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Abstract

In this paper, we discuss some recent developments in the understanding
of generic bifurcation from periodic solutions with spatiotemporal symmetries.
We focus mainly on the theory for bifurcation from isolated periodic solutions
in dynamical systems with a compact symmetry group.

Moreover, we discuss how our theory justifies certain heuristic assumptions
underlying previous approaches towards period preserving and period doubling
bifurcation from periodic solutions.

1 Introduction

In dynamical systems of physical interest, the qualitative behavior of the dynamics
may change as a function of external parameters. Such changes are referred to as
bifurcations. A simple example of such a bifurcation can be observed when one studies
the flow of a fluid past a cylinder. At low Reynolds number the flow is steady and two-
dimensional (homogeneous in directions parallel to the axis of the cylinder). However,
at higher Reynolds number the flow undergoes a supercritical Hopf bifurcation [9,
15] to a two-dimensional oscillatory flow, the so-called Von Kdrmdn vorter street.
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In Figure 1, two snapshots of such a vortex street are depicted. We choose coordinates
so that the z-axis is aligned with the direction of the flow and the z-axis is aligned
with the axis of the cylinder. The figure displays a cross-section of the flow in the
plane z = 0.

It is important to bear in mind that the fluid flows steadily from left to right. The
vortex street begins immediately after the cylinder. The vortices grow in such a way
that the fluid flow is periodic. That is, the vortex street at time ¢ = 0 is identical to
the vortex street at times t = 1, t = 2 and so on.

There are further regularity properties of the vortex street that can be described in
terms of the underlying symmetries of the physical problem: namely, translations and
reflections along the z-axis together with the reflection y — —y. Indeed the steady
two-dimensional flow prior to the Hopf bifurcation is invariant under all of these sym-
metries. The bifurcation to Von Kédrman vortices preserves the symmetries along the
z-axis (so that the new solution remains two-dimensional) but breaks spontaneously
the reflection y — —y. More precisely, the symmetries along the z-axis are spatial
symmetries of the bifurcating periodic solution and preserve the form of the vortex
street at all moments in time. The reflection y — —y does not have this property
and instead has the more subtle manifestation as a spatiotemporal symmetry. That
is, at time ¢ = 1/2 (after evolving for half a period) the vortex street is identical to
the reflected image of the vortex street at time ¢ = 0.

Aside from providing a language for describing the regularity of steady and os-
cillatory flows, knowledge of the symmetry of a physical problem provides a means
of understanding and predicting the bifurcations that may take place. For example,
it is evident following [9, 15] that the Hopf bifurcation takes place and breaks the
y — —y spatial symmetry. It is less evident from snapshots such as Figure 1 that
the reflection symmetry reappears as a half-period spatiotemporal symmetry. The
fact that this must be the case (in the absence of some highly degenerate events) is
a consequence of the equivariant Hopf theorem [7].

There are numerous examples of periodic solutions with spatiotemporal symmetry
that arise via Hopf bifurcation from symmetric steady-state solutions. The equivari-
ant Hopf theorem [7] provides a mathematical framework for understanding such
bifurcations. In this paper, we describe recent results on secondary bifurcation from
periodic solutions with spatiotemporal symmetry.

Secondary bifurcations from the Von Karmén vortex street are noted in [1, 26].
These bifurcations break certain of the translation symmetries along the z-axis and
hence lead to fully three-dimensional solutions. As described in [13], such bifurcations
can be understood mathematically using existing techniques (as a fairly straightfor-
ward extension of methods of Fiedler [5]). However a mathematical framework for
understanding secondary bifurcations from periodic solutions with arbitrary compact
spatiotemporal symmetries has been formulated only recently in [13].



Figure 1: Two snapshots (at ¢ = 0 and ¢ = 1) of a Von Kérmén vortex street flow
past a cylinder. The figure depicts a section of the flow in a plane orthogonal to the
axis of the cylinder. The vortices move steadily from left to right and grow. The flow
is periodic and after half a period (¢t = %) the vortex street is the reflection image
of the original vortex street (¢ = 0). This is an example of a periodic solution with
spatiotemporal symmetry. (Picture adapted from [4], with permission of Milton van

Dyke. Photograph by S. Taneda.)



