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It is well known since the work of Sinai, Ruelle and Bowen (see for example [8, 33, 31])
that mixing uniformly expanding and uniformly hyperbolic dynamical systems enjoy
strong statistical properties, such as exponential decay of correlations and the central
limit theorem, for sufficiently regular observations.
a great deal of effort to extend these results to more general classes of dynamical
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Abstract

We consider the statistical properties of endomorphisms under the assump-
tion that the associated Perron-Frobenius operator is quasicompact. In partic-
ular we consider the central limit theorem, weak invariance principle and law of
the iterated logarithm for sufficiently regular observations. Our approach clari-
fies the role of the usual assumptions of ergodicity, weak-mixing and exactness.

We also give sufficient conditions for quasicompactness of the Perron-
Frobenius operator to lift to the corresponding equivariant operator on a com-
pact group extension of the base. This leads to statistical limit theorems for
equivariant observations on compact group extensions.

Examples considered include compact group extensions of piecewise uni-
formly expanding maps (for example Lasota-Yorke maps), and subshifts of fi-
nite type, as well as systems that are nonuniformly expanding or nonuniformly
hyperbolic.

Introduction

systems and observations (see for example the recent surveys in [1, 2, 35]).

Since then, there has a been



One approach is to study the rate of decay of certain transfer operators or Perron-
Frobenius operators when restricted to suitable function spaces. In many important
cases, it is possible to prove that these operators are quasicompact leading to expo-
nential decay rates. Exponential decay of correlations follows immediately, while the
central limit theorem follows from an idea of Gordin [17]. A functional version of
the central limit theorem is also known to hold in such situations and it was recently
noticed [16] that the upper half of the law of the iterated logarithm is valid (provided
the relevant function space can be chosen to lie in L*).

In a different direction, [16] considered compact group extensions of uniformly
hyperbolic diffeomorphisms and, motivated by [28], restricted to a class of equivariant
observations. Using a combination of existing techniques and new ideas, it was shown
that (improved versions) of the statistical properties described above are inherited by
the group extension. In particular, we note the improved results on nondegeneracy
of the central limit theorem in [16].

In this paper, we describe new results in the theory of statistical properties of
(a) dynamical systems, and (b) their compact group extensions. In direction (a), we
give an account of the implications of the quasicompactness of the Perron-Frobenius
operator for the statistical behaviour of endomorphisms. Our approach clarifies the
usual assumptions of ergodicity, weak mixing, and exactness. In particular, in contrast
to most of the literature, our results do not require weak mixing or exactness.

In direction (b), we show that certain axioms for quasicompactness described in
Keller & Liverani [24] lift to the compact group extension setting, at the level of
equivariant observations. We are claiming not that quasicompactness automatically
lifts, but that certain sufficient axioms for quasicompactness lift. Since these axioms
hold very generally, we are able to consider a large collection of examples. Thus,
we greatly generalise the applicability of the ideas in [16], at the same time relaxing
certain assumptions such as weak mixing.

The remainder of this paper is organised as follows. In §2, we discuss growth
rates of ergodic sums at the level of isometries on a Hilbert space H. We show how a
quasicompactness assumption leads directly to a martingale approximation, existence
of the variance, and square root growth in L2, (In this section, there is no dynamical
system. The setting is analogous to the von Neumann mean ergodic theorem.)

In §3, we specialize to the case H = L*(X) where f : X — X is an ergodic map
satisfying a quasicompactness property. The central limit theorem (and much more)
follows directly from the martingale approximation in §2.

In §4, we discuss the axiomatic framework of [24] guaranteeing quasicompactness
of the Perron-Frobenius operator. Compact group extensions are introduced in §5 and
it is shown that the axioms for quasicompactness in §4 lift to spaces of equivariant
observations.

Finally, a number of applications are considered in §6.



2 Quasicompact operators on Hilbert space

Let H be a Hilbert space and U : H — H an isometry. We are particularly interested
in the case when U is not invertible. Let U* : H — H be the adjoint of U and note
that U*U = I. We recall the following basic properties of the spectra of U and U*:

e The spectrum of U lies on the unit circle and the spectrum of U* lies in the
closed unit disk.

e If o € C and |a| = 1, then Uv = aw if and only if U*v = @v. (One direction
follows immediately from the fact that U*U = I. In the other direction, compute
directly that (Uv — av,Uv — aw) = 0.)

(We note that in general U* may have eigenvalues @ with |a| < 1.)

Given v € H, we define vy = Z;il Ulv. By the mean ergodic theorem, vy =
N7mv 4+ o(N) as N — oo where 7 : H — ker(U — I) is the orthogonal projection.
(That is, limy %”UN — N7v||g =0.)

In this section, we are interested in obtaining more precise information on the
growth of vy — N7v under a certain “quasicompactness” hypothesis:

Definition 2.1 Let F C H be a Banach space such that U and U* restrict to
bounded operators on F'. The operator U* : F' — F'is quasicompact if U* : F — F
has essential spectral radius p < 1.

It follows from quasicompactness that U* has at most finitely many eigenvalues on
the unit circle, that these eigenvalues have finite multiplicity, and that the rest of the
spectrum is contained in a disk around the origin of radius less than 1. (We note
that our definition is slightly nonstandard, since we do not require that there exist
eigenvalues o with p < |a] < 1.)

By quasicompactness, there is a closed U*-invariant splitting F' = F; & F5 where
Fy =ker(U — I) = ker(U* — I). Again it is the case that vy = Nwv for all v € F; and
o]z = o(N) for all v € F5.

Theorem 2.2 Regarding U as an operator on F' and U* as an operator on Fy, we
have Fy = ker U* @ Im(U — I).

Proof First, we show that ker U* N Im(U — I) = {0}. Suppose that U*v = 0 and
v=Uy—y where y € F. Then 0 = U*v = y — U*y. It follows that Uy = y (since
U*y = y implies Uy = y) and hence v = 0 as required.

Second, we show that F» = kerU* + Im(U — I). Let F, C F5 be the sum of
the eigenspaces corresponding to eigenvalues on the unit circle (other than 1). Note
that F, is finite dimensional (possibly trivial). The quasicompactness hypothesis
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guarantees that we have the further closed U*-invariant splitting F;, = F,, & F3 where
U* : F3 — Fj5 has spectral radius p < 1.

If v € F, is an eigenfunction of U, so Uv = aw, then v = (a — 1) YU — I)v.
Hence F,, C Im(U — I).

