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ABSTRACT. We consider systems of partial differential equations equivariant
under the Euclidean group E(n) and undergoing steady-state bifurcation (with
nonzero critical wavenumber) from a fully symmetric equilibrium. A rigorous
reduction procedure is presented that leads locally to an optimally small system
of equations. In particular, when n» = 1 and n = 2 and for reaction-diffusion
equations with general n, reduction leads to a single equation. (Our results are
valid generically, with perturbations consisting of relatively bounded partial
differential operators.)

In analogy with equivariant bifurcation theory for compact groups, we give
a classification of the different types of reduced systems in terms of the abso-
lutely irreducible unitary representations of E(n). The representation theory
of E(n) is driven by the irreducible representations of O(n — 1). For n = 1,
this constitutes a mathematical statement of the ‘universality’ of the Ginzburg-
Landau equation on the line. (In recent work, we addressed the validity of this
equation using related techniques.)

When n = 2, there are precisely two significantly different types of reduced
equation: scalar and pseudoscalar, corresponding to the trivial and nontrivial
one-dimensional representations of O(1). There are infinitely many possibili-
ties for each n > 3.
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1. INTRODUCTION

Certain systems of partial differential equations (PDEs) such as the Navier-
Stokes equations, the Boussinesq equations (modeling the planar Bénard prob-
lem), the Kuramoto-Sivashinsky equation and reaction-diffusion equations have
Euclidean symmetry when posed on an unbounded domain such as the whole of
R™. For an overview, see [4]. One approach to such systems of PDEs is to restrict
to solutions with a prescribed spatial periodicity. It is then possible to derive a
finite-dimensional ordinary differential equation (ODE) or ‘Landau equation’.

Of course, solutions need not be spatially periodic and consequently these tech-
niques are somewhat limited. In addition, when n > 2 there are many ways to
prescribe the spatial periodicity and these can not be captured simultaneously by
a single ODE. (In general, we consider PDEs posed on domains of the form R™ x 2
where ) is a bounded subset of R?, d > 0. Hence, n refers throughout to the
number of unbounded spatial variables.)

In order to include solutions that are not spatially periodic, it is customary to
consider infinite-dimensional modulation equations such as the Ginzburg-Landau
equation (n = 1) and the Newell-Whitehead-Segel equation (n = 2) [24, 30]. The
underlying ansatz is that there is some ‘basic’ or ‘preferred’ spatially periodic state
bifurcating at criticality. The Ginzburg-Landau and Newell-Whitehead-Segel equa-
tions are ‘universal’ modulation equations around this basic state.

From the mathematical point of view, there are serious difficulties in substanti-
ating both the validity and the universality (or model-independence) of the mod-
ulation equations. This is in contrast with the Landau equations, where there are
completely satisfactory interpretations both of their validity (in terms of Liapunov-
Schmidt or center manifold reduction) and of their universality (in terms of the ab-
solutely irreducible representations of the compact Lie group of symmetries present
in these problems). These issues make up a large part of the subject known as equi-
variant bifurcation theory [8, 26, 27, 28, 32]. Of course, the discussion of absolutely
irreducible representations is at the heart of the purely phenomenological Landau
theory [17, 21]. (The problem of determining existence and stability of branches
of solutions is also a significant issue in Landau theory and equivariant bifurcation
theory.)

Recently, there has been a great deal of progress on the validity of the Ginzburg-
Landau equations when n = 1. In this paper, we consider problems with Euclidean
symmetry quite generally (for all n > 1). In particular, we give a complete answer
to the question of universality, as well as making progress on validity. To put the re-
sults in context it is worthwhile to review the methods and results of Landau theory
and equivariant bifurcation theory when there is a compact group of symmetries.

Steady-state bifurcation with a compact symmetry group. Suppose that I' is a com-
pact Lie group and that a I'-equivariant system of PDEs undergoes a steady-state
bifurcation: a fully symmetric ‘trivial solution’ loses stability as an eigenvalue passes
through zero. The Landau equations can be derived in several ways:

1. phenomenologically,
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2. asymptotic expansion,
3. Liapunov-Schmidt/center manifold reduction.

