0. Also,
µX = (µ(X))−1µ|X and hence b−1

n v∗ ◦ T n →µX
0. It follows that maxj∗n≤j≤n |Wn(

j
n
)−

Wn(
j∗n
n
)| →µX

0 as required.

5.3 Completed excursions on [0, tn,Nn
]

Recall that χUn ∈ F ′ is defined by adjoining excursions that are scaled versions of
the profiles Pi, i ∈ I. It is convenient also to define elements Ũn ∈ F ′ by adjoining
dynamical excursions. Accordingly, define

Ũn =
(
Un, S̃n, {ẽτUn

}τ∈SUn

)
where S̃n = {tn,1, . . . , tn,Nn} and

(ẽτUn
)(t) = Un(tn,j) + b−1

n v[tR] ◦ f j for τ = tn,j+1.

In the next two propositions, we consider the distances dF ′(W F ′
n , Ũn), and

dF ′(Ũn, χUn) on the interval [0, tn,Nn ].

Proposition 5.11 dF ′,[0,tn,Nn ]
(W F ′

n , Ũn) →µX
0.
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Proof First, we consider dE,[0,tn,Nn ]
(πEW

F ′
n , πEŨn).

Let k ∈ {1, . . . , d}. The graph πEpkW
F ′
n consists of the graph of pkWn together

with vertical line segments joining ( j
n
, b−1

n pkvj−1) to ( j
n
, b−1

n pkvj) for j = 1, . . . , n− 1.
Define

qmin = min
0≤ℓ≤R

pkvℓ, qmax = max
0≤ℓ≤R

pkvℓ.

Then the graph πEpkŨn is obtained from the graph of pkUn by adjoining the line
segments3

{tn,j+1} × Jn,j, Jn,j = pkUn(tn,j) + b−1
n [qmin, qmax] ◦ f j

for j = 0, . . . , Nn − 1. The graphs are shown schematically in Figure 4.

Figure 4: Graphs of πEpkW
F ′
n (left) and πEpkŨn (right) on an interval (tn,j, tn,j+1] of

length 5
n
. The dashed lines show the box [tn,j, tn,j+1]×Jn,j. The dots show the points

(tn,j,Wn(tn,j)) and (tn,j+1,Wn(tn,j+1)).

On the interval (tn,j, tn,j+1], 0 ≤ j ≤ Nn − 1, the graphs πEpkW
F ′
n and πEpkŨn lie

entirely within the box
[tn,j, tn,j+1]× Jn,j.

This box has width n−1R◦f j. The graph πEpkŨn contains Jn,j which is the right-hand
side of this box. Hence every point in the graph πEpkW

F ′
n lies within distance n−1R◦f j

of πEpkŨn. On the other hand, Jn,j is by definition the union of horizontal translates of
vertical line segments in πEpkW

F ′
n so every point in Jn,j lies within distance n−1R◦f j

of πEpkW
F ′
n . The remaining horizontal line segment (tn,j, tn,j+1] × {pkUn(tn,j)} in

πEpkŨn is within distance n−1R ◦ f j of the point (tn,j, pkUn(tn,j)) which also lies

on πEpkW
F ′
n . Altogether, we have shown that dE,(tn,j ,tn,j+1](πEpkW

F ′
n , πEpkŨn) ≤

n−1R ◦ f j. Hence

dE,[0,tn,Nn ]
(πEW

F ′

n , πEŨn) ≤ n−1 max
0≤j≤Nn−1

R ◦ f j ≤ n−1 max
0≤j≤n

R ◦ f j.

3We use the abbreviation x+ c[u1, u2] ◦ f j for [x+ c(u1 ◦ f j), x+ c(u2 ◦ f j)].
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By Proposition 5.9, n−1max0≤j≤nR ◦ f j → 0 a.e. on (X,µX), and it follows that

dE,[0,tn,Nn ]
(πEW

F ′

n , πEŨn) →µX
0.