It remains to show that F3 = ker U* + Im(U — I). Given v € Fj, define y =
> j>1(U *Yv. Tt follows from the spectral radius assumption that the series converges

to y € F5. Now compute that U*{v - Uy + y} =0. |

For reasons that will become clear in Section 3, we say that w € F'is a martingale
if Uw = 0. By Theorem 2.2, if v € F;, then there is a martingale approximation

v=w+Uy—y, wherew,y€ F,and U*w =0.

Since vy = wy + U™y — y, many statistical properties for v follow from the corre-
sponding property for the martingale w. One result in this direction is the following:

Corollary 2.3 Let v € Fy and write v =w + Uy — y as above. Define ¢ = |w||g.
Then ||wy||lg = VNo and

lonllz = VNo +O(1).

In particular, o = limy_0 < |lon|g.

Proof Since U*w = 0, we compute that if j > k then
(U, Urw) = (U7 Fw, w) = (w, (U Fw) =0

and similarly for j < k. On the other hand, (U’w,U’w) = (w,w). It follows that
lwnllz = V'N||lw||g. Next, consider the remainder term r» = Uy —y. Then ry =
UNy —y and so ||ry|lz < 2||y||x- n

3 Statistical properties of dynamical systems

In this section, we apply the results in §2 to the case where U is the Koopman operator
associated to a measure-preserving transformation. Suppose that X is a probability
space with measure m and o-algebra B. Let f : X — X be a (noninvertible) measure-
preserving transformation. We take H = L?(X) and define the isometry U : H — H
by Uv = v o f. The adjoint U* satisfies U*U = I as before. In addition UU*v =
E(v|f~'B), where E(-|f~'B) is the conditional expectation operator.

Again, if v € H we define vy = Z;VZI Uy = Z;.V:lv o fJ. By the mean ergodic
theorem, vy = Nmv+o(N) in H where 7 : H — H is the orthogonal projection onto
ker(U —1I). (If f : X — X is ergodic, then v = [, vdm.)
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As in Definition 2.1, we assume quasicompactness, so there is a Banach space
F' C H such that U and U* restrict to bounded operators on F' and U* : F' — F has
essential spectral radius less than one. By Corollary 2.3, for all v € F', we can define
the variance 0? = limy_,0 +||vy — N7v||%.

Theorem 3.1 (Central Limit Theorem (CLT)) Assume quasicompactness and

that f : X — X is ergodic. Let v € F with vadm = 0. Then \/—%vN converges

in distribution to a normal distribution with mean zero and variance o®. That is

1

1 b 2 /o2
mix € X : —=vy <b} — / eV /207
{ VNN } V2o J_ Y

as N — oo for all b € R.

Proof By Theorem 2.2, we can write vy = wy + UMy — y a.e., where w,y € F
and U*w = 0. Moreover, since y € L? it follows from the pointwise ergodic theorem
that UNy = yo fV = o(N'/?) a.e. Hence it suffices to prove that ﬁw]v converges in

distribution to a normal distribution with mean zero and variance o?.

But U*w = 0 implies that E(w|f'B) = 0. Passing to the natural extension [32],
we obtain a bi-infinite ergodic stationary martingale {Y; : j € Z} where Y_; = wo f*
for s > 0 (cf. [16, Remark 3.12]). It follows from [5] that \/ﬁ Z;V:_Ol Y; converges to

a normal distribution with mean zero and variance [ Y as N — +oo. In particular,
N — . )
7= o1 wo f7 satisfies the CLT with mean zero and variance o = [Jw||%. N

We have the following criteria for degeneracy in the CLT (o2 = 0).
Proposition 3.2 Suppose that v € F' and mv = 0. Then
(a) 0> =0 if and only ifv=yo f —y for somey € F.

(b) If F C L*, then o = 0 if and only if vy = O(1) uniformly a.e. Indeed,

(¢c) If f: X — X is ergodic, then 0> = 0 if and only if vy = o(v/N) a.e.
(d) If f : X — X is ergodic, and F C LP for some p > 2, then o = 0 if and only
if vy = o(N'/P) a.e.

Proof Recall the decomposition v = w+yo f —y where U*w = 0. By Corollary 2.3,
o? =0 if and only if w = 0 a.e. proving part (a).

By part (a), if 0% = 0, then vy = yo fV¥ — y. Part (b) follows immediately. As
in the proof of Theorem 3.1, the pointwise ergodic theorem guarantees that yo f~ =
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o(N 1/ 2) proving one direction of part (c). To prove the reverse direction, note that
if vy = o(v/N), then ﬁv]v converges to zero a.e., and hence in distribution. But
since f is ergodic, Theorem 3.1 guarantees convergence in distribution to a normal
distribution with variance 2. Hence, this is the degenerate normal distribution with

0% = 0. Part (d) is proved in the same way as part (c). |

Remark 3.3 It is well-known that the CLT is degenerate if and only if v = yo f—y for
some y € L?. Our conditions in Proposition 3.2, which follow [16], are a substantial
improvement. For example, suppose that X is a topological space with open sets
having positive measure, and that f : X — X, v — R are continuous. Under the
assumptions of quasicompactness, ergodicity of f : X — X, and F' C L*°, we have
that o = 0 if and only if there is a constant C such that |vy(z)| < C for all z € X
and N > 1. In particular, if z is a periodic point of period p, then v,(z) = 0.

Set Wx(0) = 0, and W (t) = one = \/—%ijglu ofi, t=1/N,2/N,...
Linearly interpolating on each interval [(r — 1)/N,r/N], r > 1, we obtain a sequence
of random elements Wy € C([0,00),R). We have the weak invariance principle
(which is a refinement of the CLT):

Theorem 3.4 (Weak invariance principle (WIP)) The sequence {Wy} con-
verges weakly in C([0,0),R) to an n-dimensional Brownian motion with variance o>.

Proof Billingsley [6] proves the WIP for stationary ergodic L? martingales, so the
result follows along the lines of Theorem 3.1. |

Theorem 3.5 (Upper law of the iterated logarithm (Upper LIL)) Assume
quasicompactness and that f : X — X is ergodic. Suppose further that F C L*°. Let
v € F with vadm =0. Then

) v
lim sup N o almost surely.