All three approaches lead to an ODE that is equivariant under the group I'. The
equations are ‘universal’ in the sense that the symmetry comes in, generically, in
only countably many ways (finitely many if T is finite), and these can be enumer-
ated as the absolutely irreducible representations of I', see Golubitsky, Stewart and
Schaeffer [8]. Once the representation is known, the precise details of the original
problem enter only in the Taylor coefficients of the reduced equation. Thus, for
some purposes it is not even necessary to have a PDE model in the first place and
this brings us back to the original phenomenological approach of Landau [17] in the
theory of second order phase transitions.

When there is an underlying PDE, Liapunov-Schmidt/center manifold reduction
makes the asymptotic expansion method completely rigorous. However, there is
an additional step involved in obtaining the Landau equations where the reduced
equations are truncated at low order. The truncation step is not rigorous in general
(in many cases it can be shown not to be valid) but can sometimes be justified via
a scaling argument at least for certain classes of solutions (Sattinger [27]).

Mathematically, the derivation and universality of the Landau equations can be
summarized as follows.

(a) Enumeration of universality classes of reduced ODEs in terms of the ab-
solutely irreducible representations of the compact symmetry group I'. When
there is an underlying PDE, these representations correspond to the action
(which is generically absolutely irreducible) of " on the kernel of the linearized
PDE.

(b) Rigorous justification, generically, of reduction of a PDE to one of
the universality classes via Liapunov-Schmidt reduction or center manifold
reduction. Locally (that is, for small amplitude solutions near criticality)
solutions to the reduced ODE are in one-to-one correspondence with solutions
to the original PDE.

(c) Enumeration of the Landau equations as truncations (via scalings) of
the ODEs in each universality class. ‘Nondegenerate’ or hyperbolic solutions
for the Landau equations extend to branches of solutions to the full PDE (by
the implicit function theorem).

Steady-state bifurcation with Euclidean symmetry. We are now in a position to
discuss the situation for the noncompact group of Euclidean symmetries E(n).
There are two different kinds of steady-state bifurcation depending on whether the
so-called critical wavenumber is zero or nonzero. We concentrate throughout on
the more interesting case where the critical wavenumber is nonzero (Type I, in the
physics nomenclature [4]). This assumption is a crucial factor in the formulation
of the Ginzburg-Landau and Newell-Whitehead-Segel equations.

First, we state our result on universality which extends step (a) above to the
E(n)-equivariant context.

Theorem 1.1. Suppose that an E(n)-equivariant system of PDEs undergoes steady-
state bifurcation (with nonzero critical wavenumber) from a fully-symmetric equi-
librium. Then generically, the kernel of the linearized PDE is absolutely irreducible
under E(n) and corresponds to an irreducible representation of O(n — 1).
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In fact, the different universality classes corresponding to steady-state bifur-
cation with E(n)-symmetry are in one-to-one correspondence with the irreducible
representations of O(n —1). There is one such representation (the trivial one) when
n = 1 and hence one universality class which we call the scalar class for reasons
explained below after Theorem 1.3. When n = 2, we have O(1) = Z» and there are
two universality classes, the scalar class and the pseudoscalar class, corresponding
to the trivial and nontrivial irreducible representations of Z,. Once n > 3, there is
a countable infinity of universality classes.

Remark 1.2. (a) The significance of the group O(n — 1) in Theorem 1.1 can be
explained in terms of Mackey’s classification of the irreducible unitary representa-
tions of E(n). (See also Ito [13].) Let O(n) act on R" in the standard way. For
each a > 0, choose z, € R" distance a from the origin. Now define H, C O(n)
to be the isotropy subgroup of z,. It follows from Mackey [19, Theorem 14.1] that
the irreducible representations of E(n) are in one-to-one correspondence with pairs
consisting of a number @ > 0 and an irreducible representation of H,. It turns
out that a can be identified with the critical wavenumber, so the case a = 0 (with
H, = O(n)) is not relevant here. When the critical wavenumber is nonzero we have
H, = O(n — 1) as required.

