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Abstract

In the context of equivariant dynamical systems with a compact Lie group I'
of symmetries, Field and Krupa have given sharp upper bounds on the drifts
associated with relative equilibria and relative periodic orbits. For relative
equilibria consisting of points of trivial isotropy, the drifts correspond to tori
in I'. Generically, these are maximal tori. Analogous results hold when there
is a nontrivial isotropy subgroup ¥, with I" replaced by N(X)/X.

In this paper, we generalize the results of Field and Krupa to noncompact
Lie groups. The drifts now correspond to tori or lines (unbounded copies of
R) in T and generically these are maximal tori or lines. Which of these drifts
is preferred, compact or unbounded, depends on I': there are examples where
compact drift is preferred (Euclidean group in the plane), where unbounded
drift is preferred (Euclidean group in three dimensional space) and where nei-
ther is preferred (Lorentz group).

Our results partially explain the quasiperiodic (Winfree) and linear (Barkley)
meandering of spirals in the plane, as well as the drifting behavior of spiral
bound pairs (Ermakova et al). In addition, we obtain predictions for the drift-
ing of the scroll solutions (scroll waves and scroll rings, twisted and linked)
considered by Winfree and Strogatz.

*Supported in part by EU HCM grant ERBCHBCT930503 at the CNRS-INSA ‘Institut Non
Linéaire de Nice’, France
tSupported in part by NSF Grant DMS-9403624 and by ONR Grant N00014-94-1-0317



1 Introduction

A standard feature of differential equations with symmetry is that equilibria occur
in group orbits: if the point zy is an equilibrium, then every point on the group
orbit through z, is an equilibrium. More generally, a relative equilibrium is any
flow-invariant group orbit. This includes the case of a group orbit of equilibria and
also includes rotating waves. A rotating wave is a flow-invariant group orbit with a
periodic flow, the time-evolution corresponding to drift along the group orbit.

A normally hyperbolic relative equilibrium persists under small perturbations but
the flow on the relative equilibrium need not persist. For example, a normally hyper-
bolic SO(2)-orbit of equilibria typically perturbs to a rotating wave. This is a special
case of the theory due to Field [9] (see also Krupa [14]) that we describe below.

The results of Field and Krupa are formulated under the assumption that the
group of symmetries is compact. Barkley [3] observed that the curious meandering
properties [20, 2] of spirals in spatially-extended chemical systems correspond to drifts
along group orbits in the noncompact Euclidean group E(2). It is the purpose of this
paper to extend the results of Field and Krupa on relative equilibria (and relative
periodic orbits) to the case when the group of symmetries is a noncompact Lie group.
In particular, we interpret certain aspects for the meandering of spirals within this
context and arrive at many new predictions for the three dimensional analogue of
spirals called scrolls [21].

Relative equilibria First, we summarize the relevant results of Field [9]. Suppose
that I' C O(n) is a compact Lie group acting on R" and that f : R® — R" is a
smooth -equivariant vector field. Let X = I'zy be a flow-invariant group orbit (so
f(zo) € T,;,X). We recall that the isotropy subgroup X of x, is defined to be

Y={yel:yzy =10}
Suppose first, for simplicity, that ¥ = 1. Then

(a) The closure of the trajectory through zy is given by Kz, where K is a closed
connected abelian subgroup of I' (a torus),

(b) The flow on Kz is an (irrational) linear torus flow with as many independent
frequencies as the dimension of K.

(c) The relative equilibrium T'zq is foliated by copies of Kxy.

(d) Generically, dim K is maximal.



Recall that a torus in a compact Lie group I' is mazimal if it is not contained in
a torus of larger dimension. It is well-known that all maximal tori in I are conjugate
and therefore have the same dimension. This common dimension is called the rank
of I'. In this language, part of the above result of Field can be restated as follows:
rank(T") is an upper bound for the number of independent frequencies in the flow on
Kz and generically this bound is attained.

When ¥ # 1, there is the following modification [9]. Let N(X) denote the nor-
malizer of 2

NE)={yel: vy =3}

Then the results are as before, with I" replaced by the quotient N (3)/X. In particular,
generically dim K = rank(N(X)/%).

Suppose now that I' is noncompact. (We also relax the assumption that I" acts on
a finite dimensional space.) It follows from the structure theory of Lie groups that
the maximal tori in a connected finite dimensional Lie group are conjugate. However,
it is no longer true that every closed connected abelian subgroup of I' is a torus. This
leads to the possibility of unbounded drifts. We describe our results for I' noncompact
in the case ¥ = 1. (The case X # 1 is similar, again with I" replaced by N(X)/X.)

The analogue of part (a) above is that the subgroup K is either a torus or a
copy of R. Part (b) is unchanged when K is a torus. Similarly, (c) is unchanged.
The main difference is part (d). There are two upper bounds that must be taken
collectively: generically it is the case that K is either a maximal torus in I' or K = R.
Which of these possibilities is realized depends on I'. For example, suppose that
[' = SE(n) (the orientation-preserving Euclidean transformations of R"). If n is
even, then generically K is a maximal torus. If n is odd, then generically K = R.
On the other hand, suppose that I' is the group of symplectic linear transformations
in R?". Then, there is an open set of vector fields for which K is a torus and also
an open set of vector fields for which K = R. When T' is a matrix group, we give a
Lie-algebraic method for computing the likelihood that K is a torus or K = R.

Relative periodic orbits A flow-invariant I'-invariant set P is called a relative
periodic orbit if the orbit space P/I is an ordinary periodic orbit. When I' is compact,
Krupa [14] shows that similar results to those for relative equilibria are valid, with
maximal tori generalized to Cartan subgroups. Krupa’s results are formulated for
relative periodic orbits in the vicinity of a relative equilibrium. Field [10] removes
this restriction. Again, we generalize these results to the case when I' is not compact.

The paper is organized as follows. In Section 2, we recall the relevant aspects
of the theory of maximal tori for noncompact Lie groups. In particular, we show



that a typical element of the Lie algebra generates a maximal torus or a copy of R.
The examples considered in Section 3 demonstrate that, subject to this restriction,
anything is possible. The corresponding theory of Cartan subgroups for nonconnected
Lie groups is described in Section 4.

In Section 5, we turn attention to infinite-dimensional dynamical systems with
noncompact symmetry group. The results of Field [9] and Krupa [14] on relative
equilibria and relative periodic orbits are extended in Sections 6 and 7 respectively.
In particular, we show that the generic drift of relative equilibria and relative peri-
odic orbits can be computed at the Lie-theoretic level. Applications to Euclidean-
equivariant problems are considered in Section 8. We recover certain aspects of the
meandering of spirals and we make predictions for the meandering of scroll waves.
Finally we discuss some effects introduced by the presence of additional S' symmetry
in the equations.

2 Maximal tori in noncompact Lie groups

Let GG be a finite dimensional second countable Lie group. We do not assume that G
is compact. Let LG denote the Lie algebra. Recall that each element £ € LG is an
infinitesimal generator for a one-parameter subgroup exp(t¢), t € R, contained in G.
Let K (&) denote the closure

K(&) = {exp(t€), t € R}.

Proposition 2.1 The subgroup K(§) C G is isomorphic either to a torus T? or to
a line R.

Proof The subgroup K (&) is a Lie group (since it is closed) and it is connected
and abelian. Therefore K(§) = TP x RY for some nonnegative integers p and q [5,
Chapter I, Theorem 3.6].

Let 75 denote the projection 7y : TP x R? — R?. The map h : R — R? defined by
h(t) = my(expt€) is a smooth homomorphism and has the form h(t) = tv for some
v € R%. By construction, the image of h is dense in R? and it follows that ¢ = 0 or
qg=1.

If v =0, then K(§) € TP. If v # 0, then ¢ = 1 and K(§) is an embedded
submanifold of T? x R spiraling up or down the cylinder with no accumulation points.
Hence K (&) = R. |

Suppose now that G is connected. Then there is a maximal compact subgroup
K C G and this subgroup is unique up to conjugacy, see for example [6]. Moreover G
is homeomorphic to K x R" for some n. Recall that the compact connected Lie group



K contains a maximal torus T¢ which is itself unique up to conjugacy in K. It follows
that any compact connected abelian subgroup of G is conjugate to a subgroup of T¢.
In particular, we are justified in calling T¢ a maximal torus of G and in defining

rank(G) = rank(K) = d.