Bifurcation theory is at the heart of modern dynamical systems theory. In systems
of differential equations without symmetry, there is a complete theory of the generic
local bifurcations that occur as a single bifurcation parameter is varied, see for ex-
ample Guckenheimer and Holmes [8, Chapter 3]. Local bifurcations are by definition
the bifurcations that occur in the neighborhood of a nonhyperbolic steady-state or
periodic solution.

Equivariant bifurcation theory [7] is concerned with the generalization of these
results to differential equations that are equivariant with respect to the action of a
(compact) Lie group I'. A systematic approach to bifurcation from symmetric steady-
state solutions is laid out in [7]. Importantly, bifurcations in equivariant systems are
generally different from bifurcations one would expect in non-symmetric systems.

Until recently, a theory for bifurcation from symmetric periodic solutions was de-
veloped only to deal with certain special situations. The theory for periodic solutions
with purely spatial symmetries was developed by Chossat and Golubitsky [3] building
upon previous work of Ruelle [19]. Krupa [10] studied bifurcation from periodic so-
lutions whose time evolution corresponds to a symmetry transformation for all time
(rotating waves), see also Rand [20] and Renardy [21].

Fiedler [5] was one of the first to systematically study bifurcation from periodic
solutions with discrete spatiotemporal symmetry using return map techniques. How-
ever, his study was confined to cyclic symmetry groups. The results generalize imme-
diately to abelian symmetry groups, see Buono [2]. Previously, Swift and Wiesenfeld
[23] made the observation that spatiotemporal symmetries may prevent a periodic so-
lution form undergoing a period doubling bifurcation (even though such a bifurcation
is typical for periodic solutions with purely spatial symmetry or no symmetry).

Vanderbauwhede [24, 25] set out to extend Fiedler’s theory to study period pre-
serving and period doubling bifurcations of periodic orbits with discrete spatiotem-
poral symmetry (though abandoning the use of return maps). However, the approach
in [24, 25] (and similarly in Nicolaisen and Werner [16]) is based upon various heuristic
assumptions.

The treatment of bifurcation from periodic orbits with spatiotemporal symmetries
using return map techniques was taken up again recently by Lamb [12]. It turns out
that an extension of Fiedler’s approach involves consideration of twisted equivariant
maps (called k-symmetric maps in [11, 12]), see also Nikolaev [17]. Rucklidge and
Silber [18] recently used a similar approach in the study of certain examples of bi-
furcations from symmetric periodic solutions in convection problems. Finally, in [13],
we developed a systematic theory for spatiotemporally symmetric periodic solutions
(with compact symmetry groups) that are isolated in phase space, using the return
map approach.

In this paper, we survey some of the main principles and results in studying
bifurcation from periodic solutions with spatiotemporal symmetry. We summarize
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the main results of [13], focusing in particular on the linear theory that forms the
foundation of the theory. It turns out that using only the linear theory, the nonlinear
problems can be reduced to familiar (equivariant) bifurcation problems. Most proofs
are omitted. For details we refer the reader to [13].

This paper is organized as follows. In Section 2, we discuss the different types of
symmetry properties that periodic solutions of equivariant dynamical systems may
possess. In Sections 3-5, we then focus on the theory for generic bifurcation from
isolated discrete rotating waves based on the analysis of return maps. In particular,
we discuss bifurcation from periodic solutions with no symmetry (Section 3), purely
spatial symmetry (Section 4), and spatiotemporal symmetry (Section 5). Finally, in
Section 6, we describe how heuristic assumptions in [24, 25, 16, 18] are shown to be
justified by our results.

2 Symmetry properties of periodic solutions

Let I' € O(n) be a compact Lie group acting orthogonally on R". We consider
dynamical systems (ODEs)

dx

= F 2.1
= F) (21)
where F': R" — R" is a smooth I'-equivariant vector field, that is

vF(z) = F(yz),

for all y € T.

Suppose that P is a periodic solution of (2.1) of (minimal) period 7', and let
xo € P. Let x(t) be the trajectory with initial condition zy = z(0), so P = {z(t) :
0 <t < T}. The symmetries that leave the periodic solution P invariant come in two
forms. First, there is the group of spatial symmetries

A={yeTl :yxy=x0}.

By definition, A is the isotropy subgroup of zy. In fact, A is the isotropy subgroup
of each point in P. Second, there is the group of spatiotemporal symmetries

Y={yeTl:yP=P}.