(b) The precise definition of what we mean by a generic property is rather techni-
cal and is deferred until later in this paper, see Section 4.1. The main points are
that we work within the class of PDEs (even though the reduced equations are not
PDEs, see Remark 1.4(c)) and we do not allow singular perturbations.

Next, we turn to the reduction step (b) described above and give a reasonably
precise statement of our results for n = 1 and n = 2. (The analogous result for
general n is stated in Section 2.)

Theorem 1.3. Let n =1 or n = 2, and suppose that an E(n)-equivariant system
of PDEs posed on R™ x Q undergoes steady-state bifurcation (with nonzero criti-
cal wavenumber) from a fully-symmetric equilibrium. Then generically, there is a
reduction from the original PDE to a single reduced equation posed on R™. This
reduction preserves essential solutions bifurcating from the trivial solution near crit-
icality. The reduced equation is scalar or pseudoscalar depending on the represen-
tation of O(n — 1) associated with the kernel of the linearized PDE.

The terminology scalar and pseudoscalar is introduced in [2] and refers to the
way functions u : R* — R transform under the group E(n). The scalar action
of E(n) is given by u(z) — u(y~'z) where v € E(n) acts in the standard way
on the unbounded spatial variables z € R". If we write v = (A,t) where A is
an orthogonal transformation and ¢ is a translation, then u(z) — (det A)u(y~1z)
defines the pseudoscalar action of E(n). A single E(n)-equivariant PDE posed on
R” is said to be scalar or pseudoscalar depending on whether the action of E(n) is
scalar or pseudoscalar.

The fact that the kernel of the linearized PDE need not transform under the
scalar action of E(n) seems to have first been observed by Sattinger [27].

Remark 1.4. (a) Our reduction simultaneously removes the bounded variables and
reduces from a system to a single equation. Mielke [23] and Haragus [9] have previ-
ously presented an alternative approach which removes the bounded variables but
does not reduce to a single equation.

(b) The reduction does not preserve all the local dynamics but only the so-called
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essential solutions [1]. These are solutions that are bounded and small over the
whole of space and time. The idea of using Liapunov-Schmidt reduction (as in this
paper) to preserve essential solutions and not just time-independent solutions is
already present in the above-mentioned work of [23, 9].

(¢) The (nontruncated) reduced equation is a pseudodifferential equation in com-
mon with the reduced equations of [12, 23, 9].

In [20], attention was concentrated on the case n = 1. Using techniques similar to
those in this paper, Theorem 1.3 was proved for specific examples. Moreover, in the
special case n = 1 it was possible to achieve three goals simultaneously: (i) removal
of the bounded spatial variables so that the reduced equation is posed on R, (ii)
reduction from a system to a single equation, and (iii) extraction of modulation
equations (in a complex amplitude function A related to the underlying solution u
via the ansatz u = Ae®® + Ae~"% where a > 0 is the critical wavenumber). At
present, the third goal is not possible when n > 2. Combining the results in this
paper with those in [20], we have the following result.

Corollary 1.5 (Universal validity of the Ginzburg-Landau equation). Suppose that
an E(1)-equivariant system of PDEs posed on R x Q undergoes steady-state bifur-
cation (with nonzero critical wavenumber). Generically, there is a reduction (that
preserves essential solutions) to a single scalar modulation equation posed on R.
When truncated, this equation is precisely the Ginzburg-Landaou equation.