It remains to consider dD̃,[0,tn,Nn ]
(πD̃W

F ′
n , πD̃Ũn). Restricting to (tn,j, tn,j+1],

0 ≤ j ≤ Nn − 1, the function πD̃Ũn is a concatenation of the constant function
Un(tn,j) followed by the excursion Un(tn,j) + b−1

n v[tR] ◦ f j. The latter is a concate-

nation of the functions Un(tn,j) + b−1
n vℓ ◦ f j for 0 ≤ ℓ ≤ R. Hence πD̃Ũn is a con-

catenation of the functions Un(tn,j) + b−1
n vℓ ◦ f j for 0 ≤ ℓ ≤ R. But πD̃W

F ′
n is a

concatenation of the same functions and in the same order. Since concatenation is
associative under reparametrisations of time, πD̃,(tn,j ,tn,j+1]]

(πD̃W
F ′
n , πD̃Ũn) = 0. Hence

dD̃,[0,tn,Nn ]
(πD̃W

F ′
n , πD̃Ũn) = 0 completing the proof.

Proposition 5.12 dF ′,[0,tn,Nn ]
(χUn, Ũn) →µX

0.

Proof We claim that

dF ′,[0,tn,Nn ]
(χUn, Ũn) ≤ b−1

n max
0≤j≤n

dD̃(ξ, ζ) ◦ f
j.

The result then follows by hypothesis (5.2).

It remains to prove the claim. In general, DiscUn ⊂ S̃n = {tn,j : 1 ≤ j ≤ Nn}. We

first consider the slightly simpler case DiscUn = S̃n for all n. Then

χUn = (Un, S̃n, {eτUn
}τ∈SUn

), Ũn = (Un, S̃n, {ẽτUn
}τ∈SUn

),

where

eτUn
(t) = Un(tn,j) + |∆Un(τ)|Π(∆Un(τ))(t) + t

{
∆Un(τ)− |∆Un(τ)|Π(∆Un(τ))(1)

}
,

ẽτUn
(t) = Un(tn,j) + b−1

n v[tR] ◦ f j,

for τ = tn,j+1.
Note that ∆Un(τ) = b−1

n V ◦ f j. Hence

eτUn
(t) = Un(tn,j) + b−1

n

{
|V |Π(V )(t) + t

{
V − |V |Π(V )(1)

}
◦ f j

= Un(tn,j) + b−1
n ζ(t) ◦ f j.

Also,
ẽτUn

(t) = Un(tn,j) + b−1
n ξ(t) ◦ f j.

On the interval (tn,j, tn,j+1], it follows that πD̃Ũn is the concatenation of the con-
stant function Un(tn,j) with Un(tn,j) + b−1

n ξ(t) ◦ f j, while πD̃χUn is the concatenation
of the constant function Un(tn,j) with Un(tn,j) + b−1

n ζ(t) ◦ f j. Hence

dD̃,(tn,j ,tn,j+1]
(πD̃Ũn, πD̃χUn) ≤ b−1

n dD̃(ξ, ζ) ◦ f
j
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and it follows that

dD̃,[0,tn,Nn ]
(πD̃Ũn, πD̃χUn) ≤ b−1

n max
0≤j≤n

dD̃(ξ, ζ) ◦ f
j.

Also, dE,(tn,j ,tn,j+1](πEŨn, πEχUn) = b−1
n H ◦ f j where H is the Hausdorff distance

between the smallest closed boxes containing the ranges of the functions ξ(t) and ζ(t)
for t ∈ [0, 1]. (So H = max1≤k≤dHk where Hk is the Hausdorff distance between the
smallest closed interval containing {pkξ(t) : t ∈ [0, 1]} and the smallest closed interval
containing {pkζ(t) : t ∈ [0, 1]}.) In particular,

H ≤
d∑

k=1

{∣∣∣max
[0,1]

pkξ −max
[0,1]

pkζ
∣∣∣ ∨ ∣∣∣min

[0,1]
pkξ −min

[0,1]
pkζ

∣∣∣} ≤ dD̃(ξ, ζ).