Corollary 2.2 Let G be a connected Lie group. Suppose that & € LG with associated
subgroup K(£) C G. Either K (&) is conjugate to a subgroup of the mazimal torus T°
or K (&) is isomorphic to a copy of R.

Remark 2.3 Although the maximal torus T is unique up to conjugacy in G, there
is no such uniqueness result for R. Indeed, there are zero copies of R when G is
compact, a unique copy of R when G = R and uncountably many nonconjugate
copies of R when G = R% In Example 3.3 below, we give an example where there
are precisely two copies of R in G.

It turns out that every noncompact connected Lie group contains at least one
copy of R. Since we could not find a proof (or even a statement) of this elementary
result in the literature, we have given a proof in the appendix.

Although, Corollary 2.2 allows the possibility that K (&) is conjugate to a proper
subgroup of T, this is an exceptional occurrence. We prove

Theorem 2.4 For almost every £ € LG, the subgroup K (&) is conjugate either to
the mazimal torus T or to a copy of R.

More precisely, define the set of special elements of LG:
S ={¢ € LG, K(¢) is conjugate to a proper subgroup of T%}.

We prove that S is of first category and has zero Lebesgue measure in LG.
First, we prove the corresponding result at the group level. For g € G, we define
the group generated by g

H(g) = {g", n € Z}.

Lemma 2.5 For almost every g € G, the subgroup H(g) is conjugate either to the
mazimal torus T¢ or to a noncompact group.

Proof We prove the ‘almost every’ statement first in the measure-theoretic sense
and second in the Baire category sense.

Let S denote the set of ‘special’ elements of G: those elements that generate a
group that is compact but not a maximal torus. Let Sy = TN S. We use the fact
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that Sy has measure zero in T to show that S has Lebesgue measure zero in G. (To
say that a set S has Lebesgue measure zero in the n-dimensional manifold G' means
that the image of any chart when restricted to S has Lebesgue measure zero in R".)

We follow closely the proof in [5, Chapter IV, Theorem 2.11]. The conjugation
map p: G/T%x T4 — G defined by p(g,7) = grg ' is a smooth map and hence maps
sets of measure zero to sets of measure zero. (This would not be true if we replaced
G/T? by G since the dimensions would be wrong.) Since Sy has measure zero in T,
it follows that G /T% x S has measure zero in G/T%x T and hence that p(G/T%x Sp)
has measure zero in G/T?. Tt thus suffices to prove that p(G/T? x Sy) = S.

Clearly S is preserved by conjugation and it follows that p(G/T% x Sp) C S.
Conversely, suppose that s € S. By definition, H(s) is conjugate to a subgroup of
the maximal compact subgroup K. By the theory of maximal tori, H is conjugate to
a subgroup of T%. Hence s = p(g,7) for some 7 € T%. Since s does not generate a
maximal torus, neither does 7. Hence s € p(G/T* x S;) as required.

Next, we prove the Baire category version of the lemma. By Kronecker’s Theo-
rem [5, Chapter I, Theorem 4.13], Sy = UX; is a countable union of codimension one
submanifolds of T¢. Hence S is a countable union of codimension one submanifolds
p(Y;) where Y; = G/T% x X;. Tt suffices to show that p(Y;) is of first category in G
for each 1.

Consider the smooth map ply, : ¥; — G of manifolds where dimY; < dimG.
Every point in Y; is a critical point for p|y, and hence the set G — p(Y;) coincides
with the set of regular values of p|y;. By Sard’s Theorem [1, Theorem E.4], this set is
residual (it is here that we use the second countability of G) and hence p(Y;) is first
category in G. (In fact Sard’s Theorem implies also that p(Y;) has zero measure in
G, but the first proof did not require Sard’s Theorem or the precise characterization
of Sy provided by Kronecker’s Theorem.) |

Proof of Theorem 2.4 First, observe that K(t£) = K(§) for all nonzero ¢t € R.
Hence, we may restrict without loss to & € V where V is a neighborhood of the origin
in LG such that exp |y is a diffeomorphism.

It follows from Lemma 2.5 that the group H (exp &) is a maximal torus or noncom-
pact for almost every £ € V. But H(exp&) C K (&) so we have that K(£) contains a
maximal torus or is noncompact. This fact, together with Corollary 2.2, implies that
K (&) is conjugate to a maximal torus or R. |

3 Preference for the maximal torus or for R

In the previous section, we showed that K (£) = T or K(¢) = R almost always. In
this section, we discuss which of these possibilities might be preferred over the other.



The answer depends very much on the group. As the examples below demonstrate,
any of the following are possible (i) the maximal torus is preferred, (ii) the real line
is preferred, (iii) neither is preferred.

Given a Lie group G' we have a partition of the Lie algebra

LG = LyG U LgG,
where
LG ={£ € LG : K(§) is a torus},
and
LG ={£ € LG : K(§) 2 R}.

Recall that G is a matrix group if G is isomorphic to a closed subgroup of GL(R")
for some n.

Lemma 3.1 Suppose that G is a matrixz group and that £ € LG. Then

(a) K(§) is a torus if and only if & is a semisimple matriz and all eigenvalues of &
have zero real part.

(b) LG and LrG are semialgebraic subsets of LG.

Proof Since G is a matrix group, the exponential map exp : LG — G is defined by
the standard formula

o é.n
expé = Z o
n=0

Without loss of generality, we may suppose that the matrix £ is in Jordan normal
form. An easy calculation shows that K () is compact if and only if £ is semisimple
and all eigenvalues have zero real part. Part (b) follows from the fact that these are
semialgebraic conditions on the matrix £&. For example, to see that semisimplicity is
semialgebraic, consider the set

X={v,\)eER” xR"xC: (E=A)v#£0, (£—A)%v=0}

Let p: R" xR"xC — R" be projection. By the Tarski-Seidenberg Theorem [16], the
image of the semialgebraic set X under p is semialgebraic and hence ¥ = p(X)N LG

is a semialgebraic subset of LG. But Y is precisely the set of nonsemisimple matrices
in LG. |



Lemma 3.1 shows that L7G is semialgebraic and therefore contains a stratum of
minimum codimension. We define this to be the codimension of the event that K (&) is
a maximal torus, codimeT?¢ = codim LG and write simply codim T¢. Similarly, we
define codimR = codimgR = codim LizG. We suspect that this can be generalized
to non-matrix groups.

Example 3.2 If G is compact, then almost every £ € LG generates a maximal torus
in G (codim T% = 0).

Example 3.3 If G = R", each nonzero ¢ generates a copy of R (codimT? = n,
codimR = 0). When n > 2, there are uncountably many distinct (nonconjugate)
copies of R. Of course, rank(G) = 0.

More generally, suppose that G is the group of upper triangular real n xn matrices.
Then G is homeomorphic to R™™*Y/2 and rank(G) = 0. Each nonzero ¢ € LG
generates a line. The same is true for any closed subgroup of G.

An important special case is the two dimensional Lie group G consisting of ma-
trices

a b
(0 1), a,beR, a>0.

(This is the group of orientation-preserving affine transformations on the line, z —
ax + b.) Any element of G is conjugate to an element with either a« = 1 or b = 0.
Hence, there are, up to conjugacy, precisely two copies of R in G:

et 0 1t

0 1)° 01/
For almost every & € LG, the subgroup K (&) is conjugate to the first copy of R, but
the second copy of R occurs for a codimension one subspace of LG. Note that the

two copies of R are quite distinct, the first arising from an eigenvalue with nonzero
real part, the second arising from nonsemisimplicity.

These examples are extreme in the sense that in Example 3.2 K (&) is always
compact, while in Example 3.3 K (&) is never compact except in the trivial case
¢ = 0. By way of contrast, we consider the groups SE(n) and Sp(2n,R).