<
Nooo V2N loglog N —

Proof Again, we write vy = wy + U™y — y where U*w = 0 and it suffices to prove
the upper LIL for the sequence {wy}. As pointed out in [16, §3(c)], the condition
U*w = 0 implies that {wy } is a “weakly multiplicative sequence”. Sincew € F C L,
the result follows by [34]. |

Remark 3.6 (a) The full law of the iterated logarithm (LIL) is the similar conclusion
with < replaced by =. We do not know whether the LIL holds under our hypotheses,
or whether it is possible to remove the L* assumption.



(b) Passing to the natural extension [32], it follows from the methods in [16] that the
LIL (and much more, including the almost sure invariance principle (ASIP)) can be
proved in backwards time. Moreover, the L* assumption is not required.

In certain situations, such as for ergodic compact Lie group extensions of Axiom A

base dynamics, these statistical properties can be deduced a fortiori in the correct
time direction [16]. The approach in [16] requires two ingredients: (i) that there is a
method for passing from invertible transformations to noninvertible transformations
without losing too much regularity in the observations, and (ii) that the system of
dynamical systems is closed under time reversal.
(c) The difficulty with time directions described above is a possibly serious limitation
of the martingale approximation approach to proving the ASIP [16]. The same issue
arises in Conze & le Borgne [14]. An alternative approach to proving the ASIP is
presented in Hofbauer & Keller [22].

Remark 3.7 Assume quasicompactness and in addition that f : X — X is weak
mixing. Then by standard arguments, decay of correlations holds for observations
in F. Indeed, there are constants C' > 0 and p € (0,1) such that |[(U*)"v — [v]| <
Cp™||v||, for all v € F and n > 1. Hence

‘va-wof”dm—vadmewdm‘ < Cp™||vllfwlz,

for all v € F, w € L?, n > 1. It follows easily that if v € F and [, vdm = 0, then
the variance is given by 0® = [(v?dm +2377, [Lv-vo fldm.

Vector-valued observations We now generalise to the case of vector-valued ob-
servations v : X — R¢. We continue to consider a measure-preserving transformation
f: X — X with H = L*X) = L*(X,R), and assume that F C H is a Ba-
nach space such that U* : F — F is quasicompact. Define H¢ = L?(X,R?) and
Fé={v=(v1,..,vq): X > R¢|v; €F, j=1,...,d}.

The operator Uv = vo f acts on vector-valued observations and defines an isometry
on H? and a linear operator on F?. Similarly, U* acts component-wise on H? and
Fd. Tt is immediate that U* : F¢ — F'? has essential spectral radius p < 1 so that
quasicompactness holds with F¢ C H? Hence, the results of §2 apply to functions
v € F.

In particular, the scalar variance 02 = limy_,o w ||Un |54 is defined for all v € F.
However, it is natural (following Field et al [16]) to define the d x d covariance matrix

N—oo

1
¥ = lim —/ vy - v dm  (outer product).
N Jx



Note that this limit is well-defined when U*v = 0, in which case ¥ = f R vl =
% fX vy - v} for all N. Hence, ¥ is well-defined for all v € F¢. Moreover, ¥ =
E(Y;Y}), hence ¥ is symmetric and (Xz,z) > 0 for all z € R%.

Next, we suppose further that f : X — X is ergodic. Let v € F§{ so that
[y vdm = 0. Given ¢ € R¢, we have the decomposition ¢ v = ¢« w + o(N'/?) a.e.,
where U*(c-w) = 0. As in Theorem 3.1, ﬁC'UN converges in distribution to a normal
distribution with mean zero and variance o2 = |c- w|3 = ¢! Y¢. By the Cramer-Wold
technique (see for example [7, Theorem 29.4]) this implies that \/—lﬁvN converges in
distribution to a d-dimensional normal distribution with mean zero and covariance
matrix Y. The distribution is nondegenerate if ¥ is nonsingular.

Similarly, the d-dimensional version of the WIP is valid for all v € F¢ with
Jxvdm = 0 when f : X — X is ergodic. In addition, if F C L%, then the up-
per LIL holds for ¢- v for all ¢ € R?. If f : X — X is weak mixing, then we obtain a
d-dimensional analogue of exponential decay of correlations [16].

4 Quasicompactness and Perron-Frobenius

In this section, we interpret the operator U* : L? — L? as the Perron-Frobenius op-
erator P : L' — L' associated to the measure-preserving transformation f : X — X.
Following Keller & Liverani [24], we give an axiomatic approach to quasicompactness.

As before, we let X be a probability space with measure m and o-algebra
B and f: X — X is a (noninvertible) measure-preserving transformation. Given
1 < p < o0, define the Koopman operator U : LP — LP by Uv = v o f. For each p,
U:L? — LPis an isometry.

Given v € L', we define Pv by demanding that

JxPv-wdm= [,v-Uwdmn= [,v-wo fdm

for all w € L*®. The operator P : L' — L! is called the Perron-Frobenius operator.

Clearly, this also defines P : LP — L? for all 1 < p < oo (restricting to w € L? where

1/p+1/g=1). When p > 2, the operator P coincides with the operator U* in §2.
We assume the following:

(F1) F and F' are Banach spaces, F C F' C L' with norms ||| > || respectively,
and F' is densely embedded in F".

(F2) FC L?and ||| > ||
(F3) {veF:|v||=1}is compact in F".

(F4) The Perron-Frobenius operator P restricts to a bounded operator on F' and F'.
Moreover, there is a constant Cy > 0 such that |P"| < Cj for all n > 1.
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(F5) (Lasota-Yorke inequality) For some ny > 1, there are constants Dy > 0 and
o € (0, 1) such that ||P™v|| < Dy|v| + O||v|| for all v € F.

Remark 4.1 If F' = L? for some 1 < p < oo or F' = C(X), then hypothesis (F4) is
automatically satisfied with Cy = 1.

Example 4.2 In §6, we consider a number of examples where (F1)—(F5) are satisfied.
One such example is Holder observations on a one-sided subshift of finite type. For
details, see Ruelle [33], Bowen [8], or Parry & Pollicott [31]. Let 0 : X — X denote an
irreducible (not necessarily aperiodic) subshift of finite type. Here X C {1,...,k}"
for some k. Fix 6 € (0,1) and define dy(z,y) = 0 where N > 1 is least such
that x; = y; for 1« < N. Let Fj be the space of functions that are Lipschitz with
respect to this metric. Let |g|y denote the Lipschitz constant for g € Fy and define
the norm ||g]lg = |9 + |¢]o- Then Fy is a Banach space. Moreover, taking F' = Fjy
and F' = C(X), it is immediate that (F1) and (F2) are valid, while (F3) follows
from Arzela-Ascoli. By Remark 4.1, (F4) is automatic with Cy = 1. Finally, the
“basic inequality” [31, Proposition 2.1] guarantees that (F5) holds for a large class of
measures. (Technically speaking, (F5) holds whenever m is an equilibrium measure
corresponding to a potential ¢ € F. The Perron-Frobenius operator is the Ruelle
transfer operator corresponding to a normalized version of g.)