Remark 1.6. In stating this corollary, we have adopted the point of view that jus-
tification of the Ginzburg-Landau equation means finding a rigorous reduction to
an equation with terms (and derivatives) of all orders that yields the cubic order
Ginzburg-Landau equation when truncated with respect to the standard weight-
ing (or scaling). In this introduction, we have described the historical precedent
for taking this viewpoint. More recently, the work of Iooss, Mielke and Demay [12]
(who consider the steady Ginzburg-Landau equation) and the previously mentioned
work of Mielke [23] and Haragus [9] fits into this framework.

There is a completely different point of view where the truncated Ginzburg-
Landau equation (with n = 1) is justified in the sense that solutions of this equation
and the underlying PDE are approximately the same over long but finite timescales,
see [29] and the references therein. Such an approximation clearly does not preserve
significant qualitative features (such as quasiperiodicity) of the solutions and does
not address the convergence of the asymptotic expansion underlying the formal
derivation of the Ginzburg-Landau equation and its solutions.

Solutions. Up to this point we have not addressed the issue of how our reduced
equations might be useful in determining solutions to the underlying PDEs. In
general, the rigorous determination of branches of solutions to problems with Eu-
clidean symmetry remains an important and challenging question. There is, how-
ever, an immediate application of our results which we now describe. Dionne and
Golubitsky [5] classify a certain class of spatially periodic solutions known as azial
planforms that bifurcate simultaneously for scalar equations when n = 2. These
include the well-known planforms such as rolls and simple hexagons and also more
exotic planforms such as anti-squares and super hexagons. Bosch-Vivancos et al [2]
classify the axial planforms that bifurcate simultaneously in the pseudoscalar case
together with their branching type. (For example, rolls and simple hexagons are
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replaced by new planforms called anti-rolls and oriented hexagons. Whereas sim-
ple hexagons bifurcate transcritically, oriented hexagons undergo a pitchfork bi-
furcation.) It now follows immediately from Theorem 1.3 that the corresponding
classification for any E(2)-equivariant system of PDEs on R? x {2 is given by the
classification in either the scalar or pseudoscalar case.

As far as spatially aperiodic solutions go, the only completely satisfactory ap-
proach is that of Kirchgéssner [16] and Mielke [22]. Center manifold reduction in
a spatially unbounded variable leads to an ODE for steady-state solutions that are
small and bounded in space. In particular, many equilibrium solutions that are not
spatially periodic can be derived in this way [12, 11]. Unfortunately, this elegant
method is restricted to the case n = 1 and yields only solutions that are stationary
or time-periodic.

The remainder of this paper is organized as follows. In Section 2, we describe
the class of ‘physical’ actions of E(n) that we work with in this paper. In addition,
we state the generalization of Theorem 1.3 for general n, whereby any steady-state
bifurcation can be reduced to a ‘minimal’ representation of E(n).

The functional-analytic framework for the results in this paper is the subject of
Section 3. Section 4 is concerned with the proof of Theorem 1.1. In particular,
we define a space S of E(n)-equivariant partial differential operators endowed with
a ‘relative boundedness’ topology and study the generic properties of steady-state
bifurcations within this topology. In Section 5, we prove Theorem 1.3, together
with its generalization Theorem 2.2.

2. ACTIONS OF THE EUCLIDEAN GROUP

We consider systems of PDEs posed on R” x Q where Q C R? is bounded. The
PDEs are supposed to be equivariant with respect to an action of the Euclidean
group on functions u : R” x 2 — R® where s is the size of the system of PDEs. We
make the standing assumptions that

(i) The symmetries act on the domain variables R” x 2 by acting in the standard
way on R” and trivially on €.
(if) Translations act trivially on the range variables R?.

These assumptions are made precise in Definition 2.1 below.

The Euclidean group E(n) consists of rigid transformations or isometries in R".
If v € E(n) is an isometry, then there is an orthogonal matrix A € O(n) and a
translation ¢t € T(n) = R™ such that yz = Az + t for all z € R”. Multiplication in
E(n) is defined as follows: if v; = (A;,t;), i = 1,2, then yoy1 = (A241, Aoty + t2).
Then T(n) is a normal subgroup and E(n) is the semi-direct product E(n) =
O(n)+T(n).