It is easy to see that for each o € X, there is a unique 7T, € [0,7) such that oz(t) =
z(t + T,) for all t. Thus each spatiotemporal symmetry is the combination of a
symmetry element ¢ composed with a time-shift by 7,,. The spatial symmetries are



those spatiotemporal symmetries o for which 7, = 0. Moreover, A is a normal
subgroup of ¥ and either ¥/A = St or ¥ /A = 7, for some m > 1.

When X/A = S the periodic solution P is called a rotating wave. When ¥/A =
Z,, the periodic solution P is called a discrete rotating wave. A brief overview of
some key papers on bifurcation from rotating waves and discrete rotating waves is
sketched in Table 1. In this paper, we confine ourselves to discussing bifurcation from
isolated periodic solutions with compact spatiotemporal symmetry.

Y=A : Purely Spatial Symmetry T compact (3, 19]
Y /A =St : Rotating Wave ' compact [10]
I non-compact [22]
Y /A = Z,, : Discrete Rotating Wave I compact & P isolated [13]
remaining cases [27]

Table 1: Overview of results on bifurcations from periodic solutions with spatiotem-
poral symmetry ¥ and spatial symmetry A in ['-equivariant dynamical systems

3 Periodic solutions with no symmetry

Bifurcation from a periodic solution P with no symmetry is conveniently studied as
bifurcations from a fixed point of the associated Poincaré return map. This map is
constructed as follows. For the periodic solution, a (local) Poincaré section is defined
as a codimension one hyperplane X that transversally intersects the periodic solution
P at some point xy. In a neighborhood of the periodic solution P, the Poincaré map
G : X — X keeps track of how solutions of the flow near the periodic solution return
to the Poincaré section X. See Figure 2. Note that G : X — X is well-defined
in a neighborhood of zy and is a diffeomorphism on this neighborhood. Moreover,
G(z9) = x so that the periodic solution P for the flow is represented by the fixed
point z( for the diffeomorphism G.

In the absence of symmetry (or other structure), it is well known [8] that in generic
one-parameter families, fixed points of diffeomorphisms typically undergo (period
preserving) saddle-node bifurcations, period doubling pitchfork bifurcations, or Hopf
bifurcations. We refer to the first two types of bifurcations as nonHopf bifurcations.

NonHopf and Hopf bifurcation are characterized by the type of eigenvalue insta-
bilities for the linearization (dG),, of the Poincaré map:

nonHopf bifurcation: an eigenvalue of (dG),, crosses the unit circle at £1 in the
complex plane.

Hopf bifurcation: a pair of complex conjugate eigenvalues of (dG),, cross the unit
circle in the complex plane at general position.
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Figure 2: Poincaré section X for a periodic solution P.

To sketch the different types of bifurcations, let us suppose we have a stable pe-
riodic solution that is represented by a stable fixed point of the Poincaré map. Then
at nonHopf bifurcation, generically one finds either (at eigenvalue +1) a saddle-node
bifurcation of fixed points for G representing the merger of two periodic solutions of
approximately the same period as P, or (at eigenvalue —1) a pitchfork bifurcation of
period two points for G' representing the birth of a periodic solution with approxi-
mately twice the period of the original solution. At Hopf bifurcation, generically the
fixed point loses stability and an invariant circle is born, representing an invariant
torus for the flow.

Two key components of the proofs of these results are ‘center manifold reduction’
and ‘Birkhoff normal form theory’. Recall that the center subspace E¢ C X of (dG),,
is defined to be the sum of the generalized eigenspaces corresponding to eigenvalues on
the unit circle in the complex plane. Generically, dim £ = 1 at nonHopf bifurcation
and dim F¢ = 2 at Hopf bifurcation. Center manifold reduction allows us to reduce
to a low-dimensional Poincaré map G : F¢ — E°. Birkhoff normal form theory then
states that there exist changes of coordinates under which G commutes with (dG),,
to any specified order in its Taylor expansion. Thus in the case of period doubling,
the Birkhoff normal form of G is odd. Said differently, G commutes with the Z, action
x — —z. In the case of Hopf bifurcation, under the ‘nonresonance’ assumption that
the eigenvalues of (dG),, lie at irrational angles on the unit circle, the Birkhoff normal
form of G' commutes with an action of the circle group S'. To summarize:

Theorem 3.1 (nonHopf without symmetry) Suppose that a periodic solution un-
dergoes nonHopf bifurcation. Then generically dimE¢ =1 and G : E° — E° is a
general diffeomorphism satisfying g(x¢) = xy and (dGQ),, = £1. In the case of period



doubling ((dGQ),, = —1), the Birkhoff normal form of G is Zs-equivariant.