We note that Fy is a Banach algebra. Indeed, if f, g € Fy, then |fglo < |floollgllo+

|9lool fllo- Since | fgloo < |floolgloo, it follows that || fglle < [|fllallglle-

Example 4.3 Another example is piecewise expanding maps of an interval [10, 25].
Recall that a function g : [0,1] — R is of bounded variation, g € BV, if

var(g) = sup Z |9(t;) — g(tj-1)] < oo.
O<to<ti<<tp<l ;-7 1

The norm ||g||sy = |g|1 + var(g) is equivalent to |g|s + var(g) (since |g|; < [g]oo <
lg|l1 + var(g)) and BV is a Banach space. If f, g € Fy, then var(fg) < |f|e var(g) +
|g|loo var(f). A straightforward calculation shows that ||fgllsv < 2||fllsv|gllBv-
Hence, BV is a Banach algebra.

Again, (F1), (F2) and (F4) are immediate, while (F3) is standard (see for exam-

ple [22, Lemma 5]). Condition (F5) is discussed in detail in §6.

Proposition 4.4 Suppose that (F4) is valid. Then (F5) is equivalent to the condition
that there are constants E > 0, 0 € (0,1) such that ||P™v|| < E(|v| + 6"||v||), for all
veF,n>1.

Proof If the conclusion holds, then choose ng large so that 6, = 0™ E < 1.



Conversely, suppose that (F4) and (F5) hold. By induction,
[P0 < CoDo(1 +0p + - - - + 6) [v] + B5||v]| < C'Jv| + 67|o],

where C' = CyDy/(1 — b)) and 0 = 98/”0. Write n = jng + k where k < ny.
Then ||P™]| < C'|Pkv| + 0716™||P*v|| so the result follows with E > C'C, and
E > 05" max{||P|, |P?,..., |P"|}. u

It follows easily that P has spectral radius at most 1 in F' and F’.

Theorem 4.5 Assume (F1)-(F5). Then the essential spectral radius pess of P : ' —

F is strictly less than 1. In fact pess < 93/"0 where 0y, ng are as in (F5) and pess < 0
where 0 is as in Proposition 4.4.

Proof See Hennion [18]. (See also [24].) n

Thanks to Theorem 4.5, we can apply the results of §2 (with H = L? F as
given, and F’ disregarded from now on) to investigate the sequence of partial sums
Uy = E;V:_Ol vo f/ where v € F. Consider the P-invariant splitting F' = F} ® F, where
Fy =ker(U—-I) = ker(P—1I) (recall P = U*). Since vy = Nv when v € F}, we restrict
attention to v € F,. Then Theorem 2.2 and Corollary 2.3 are valid. In particular,
the variance 02 = limy_,c0 = |vn |3 is defined for all v € F, and |vy|s = VNo + O(1).

If we assume further that f : X — X is ergodic, then the conclusions of §3 hold:

Theorem 4.6 Assume (F1)-(F5) and that f : X — X is ergodic. Suppose that
v € F has mean zero. Define 0? = limy_;o0 %‘UN@ Then

(a) {vn} satisfies the CLT and WIP with variance o*.

(b) 0% =0 if and only if v is a coboundary in F, and if and only if vy = o(N'/?)
a.e. If F C L*®, then 0®> = 0 if and only if vy = O(1) uniformly a.e.

(¢) If F C L™, then the upper LIL holds for {vn}.

(d) If T is weak mizing, then we obtain exponential decay of correlations.

Vector-valued observations In this section, we have deduced statistical proper-
ties of real-valued observations from quasicompactness of the operator P : F' — F
where F'is a Banach space of real-valued observations. Statistical properties of vector
valued observations in F'? can be proved just as in §3(c).

It is also immediate that hypotheses (F1)—(F5), which imply quasicompactness
for P: F — F, also imply quasicompactness for P : F¢ — F?. (Clearly, the essential
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spectral radius on F is less than one if and only if the essential spectral radius on F'¢
is less than one.)

Another way to see quasicompactness on F¢ is to note that hypotheses (F1)-
(F5) immediately extend to the Banach spaces F¢ C (F')¢ c L'(X,R?¢) so that
Theorem 4.5 can be applied directly on F¢. The observation that (F1)—(F5) hold for
F C (F')? is crucial in §5.

Transfer operators So far, we have considered the Perron-Frobenius operator P
corresponding to an f-invariant measure m. In applications, often quasicompactness
is proved first for a preliminary Perron-Frobenius operator A corresponding to a
“reference measure” ¢ that is not f-invariant. See §6 for examples. We shall refer to
A as a transfer operator to distinguish it from the Perron-Frobenius operator P. The
two measures are related by dm = @df where the density function ¢ > 0 is a fixed
point for the the transfer operator (Ap = ¢). Hence Pv = o=t A(pv).

For many (but not all) applications, quasicompactness for A immediately implies
quasicompactness for P. If multiplication by ¢ induces linear isomorphisms on F’
and F', then we have the following useful result:

Lemma 4.7 Suppose that A, B and M are linear operators on both F' and F' such
that M : F' — F' and M : F — F are linear isomorphisms and B = M~YAM. Then
B : F' — F' satisfies (F4) and/or (F5) if and only if A does.