2.1. Physical actions of E(n). There are various ways that E(n) can act on
functions u : R* x 2 — R® depending on the value of s. We restrict to a class of
representations for which assumptions (i) and (ii) above are satisfied. This class
includes the representations that are typically encountered in applications. More
precisely, suppose that p : O(n) — GL(R?) is a representation of O(n) on R® and
let p4 denote the image of A € O(n) under p. We denote the unbounded domain
variables by z and the bounded domain variables by z so that (z,z) € R* x Q.
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Definition 2.1. A physical action of E(n) on functions u : R® x Q@ — R® is an
action that takes the form

(v-u)(z,2) = pa-u(y *(z),2), forall v=(A,t)€E@), (z,2) € R" x Q.

The most commonly encountered actions p on the range R® are as follows:

pa = I in reaction diffusion equations.
s =mn and pg = A in vector field PDEs such as the Navier-Stokes equations.

When s = 1 the only physical actions of E(n) are the scalar action p4 = I and the
pseudoscalar action p4 = det A.

2.2. Minimal actions of E(n). Let O(n) act on R” in the standard way, and
choose zg € R, 2o # 0. The isotropy subgroup of zg is a copy of O(n—1). Different
choices of z¢ lead to conjugate copies of O(n — 1) in O(n). According to the main
results described in the introduction, steady-state bifurcation with E(n) symmetry
is organized to a large extent by the irreducible representations of O(n —1). In this
subsection, we describe the irreducible representations of O(n — 1) supported by
a physical representation of E(n). Conversely, it is useful to define the ‘minimal’
physical representation of E(n) that supports a given irreducible representation of
O(n—-1).

Suppose that we are given a physical action of E(n) on R® determined by the
representation p of O(n) on R®. The action p restricts to an action of O(n — 1) on
Rs. Write R* =V, & --- ® V; where Vi,...,V; are O(n — 1)-irreducible subspaces.
We say that Vi, ..., V, are the O(n—1)-irreducible representations supported by the
physical action of E(n). It turns out that the irreducible representation of O(n—1)
mentioned in Theorem 1.1 is one of the V;, j =1,... L.

Conversely, given an O(n—1)-irreducible representation V, it is possible to choose
s' > 1 and an action p of O(n) on R that restricts to the O(n — 1)-irreducible
subspace V' [3, Chapter III, Theorem 4.5]. Hence, there is a physical action of E(n)
that supports V. The physical representation is minimal with respect to V if s’ is
as small as possible.

For example, when V is one-dimensional it is clear that the corresponding min-
imal representations of E(n) are precisely the scalar and pseudoscalar representa-
tions, the latter occurring only when n > 2. We have the following generalization
of Theorem 1.3.

Theorem 2.2. Let n > 1 and suppose that an E(n)-equivariant system of PDEs
posed on R™ x Q undergoes steady-state bifurcation (with nonzero critical wavenum-
ber) from a fully-symmetric equilibrium. Then generically, there is a reduction
(preserving essential solutions) to a system of equations posed on R™. The reduced
system is equivariant under an action of E(n) that is minimal with respect to the
representation of O(n — 1) associated with the kernel of the linearized PDE.

Remark 2.3. The size of the reduced system is given by the value of s’ in the
definition of minimal representation, irrespective of the size s of the underlying
system.

When n = 3, there is (in addition to the scalar and pseudoscalar actions of
E(3)) a minimal action of E(3) for each two-dimensional irreducible representation
of O(2). The standard representation of O(2) is contained in the standard action of
0O(3) (s’ = 3) but in general we require s’ = 2+ 1 in order to account for the ¢-fold
action of O(2) on R?. In particular, we have a countable infinity of minimal physical
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actions of E(3) with s’ arbitrarily large. The situation for n = 3 is indicative of the
general case n > 3.