Theorem 3.2 (Hopf without symmetry) Suppose that a periodic solution under-
goes Hopf bifurcation. Then generically dim E¢ = 2 and G : E¢ — E° is a general
diffeomorphism satisfying G(zo) = o and (dG),, = « where « is a complex number
in general position on the unit circle. Moreover, generically the Birkhoff normal form
of G is S-equivariant.

Under the assumptions of nonresonance and Birkhoff normal form symmetry, it
is straightforward to study the dynamics associated generically with nonHopf and
Hopf bifurcation, see [8]. In addition, it is not difficult to see that few resonances are
harmful, again see [8]. The issues associated with the terms in the tail of the Poincaré
map are more complicated and are dealt with in Ruelle [19] and Field [6]. We will
not mention these issues again in this paper but refer to [13] for further details.

4 Periodic solutions with purely spatial symmetry

In this section, we consider a periodic solution P with purely spatial symmetry. In
other words, we have ¥ = A. The Poincaré section X can be chosen to be invariant
under A. Tt then follows that the Poincaré map G : X — X is A-equivariant.

In fact, G is a general A-equivariant diffeomorphism with A-symmetric fixed point
9. Hence, the bifurcation theory for the periodic solution now follows from the
bifurcation theory for fixed points of equivariant diffeomorphisms. Generic nonHopf
and Hopf bifurcations for equivariant diffeomorphisms have been discussed by Chossat
and Golubitsky [3] and by Ruelle [19].

In order to describe their main results, we need to introduce some notions from the
representation theory of compact Lie groups. A (real) representation of a group A is
a linear action of the group, or in other words a homomorphism from A into GL(X).
A given representation is reducible if its action on X can be written as the action on
two disjoint non-empty invariant linear subspaces (so that the matrix representation
block-diagonalizes). A representation is called irreducible if it is not reducible.

Representation theory states that the irreducible representations of compact Lie
groups are finite dimensional, and that the linear maps that commute with an irre-
ducible representation are scalar multiples of the identity, where the scalars lie either
in R (the real numbers), in C (the complex numbers), or in H (the quaternions). A
representation is called absolutely irreducible if it is irreducible of type R. A represen-
tation is called nonabsolutely irreducible if it is irreducible of types C or H. Finally,
a representation is called A-simple when the representation is either nonabsolutely
irreducible, or the direct sum of two isomorphic absolutely irreducible representations.



The following theorems describe the generic action of A on the center subspace
E*¢ at nonHopf and Hopf bifurcation.

Theorem 4.1 (spatial nonHopf [3]) Suppose that a periodic solution with purely
spatial symmetry A undergoes nonHopf bifurcation. Then generically A acts abso-
lutely irreducibly on E€ and G : E¢ — E° is a general A-equivariant diffeomorphism
satisfying g(xo) = xo, (dG)z, = 1. If (dG),, = —I, then the Birkhoff normal form
of G 1s A X Zs-equivariant.

Theorem 4.2 (spatial Hopf [3, 19]) Suppose that a periodic solution with purely
spatial symmetry A undergoes Hopf bifurcation. Then generically E° is A-simple,
equivalently E€ is an irreducible representation of type C for A x St.

In Birkhoff normal form, G : E¢ — E¢ is a general A x S'-equivariant diffeomor-
phism satisfying G(zo) = xo, (dG)y, = al, where « is a complex number in general
position on the unit circle.

Note that the trivial group A = 1 has a unique irreducible representation, namely
the trivial one-dimensional representation, and this representation is absolutely ir-
reducible. Similarly, there is a unique 1-simple representation, and this is two-
dimensional. It follows that Theorems 4.1 and 4.2 reduce to Theorems 3.1 and 3.2
when A = 1.

Again, nonHopf bifurcation is period preserving ((dG),, = I) or period doubling
((dG@)y, = —1I), and Hopf bifurcation gives rise to invariant tori. Further details de-
pend on the analysis of the remaining singularity theoretical problem. Note in this
respect that period preserving nonHopf bifurcation no longer need to be of saddle-
node type, but can also be of pitchfork or transcritical type. Many bifurcating solu-
tions (but not always all solutions!) can be found by application of the equivariant
branching lemma [7].