Proof First, suppose that A satisfies (F4). Since |A"| < Cy for all n, |B"| =
IM~TA"M| < Cy|M~1||M|, so that B satisfies (F4) with constant Cy|M ~'||M|. Next,
we verify (F5). By Proposition 4.4, |A"v|| < E(|v| + 6"||v||) and so

1B™o|| = [|M A" Mol < |MH[[|A"Mo|| < E[|M | (|Mo] + 0| Mo]))
< EIMY(M|]+ 01 M[lol]) < EIMHI(M]+ [M4]) (o] + 0" [l0]]),

so that B satisfies the condition in Proposition 4.4 with constant E|M~!||(|M| +
||M||). Hence, B satisfies (F5). |

5 Compact group extensions

In this section, we consider compact group extensions. The aim is to establish sta-
tistical properties of equivariant vector-valued observations which were introduced
in [28] and occur naturally in applications to dynamical systems with symmetry.
Our treatment closely follows [16] who considered group extensions of Axiom A
diffeomorphisms. In [16], use was made of the equivariant Ruelle operator which was
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studied by Parry & Pollicott in [30, 31]. More generally, we consider an equivariant
Perron-Frobenius operator which is a twisted version of the usual Perron-Frobenius
operator. Our main results generalise results of [16] in the Axiom A setting, with the
improvements that we do not require weak mixing nor that G is connected.

Suppose that f is a measure-preserving transformation on (X, u). We assume
that the Banach spaces F C F' C L'(X,R) satisfy axioms (F1)-(F5) in §4. These
properties are inherited by F'? C (F')¢ C L*(X,R?). From now on, we write F instead
of F? and F' instead of (F")¢, so that F C F' C L'(X,R%).

Let G be a compact Lie group with Haar measure v. Given h : X — G measurable,
consider the skew product T : X x G — X x G given by T'(z, g) = (fz, gh(z)). Then
T is a measure preserving transformation on (X x G,m) where m = u X v.

Suppose that G acts orthogonally on R?. For each g € G, write Myv = gv and
given h : X — G, write (Myv)(xz) = h(z)v(z). Note that M, is an isometry on
LP(X,R?) for all p > 1. Let hy(z) = h(z)h(fz)---h(f"'x). To obtain control over
the norms | | and || || on F’ and F under the action of M, , we restrict to measurable
cocycles h : X — G that satisfy:

(G1) For alln > 1, Mh_n1 is a bounded operator on F'. Moreover, there is a constant
Cy > 0 such that [M, '] < C; for all n > 1.

(G2) Let ny and 6y be as in (F5). Then M, = Mh_nl0 is a bounded operator on F,

and moreover there exist constants D; > 0 and ¢ € (0, %) such that ||M,v|| <
Dy |v| + c||v]| for all v € F.

Remark 5.1 Suppose that f : X — X and h : X — G are measurable. Since G is
compact, automatically h € L®(X,G) with |hle = 1. If F' = LP(X,R%) for some
1 < p < oo, then (G1) is satisfied with C; = 1. The same is true if f and h are
continuous and F' = C(X,R%). Hence (G1) is satisfied in Examples 4.2 and 4.3.

Example 5.2 Continuing Example 4.2, if F = Fy(X,R%) and F' = L*°(X,R?), then
it is natural to restrict to cocycles h : X — G that are Lipschitz with respect to the
metric dg on X. We denote the space of such cocycles by Fy(X,G). Then |M,v|y <
[ M.|o|v]oo + | Miloo|vlg = |[Milplv]eo + [v]p, and so |M.v]ly = |Mv]eo + [Mv]p <
A llolv]oe + [|v]lo- Hence (G2) is satisfied for h € Fyp(X,G) with Dy = ||h,} s and
c=1.

Example 5.3 Continuing Example 4.3, if FF = BV (with X = [0,1]), then it is
natural to restrict to BV cocycles h : X — G. In particular, for certain classes of
piecewise monotone functions f : X — X, including functions whose domains of
monotonicity form a finite partition of [0, 1], it is easily seen that M, ' BV - BV
is a bounded operator for each n, and || M, '|| = ||k, || sy = 1+ var(h,").
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In contrast to the previous example, it is necessary to add a further restriction
on h. Let ng and 6y be the constants in (F5). We assume that var(h,)) < % - 1.
(Equivalently ||, |lsv = ¢ < g&.) Then ||[M.|| < ¢ < 5 and (G2) is satisfied with
Dy = c = |[hy, |l sv.

Alternatively, if f : X — X is piecewise Lipschitz, then we can take h: X — G to
be piecewise Lipschitz with no restriction on the Lipschitz constant L(h). The crucial
estimate is var(M,v) < L(h,)|v]; 4+ var(v). (Note that the L' norm appears in this
estimate, whereas before we had only the L* norm. The function spaces F' = L!,
F = BV are as before.)

For h : X — G measurable, we define the equivariant Perron-Frobenius operator
Py : LY(X,R?) — LY(X,R?) by Pyv = PM; 'v. Observe that P} = P"M, .
Proposition 5.4 Assume (F1), (F4), (F5), (G1) and (G2). Then
(a) There is a constant C7 > 0 such that |PJ'| < C} for allh € H, n > 1.

b) There are constants D} > 0 and 6y € (0,1) such that ||P°v|| < D}|v| + 65||v
1 0 h 1 0
for allv € F.

Proof For v € F', |Pfv| = |P"M, 'v| < Cy|M, 'v] < CyCilv|, proving (a). To
prove (b), compute that

[Py 0]l = [P M| < Do|Myw| + 6ol Myv|| < DoCrlv| + bo(D1|v] + clv]])

so the result follows with D] = DyC + 6yD; and 6, = cby. |

Let L?, consist of equivariant observations ¢ : X x G — R¢ of the form ¢(z, g) =
M,v(z) where v € LP(X,R?) and define |¢|, = |v|,. Symbolically, we can write
L, =g - LP(X,RY).

Proposition 5.5 Let P : L'(X x G,RY) — L'(X x G,R%) denote the Perron-
Frobenius operator corresponding to the G-extension T : X X G — X X G. Then
P|Lé = MgPhMgl.

Proof Let g =g-ve L; and v = g-w € L. Then

Jxxg MgPaM -7 dm = [ Pov-w'dp = [ PM; v - wdp

= fXMh’lv-wTofd,u: va - (Mpwo f)du
= Jxxg Mg+ (Mywo f)TMgdm = [y . é-97oT dm.
|

Similarly, define the spaces Fg = ¢ - F' with norm ||g - v|| = ||v|| and so on.
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Proposition 5.6 The operator P= MgPhMg’1 restricts to Fj, and Fg and satisfies
properties (F1)—(F5).