Given a particular physical action of E(n) defined by the homomorphism p :
O(n) — GL(R®) it is clear that s’ is bounded by s and moreover that s’ is the
dimension of an O(n)-irreducible subspace of R®. For example, if pa = £I; for
each A then generically s’ = 1 and we reduce to the scalar and pseudoscalar case.
In particular, reaction-diffusion equations reduce generically to scalar equations.

3. THE FUNCTIONAL-ANALYTIC FRAMEWORK

In this section, we lay out the functional-analytic framework used in this paper.
The framework is somewhat technical: our basic function space consists of the
Fourier transforms of bounded vector-valued Borel measures on R™, the measures
taking values in some Banach space Z° of functions f : Q@ — C° (subject to suitable
reality conditions). We recall that 2 C R? represents the bounded variables in the
problem. The technical (and notational) difficulties are alleviated to some extent by
restricting to the case of no bounded variables. This is done in Subsection 3.1. In
Subsection 3.2, we consider the linear operators (especially the partial differential
operators) that commute with the action of E(n). In Subsection 3.3, we reintroduce
the bounded variables (2 into the general framework.

Properties of the function space. As motivation, we describe briefly the desired
properties of the function spaces considered in this paper.

The crucial property is the closed splitting property described in Proposition 3.2(b)
below. As in Melbourne [20] we most overcome the well-known obstruction to re-
duction of Euclidean-symmetric problems presented by the continuity of the spectra
of certain linear operators. Proposition 3.2(b) guarantees the existence of closed
splittings even in the absence of spectral splittings, thus making possible the re-
duction in Corollary 5.8 and Subsection 5.2.

A second requirement is that pointwise multiplication of functions is a smooth
operation, see Proposition 3.2(a) and Remark 5.1(a).

Two final (but somewhat contradictory) requirements are that the function space
contains large enough classes of functions, Remark 3.3, yet is amenable to harmonic
analysis so that linear operators commuting with translations are multiplication
operators, see Subsection 3.2.

3.1. Function space, no bounded variables. Consider the Banach space M! =
M (R") of complex-valued Borel measures on R™ (see for example [25]). Associated
to each measure y € M! is the ‘total variation’ measure |u| defined by |u|(B) =
sup Z;’il |(E;)|, where the supremum is taken over all countable partitions of
the Borel set B. The positive measure |u| is finite, and the norm of the complex
measure g is defined to be ||u|| = |u|(R™). The space M! is a Banach algebra under
convolution of measures,

3.1) vl < [lpllll#]]-

(The convolution pxv € M! is defined by (u*v)(E) = [ pu(E — k)dv(k).)

More generally, we consider the space M? of C®-valued measures y with com-
ponents p1,... ,us € M'. Define [|u|| = (|lpll® +- -+ ||,us||2)1/2. Then M?® is a
Banach module over M1,
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If B C R" is a Borel set, then the subspace M?*(B) consists of those measures
in M? that are supported on B. We have the closed splitting

(3.2) M? = M*(B) ® M*(R" — B).
Let M? consist of the measures p € M?® with compact support.
Proposition 3.1. The subspace M? is dense in M?.

Proof. Let p € M? and define p,, € M3, pum(E) = p|p,, where D, is the disk
of radius m in R™. Suppose that R* = U;’;l E; where the E; are disjoint Borel
subsets. Then

(8= ) (Bl = Y |u(Ey) = u(E; 0 Do)l = Y [0(E; = Do) < l(R" = D).

=1

It follows from the finiteness of |u| that |u|(R* — D,,) — 0 as m — oo. Hence,
[l — pm|| = O as required. O

For each u € M?(B), we define the Fourier-Stieltjes transform Fu : R* — C?,

Fulz) = /B e du(k),

see for example [15]. Define X*(B) to be the realvalued functions v : R* — R®
obtained in this way:

X°(B) ={u:R" - R°, u = Fp for some u € M*(B)}

and write X* = X*(R™). The Fourier transform converts convolution of measures
into pointwise multiplication of functions, and so X' is a (proper) subalgebra of
the Banach algebra Cynis(R").