Again,

dE,[0,tn,Nn ]
(πEŨn, πEχUn) = b−1

n max
0≤j≤n

H ◦ f j ≤ b−1
n max

0≤j≤n
dD̃(ξ, ζ) ◦ f

j,

completing the proof of the claim in the case DiscUn = S̃n for all n.

In general, there is the possibility that tn,j+1 ∈ S̃n \ DiscUn . On the interval

(tn,j, tn,j+1], it remains the case that πD̃Ũn is the concatenation of the constant func-
tion Un(tn,j) with Un(tn,j)+ b

−1
n ξ(t)◦ f j, while πD̃χUn is simply the constant function

Un(tn,j). The latter is equivalent to the concatenation of Un(tn,j) with Un(tn,j). But
the fact that tn,j+1 is not a discontinuity point of Un means that V = 0 and hence
(by definition) ζ(t) ◦ f j = 0. Hence πD̃χUn is still the concatenation of Un(tn,j) with
Un(tn,j) + b−1

n ζ(t) ◦ f j.

Corollary 5.13 dF ′,[0,tn,Nn ]
(W F ′

n , χUn) →µX
0.

Proof This is immediate from Propositions 5.11 and 5.12.

Thus we have completed the proof of Theorem 5.1.

6 Examples

In this section, we consider examples covered by this paper, expanding on the exam-
ples discussed in Section 2. In Subsection 6.1, we consider examples with α ∈ (0, 1)
where T : [0, 1] → [0, 1] is a uniformly expanding map and v is an unbounded
scalar observable. In Subsection 6.2, we consider examples with α ∈ (1, 2) where
T :M →M is only nonuniformly expanding/hyperbolic but v :M → Rd is bounded.
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6.1 Examples with unbounded observables

In this subsection, we give details for Examples 2.3 and 2.5.

Example 6.1 (Example 2.3 revisited) Let T : M → M be the doubling map,
so M = [0, 1] and Tx = 2x mod 1, with ergodic probability measure µ = Leb. Fix
α ∈ (0, 1) and consider the observable

v :M → R, v(x) = x−1/α.

Define c = 2−1/α ∈ (0, 1). Let I = {1} and let P1 : [0, 1] → R be any monotone in-
creasing step function with range precisely {1−cj, j = 0, 1, 2, . . . }∪{1}. In particular,
P1(0) = 0, P1(1) = ω1 = 1.

Define L̃α to be the totally-skewed α-stable Lévy process with spectral measure
ν = δ1 as defined in Section 3, and let Lα = cL̃α. Take bn = (1− c)−1n1/α and define
Wn ∈ D as in (5.1).

By [G1], Wn(1) →µ Lα(1). We claim that Wn →µ Lα in M1. Moreover, we
have the following convergence result in F ′: Define the enriched process LF ′

α =
(Lα,DiscLα , {eτ}) ∈ F ′ with excursions

eτ (t) = Lα(τ
−) + ∆Lα(τ)P1(t)

at each discontinuity τ ∈ DiscLα . Also, define W F ′
n ∈ F ′ by attaching trivial excur-

sions as in Section 5. We prove that

W F ′

n →µ L
F ′

α in F ′

by verifying the assumptions of Theorem 5.1. This is done in Lemmas 6.2 and 6.3
below.

The first return map f = TR : X → X, X = [1
2
, 1], is uniformly expanding with

(countably many) full branches of constant slope, and µX is normalised Lebesgue
measure on X.

For x ∈ X and 1 ≤ ℓ ≤ R(x),

v(T ℓx) = (2ℓ−1Tx)−1/α = (2ℓ(x− 1
2
))−1/α = (x− 1

2
)−1/αcℓ,

so
vℓ(x) = v(x) + (c−1 − 1)−1(1− cℓ−1)(x− 1

2
)−1/α.