Proof Properties (F1)-(F3) are immediate since F/; and Fg are isomorphic to F’
and F'. Properties (F4) and (F5) are Proposition 5.4(a) and (b) respectively. |

We can now apply Theorem 4.5 to deduce that P Fg — Fg is quasicompact.
We obtain the following conclusions:

Theorem 5.7 Assume (F1)-(F5) for f : X — X and (G1), (G2) for h: X — G.
Suppose that T : X x G — X X G is ergodic and that ¢ € Fg has mean zero. Then

(a) The d x d covariance matriz ¥ = imy_ o~ [y, o v - O% dm is well-defined
and ¥ : R = R commutes with the action of G on R?.

(b) {én} satisfies d-dimensional versions of the CLT and WIP on X x G with
covariance matriz .

(c) det ¥ = 0 if and only if there is a G-invariant subspace V C R? such that my ¢
is a coboundary in Fg, and if and only if myéy = o(NY/?). If F C L, then
o? =0 if and only if there is a G-invariant subspace V' such that Tyoén = O(1).

(d) If F C L, then the upper LIL holds for each component of {¢n}.

(e) If T is weak mizing, then we obtain exponential decay of correlations.

Proof The definition of ¥ and parts (b), (d) and (e) are immediate from quasicom-
pactness and §3. The statement about ¥ commuting with G' and part (c) are proved
as in [28] (see also [16]). |

Remark 5.8 By [27], we obtain the stronger results that the CLT, WIP and upper
LIL hold also on X x {go} for each fixed gy € G. In the remainder of this paper, we
will not mention this explicitly.

6 Applications

In this section we give examples of dynamical systems to which our results apply.
Let f : X — X be a mapping with certain regularity properties. Consider a trans-

fer operator A acting on sufficiently regular functions v as (Av)(z) = >_;,_, 9(y)v(y)

where ¢ is a positive bounded function (again with certain regularity properties).
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Suppose that £ is a Borel probability measure satisfying A*¢ = ¢ (that is [ A*v dl =
Jwvde for all v). Then [Avwdl = [vwo fdl. Thus A is the Perron-Frobenius
operator corresponding to the measure . We do not assume that ¢ is f-invariant.

Now suppose that ¢ > 0 is a fixed point (Ap = ¢) for A acting on a suitable func-
tion space. Then we define the f-invariant measure dm = ¢ d¢ and the corresponding
Perron-Frobenius operator Pv = ¢~ A(pv).

In the rest of this section, we refer to £ as a reference measure and m as an
equilibrium measure. Note that in earlier sections, we chose to work directly with P
and m, bypassing A and /.

(a) One dimensional monotone maps

Hofbauer & Keller [22] have analysed a class of endomorphisms of a totally ordered,
order complete set X (usually X is taken to be the unit interval [0,1]). Here f: X —
X is piecewise monotonic and order-continuous and the transfer operator A acts
on the space of bounded measurable functions by Av(z) = >, _, g(y)v(y) where
g is a function of bounded variation on [0, 1] with 0 < g(z) < d < 1. They show
the existence of a reference Borel probability measure ¢ on X satisfying A*¢ = ¢
in the sense that [ Avdl = [wvdl for all bounded measurable v : X — R. Under
these assumptions, there exists a maximal absolutely continuous invariant measure
dm = ¢ df where ¢ is a density of bounded variation.
Examples of the systems considered in [22] include:
(i) Lasota-Yorke maps: piecewise monotonic C? transformations f of the unit interval

[0, 1] which satisfy |f’| > 1. In this setting, ¢ is Lebesgue measure and g(z) = | f,}w”.

For earlier results on these maps see [25, 26, 38, 36, 9].

(ii) Piecewise monotonic transformations f on [0, 1] with hyp(f) > 0 [20, 21]. Setting
g9(x) = exp(—hiop(f)) < 1, it can be shown that there exists £ such that A*¢ = £,
leading to an f-invariant measure dm = ¢ d¢ of maximal entropy.

(iii) The B-transformation fr = fz (mod 1) on [0,1]. Walters [37] constructed
equilibrium measures corresponding to Lipschitz potentials ¢ : [0,1] — R. The class
of allowable potentials is extended in [22], and defining g(z) = exp(31=] ¢(fiz))/\"
for suitable choices of A > 0 and n > 1, it is shown that there exists a Borel probability
measure ¢ such that A*/ = £. Again, this leads to an f-invariant equilibrium measure
dm = ¢ df with potential function ¢.

For the class of transformations (i) and (iii) above the density ¢, which is of
bounded variation, is bounded above and below on the support of m. That is, there
exists C' > 1 such that 0 < & < ¢ < C. The same is true for class (ii) under the

U(f1)

assumption that l((—I) is bounded over intervals I C [0, 1] (here [ is Lebesgue measure).

This is proved in an unpublished preprint of Keller [23] in the context of Lasota-Yorke
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maps but it is easily seen that the proof generalizes to class (iii) and to class (ii) if we

also require sup;co 1 ll((f—f)) bounded. We let class (ii’) denote the subset of class (ii)

maps for which sup;cp % is bounded.

Lemma 6.1 Let f : [0,1] — [0,1] be a one-dimensional piecewise monotone map and
let g € BV with transfer operator A : BV — BV given by Av(z) =3, _, 9(y)v(y).
Suppose that f and g fall into one of the three classes (i), (i) or (iii). Let £ and m
be the corresponding reference and equilibrium measures with density ¢ > 0 in BV.
Then A satisfies hypotheses (F1)-(F5) with F' = L'(m) and F = BV. In particular,
A : BV — BV is quasicompact.

Suppose further that ¢~ € BV (certainly the case for the classes (i), (ii’), (iii)).
Define the Perron-Frobenius operator Pv = ¢~ *A(pv) corresponding to the invariant
measure m. Then P satisfies hypotheses (F1)-(F5) with F' = L'(m) and F = BV.
In particular, P : BV — BV is quasicompact.

Proof We largely follow Hofbauer & Keller [22]. Conditions (F1)—(F3) are already
discussed in Example 4.3. Since ¢, ' € F, it follows that v — v is a linear
isomorphism on F' and F. (Indeed, it is clear that |¢pv|; < |p|eo|v|1, and ||@v||py <
2||¢llBv||v]| sy was established in Example 4.3.) Hence by Lemma 4.7 it suffices to
verify (F4) and (F5) either for A or P.