Example 3.4 Let G = SE(n), the Euclidean group of orientation preserving isome-

tries of R". Then SE(n) = SO(n) + R" (semidirect product) and d = rank(G) =
[n/2]. There is a unique copy of R up to conjugacy. We show

When n is even, codim T¢ = 0 and codimR = 1.
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When n is odd, codimT¢ = 1 and codimR = 0.

The general element of G = SE(n) can be written as (A,v) where A € SO(n)
and v € R" and is identified with the (n 4+ 1) x (n + 1) matrix

(0 1)

Hence the Lie algebra LG consists of matrices of the form

B w
e=(0 1)

where B is a skew-symmetric n X n matrix and w € R". In particular, all eigenvalues
of B, and hence &, have zero real part. It follows that K (&) is compact if and only if
¢ is semisimple.

When n is even, it is generically the case that the eigenvalues of B are distinct and
nonzero. Hence, £ is semisimple. In a one-parameter family, it can happen that B
has multiple or zero eigenvalues, in which case £ is nonsemisimple for generic choices
of w € R".

When n is odd, the skew-symmetric matrix B is automatically singular. By a
change of coordinates, we can arrange that the last two rows of £ have the form

0 -~ 0 w,
0 --- 0 0 /°

where w, € R. It follows that generically £ is nonsemisimple (if w, # 0) but that
semisimplicity is codimension one.

Example 3.5 Let G = Sp(2n,R) be the group of 2n x 2n symplectic matrices. The
Lie algebra LG consists of the infinitesimally symplectic matrices

A B
C _AT 3

where B and C are symmetric n X n matrices and A is a general matrix. It is a
well known and elementary that eigenvalues of ¢ € LG occur in quadruplets +pu, +p,
u € C. It follows that if we define Ur to be the set of those & € LG for which the
eigenvalues of ¢ are simple, purely imaginary and nonzero, then Uz is nonempty and
open in LG. Of course, if Uy is the set of those elements £ whose eigenvalues all have
nonzero real part, then Ug is also nonempty and open. Moreover, & € Ugr implies
that K(£) 2 R and & € Uy implies that K (&) is compact. It follows that neither the
maximal torus or the line is preferred: codim T = codimR = 0.
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A similar class of examples is provided by the groups SO(p,q), p > g > 0 con-
sisting of matrices that preserve the quadratic form z? +---4+22 — 25, —---— 22 .
We have the special cases SO(p, 0) = SO(p) compact and SO(1,1) = R. In all other
cases, codimT¢ = codimR = 0. The Lorentz group corresponds to the case p = 3,

qg=1.

Example 3.6 Let G = SL(n,R), n > 3. This is homeomorphic as a topological
space to SO(n) x R+ D/2=1 and rank(G) = rank(SO(n)) = [n/2].

The Lie algebra LG consists of trace-zero matrices. Consider the open subset U
of elements ¢ € LG for which all eigenvalues have nonzero real part. Since n > 3 and
the only restriction in LG is that elements have trace zero, it is easily seen that U is
also dense with full measure.

This argument fails when n = 2. Indeed SL(2,R) = Sp(2,R) and we refer to
Example 3.5.

We end by stating a result on direct products.

Proposition 3.7 Suppose that G = G, X G5. Then the ranks satisfy d = dy + dy and
(a) codimgT* = codimg, T* + codimg, T*.

(b) codimgR = min(codimg, R, codimg,R).

Proof This follows from the observation that K (&) is compact for £ = & + & €
LG, & LG, if and only if K(&) and K (&) are both compact. |

4 Cartan subgroups in noncompact Lie groups

The results of Section 2 for connected Lie groups are sufficient for our intended
applications on relative equilibria. To understand relative periodic orbits, we must
consider the case when the Lie group G is nonconnected as well as noncompact.

First suppose that G is compact (but not necessarily connected). Let H(g) denote
the closure of the group generated by g. Such a subgroup H(g) is called topologically
cyclic (or ‘monogenic’) and is a compact abelian group. Hence H(g) = T? X Zj. The
subgroup H(g) is a Cartan subgroup if H(g) is maximal in the sense that there is no
higher dimensional topologically cyclic subgroup of G containing H (g).

Note that it is possible for one Cartan subgroup to be properly contained in
another. For example, consider the group G = SO(2) x Zy. The topologically cyclic
subgroups are given by

SO(2) x Zy, SO(2) x1, Z X Zy (kodd), Zi x 1.
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The Cartan subgroups are SO(2) x Zy and SO(2) x 1.
A second instructive example is the group G = O(2). The topologically cyclic
subgroups are

80(2)5 Zk; ]D)la

where Dy is the two element group generated by a reflection in O(2) — SO(2). Al-
though there are infinitely many copies of Dy in O(2), they are all conjugate. Again.
there are two Cartan subgroups up to conjugacy: SO(2) and D;.

For general G compact, we have the projection p : G — G/G° where G° is the
connected component of the identity in G. In the above examples, G/G° = Z,. For
each of the two cyclic subgroups C' C G/G", there exists a unique (up to conjugacy)
Cartan subgroup H C G such that p(H) = C. These examples generalize as follows,
see for example [5, Chapter IV, Proposition 4.6].

Theorem 4.1 Suppose that G is a compact Lie group with connected component
of the identity G°. There is a one-to-one correspondence between conjugacy classes
of cyclic subgroups C' of G/G° and conjugacy classes of Cartan subgroups H in G
satisfying p(H) = C.

More precisely, if C is a cyclic subgroup of G/G°, then there is a Cartan subgroup
H C G with p(H) = C. The subgroup H is isomorphic to T? x C. If H' is a Cartan
subgroup with p(H') conjugate to C, then H' is conjugate to H.

This theorem generalizes the standard results on maximal tori (the Cartan subgroups
corresponding to C' = 1 are the maximal tori in G°).

As in [10], given a cyclic subgroup C C G/G°, we define rank(G, C) = d where
d is the dimension of the Cartan subgroup corresponding to C. Thus rank(G,1) =
rank(G). In our examples,

rank(SO(2) x Zy,Zy) =1, rank(O(2),Z,) = 0.

Now we drop the assumption that G' is compact. We require that G has finitely
many connected components. Again, there is a maximal compact subgroup K that
is unique up to conjugacy and such that G is diffeomorphic to K x R" for some n. It
is easily seen (arguing as in Proposition 2.1) that every topologically cyclic subgroup
H C @G is either compact (hence conjugate to a subgroup of a Cartan subgroup of K)
or isomorphic to Z. We say that H is a Cartan subgroup of G if H is conjugate to a
Cartan subgroup of K. We have the following analogue to Corollary 2.2.

Corollary 4.2 Let G be a finite dimensional Lie group with finitely many connected
components. Either H(g) is contained in a Cartan subgroup or H(g) = Z.
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Proposition 4.3 The quotients G/G° and K/K° are isomorphic. In particular,
there is a one-to-one correspondence between conjugacy classes of cyclic subgroups
C of G/G° and conjugacy classes of Cartan subgroups of G. Moreover, if H C G is
a Cartan subgroup corresponding to the cyclic subgroup C C G/G°, then p(H) = C
and H=T? x C.

Proof We have the group isomorphism

K/K'=K/(G°nK) = (G°K)/G° = G/G°.

Theorem 4.4 Suppose that G is a finite dimensional Lie group with finitely many
connected components. For almost every g € G, the subgroup H(g) is conjugate either
to a Cartan subgroup or to a copy of Z.

Proof Fix a € G/G° and let C be the cyclic subgroup of G/G° generated by a. Let
T* x C denote the corresponding Cartan subgroup of G. Since G/G? is finite, we can
restrict attention to elements g € G(«) where G(a) = {g € G, p(g) is conjugate to a}.
We show that H(g) = T x C or Z for almost every g € G(a).

Define

S ={g € G(a), H(g) is compact but not Cartan}.