Also, x− 1
2
∈ (2−(R(x)+1), 2−R(x)], so

V (x) = vR(x) = (c−1 − 1)−1(x− 1
2
)−1/α +O(1).

Lemma 6.2 W V
n →µX

L̃α in the J1 topology.
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Proof Write V = Z + H where Z(x) = (c−1 − 1)−1(x − 1
2
)−1/α and H = O(1).

Since H is bounded and Hölder, it follows by [MT] or [KM, Proposition 7.1] that∣∣maxk≤n |
∑

0≤j≤kH ◦ f j|
∣∣
1
≪ n1/2. Hence it suffices to show that WZ

n →µX
L̃α in

the J1 topology.
Now, Z(x) > t for t > 0 large if and only if 1

2
< x < 1

2
+ ((c−1 − 1)t)−α, so

µX(Z > t) = 2Leb(Z > t) = 2((c−1− 1)t)−α. Hence Z is regularly varying of order α
and lies in the domain of attraction of a stable law Gα with spectral measure ν = δ1,
and bn = 21/α(c−1 − 1)−1n1/α = (1− c)−1/αn1/α as described in Section 3.

To obtain convergence of WZ
n to the corresponding Lévy process L̃α, we apply [T,

Theorem 1.2]. On (0,∞)× (R \ {0}), define the sequence of random point processes
Nn =

∑n
j=1 δ( j

n
,b−1
n Z◦fj−1) and the Poisson point process N with mean measure Leb×Π

where Π(B) = α
∫∞
0

1B(r)r
−α−1dr. Since α ∈ (0, 1), it suffices by [T, Theorem 1.2]

to show that Nn →µX
N. This holds by [FFM, Theorem 4.3].

Lemma 6.3 Hypothesis (5.2) is satisfied.

Proof Let t ∈ [0, 1], x ∈ X. Since V = vR > 0, it follows from the calculations
above and Remark 5.2 that

ξ(t)(x) = v[tR](x) = (x− 1
2
)−1/α(c−1 − 1)−1gx(t) +O(1),

ζ(t)(x) = vR(x)P1(t) = (x− 1
2
)−1/α(c−1 − 1)−1P1(t) +O(1),

where gx(t) = 1− c[tR(x)]−1.
For all x ∈ X, the functions gx, P1 are monotone increasing on [0, 1]. Moreover,

there are intervals [0, t0(x)], [0, t1(x)] such that gx|[0,t0(x)] and P1|[0,t1(x)] take precisely
the same values, namely {0, 1− c, 1− c2, . . . , 1− cR(x)−1}. Furthermore, gx|[t0(x),1] ≡
1 − cR(x)−1 and P1([t0(x), 1) ⊂ [1 − cR(x)−1, 1]. Hence dD̃(gx, P1) ≤ cR(x)−1. Using
again that (x− 1

2
)−1/α ≪ c−R(x), it follows that

sup
x∈X

dD̃
(
ξ(·)(x), ζ(·)(x)

)
<∞.

Hence hypothesis (5.2) is satisfied.

Example 6.4 (Example 2.5 revisited) Let T : M → M be the tripling map, so
M = [0, 1] and Tx = 3x mod 1, with ergodic probability measure µ = Leb. Fix
α ∈ (0, 1) and consider the observable

v :M → R, v(x) = |x− 1
8
|−1/α − |x− 3

8
|−1/α.

Define c = 3−1/α ∈ (0, 1). Set I = {±1} and let P1 : [0, 1] → R be any step function
with values {1 − (−c)j, j = 0, 1, 2, . . . } ∪ {1} taken in that order. Let P−1 = −P1.
We have ω± = ±1.
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Define L̃α to be the symmetric α-stable Lévy process with spectral measure ν =
1
2
(δ1 + δ−1), and let Lα = (7

9
)1/αL̃α. Take bn = (36

7
)1/α(c−1 − 1)−1n1/α and define

Wn ∈ D as in (5.1). Define W F ′
n ∈ F ′ by adjoining trivial profiles.