Condition (F4) is immediate for P by Remark 4.1. (Alternatively, see [22,
Lemma 6].) The crucial condition (F5) is proved for A in [22, Lemma 7). |

We are now in a position to apply the results in §§2, 3 and 4. Assume that the
equilibrium measure m in Lemma 6.1 is ergodic. Let v € BV with [ xvdm = 0.

e The variance 02 = limy_,o + [ v% dm exists, and 02 = 0 if and only if v = yo f—x
for some x € BV (or equivalently, vy is uniformly bounded). In particular, if x € X
is a periodic point of period k, f and v are continuous at fiz for j = 1,...,k, and
vk (z) # 0, then o2 > 0.

e The sequence of partial sums vy satisfies the CLT, WIP, and upper LIL.

e If in addition m is weak mixing, then we obtain exponential decay of correlations.

Remark 6.2 Under the assumption of weak mixing, various statistical results were
obtained in [22]. We have extended the CLT, WIP and upper LIL to the case where m
is ergodic but not necessarily weak mixing. Also, we have obtained strong conditions
for nondegeneracy that are not present in [22]. *

"'Whilst writing this paper, we learned of independent work of [19] who obtain the CLT also
without assuming weak mixing. The methods in [19] are different from ours and the results are
also somewhat different. For example, they prove the CLT with error estimates and they prove the
local CLT. The WIP is not explicitly stated, but should follow from their methods. On the other
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G-extensions of one dimensional monotone maps We continue to suppose
that X = [0,1] and that f : X — X is piecewise monotone. Suppose that m is an
ergodic measure belonging to classes (i), (ii’) or (iii) above.

Now let G be a compact Lie group acting on R?. Let h : X — G be a BV cocycle
and form the compact group extension T'(z,g) = (fxz, gh(z)). We suppose further
that var(h) is sufficiently small, in the sense of Example 5.3, guaranteeing that h
satisfies (G1) and (G2). In addition, we assume that 7 : X x G — X x G is ergodic
with respect to m X v where v is Haar measure on G.

As in §5, we define the space BV of G-equivariant observations ¢(z, g) = gv(z)
where v : X — R? is BV. Suppose that ¢ € BV and [, ,¢d(m x v) =0.

By Theorem 5.7 we have the following results:

e The covariance matrix ¥ = lmy_ 0 v [y, o @nON d(m X v) exists. Moreover,
detY = 0 if and only if there is a component of ¢5 that is uniformly bounded
a.e.

e The sequence of partial sums ¢y satisfies the d-dimensional CLT and WIP.

e The components of ¢ satisfy the upper LIL.

e If in addition m x v is weak mixing, then we obtain exponential decay of correlations.

Remark 6.3 Results of [29] show that compact group extensions of Lasota-Yorke
maps are weak mixing for a residual, prevalent subset of Holder compact group ex-
tensions of Lasota-Yorke maps. If G is semisimple then compact group extensions
of Lasota-Yorke maps are weak mixing for an open, dense and prevalent subset of
extensions. Hence the hypotheses required for our probabilistic properties to hold are
‘typically’ valid for extensions of Lasota-Yorke maps.

(b) Nonuniformly hyperbolic diffeomorphisms

In this section we follow very closely the original exposition of Young [39] referring
also to Baladi [1, §4.3]. The tower approach is applicable to the following C'*¢
diffeomorphisms F defined on a Riemannian manifold M:

(i) Lozi maps and certain piecewise hyperbolic maps [39, 12],

(ii) a class of Hénon maps [3, 4],

(iii) Poincaré maps of billiards with convex scatterers [39] and certain other dispersing
billiards [13],

(iv) some partially hyperbolic diffeomorphisms with a mostly contracting direc-
tion [11, 15].

hand, they do not prove the upper LIL and their results on nondegeneracy seem weaker than ours
in general. The axiomatic frameworks are somewhat different and it is not clear that the hypotheses
in [19] apply for all of the examples considered in this section.
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The approach also applies to
(v) C* unimodal maps satisfying conditions (H1) and (H2) of Young [39, §9.1].

For these systems a Markov tower (f, A) is constructed. The set A is partitioned
into countably many levels {A;}° 22o- The base Ay is further partitioned into countably
many subsets {Ag;} by a return time function R : Ay — N such that R|Ay; = R; is
constant on each Ay ;. The map f moves each set Ag; up the tower until the level
ZR].,I is reached, and ij maps Zo,j bijectively onto Ay. The levels A; are further
subdivided so that the partition P = {A;;} has the Markov property. A separation
time s(-,-) 1s defined for all pairs z,vy in the same Ayj; s(x,y) is the largest n > 0
such that f z lies in the same element of P as f y. It is assumed [39, Condition P4]
that there exists 0 < a < 1 such that d(F"z, Fry) < Ca*@¥" for all y € y*(x)
(here 4* is an unstable disk or manifold [39, Definition 1]).

A non-invertible tower (f, A) is derived by quotienting (f, A) along stable man-
ifolds (the quotiented tower is not necessary for the unimodal maps described in
(v)). Denote this projection @ : A — A and write corresponding objects under this
quotient map without bars. The map f% : Ag,; — Ap is uniformly expanding. A
reference measure ¢, equivalent to Lebesgue, is constructed on A [39, §3].

By studying the transfer operator A with weight g = acting on a suitable

1
Jac(f)
space of functions, Young obtains an absolutely continuous invariant measure dm =

@ dl, with density C~! < ¢ < C bounded above and below.

The measure m lifts to an invariant measure m on A and thence to an invariant
measure y for F: M — M. We assume, following [39], that there exists e > 0 such
that Y2, m(A;)e* < oo (equivalently Zl 0 L(A))e* < 00) . (The scaling factor 2el
rather than el ensures that the Banach space F' (to be defined) satisfies F' C L2,.)

The underlying observations v : M — R are assumed to be Holder continuous
with fixed exponent v € (0,1). Take 0 < 8 < 1 such that 8 > max{y/a,a?}. This
implies that d(z,y) < B*@¥. In fact 35®¥) defines a metric on A, as 35@¥ = 0
implies = y and the triangle inequality is immediate from the definition of s(z,y).

For v : A — R measurable, define

[vllso = supsup [v|e™,  ||vlls = sup |v]y;, where
l,j Al,j l,j

() — o) -

JB = (Squ,yE Ay Bs(@)

vl

Define ||v]| = ||v||oo + |||l and (see [1, §3.4, p. 203]) define F' to be the Banach space
of functions v : A — R with |jv|| < co. Let F' = L} (A). The transfer operator A
is well-defined on F' and on F'. As sketched below, conditions (F1)—(F5) are valid.
Since #*(®¥) defines a metric on A, elements of F are Lipschitz on each level A;.
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The density ¢ lies in F, as does ¢ !. Additionally, ¢ and ¢ ! are uniformly

bounded and uniformly Lipschitz [39, Lemma 2|. Hence v — @u is a linear isomor-
phism on F’ and F' so that Lemma 4.7 is applicable.