Let Sy = (T*xC)NS and consider the conjugation map p : G/(T%xC) x (T*xC) —
G. The remainder of the proof is identical to the proof of Lemma 2.5. |
Let 7% x C denote the Cartan subgroup of G corresponding to the cyclic subgroup

C C G/G°. We define rank(G,C) = d. Note that rank(G,C) = rank(K,C") where
C' is the corresponding cyclic subgroup of K/K?°.

Example 4.5 Let G = E(2). Then G/G° 2 Z, and we have the cyclic subgroups
C =1 and C = Z,. The maximal compact subgroup of G is given by K = O(2).
Since rank(O(2),C) = 1 when C' =1 and 0 when C = Z,, we have

rank(E(2),1) =1 rank(E(2), Z,) = 0.

Now suppose that g € E(2) with corresponding topologically cyclic subgroup
H(g). Let C' C Zs be the cyclic subgroup generated by p(g). If C = 1 then it follows
from Theorem 4.4 that generically either H(g) = T' or H(g) & Z. If C = Z,, then
generically either H(g) = Zy or H(g) = Z. There is the question of the codimensions
of these events.
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Generally, consider those g € G such that p(g) generates the cyclic subgroup
C. Let codim(gcT* denote the codimension of the event that H(g) = T* x C
where d = rank(G,C) and let codim(g,cyZ denote the codimension of the event that
H(g) 2 Z. When C = 1, it is easily seen that

codim(G,l)Td = codimGTd, codim(g,1)Z = codimgR.
For G = E(2), we have
COdim(E(g),l)Tl = 0, COdim(E(z),l)Z = 1, COdim(E(z),Zz)Tl = 1, Codim(E(g),%)Z = 0.

To verify the last two codimensions, let ¢ € E(2) be an element such that p(g)
is nontrivial. In other words, ¢ is a reflection composed with a translation. Fix
a reflection kK € O(2) — SO(2). It is an elementary fact that g is conjugate to s
composed with a translation v parallel to the axis of symmetry of k. (If v =0, g is
a reflection; if v # 0, ¢ is a glide-reflection.) Observe that H(g) = Z if and only if
v # 0 (codimension zero). If v = 0 (codimension one) then H(g) = Zs.

Example 4.6 Let G = E(3). Again G/Gy = Z,. Using results for the maximal
compact subgroup K = O(3), we compute that

rank(E(3),1) =1 rank(E(3),Z,) = 1.
It follows from the results for G = SE(3) in Example 3.4 that
codim(E(g),l)Tl =1, codimgm)Z = 0.
We claim that
codim(E(g),ZQ)Tl =0, codimgs)z,)Z = 1.

Suppose that g = (A,v) € E(3) with p(g) nontrivial. The orthogonal matrix A has
one eigenvalue equal to —1 and a pair of complex eigenvalues. Generically, these
eigenvalues are not equal to 1, in which case g is conjugate to the element (A,0) €
E(3). It follows that COdim(E(3)7Z2)T1 = 0. In a one-parameter family A may have
eigenvalues equal to 1 in which case g is a reflection. After conjugacy, v is any
translation parallel to the reflection plane. Generically v # 0 and H(g) & Z so that
Codim(E(g),Z2)Z =1.

To summarize, when C = 1, generically H(g) = T' and H(g) = Z occurs with
codimension one. When C' = Zj, generically H(g) = Z and H(g) = T' x Z, occurs
with codimension one.
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5 Dynamical systems with noncompact symmetry

Noncompact symmetry groups arise naturally in dynamical systems, especially for
infinite dimensional evolution equations on unbounded domains. In the remainder of
this paper, we describe the structure of relative equilibria and relative periodic orbits
when there is a noncompact symmetry group. In particular, under certain technical
hypotheses, we show that the drift phenomena found by Field [9] and Krupa [14]
have counterparts for evolution equations on unbounded domains. An important
extra hypothesis we require is that the patterns concerned do not possess what we
call approrimate symmetries, see below.

Throughout the remainder of this paper, smooth means C* for some k > 1. We
do not require that the symmetry group acts smoothly on the full infinite-dimensional
space.

First, we recall some basic definitions and results regarding infinite dimensional
dynamical systems. For details we refer to Henry [12]. Suppose that B is a Banach
space. Let A : B — B be a linear (unbounded) operator that generates an analytic
semigroup (semiflow) on B. A necessary and sufficient condition for this is that A
is ‘sectorial’. In particular, the domain D(A) of A is dense in B. Let N be any
(nonlinear, unbounded) operator on B. We suppose that N is smooth (C* for some
k > 1) when viewed as an operator N : D(A%) — B for some « € [0,1) and that
(dN)o = 0. Then f = A+ N is a smooth ‘vector field’ on B and generates a local semi-
dynamical system (enjoying the usual properties such as existence and uniqueness,
smooth dependence on initial conditions, smoothness of solution trajectories, and so
on).

Now suppose that I is a (noncompact) finite dimensional Lie group acting linearly,
but not necessarily smoothly, on B. As usual, we say that the vector field f is I'-
equivariant if f(yx) = vf(z) for all v € T and € D(A). Then f induces a smooth
[-equivariant semiflow consisting of solutions to the initial value problem

= f(z), z(0)=x. (5.1)
The action of I' on B induces an action of the Lie algebra LI" on B in the usual

way:

d
Ex = pm exp(tﬁ)x‘tzo.

In general, the linear operator £ : B — B is unbounded.

Definition 5.1 Let 2y € D(A) and set X = I'zy. The group orbit X is called a
relative equilibrium if the semiflow induced by f leaves X invariant. Equivalently,
f(zg) = &xy for some € € LT.
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We define the isotropy subgroup of X to be the isotropy subgroup of the point
xo. Since the isotropy subgroup of vz is Y3y !, the isotropy subgroup of a relative
equilibrium is well-defined up to conjugacy.

When I' is compact and B is finite dimensional, the relative equilibrium X = 'z
is a manifold diffeomorphic to the homogeneous space I'/X. This is not automatically
the case in our setting and we require some extra hypotheses.

Definition 5.2 Suppose that there is a sequence {7,} € I'/% which diverges to
infinity (that is, there are no convergent subsequences) and possesses the property
that v,x9 — xo. Then we say that {v,} is an approzimate symmetry of x;.

Let B' denote the subset of D(A) consisting of those points z € D(A) with no
approximate symmetries and such that the map v — 7z is smooth. Observe that B’
is a I'-invariant subset of B. When I' acts isometrically on B, it is easy to see that
having no approximate symmetries is an open condition.

Proposition 5.3 Suppose that xo € B' with isotropy subgroup . Then X = T'xq is
a submanifold of B diffeomorphic to T'/X.

Proof Since the action of I' on xy is smooth, the group orbit X is a smoothly
immersed submanifold of B, the tangent space at x € X being given by T, X = (LT)z.
The condition that there are no approximate symmetries guarantees that X is an
embedded submanifold. |

6 Relative equilibria

In this section, we present our generalization of the results of Field [9] concerning the
dynamics on relative equilibria. Upper bounds for the drift are given in Subsection 6.1.
In Subsection 6.2, we prove that under certain reasonable hypotheses, these upper
bounds (taken collectively) are attained. Moreover, the preferred upper bound (if it
exists) is dictated by the genericity results at the Lie algebra level, as discussed in
Section 3.

6.1 An upper bound for the drift on a relative equilibrium

We assume the setting described in Section 5. Thus, I' is a finite dimensional Lie
group acting on the Banach space B and f is an nonlinear (unbounded) operator
defining a smooth I'-equivariant local semiflow on B. Let zy be a point with trivial
isotropy lying in the subset B’ defined after Definition 5.2 and suppose that X = 'z,
is a relative equilibrium.
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Recall that Fix(X) is a flow-invariant subspace and that the largest subgroup of
I" that acts on Fix(X) is the normalizer N(X).

Proposition 6.1 Suppose that xo € B’ has isotropy subgroup Y and that X = Tz is
a relative equilibrium. Then f(xo) = &xo for some & € L(N(X)) and the solution to
the initial value problem (5.1) with initial condition xo is given by x(t) = exp(t&)xo.