Define the enriched process LF ′
α = (Lα,DiscLα , {eτ}) ∈ F ′ with excursions

eτ (t) = Lα(τ
−) + ∆Lα(τ)P1(t)

at each discontinuity τ ∈ DiscLα . (Equivalently, attach suitably scaled profiles P1 at
positive jumps and P−1 at negative jumps.) We prove that

W F ′

n →µ L
F ′

α in F ′

by verifying the assumptions of Theorem 5.1, thereby recovering by a different method
a result of [FFT, Example 2.7]. This is done in Lemmas 6.6 and 6.7 below.

It is convenient to use cylinder notation with letters 0, 1, 2 denoting [0, 1
3
], [1

3
, 2
3
],

[2
3
, 1], respectively. So for example, [020] denotes the 3-cylinder [0, 1

3
] ∩ T−1[2

3
, 1] ∩

T−2[0, 1
3
]. We induce on the set X = M \ ([1

9
, 2
9
] ∪ [1

3
, 4
9
]) = M \ ([01] ∪ [10]). Then

long returns correspond to elements of [0(01)n] ∪ [1(10)n] ∪ [2(01)n] ∪ [2(10)n] for n
large. (Such points are, after one iterate, close to the periodic orbit {1

8
, 3
8
}.) As in

Example 6.1, the first return map f = TR : X → X is uniformly expanding with full
branches of constant slope, and µX is normalised Lebesgue measure on X.

Write X = X1∪̇X2 where X1 = [00] ∪ [11] ∪ [20] ∪ [21]. Since R|X2 = 1, our
calculations focus on x ∈ X1.

Proposition 6.5 Let x ∈ X1, 1 ≤ ℓ ≤ R(x).

(i) If x ∈ [00], then vℓ(x) = (c−1 + 1)−1(1− (−c)ℓ−1)(x− 1
24
)−1/α +O(ℓ).

(ii) If x ∈ [11], then vℓ(x) = −(c−1 + 1)−1(1− (−c)ℓ−1)(x− 11
24
)−1/α +O(ℓ).

(iii) If x ∈ [20], then vℓ(x) = (c−1 + 1)−1(1− (−c)ℓ−1)(x− 17
24
)−1/α +O(ℓ).

(iv) If x ∈ [21], then vℓ(x) = −(c−1 + 1)−1(1− (−c)ℓ−1)(x− 19
24
)−1/α +O(ℓ).

Proof Define bℓ(x) =

{
3
8

T ℓ−1x ∈ [0]
1
8

T ℓ−1x ∈ [1]
. Inductively, for x in ℓ-cylinders [0101 · · · ],

[1010 · · · ], we have T ℓx = 3ℓ(x− a(x))+ bℓ(x) where a(x) takes values
1
8
, 3
8
depending

on whether x ∈ [0] or x ∈ [1]. It follows that

T ℓx = 3ℓ(x− 1
24
) + bℓ(x)

for x in ℓ-cylinders [00101 . . .],
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Let x ∈ [00]. For 1 ≤ k < R(x),

v(T kx) =

{
(T kx− 1

8
)−1/α +O(1) k odd

−(T kx− 3
8
)−1/α +O(1) k even

= −(1)k+1(3k(x− 1
24
))−1/α +O(1) = −(−c)k(x− 1

24
)−1/α +O(1).

Hence vℓ(x) = −
∑ℓ−1

k=1(−c)k(x−
1
24
)−1/α+O(ℓ) completing the proof of (i). The other

cases are similar.

Similarly to Example 6.1, it follows that

V (x) = vR(x) = ±(c−1 + 1)−1(x− a)−1/α1X1(x) +O(R(x)),

for the appropriate choices of ± and a ∈ { 1
24
, 11
24
, 17
24
, 19
24
}.