(F1) It suffices to work on each level A; separately. Note that F' restricted to A,
is densely embedded in F’ (similarly restricted) since the space of Lipschitz functions
on a compact measure metric space (X, ) is densely embedded in LL (X).

(F2) If v € F, then |v[a, < [|v]|oe® and thus >, e*'m(A;) < oo implies F C L2 .
A suitable scaling of the norm || || yields || || > | |o-

(F3) Suppose that {v,} is a sequence in F' with ||v,|| < 1. Restricting to A;, we
have ||v,|4|| < €. By Arzela-Ascoli, there exists w : A; — R with ||w|| < e and a
subsequence with ||v,|A; — w||e — 0. Altogether, we obtain a function w : A — R
with w € F and ||lw| < 1. By a standard diagonal argument there is a single
subsequence such that ||(v, — w)|A||ec — 0 for all I. Since v,,w are bounded on A;,
|| (v, — w)|Ay]|1 — 0 for each I. Since >,° m(A;) < oo, it follows that ||v, —w]; — 0.

(F4) It is immediate that P satisfies (F4) by Remark 4.1. (By Lemma 4.7, it is
also the case that A satisfies (F4).)

(F5) This condition is verified for A in [39, Lemma 3] and [1, Lemma 3.7]. Ap-
plying Lemma 4.7, we have that P satisfies (F5).

We are now once again in a position to apply the results in §§2, 3 and 4. Assume
that m is ergodic and that v € F with [, vdm = 0.

e The variance 0 = limy_,o [ V% dm exists, and 0* = 0 if and only if v = yo f —x
for some x € F' (in particular, vy is uniformly bounded on each level Ay). If x € A
is a periodic point of period k, and vi(z) # 0, then o2 > 0.

e vy satisfies the CLT and the WIP.

e If in addition m is weak mixing, then we obtain exponential decay of correlations.

Remark 6.4 The CLT and exponential decay of correlations is obtained in
Young [39] when m is weak mixing. The CLT for m ergodic is new, as are the
strong nondegeneracy results. The WIP is not stated in [39] but follows in a standard
way from the set up there. As far as we know, the upper LIL remains open. Note
that the condition F' C L*™ in Theorem 3.5 is violated.

G-extensions Suppose that a quotiented tower (f, A, m) has been constructed as
above. Let G be a compact Lie group acting on R?. Let h : A — G be uniformly
Lipschitz and let 7: A x G — A x G denote the corresponding G-extension.
Hypothesis (G1) is immediate by Remark 5.1. It is easily seen that (G2) is satisfied
with D; = 1+ L(h;') and ¢ = 1. Define the space Fg of G-equivariant observations
é(x,g) = gv(z) where v : A — R? lies in F. Suppose that m x v is ergodic where v
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is Haar measure on G. Let ¢ € Fg with foGQSd(m x v) = 0. By Theorem 5.7 we
have the following results:

e The covariance matrix ¥ = limy_o 5 [4, o ONOW d(m X v) exists. Moreover,
det ¥ = 0 if and only if there is a nonzero vector ¢ € R? such that c-¢ = c-9of—c-1
where ¢ € Fg.

e ¢y satisfies the d-dimensional CLT and WIP on A x G.

e [f in addition m X v is weak mixing, then we obtain exponential decay of correlations.

Observations on M We now relate the quasicompactness of the equivariant
Perron-Frobenius operator on the quotiented tower A x G to the statistical prop-
erties of equivariant observations on M x G.

Define the space Fg of G-equivariant observations on M X G, ¢(z,g) = gv(z)
where v : M — R¢ is Holder of exponent 7. Let h : M — G lie in the space of
Lipschitz cocycles. We form the G-extension 7 (z, g) = (Fz, gh(z)).

We let h denote the lift of ~ to A and similarly define 7, ¢. Let B denote the
o-algebra on A and define B, = {7714 : A € B} where 7 : A — A is the projection.
Following Young [39, §5.2] we let hy = Ep;(h|B,) denote the conditional expectation
of h with respect to B,. Similarly, define vy and ¢y(z, g) = gvo(z). This defines vy, kg
on A as well and ¢y on A x G. The assumption that § > max{/«, &} implies that
vy € F and ¢g € Fg.

Form the G-extension of (f, A, m) by defining T(%, g) = (f7, gh(z)). We construct
the natural extension of 7 : A x G — A x @, with invariant measure m x v, and
denote it 7:Y — Y, where Y = (A x G)”". Let @ : Y — A x G denote the natural
projection and let B denote the o-algebra (77'B;) x Bg, where Bg is the usual Borel
algebra on G. Lift ¢ to Y and denote the lift (y) = ¢(Fy). To establish the CLT we
apply Gordin [17] as done in Young [39].

Let $j = Em((/g\fjg) Since we have uniform contraction on stable manifolds
by [39, Condition (P3)] \QZJ - $| < Ca’" and hence Y-, |$J - $|2 < oo and so the
first condition of Gordin’s theorem is satisfied. L

We now consider ¢_;. Since the order of conditioning commutes, Eg(¢|T 7B) =
En(¢o|F7B)| so it suffices to prove >° .. [Em(do|f7B)|2 < co. This follows im-
mediately from quasicompactness of the equivariant transfer operator, hence proving
the CLT. The WIP follows by standard techniques. Exponential decay of correlations
follows as in [39, §4.1] or [1, Proposition 4.2].

Hence we have the following theorem for Hélder G-equivariant observations ¢ :
M x G — R?* with mean zero and ergodic Lipschitz cocycles h : M — G:

e The covariance matrix ¥ = limy_,0o % [y, ONON d(1 X V) exists. Moreover,
det ¥ = 0 if and only if there is a nonzero vector ¢ € R? such that c-¢ = c-1poF —c-1
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where 1 : M x G — R? is G-equivariant and Hélder.
e ¢y satisfies the d-dimensional CLT and WIP on M x G.

e If in addition u X v is weak mixing, then we obtain exponential decay of correlations.

Acknowledgements We thank Gerhard Keller for very helpful discussions.
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