Remark 4.3 An unusual but unified reformulation of these results is the following.
Observe that (dG),, acts on E° and hence we can form a closed group A acting on
E*¢ generated by the actions of A and (d@G),, on E°. Since (dG),, commutes with the
action of A, it follows that A is a direct product of A and the closed group generated
by (dG)4,- In general, A need not be compact. However, it turns out generically
that (dG),, is semisimple, that A is compact, and that A acts irreducibly on FE°.
The action is either absolutely irreducible (nonHopf) or irreducible of complex type
(Hopf). Moreover, A s given by either A (period-preserving bifurcation), A X Zs
(period-doubling bifurcation), or A x S* (Hopf bifurcation). In all cases, the Birkhoff
normal form of GG is E—equivariant.



This approach of forming the group A is crucial in the approach of [13] to bifur-
cation from periodic solutions with spatiotemporal symmetry, as outlined in the next
section. However, we caution that in general it is not (dG),, but a different linear
map that must be adjoined to A.

5 Periodic solutions with spatiotemporal symme-
tries

In case we have only spatial symmetries, a key step in doing the bifurcation analysis
is to realize that generic bifurcation of a fixed point of an equivariant diffeomorphism
corresponds to generic bifurcation of a spatially symmetric periodic solution. This
connection can be made because there are no constraints on the Poincaré map, other
than the fact that it is equivariant.

When we want to proceed in the same way with periodic solutions with spatiotem-
poral symmetries, we encounter a problem. As before, the spatial symmetries A of
the periodic solution P imply that the Poincaré map G : X — X is a A-equivariant
diffeomorphism with A-invariant fixed point x,. However, the presence of spatiotem-
poral symmetries Y for the periodic solution P may impose additional structure on
G that is less easily codified.

Let z(t) denote the periodic solution with initial condition xgy, and suppose that
s > 0 is least such that z(s) € Xz,. Write x(s) = oxy where o € ¥. Then ¥ is the
closed subgroup of I" generated by A and o. Because the spatiotemporal symmetry
o does not fix the Poincaré section X, it does not give rise to equivariance. Instead,
it relates the flow between the sections X and X and the rest of the flow (between
cX and X).

Let us denote the first hit map from X to ¢X by ¢g). Then ¢ : X — 0X is
a A-equivariant map and has the advantage (in comparison with G) that ¢ is a
general A-equivariant diffeomorphism. However, ¢{) cannot be iterated because its
domain and range are not the same. This can be repaired by using ¢! to transport
oX back to the section X. In this way, we thus construct a map [5, 17, 12]

f=0c"t g(l)'
See Figure 3.

Clearly, f : X — X is a diffeomorphism and can be iterated and interpreted as
a dynamical system. It remains now to keep track of the symmetry properties of f
induced by the spatiotemporal symmetry properties of the periodic solution P.

We noticed before that ¢tV is A-equivariant. However, ¢ need not be A-equivariant
and hence neither need f. We may systematically keep track of the possible non-
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Figure 3: Construction of the first hit map f := o~ g,

commutativity of ¢ with A by introducing a map ¢ that satisfies

fo=0(5)f, (5.1)

for all § € A. In fact, ¢(§) = o7'd0 so that ¢ is an automorphism of A, that is
¢ : A — A is a group isomorphism.

We say that a map f : X — X satisfying the condition (5.1) is twisted equivariant.
Since gV is a general A-equivariant diffeomorphism satisfying ¢V (zo) = o, it
follows that f is a general twisted equivariant diffeomorphism satisfying f(zy) = zo.

It is now interesting to note that there is a simple relationship between the
Poincaré map G and the map f

G =omfm. (5.2)

Since o can always be chosen to be of finite order [13], it follows that there exist
positive integers p,q so that G? = f?. Hence, periodic points of f and G are in
one-to-one correspondence and have the same stability properties.

The spatiotemporal symmetry properties of a solution of the flow can be deter-
mined by using the map f (rather than the Poincaré map G). Let z(t) be a solution
of the flow, z(0) = z¢ € X, § € A. Then,

(o) = 6(wmo) & a(t+7/m)=a'dx(t).

The main philosophy now is to study generic bifurcation from a fixed point for f,
and then interpret the result in terms of the underlying flow.