Lemma 6.6 W V
n →µX

L̃α in the J1 topology.

Proof Write V = Z+H where Z(x) = ±(c−1+1)−1(x−a)−1/α1X1(x) andH = O(R).
Since H is Hölder and in Lp for all p <∞, it follows by [MT] or [KM, Proposition 7.1]
that

∣∣maxk≤n |
∑

0≤j≤kH ◦ f j|
∣∣
1
≪ n1/2. Hence it suffices to show that WZ

n →µX
L̃α

in the J1 topology.
Suppose that x ∈ [00]. Then Z(x) > t for t > 0 large if and only if 1

24
< x <

1
24

+ ((c−1 + 1)t)−α. A similar estimate holds for x ∈ X1 \ [00], so µX(Z > t) =
µX(Z < −t) = 9

7
Leb(Z < −t) = 18

7
((c−1 + 1)t)−α. Hence Z is regularly varying of

order α and lies in the domain of attraction of a stable law Gα with spectral measure
ν = 1

2
(δ1 + δ−1), and bn = (36

7
)1/α(c−1 − 1)−1n1/α as described in Section 3. Since

α ∈ (0, 1), the result follows (as in the proof of Lemma 6.2) from [T, Theorem 1.2]
and [FFM, Theorem 4.3].

Lemma 6.7 Hypothesis (5.2) is satisfied.

Proof For t ∈ [0, 1], x ∈ X1, it follows from the calculations above and Remark 5.2
that

ξ(t)(x) = v[tR](x) = ±(c−1 + 1)−1(x− a)−1/αgx(t) +O(R),

ζ(t)(x) = |vR(x)|PsgnV (t) = ±(c−1 + 1)−1(x− a)−1/αP1(t) +O(R),

where gx(t) = (1 − (−c)[tR(x)]−1), with the appropriate (and matching) choices of ±
and a ∈ { 1

24
, 11
24
, 17
24
, 19
24
}.

For all x ∈ X1, the functions gx, P1 are piecewise constant on [0, 1]. Moreover,
there are intervals [0, t0(x)], [0, t1(x)] such that gx|[0,t0(x)] and P1|[0,t1(x)] take precisely
the same values, namely {0, 1+c, 1−c2, . . . , 1−(−c)R(x)−1}. Furthermore, gx|[t0(x),1] ≡
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1 − (−c)R(x)−1 and P1([t0(x), 1) ⊂ [1 − (−c)R(x)−1, 1]. Hence dD̃(gx, P1) ≤ cR(x)−1.
Using again that (x− a)−1/α ≪ c−R(x), it follows that

dD̃
(
ξ(·)(x), ζ(·)(x)

)
≪ R(x)

on X1 and hence on X. Since R ∈ Lp for all p < ∞, hypothesis (5.2) follows from
Proposition 5.9.

6.2 Examples with bounded observables

In this subsection, we consider examples where the underlying dynamical system
T :M →M is nonuniformly/hyperbolic expanding with a better-behaved first return
map f = TR : X → X, and the observable v :M → Rd is bounded.

We continue to assume the setup at the beginning of Section 5 with integrable
return time R. Moreover, we assume that there is a finite disjoint collection {Xi, i ∈
I} of subsets of X (I ̸= ∅) such that µX(R1Xi

> t) = cil(t)t
−α, ci > 0, for each

i ∈ I, where α ∈ (1, 2) and l : (0,∞) → (0,∞) is continuous and slowly varying. (In
particular, R ∈ L1 and R ̸∈ L2.)

Let Pi : [0, 1] → Rd be a finite collection of Hölder continuous profiles with
Pi(0) = 0 and ωi = Pi(1) ∈ Sd−1 distinct. For notational convenience, suppose that
0 ̸∈ I. Set X0 = X \

⋃
i∈IXi. (It is permitted that X0 = ∅.)