Proof This is standard, see [9, 14]. We reproduce the proof for completeness. Since
X is flow-invariant, f(z) is tangent to X and lies in T, X = LT'z,. Hence f(zo) = £xg
for some £ € LI". Now set z(t) = exp(t€)zo. We compute that

d d
Salt) = o exp(s€)a,,

= exp(tf)% exp((s — t)§)$0|s:t

d
= exp(t&) a5 exp(s§)zo ‘5:0

= exp(t§)€zo = exp(t&) f (zo)
= flexp(t§)zo) = f(z(2)).

It remains to show that £ € L(N(X)). The isotropy subgroup of z(t) = exp(t£)zo
is given by 3; = exp(t&)Texp(t€)~! so that z(t) € Fix(3;) for each t. But flow-
invariance of Fix(X) implies that x(¢) has isotropy subgroup ¥ for all ¢. Hence
Y; = X from which we deduce that exp(t£) € N(X) for all ¢. Since exp : LI' = I'is a
diffeomorphism on some neighborhood of the origin, it follows that t£ € L(N (X)) for
t small enough and hence that £ € L(N(X)). |

Let X, denote the closure of the trajectory through zy. Then Xy = K (&), for
some £ € L(N(X)) and is minimal: there are no proper closed flow-invariant subsets
in Xo. Moreover Xy C Fix(X). Since the relative equilibrium X is foliated by the
minimal subsets 7X,, v € I, it follows that the flow on X is completely determined
by the flow on X, C Fix(X).

The group N (X) acts on Fix(X), the kernel of the action being given by ¥. Hence,
we can write Xo = K(&)zo with £ € L(N(X)/X). In particular, K (&) is the closure
of a one parameter subgroup in N(X)/X. The following result is now immediate by
Corollary 2.2.

Corollary 6.2 Suppose that the hypotheses of Proposition 6.1 are valid. Then the
relative equilibrium X s foliated by minimal closed flow-invariant subsets conjugate
to Xo = K(&)xo and consisting either of tori TP, p < rank(N(X3)/X), or of copies
of R.
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6.2 Generic attainment of the upper bounds

In this subsection, we prove that the upper bounds established in Subsection 6.1 are
generically attained provided we impose extra technical hypotheses on the structure
of B. We continue to assume that f : B — B is a ['-equivariant vector field with
relative equilibrium X = 'z, where 2y € B'. As usual, ¥ is the isotropy subgroup of
7g. Let Z denote the space of smooth (C¥) I'-equivariant vector fields on B and let
Zx denote the subspace of vector fields for which X is a relative equilibrium. For any
k > 1, Z is a complete metric space in the C* topology and X7 is a closed subspace.
(We do not assume that f € Z — f may be an unbounded operator.)

Theorem 6.3 Suppose that B is a Hilbert space and that the action of I' on B 1is
unitary. Then there is a residual subset R C Zx such that for all h € R, the minimal
(f + h)-flow-invariant subsets in X are mazimal tori in N(X)/X (with codimension
codimN(g)/gTd) or copies of R (with codimension codimys)/sR).

The main step in the proof of Theorem 6.3 is the following.

Lemma 6.4 Suppose that B is a Hilbert space and that the action of I' is unitary.
Let xy be a point in B' with isotropy ¥ and let U be a neighborhood of TI'zy. Set
V ={h(zy) : h€ Zx, supph CU}. Then L(N(X)/X)z, = V.

Proof The inclusion V' C L(N(X)/X)z, is clear from Proposition 6.1. To prove the
reverse inclusion, we follow an argument in Krupa [14].

By Proposition 5.3, X = I'zy is a submanifold of B and we can construct the
normal bundle N (X). Since the action of I is unitary, N(X) is I'-invariant. The usual
arguments show that N(X) is locally diffeomorphic to B and the homogeneity of the
group orbit X ensures that there is neighborhood of X in N(X) that is equivariantly
diffeomorphic to a I-invariant neighborhood U’ of X in B. Identify TN(X) with B.
Without loss of generality, we may suppose that U = U".

Let £ € L(N(X)/X). We construct amap h € Z supported in U with h(xy) = Exo.
Choose € > 0 so that the ball in N, of radius € and center z is contained in U N N, .
Let b : [0,00] — [0, 1] be a smooth bump function with b|j /3y = 1 and b|[3¢/3,00) = 0.
We define h(z) = b(||x — z¢||)éxo. The map h : N, — B is supported inside N, N U,
is constant in a neighborhood of zy with the required value £y and is smooth away
from zy by smoothness of the norm. Moreover, h is X-equivariant since the norm is
invariant and zg, £z € Fix(X). Indeed, h(ox) = h(z) = oh(z) for all x € N, 0 € 3.

There is a unique I'-equivariant extension of A from N, to the whole of N(X)
given explicitly by h(z) = b(||x — yzo||)Ad,&yz for all x € yN,,. The fact that this
extension is well-defined is due to the Y-equivariance of h on N,,. Moreover, h is
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smooth since I' acts smoothly on xy. This completes the construction of the required
function A. [

The proof of Lemma 6.4 shows that h € Zx can be chosen so that ||h||cr <
M||h(zo)|| where M is a constant depending only on the choice of bump function b.
Theorem 6.3 follows immediately from Theorem 2.4, Corollary 6.2 and Lemma 6.4.
Since ‘almost all’ in Theorem 2.4 holds both in the topological and measure-theoretic
senses, it follows similarly that the set R in Theorem 6.3 is prevalent in the sense of
Hunt et al [13].

Theorem 6.3 can be refined somewhat to circumvent the distinguished roles played
by f and X. To avoid technical difficulties associated with the infinite dimensional
setting, we suppose that the group and the evolution operators act smoothly on the
whole of B. In addition, we suppose that B is a Hilbert space and that the action
of I' is unitary. Finally, we let Z consist of those smooth vector fields for which all
relative equilibria are normally hyperbolic. It follows from the generalization in [11,
Appendix] of results of Krupa [14] that Z is an open subset of Z and that the relative
equilibria of f € Z are isolated and persist under perturbation. (Since B is infinite
dimensional, Z is not a dense subset of Z )

Theorem 6.5 Under the above simplifying assumptions, there is a residual (and
prevalent) subset R C Z such that for every f € R, each relative equilibrium is
foliated by minimal flow-invariant subsets consisting of either maximal tori or lines.

7 Relative periodic orbits

We now show, under similar hypotheses to those made in the previous section, that
the results of Krupa [14] and Field [10] for relative periodic orbits carry over to
evolution equations with noncompact symmetry group. Suppose that P C B’ is a
relative periodic orbit. That is, P is [-invariant and flow-invariant, the orbit space
P/T is diffeomorphic to S* and the induced flow on the orbit space is nontrivial (hence
periodic). Let 7 : P — S* denote the projection.

Choose a point zo € P and let z(t) be the solution curve with z(0) = . Then
m(z(t + T)) = w(x) where T is the period of the periodic orbit in the orbit space.
Hence z(t +T') = vyz(t) for some v € I'. In fact, if 2y has isotropy %, then v € N(X)
and vy is identified with a unique element of N(X)/X. Let H = H(y) denote the
corresponding topologically cyclic subgroup of N(X)/3. Since zy € B, the group
orbit Hzg is a submanifold of the fiber 7~(7(x¢)) and Hzy is diffeomorphic to H.

Proposition 7.1 The relative periodic orbit is foliated by tori of dimension dim H+1
(with irrational tori flow) or by copies of R (with unbounded linear flow).
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Proof (cf Field [9, p. 189]) Let Py denote the closure of the trajectory z(t) inside P.
The submanifold Hz, consists of those z € P, such that 7(z) = m(x¢). In particular,
Hzxg is a cross-section for the flow in Py with Poincaré map hxzy — vhzy. Conversely,
the flow in P, is the suspension of the Poincaré map. In particular, we have

P0=H$0XR/N

where ~ is defined by (hxo,t+ T) ~ (vhxo,t).