We introduce the integer k£ to denote the order of the automorphism ¢, that is,
k is the smallest positive integer for which ¢* is trivial. (In [14, 11, 12], twisted
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equivariant diffeomorphisms were called k-symmetric, with reference to the notion of
k as introduced here.) There are basically two cases to consider: either ¢ is trivial
(k=1) and f is A-equivariant, or ¢ is nontrivial (k > 2) and f is not A-equivariant.
We discuss these cases below.

(a) The untwisted case, k =1

When f is A-equivariant, generic bifurcation for f follows the discussion in section 4.
Indeed f is a general A-equivariant diffeomorphism with A-invariant fixed point x;.
It follows that generically A acts either absolutely irreducibly (nonHopf) or A-simply
(Hopf) on the center subspace of L = (df),,. In the nonHopf case, L = £1I so that f
has Birkhoff normal form symmetry A or A X Zs. In the Hopf case, f has Birkhoff
normal form symmetry A x St.

It follows from (5.2) that

(dG)qy = o™L™. (5.3)

Again, we have that certain powers of (dG),, and L coincide so that both linear maps
have the same center subspace E°. Since G is also A-equivariant, it follows in the
nonHopf case that (dG),, = £1.

To summarize, in the case of nonHopf bifurcation, we have shown the following
result. This result can be viewed as a straightforward extension of the work of Fiedler
[5] who treated cyclic spatiotemporal symmetry groups (see also Buono [2] for the
abelian case).

Theorem 5.1 (nonHopf, k = 1) Suppose that a periodic solution with spatiotem-
poral symmetry ¥ and spatial symmetry A satisfying k = 1 undergoes a nonHopf
bifurcation. Then generically A acts absolutely irreducibly on E€ and f : E¢ — E° is
a a general A-equivariant diffeomorphism satisfying f(zo) = o, L=2xI. If L = -1,
then the Birkhoff normal form of f is A X Zo-equivariant.

It is important to clear up possible confusion regarding the parities 1 of the linear
maps (dG)y, and L. These parities are independent and have different consequences.
The parity of (dG),, determines the type of nonHopf bifurcation: (dG),, = 1 corre-
sponds to period preserving bifurcation, (dG),, = —1 corresponds to period doubling
bifurcation. The parity of L determines the Birkhoff normal form symmetry of the
A-equivariant diffeomorphism f that we analyze.

For example, suppose that (dG),, = I and L = —I. Since L = —I, our analysis
of f proceeds as in the period-doubling case in Section 4 leading to period two points
for f. However, since (dG),, = I, the corresponding periodic solutions for the flow
turn out to have period close to that of the underlying periodic solution P.
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It often happens that condition (5.3) precludes the possibility that (dG),, = —1I
in the nonHopf case. For example, suppose that > = A x Z,,. Then o can be chosen
to be a generator of Z,, so that ¢* = id. If in addition, m is even, then we have
(dG)y, = L™ = (£I)™ = I. This phenomenon is referred to as suppression of period
doubling [23].

The situation for Hopf bifurcation in the untwisted case is analogous.

Theorem 5.2 (Hopf, k = 1) Suppose that a periodic solution with spatiotemporal
symmetry X and spatial symmetry A satisfying k = 1 undergoes Hopf bifurcation.
Then generically E° is A-simple, equivalently E° is an irreducible representation of
type C for A x S*.

In Birkhoff normal form f : E¢ — E¢ is a general A x S'-equivariant diffeomor-
phism satisfying f(xo) = xo, L = al, where v is a complex number in general position
on the unit circle.

(b) The twisted case, k > 2

Recall that E° is the center subspace of both the linear map (dG),, (which is A-
equivariant) and the linear map L. In particular, E¢ is L-invariant as well as A-
invariant and we can define an action of the closed group A; on E° generated by
the actions of A and L. We note that in Section 4, the linear maps (dG),, and L
coincide so that the group A defined in Remark 4.3 is the same as the group Ar. In
this more general situation, Ay, is a semidirect product with normal subgroup A and
the product structure is defined by the automorphism ¢.

The next theorem is a generalization of some of the results described in Re-
mark 4.3.

Theorem 5.3 ([13]) Suppose that E€¢ is nontrivial (so that there is a bifurcation).
Generically, L is semisimple, Ay is compact and Ay, acts irreducibly on E°.