Let v : M → Rd be an L∞ observable with
∫
M
v dµ = 0. We assume that there

exists η > 0 and nonnegative H ∈ Lp(X) for some p > α such that

vℓ =
∑
i∈I

{λiPi(ℓ/R)R +O(R1−η)}1Xi
+O(H)1X0 , ℓ = 0, 1, . . . , R, (6.1)

where λi ∈ R, λi ̸= 0.
In particular,

V = vR =
∑
i∈I

{λiωiR +O(R1−η)}1Xi
+O(H)1X0 .

Regular variation of V reduces to regular variation of Z =
∑

i∈I λiωiR1Xi
and we

deduce that V is regularly varying with order α and spectral measure

ν =
(∑

i∈I

ci|λi|α
)−1∑

i∈I

ci|λi|αδωi
. (6.2)

Let L̃α denote the Lévy process with spectral measure ν.
Note that µX(|V | > t) ∼ µX(|Z| > t) ∼ l(t)

∑
i∈I ciλ

α
i t

−α. Hence we choose
bn ∼ (nl(bn)

∑
ciλ

α
i )

1/α.
In many examples, as described below, it can be verified that (6.1) holds and

that W V
n →µX

L̃α (equivalently WZ
n →µX

L̃α) in the J1 topology. Hence, to apply
Theorem 5.1, it remains to verify hypothesis (5.2). This we do now.
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Proposition 6.8 Hypothesis (5.2) is satisfied.

Proof We claim that there exists η > 0 such that sup[0,1] |ξ−ζ| ≪ R1−η+H. Choose
p > α such that R1−η +H ∈ Lp. By Proposition 5.9,

n−1/p max
0≤j≤n

sup
[0,1]

|ξ − ζ| ◦ f j → 0 a.e.

But bn ≫ n1/p, so b−1
n max0≤j≤n sup[0,1] |ξ − ζ| ◦ f j → 0 a.e. and the result follows.

It remains to prove the claim. OnX0, it is clear that ξ(t) = O(H) and ζ(t) = O(H)
for all t, so it suffices to work on X ′ =

⋃
i∈IXi.

Define J1, J2 : X
′ → I by setting J1 = i if V/|V | is closest to some ωi and J1 = 1

otherwise. Let J2|Xi
= i. By definition of J1 and J2, there exists c0 > 0 such that

X ′ ∩ {J1 ̸= J2} ⊂
⋃
i∈I

{
x ∈ Xi :

∣∣ vR(x)
|vR(x)| − ωi

∣∣ > c0

}
.

For i ∈ I, by (6.1), 1Xi
vR = λiωiR+O(R1−η), so 1Xi

vR
|vR| = ωi+O(R−η). Hence there

exists c1 > 0 such that X ′ ∩ {J1 ̸= J2} ⊂ {R < c1}. In particular, |vR|1X′1{J1 ̸=J2} ≤
|v|∞c1. Altogether, |V |1X′1{J1 ̸=J2} = O(R1−η).

In addition, by (6.1), |V − |V |PJ2(1)| = |V − |V |ωi| = O(R1−η) on Xi, and so

ζ(t) = |V |PJ1(t) + t
{
V − |V |PJ1(1)

}
= |V |PJ2(t) + t

{
V − |V |PJ2(1)

}
+O(R1−η)

= |V |Pi(t) +O(R1−η) = λiPi(t)R +O(R1−η).

Shrinking η if necessary, we can suppose that each profile Pi is C
η. Given t ∈ [0, 1],

write t = ℓ
R
+ s where ℓ ≥ 0 is an integer and s ∈ [0, 1

R
). On Xi,

ξ(t) = v[tR] = vℓ = λiPi(t)R + (Pi(ℓ/R)− Pi(t))R +O(R1−η)

= λiPi(t)R +O(R1−η).

Hence sup[0,1] |ξ − ζ| = O(R1−η) on X ′ completing the proof of the claim.