It follows that P, is diffeomorphic to the suspension H x R/~ and it is easily
verified that the group structure on H x R induces a group structure on H x R/~.
Moreover, the trajectory x(t) in Py is identified with a dense one-parameter subgroup
in H x R/~. It follows (as in Proposition 2.1) that H x R/~ is either a torus T?
or a line R. Moreover the flow on H x R/~ and hence on P is as required. Finally,
dim Py = dim H + 1. |

The results of Section 4 give an upper bound for the dimension in Proposition 7.1.
Let G = N(X)/% and let p : G — G/G° be the projection where G is the connected
component of the identity in G. Suppose that v € G is as defined above and let
C be the cyclic subgroup of G/G° generated by p(7). Recall that rank(G, C) is the
dimension of the corresponding Cartan subgroup of G. We now have the following
generalization of a result of Krupa [14] (see also Field [10]).

Corollary 7.2 Suppose that P is a relative periodic orbit containing a point o € B’
with isotropy . Let C be the associated cyclic group as defined above. Then P is
foliated by tori TP, p < rank(N(X)/3,C) + 1, or by copies of R.

In applications, it is convenient to characterize the cyclic subgroup C as follows.
Suppose that P is a relative periodic orbit containing a point x¢ with isotropy ¥ and
let Py be the closure of the trajectory through zy. Define ¥ to be the symmetry group
of the set P,

S={yel:vP =B}

Observe that ¥ is a normal subgroup of Y and & /¥ is a topologically cyclic subgroup
of G = N(X)/2. Let p: G — G° be the projection. Then C' = p(X).

The subgroup 3 has the following physical interpretation. Since we are working
with a relative periodic orbit rather than a relative equilibrium, the initial state g
evolves into states that are not symmetrically related to x,. However it may be the
case that after a certain period of time, the solution reaches a state x(7™*) such that
z(T*) = o*xy where o* # 1. Such a solution is often called a discrete rotating wave
and ¥ is the subgroup of I" generated by such elements o*.

More generally, the solution may vary quasiperiodically in time but may limit on
a state £* = 0*xry. Again, X is the group generated by these elements o*.
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Theorem 7.3 Suppose that the hypotheses of Corollary 7.2 are valid. Suppose in
addition that B is a separable Hilbert space and that the action of I' on B is uni-
tary. Then generically, the relative periodic orbit P is foliated by tori T? of mazimal
dimension p = rank(N(X)/3,C) + 1, or by copies of R.

Proof Again, we follow Field [9]. Construct the normal bundle N(P) which is
identified with B. Let D denote the restriction of N(P) to the group orbit I'zy. Let
D' denote an open subbundle of D containing I'zy and let D" = D' N D(A) (recall
that D(A) is the domain of the linear part of the vector field). The sets D, D', D"
are all I'-invariant.

Let ¢ = ¢(z,t) denote the semiflow defined locally on B = N(P) by the underlying
vector field f. Since the flow on the orbit space S! is assumed to be nontrivial,
the semiflow on N(P) is transverse to D in a neighborhood of P. It follows from
Henry [12] that we can choose D' small enough and a unique 7(z) close to 7" such
that ¢(x,7(z)) € D for each x € D". As usual, the map 7 : D” — R is smooth and
determines a smooth I'-equivariant Poincaré map ¢ : D" — D, ¢(x) = ¢(z, 7(z)).

As noted above, 1(xy) = vz for some v € N(3) which is identified with a unique
element v € N(X)/%X. We claim that for a typical underlying vector field f : B — B,
the corresponding element v € N(X)/X is typical. The theorem then follows from
Theorem 4.4 and Proposition 7.1.

The claim follows from standard perturbation arguments [9, p. 198]. Let § =
exp{ € N(X) close to the identity. Let D,, (Dj,) denote the fiber of the bundle
D (D") over zo. We have the isotopy x : Dy, x [0,T] — D, from inclusion to
multiplication by ¢ given by x(z,t) = b(||x — x¢]|)(expt&/T)xz where b is a bump
function defined as in the proof of Lemma 6.4. Once again, by smoothness of the
action of I' on z(, the map x extends to an equivariant isotopy x from D" into D.

Now we define a perturbed equivariant ‘flow’

o(z,1) = d(x(z,1),t)  z€D" te(0,p()):

Let ¥ : D" — D be the corresponding Poincaré map. We compute that
6(z0,T) = ¢(x(20,T), T) = ¢(0o, T) = 66 (0, T).

Hence, 1) (o) = 01p(x,) as required.

This essentially proves the claim. As defined, ¢ is continuous. Modifying the
definitions of x and (;~5 near t = 0 and ¢ = T we ensure that q; is C*. Moreover,
6 is C*-close to ¢ for & close to the identity. Of course, there is no reason why é
should satisfy the group law @(z,t + s) = ¢(d(z,t),s). Nevertheless, we can define
an equivariant vector field f whose solution curves coincide as sets with the curves
q&(a:, -). There is a loss of differentiability in defining f this way: observe that ¢ is
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C* in (z,t) but C¥1 in t. However, ¢ is only C* even in t and hence f is C* 1.
This problem is easily circumvented by first C*-approximating f by a C**! (say)
vector field f* and then C*-approximating f* by the C* vector field f. Finally, the
separability of the Hilbert space B implies the existence of C'*° partitions of unity.
Hence, we can extend to a C* map f : D(A) — B agreeing with f off a neighborhood
of the relative periodic orbit P. |

8 Applications with Euclidean symmetry

As an application of our results, we consider evolution equations with Euclidean
E(2) and E(3) symmetry. In particular, our results are consistent with experimental,
numerical and theoretical work on the meandering of spirals and give predictions for
the meandering of scroll waves.

Drifts of relative equilibria for E(2) We consider the case of relative equilibria
with isotropy X in systems with overall symmetry I' = E(2). It is convenient to
define the subgroup ¥y = X N T(2) consisting of pure translations. There are the
possibilities

Yo~1, Z, 7’ R, RxZ, R~

I

First suppose that the relative equilibrium has no translation symmetries, so
Yo =1and ¥ C O(2). Thus X is one of the subgroups

O(2), SO(2), Dy, Z, k>1.
We have the following cases.

(a) ¥ = 1 (Zy with k = 1). Here, N(X)/X = E(2) noncompact with rank 1.
Generically, we have a rotating wave but linear translation drift occurs with
codimension one.

(b) ¥ = Zg, k > 2. This time, N(X)/X = O(2) compact with rank 1. Linear drift
is impossible. Generically, we have a rotating wave.

(c) ¥ =D;. N(X)/3 = R. Generically, we have linear translation drift parallel to
the axis of the reflection symmetry.

(d) ¥ =Dy, k> 2,0r SO(2) or O(2). No drift is possible. (The relative equilibrium
is automatically an equilibrium.)
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In all cases, there is the possibility of no drift at all which occurs with codimension
equal to the dimension of N(X)/%. Hence the codimension associated with no drift
is 3 in case (a), 1 in cases (b) and (c), and 0 in case (d).

Remark 8.1 The drifts associated with nontranslation isotropy subgroups ¥ C O(2)
have implications for the meandering of spirals and target patterns observed in exper-
iments. (We postpone references to the literature until we come to the corresponding
results for the more interesting case of relative periodic solutions below.) For ex-
ample, target patterns have O(2) symmetry and hence are stationary. Multi-armed
spirals have Z; symmetry £ > 2 and are typically rotating waves. This is all in agree-
ment with experiments. On the other hand, one-armed spirals are asymmetric and
generically rotate (as is observed) but undergo translation drift with codimension one
(which apparently is not observed for spirals in relative equilibrium).

There is an important issue here. At the Lie-algebraic level, a calculation shows
that the codimension one translation drift marks a transition from clockwise to coun-
terclockwise rotation. But spiral solutions have a ‘preferred’ direction of rotation
given by the direction of the spiraling. (This might be seen as a physical explanation
of the nonoccurrence of codimension one translation drift.) However, this preference,
though physically self-evident, has no mathematical backing — in the framework of
abstract E(2)-equivariant evolution problems, rotation in either direction is equally
likely.