Moreover, either Ap, acts absolutely irreducibly and (dGQ),, = £I (nonHopf bifur-
cation), or the action of Ay is irreducible of type C and (dG),, = al where o is a
complex number in general position on the unit circle (Hopf bifurcation).

Taken alone, this result is not so useful. First, we require an explicit description
of Ap and of its representations. Second, the diffeomorphism f : E° — FE° is not
A-equivariant and hence is certainly not Ay-equivariant.

The second question is answered by Birkhoff normal form theory for twisted equiv-
ariant maps [11]. Write f = Lh. Since f and L are twisted equivariant, it follows
that h : F¢ — E°is A-equivariant in the usual sense. Moreover, since L is semisimple
it follows that in Birkhoff normal form f and hence h are L-equivariant. By [11],
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the transformations into Birkhoff normal form can be done so as to preserve twisted
equivariance of f, with the result that h is Ap-equivariant as required.

Theorem 5.4 (nonHopf, k > 2) Suppose that Ay, acts absolutely irreducibly on E°.
Then LF = +1 and hence Ay, is a cyclic extension of A of order k or 2k. In Birkhoff
normal form, h is a general Ap-equivariant diffeomorphism satisfying h(xy) = o,
(dh),, = 1.

Thus, nonHopf bifurcation from periodic solutions with spatiotemporal symmetry
reduces to nonHopf bifurcation from periodic solutions with purely spatial symmetry,
but with G replaced by h and A enlarged to Ay. Moreover, we always reduce to the
period preserving case.

The terminology ‘period preserving’ and ‘period doubling’ is justified in the general
situation of spatiotemporal symmetry by the following calculation. Suppose that x
is a fixed point for h. We compute that

G(z) = o™ f™(x) = a™(Lh)™(x) = c™L™h™(z) = 0™ L™z = (dG)z,x = L.

Note that this calculation relies on the fact that A commutes with L when in Birkhoff
normal form.

Symmetry breaking from Ay in the bifurcation problem can be related to sym-
metry breaking from the spatiotemporal symmetries of the periodic solutions. In
particular, L™! can be identified with the spatiotemporal symmetry (o, %) (the spa-
tial transformation o combined with a %th period time-shift) in the period preserving
case. In the period doubling case, L™ is identified with (o, 5--).

More precisely, a fixed point of A with isotropy containing L~7¢ represents a

periodic solution with symmetry (o74, %) (resp. (074, ﬁ))

Theorem 5.5 (Hopf, k > 2) Suppose that E° is an irreducible representation of
type C for Ar. Then L¥ = ol where o € C is in general position on the unit circle.
Define Ly = a~Y/*L and set f = Loh. Generically, Ay = Ar, x S* where Ar, is a
cyclic extension of A of order k, and E° is A, -simple. Moreover, in Birkhoff normal
form, h is a general Ar, x S*-equivariant diffeomorphism satisfying h(zo) = o and
(dh)g, = a'/*1.

In the Hopf case, L can be identified with o~ ! in the sense that when j is the
smallest positive integer for which for some § € A, L§ € S' (and so maps the
bifurcating invariant circle of h to itself), then 0774 fixes the bifurcating invariant
torus setwise.

In principle, Theorems 5.4 and 5.5 allow us to carry out the bifurcation analysis
for general spatiotemporal symmetry groups. It should be noted that an important
part in the further analysis consists of determining the irreducible representations
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of the group Ay in the nonHopf case and Ay, in the Hopf case. These groups are
cyclic extensions of order k or 2k of the spatial symmetry group A. In [13], this issue
is discussed in the context of induced representation theory (building the irreducible
representations of Ay, and Ay, given the irreducible representations of A). We also
refer to [13] for further examples and details of this bifurcation theory.

6 Comparison with alternative approaches

In the last section of this paper we would like to point out how our results compare to
some previous attempts to study bifurcation from periodic solutions with spatiotem-
poral symmetry in the twisted case £ > 2. In particular, we mention the papers
[24, 25, 16, 18].

A central problem in the development of the theory has been that the spatial
symmetry group A is insufficient to characterize the bifurcations when £ > 2 and yet
the spatiotemporal symmetry group 3 does not act on the cross-section X and hence
does not a priori act on the center subspace E°. More precisely, the action of A on
E¢ need not extend to an action of ¥ on E°.