Example 6.9 (Example 2.4 revisited) We return to the example of an intermit-
tent map T : M → M , M = [0, 1], with finitely many neutral fixed points x1, . . . , xk
of neutrality α1, . . . , αk where minαj = α1 = α ∈ (1, 2).

We induce on a set X ⊂ M bounded away from the neutral fixed points so that
f = TR : X → X is a full-branch Gibbs-Markov map (uniformly expanding with
bounded distortion) and so that X = X1 ∪ · · · ∪ Xk where each Xj is a union of
partition elements for f and trajectories in Xj pass close to xj before returning to X.
Then R is regularly varying of order α and µ(R1Xj

> t) ∼ cjt
−αj for some cj > 0. In

particular, R1Xj
∈ Lq for all q < αj.

Let v : M → Rd be Hölder with mean zero such that v(x1) ̸= 0. A calculation as
in [G2, MZ, CFKM] shows that on Xj,

vℓ = ℓv(xj) +O(R1−η), 0 ≤ ℓ < R,
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for some η > 0. In particular, if αj > α or v(xj) = 0, then vℓ1Xj
∈ Lp for some p > α.

Define I to be the set of indices i ∈ {1, . . . , k} with αi = α and v(xi) ̸= 0. For
i ∈ I, write v(xi) = λiωi where λi > 0 and ωi ∈ Sd−1. Combining the sets Xi with
common value of ωi, we can suppose without loss that the ωi, i ∈ I, are distinct.
Define Pi(t) = tωi. Then

vℓ =
∑
i∈I

{λiPi(ℓ/R)R +O(R1−η)}1Xi
+O(H)1X0 , 0 ≤ ℓ < R,

where H ∈ Lp for some p > α.
Hence, we have verified (6.1), so hypothesis (5.2) holds by Proposition 6.8. More-

over,

V = vR = Z +H ′, Z =
∑
i∈I

λiωiR1Xi
,

whereH ′ ∈ Lp for some p > α. Hence, V is regularly varying with order α and spectral
measure ν given by (6.2), and we take bn = (

∑
i∈I ciλ

α
i )

1/αn1/α. Since Z is regularly
varying and piecewise constant, it follows as in [T, MZ] for d = 1 and [CFKM]
for d ≥ 1 that WZ

n →µX
L̃α in the J1 topology. Since H ′ ∈ Lp, it follows from

Proposition 5.9 that W V
n →µX

L̃α in the J1 topology. This completes the verification
of the hypotheses of Theorem 5.1.

Example 6.10 (Billiards with flat cusps revisited) Finally, we return to the
example of billiards with flat cusps described in Section 2.2. Following [JPZ], we in-
duce on a set X ⊂M bounded away from the flat cusps and so that X = X1∪· · ·∪Xk

where trajectories in Xj pass close to the j’th cusp before returning to X. Given a
Hölder mean zero observable v : M → Rd, we define the profiles Pi, i ∈ I, corre-
sponding to flattest cusps as in Section 2.2.

For verification of (6.1), we refer to [MV, Proposition 8.1]. (The calculation there
is written in the case d = 1, but extends immediately to d ≥ 2.)

Convergence of W V
n is more difficult than in the previous examples since the

induced map f = TR : X → X has unbounded distortion. Instead, it is nonuniformly
hyperbolic with exponential tails in the sense of [Y]. Convergence of W V

n in the J1

topology is proved in [JPZ] for d = 1 and in [CKM, Section 5] for d ≥ 1.
Unlike in Example 6.9, we generally require that the vectors ωi = Pi(1) are distinct

at distinct flattest cusps, since the profiles Pi are typically different. (In Example 6.9,
each profile Pi was determined by ωi.) Also, we can no longer disregard flattest cusps
with Pi(1) = 0 since Pi could still be nontrivial. These issues require further attention
and are the subject of work in progress.
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