Next we consider the case ¥y = Z? (a two dimensional lattice). The corresponding
patterns are doubly spatially periodic and are called wallpaper patterns in the crys-
tallographic classification and planforms in fluid dynamics. The isotropy subgroup X
is a semidirect product ¥ = H+Z? where H C O(2) is the holohedry of the lattice
(H = Dy for the hexagonal lattice, H = Dy for the square lattice, H = D, for the
rhombic/rectangular lattice, and H = Z, for the general lattice).

When ¥ = ¥ & Z°, we have N(X)/¥ = H+T? and there is generically a two-
frequency toral drift. Of course, this toral drift corresponds to translations in physical
space. It is of interest to observe that the rank of N(X)/X exceeds the rank of I
This increase in the rank is not possible when I' is compact.

When ¥ is generated by a single (glide) reflection in addition to the translations Z?,
there is generically a one-frequency translation drift parallel to the axis of reflection.
Note that such solutions are rotating waves. In all other cases, > contains a nontrivial
rotation and a calculation shows that N(X)/X is finite, hence there is no drift. The
implication for applications is that doubly spatially periodic relative equilibria can
drift if and only there is no rotation symmetry. Provided that there is no rotation
symmetry, there is generically either a two frequency translation drift (no reflections)
or a one frequency translation drift (parallel to the single axis of reflection).
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There is one special case which is viewed as a planform but not as a wallpaper
pattern: namely the case ¥y = R x Z which occurs for the rolls solution. Again
genuine rolls (which have two axes of reflection symmetry) do not drift, but solutions
with less symmetry generically undergo one-frequency translation drift.

The cases £y = Z, R and R? are similar and we omit the details.

Drifts of relative periodic orbits for E(2) Next we consider the case of relative
periodic orbits in E(2)-equivariant evolution problems. As in Section 7, there are as-
sociated subgroups ¥ signifying the symmetry of an initial condition on the relatively
periodic orbit and ¥ signifying the symmetry of the associated trajectory. There is
also the associated cyclic subgroup C whose definition we recall. Let G = N(X)/X
and define the projection 7 : G — G/G°. Then C = 7 (3/%) is cyclic.

It turns out that in the cases most relevant to the meandering of spirals, we
have C' = 1. It follows that the expected drifts are abstractly identical to those for
relative equilibria. (Of course, the abstract drift is coupled with the periodicity so the
dynamics is more complicated.) We consider in turn the isotropy subgroups ¥ = 1,
Zy, k> 2, and X = Dy.

Y = 1, one-armed spiral Our assumption that C' = 1 is equivalent to sup-
posing that X C SE(2). By Example 4.5, there is generically a one frequency toral
drift, with linear unbounded drift occurring as codimension one. In the generic case,
the toral drift is manifested as a physical rotation superimposed on the dynamically
periodic behavior so that the overall dynamics is doubly quasiperiodic (as described
in Proposition 7.1).

Winfree [20] documented the meandering or compound motion of chemical spiral
waves. These motions are indeed quasiperiodic but have additional structure: whereas
one would expect a two-frequency ‘epicyclic’ motion in dynamical phase space, the
spiral appears to undergo such a motion in physical space. More precisely, there
is a small-scale quasiperiodic temporal variation superimposed on a basic epicyclic
planar motion. This phenomenon cannot be explained using the methods of this
paper — meandering is more than drifting. Codimension one linear unbounded drift
was discovered later in numerical work of Barkley [2].

It turns out that meandering in the sense of Winfree can be understood mathe-
matically within the context of Hopf bifurcation from a relative equilibrium spiral.
The first theoretical model for the meandering and linear drift of spirals is due to
Barkley [3] exploiting the Euclidean invariance of the problem. Certain predictions
in [3] were verified experimentally by Li et al [15]. The first mathematically rigorous
results are due to Wulff [23]. See also [8, 11, 17, 18].

The results in the present paper give a partial explanation of the meandering of
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spirals but fail to give any insight into the codimension one transition. The details
of this transition are quite remarkable. In particular, the physical obstruction to
the transition discussed above for the relative equilibrium spirals is circumvented by
the relatively periodic spirals. The resolution of these issues involves conceptual and
technical problems which lie beyond the range of our abstract approach and we refer
to [8, 11, 17, 18, 23|.

Y = Zi, multi-armed spiral We have N(X)/¥ = O(2). Again, we suppose
that C' = 1, or equivalently that Y C O(2). Generically there is a one frequency
rotation drift (leading to quasiperiodic dynamics) and linear drift is impossible (cf
[11]). In fact, as pointed out in [11], multi-armed spirals do not meander. Rather,
there is a small-scale quasiperiodic temporal variation superimposed on a rigid rota-
tion in the plane where the speed of rotation also varies quasiperiodically. Again, the
relation between drifting in phase space and meandering in physical space is beyond
the abstract approach in this paper.

> = Dy, spiral-antispiral bound pair The isotropy subgroup ID; corresponds
to an axis of reflection symmetry joining the two spirals. We have N(X)/X =2 R
(which is connected so automatically C' = 1) and predict constant velocity translation
drift parallel to the axis of symmetry. This result explains observations in numerical
experiments of Ermakova et al [7]. By contrast, [7] find that co-rotating bound pairs
of spirals (no reflection symmetry) undergo rotation drift. This behavior is also
consistent with our theory, though we again have the theoretical possibility that
linear unbounded drift occurs with codimension one.

The cases C' # 1 are of at least theoretical interest. For example, suppose
that ¥ = 1 and C' = Z,. This corresponds to a physical situation where a solution
such as a one-armed spiral evolves in time and eventually returns to a state that is
obtained from the initial state by (glide)-reflection. In that case, our prediction is for
unbounded linear drift generically. Rotation drift is impossible.

Similarly, if ¥ = Zj (so N(X)/X) = O(2)) and C = Z, then no drift is possible.
Again, this corresponds physically to a periodic state that is initially a multi-armed
spiral and evolves after half a period into a state that is a reflection of the initial
state.

Drifts of relative periodic orbits for E(3) We consider relative periodic orbits
for systems with E(3) symmetry concentrating again on the case when the cyclic
subgroup C' C N(X)/X is trivial. (We have bypassed relative equilibria, but the
drifts are identical since we take C' = 1.) The three-dimensional analogue of spirals
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are called scrolls and have been investigated extensively by Winfree and Strogatz, see
for example [22]. A general reference is Winfree [21].

We adopt the convention that O(2) denotes the subgroup of O(3) fixing the points
on a given axis in R®. (Note that this copy of O(2) is often denoted by O(2)~ and is
not contained in SO(3).) Subgroups Z; and so on denote subgroups of this copy of
O(2). In addition, E(1) denotes the Euclidean group corresponding to this axis and
E(2) denotes the Euclidean group corresponding to the normal directions.

Y = E(1), scroll wave In its simplest form, a scroll wave is a spiral extended
trivially in a third direction. (So a scroll wave is a cylinder with spiral cross-section.)
We have N(X)/X = E(2) and hence the results are parallel to those for one-armed
spirals. The basic scroll wave is a relative equilibrium, generically a rotating wave
with codimension one unbounded linear drift perpendicular to the scroll axis. The
drift of relatively periodic scroll waves is similar but, coupled with the one frequency
dynamics, leads to quasi-periodic and linear meandering.

Y = Zi x E(1), multi-armed scroll wave Again the results are parallel to
those for multi-armed spirals.

Y = O(2), scroll ring A scroll ring is a product of a spiral with a circle, see
Winfree and Strogatz [22]. Rigid rotations and reflections of this circle make up the
isotropy subgroup O(2). In addition, in each cross-section there is a spiral which
is assumed to rotate in a periodic manner. Of course, this basic periodic dynamics
does not correspond to a rigid rotation of the scroll ring, hence the scroll ring is a
(relatively) periodic solution. We have N(X)/X = E(1) and hence scroll rings will
generically translate parallel to their axis of rotation symmetry.

Y= Sf\]:l(l), twisted scroll wave As the name suggests, a twisted scroll wave
is a scroll wave with a twist along its axis. This leads to a twisting of the translation
symmetry associated with untwisted scroll waves: translations along the scroll axis
are coupled with rotation about the axis by an angle proportional to the translation.
Observe that the twisted scroll wave is a relative equilibrium since temporal rotation
about the axis is identified with axial translation. We have N(X)/X = O(2) consisting
of rotations about the axis; thus such a pattern will generically rotate about the axis
and exceptionally remain stationary.