To counteract this problem, Vanderbauwhede [24, 25] observed that a certain
group X related to 3 acts on the domain of the Floquet matrix and assumed as a
hypothesis in the case of nonHopf bifurcation that the center subspace of the Floquet
matrix is an absolutely irreducible representation of E€. See also Nicolaisen and
Werner [16]. We know of no direct proof that this hypothesis holds generically, but
the first (indirect) proof is presented in Theorem 6.1 below.

More recently, Rucklidge and Silber [18] restricted to the period preserving case
and, following [12], considered the map f described in Section 5. Even though ¥ does
not act on X, it was assumed as a hypothesis in [18] that ¥ acts on E°. Again, this
hypothesis is justified by Theorem 6.1.

Theorem 6.1 (NonHopf bifurcation) Let P be a discrete rotating wave with spa-
tiotemporal symmetry ¥ and spatial symmetry A, with ¥/A = Z,,.

Period preserving, cf [24, 18] If P undergoes a period preserving nonHopf bifur-
cation, then generically Ay acts on the center subspace as an absolutely irre-
ducible representation of . Moreover, there is a one-to-one correspondence
between the absolutely irreducible representations of Ar and X, with L™ ~ 0.

Period doubling, cf [25] If P undergoes a period doubling nonHopf bifurcation,
then generically Ayp acts on the center subspace as an absolutely irreducible
representation of the group

20 = <A, (U L)) C XX ZQm,

? 2m
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with (id, %) € Yo acting as —I. Moreover, there is a one-to-one correspondence
between the absolutely irreducible representations of Ay and the absolutely irre-
ducible representations of Lo with (id, %) acting as —1I ; the correspondence being
gwen by L' ~ (0, 5).
Proof At nonHopf bifurcation we have
(dQ)y = 0™L™ = +1.

In the period preserving case, we have 6™ L™ = +1I and hence L™ = ¢™. Under the
identification of L~! with o, it follows that every absolutely irreducible representation
of Ay is at the same time also an absolutely irreducible representation of .

In the period doubling case, we have 6™ L™ = —I and hence L™ = —¢™. Under
the identification of L~" with (o, 5), we have L™ = (0™, 3) = o™(id, 5) and it
follows that every absolutely irreducible representation of Ay is at the same time also
an absolutely irreducible representation of ¥, that has (id, %) acting as —1. |

Remark 6.2

1. The groups X and ¥, are precisely the groups that one would expect to act geo-
metrically on the center bundle of a periodic solution at period preserving and period
doubling nonHopf bifurcation. This appears to be the main idea underlying the ap-
proach by Vanderbauwhede [24, 25].

2. A general nonHopf theorem could be formulated with reference to 3y only. Namely,
in the period preserving case, the absolutely irreducible representations of ¥ are pre-
cisely those absolutely irreducible representations of ¥y in which (id, %) acts as +1.

Theorem (NonHopf bifurcation) If P undergoes a nonHopf bifurcation, then
generically Ay acts on the center subspace as an absolutely irreducible representa-
tion of Xo. Moreover, there is a one-to-one correspondence between the absolutely
irreducible representations of Ay and Xg.

In particular, suppression of period doubling arises precisely when (id, %) acts as
+1 in all of the absolutely irreducible representations of .

3. The identifications L™" ~ (0, L) and L™ ~ (0, 5-) can be used directly in the
identification of the spatiotemporal symmetries of periodic solutions represented by
the fixed points arising in the steady state bifurcation of the Aj-equivariant diffeo-

morphism h.

In the case of Hopf bifurcation we can rephrase our results as follows.
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Theorem 6.3 (Hopf bifurcation) If P undergoes a Hopf bifurcation, then generi-
cally Ap = Ar, x S' acts on the center subspace as an irreducible representation of
type C of ¥ x S*.

Proof At Hopf bifurcation we have
(dG)yy = 0™L™ =31 B S

Hence, under the identification of L with 8/™¢~!, it follows that every irreducible
representation of type C of Ay is at the same time an irreducible representation of
type C of ¥ x S1. |

Remark 6.4 We note that there is not necessarily a one-to-one correspondence be-
tween the irreducible representations of type C for the groups Ay, x S' and ¥ x S'.
Indeed, the second group may have many irreducible representations for each irre-
ducible representation of the first group. For example, suppose that A = 1 and
Y = Zgy4 say. In this case, £ =1 so that Ay, = 1. Clearly it is more efficient to work
with the group S* than with the group Zss x S* even though working with the second
group does not lead to error.
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