3 =1, twisted scroll ring and linked twisted scroll ring A twisted ring
is somewhat like a M6bius band with spiral cross-section. Since spirals are oriented,
there is a full 360° twist instead of the usual half twist. As for the untwisted scroll ring,
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there is a rotating spiral within each cross-section. However, the temporal rotation
coincides with spatial rotation so that the twisted scroll ring, like the twisted scroll
wave, is a relative equilibrium.

There is an interesting contradiction here. By definition, a relative equilibrium is
a steady-state coupled with drift along a group orbit. The assumption that the cross-
section rotates as a spiral rotates is equivalent to assuming that the ring undergoes
rotation drift. On the other hand, theory (Example 4.6) predicts linear unbounded
drift generically, with rotation drift occurring with codimension one. We note that
the unbounded drift is generically a corkscrew motion (translation along an axis
coupled with rotation about that axis). Moreover, this axis is completely arbitrary
(unrelated to any ‘axis’ of the scroll ring). Hence the physical manifestation of this
drift will be rather complicated. Similarly, the axis of codimension one rotation drift is
arbitrary. A second codimension one occurrence is that the drift remains unbounded
but is a pure translation instead of a corkscrew motion. The cross-sectional behavior
anticipated by [22] in defining the twisted scroll ring occurs only with codimension
three! Fiedler et al [8] consider bifurcations from a twisted scroll wave translating
and rotating around its axis, but such a state is still of codimension two.

Actually, Winfree and Strogatz [22] rule out the existence of single twisted scroll
waves using a topological argument. Instead, they postulate the existence of a pair
of linked twisted scroll rings, where the cross-sectional spiral is replaced by a spiral-
antispiral bound pair. This state is a relatively periodic orbit and we predict corkscrew
drift (with arbitrary axis) in addition to the dynamical periodicity.

Y = Z, (linked) multi-twisted scroll ring We have N(X)/X = O(2) x
E(1). By Proposition 3.7, we have unbounded drift generically. Again, the drift is a
corkscrew motion, but this time, the drift respects the axis of the scroll ring. With
codimension one, the drift is either a pure translation or a pure rotation.

Drift in oscillatory systems with S' symmetry The context in which many
of our predictions might be applicable is in oscillatory or excitable systems; reaction
diffusion systems where the local dynamics is oscillatory or near-oscillatory. We now
discuss some extra structure that can manifest itself in these cases as an exact or
approximate S’ symmetry in the equations.

Consider an E(2)-equivariant reaction diffusion system on the plane. Such a
system, if marginally oscillatory, is often taken to be approximated by a Complex
Ginzburg-Landau equation; this is a reaction diffusion system obtained on diffusive
coupling of a continuum of Hopf bifurcation normal forms. This equation possesses
an S! symmetry with action on the range of the evolving patterns: the action of
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(v,0) € E(2) x S on functions u : R* — R* is given by

(7,0).u(z) = Qu(y~'z)

where # acts on R* (k > 2). Some of the consequences of such an extra symmetry
are as follows:

e Spirals are relative equilibria with ‘twisted’ SO(2) symmetry of the form (g(f), 0)
where ¢(f) is a homomorphism from S! to E(2). The connected component of
the normalizer of this symmetry group contains just the symmetry group itself.

e Single and multiple arm spirals differ only by the number of ‘twists’ of the
homomorphism g; i.e. they have essentially the same drifting behavior.

e Such spirals must rotate about a ‘phaseless point’ z, € R?, i.e. a point such
that u(zg,t) is fixed by the action of S and independent of . They cannot
translate.

e Isotropy and therefore predictions for the spiral-antispiral pair are unaffected.

A A characterization of noncompact Lie groups

We prove that a connected Lie group G is noncompact if and only if G contains a
closed subgroup isomorphic to R. The existence of such a subgroup is equivalent to
the existence of an element £ € LG such that K(§) = R where K (&) is the closure of
the one-parameter subgroup generated by &.

Theorem A.1 Suppose that G is a connected Lie group. If K (&) is compact for all
¢ € LG, then G is compact.

We prove the theorem first for G solvable and second for G semisimple. The result
for general G then follows from the Levi decomposition.

Lemma A.2 Suppose that G is a connected solvable Lie group and that K (&) is
compact for all € € LG. Then G is compact.

Proof We argue by induction on the dimension of G. The result is clear when
dimG = 1. If dimG > 1, then there exists a proper connected normal subgroup H.
The groups H and G/ H are solvable and have lower dimension than G. In particular,
the induction hypothesis applies immediately to H so that H is compact.
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We claim that K(n) is a compact subgroup of G/H for all n € L(G/H). It
then follows by induction that G/H is compact. Since H and G/H are compact, we
conclude that G is compact [4, Theorem 1.3.1].

It remains to verify the claim. Let 7 : G — G/H be projection. By the naturality
of exp, we have mexp = exp(dm).. Replacing n by an element sufficiently close
to the origin, we obtain an element £ € LG such that (dm).£ = n. In particular,
m(exptf) = exptn and 7 restricts to a homomorphism p : K(§) — K(n) with dense
image. Since K (&) is compact, it follows that K(n) is compact and the claim is
verified. |

Remark A.3 Under the hypotheses of Lemma A.2, G is a torus. (One way to see
this is to use the fact that the irreducible (complex) representations of a solvable
group are one dimensional. The only compact groups with this property are tori.)

Lemma A.4 Suppose that G is a connected semisimple matriz group. If K(§) is
compact for all £ € LG, then G is compact.

Proof Since G is a matrix group, the condition that K(§) is always compact is
equivalent to the condition that each £ € LG is semisimple with purely imaginary
eigenvalues. Consider the symmetric bilinear map Q(&,n) = —trén. The eigenvalues
of & are purely imaginary, so Q(§,&) > 0 for all £ € LG. If Q(§,€) = 0, then & is
nilpotent. By assumption, each £ in LG is semisimple, so & = 0. Hence () defines an
inner product on LG. Moreover, this inner product is preserved by the adjoint action
of G: Q(Ad,&,Adgn) =Q(E,n) forall g € G, &, € LG.

Let O(LG) denote the orthogonal subgroup of GL(LG) corresponding to this in-
ner product. Then O(LG) is compact and Ad(G) € O(LG). By [19, Theorem 3.10.8],
Ad(G) is a closed subgroup of GL(LG). Hence Ad(G) is compact. Finally we appeal
to the semisimplicity of G. Indeed, the group G is a covering of Ad(G) (since ker Ad
coincides with the center of G which is discrete). It follows from Weyl’s Theorem [19,
Theorem 4.11.6] that G is compact. n

Lemma A.5 Suppose that G is a connected semisimple Lie group. If K () is compact
for all £ € LG, then G is compact.

Proof Let G' = G/Z(G) where Z(G) is the center of G. Then G’ has no center
and it follows that G’ is a matrix group (the isomorphism being given by Ad : G' —
GL(LG")). The groups G and G’ have the same Lie algebra LG. If £ € LG, we write
Kg(€) to denote the copy of K(§) contained in G. It follows from naturality of exp
that the projection 7 : G — G’ restricts to an isomorphism of the corresponding one-
parameter subgroups in G and G’ and defines a smooth homomorphism p : K (§) —
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K (&) with dense image. Since Kg(€) is compact, it follows that K (§) is compact.
It now follows from Lemma A.4 that the semisimple matrix group G’ is compact.
Applying Weyl’s Theorem, we deduce that G is compact. |

Proof of Theorem A.1 The Levi decomposition for Lie groups [19, Theorem
3.18.13] states that G = QM where @ is solvable and M is semisimple. At the Lie
algebra level, we have the direct sum of vector spaces LG = L@ & LM where L() is
solvable and LM is semisimple. By Lemmas A.2 and A.5, ) and M are compact.
The multiplication () X M — G is surjective so G is compact. |
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