Since the Fourier transform is invertible, M?* and X'® are isomorphic as vector
spaces, and we define a norm on X'® so as to obtain an isometric isomorphism. In
other words, if u € X'®, there is a unique g € M? such that Fpu = u. Set ||u|| = [|ul.
Via the isometric isomorphism, properties (3.1) and (3.2) become:

Proposition 3.2. (a) X® is a Banach module (under pointwise multiplication)
over the Banach algebra X': if u € X' and v € X?°, then wv € X° and
l|uvl] < [Julll[o]]-

(b) If B C R™ is a Borel set, then X° = X*(B) ® X*(R” — B).

Remark 3.3. (a) The absolutely continuous measures (with respect to Lebesgue
measure) in M! can be identified with the L! functions. Hence X! contains the real-
valued functions in FL! and is a proper but uniformly dense subspace of Co(R").
(b) The closed subspace generated by the Dirac measures is isomorphic to ¢! (R™)
and the corresponding subspace of X! consists of spatially-quasiperiodic functions
of the form u(z) = 372, aje™"*i"* for which 3777, |a;| < oo.

Now, suppose that we are given a physical action of E(n) on the space of functions
u: R® — R® as in Subsection 2.1. The action restricts to an action of E(n) on X'*
and leads to an action (via the Fourier transform) on M?. We can assume that the
action p of O(n) on R?® is orthogonal. By definition of the norm on M?, O(n) acts
isometrically on M?.



10 IAN MELBOURNE

Proposition 3.4. Any physical action of E(n) defines an isometric action on X*.
The corresponding action on M? is given by u v+ yu where for v = (A,t) € E(n),

TWE) = pa / e*tdu(A k).

E
Proof. First, we compute the action on measures. Write u(z) = [ e~ *2du(k).
Then

(yu) (&) = pau(y~'z) = pau(A~ (& — 1)) = pa / ~ike A7 @0 g (k)

:/e—iAk-(:c—t)d(pAu(k)) :/e—ik-weik-td(pAN lk /e—zk wd ’YN )

where vy is the transformed measure

Yu(E) = /E e*td(pau(A~R)) = pa /E Mt d(u(ATE).

In particular, (yu);(E) = [5 eik'td_(pAu)j(A_lk) so that |(yu); (E)| < |(pap);|(A7LE).
Hence, [|(yu);ll < [|(pap);ll and it follows that [lyul| < [|papll = [lull. We have
proved that ||yu|l < [|u|| for all v € E(n) and hence ||yu|| = ||p||- Thus E(n) acts
isometrically on M? and hence on X'*. O

Remark 3.5. The action of E(n) on X'® is not continuous, indeed most SO(n)-orbits
are discrete. (For example, let u(x) = et*o-® + e~%o-2 for some fixed kg € R®. Then
the relative topology on SO(n) -u C X? is the discrete topology.) This fact will be
of no consequence in the sequel.

A subspace of the form X*¥(B) is E(n)-invariant if and only if B is invariant
under the action of O(n) on R*. If J C [0,00), then X*(J) is defined (with a
slight ambiguity of notation) to be the invariant subspace X*(B) where B = {k €
R™, |k| € J}. In particular, X*(1) consists of the Fourier transforms of the Borel
measures supported on the unit sphere in R”.

3.2. E(n)-equivariant linear operators. In this subsection, we investigate the
structure of Euclidean-equivariant systems of linear operators on X'*. Throughout
the subsection, we write X instead of X’°.

Translation equivariance. It is well-known that, on ‘reasonable’ spaces, linear op-
erators that commute with translations are multiplication operators Hence, an
element u(z) = [e~*du(k) should be transformed into Lu(z) = [e~* wdv(k)
where dv = qdu for some fixed ¢ : R* — L(C?®) where L(C?) is the space of s X s
matrices. The entries of ¢ lie in a suitable function space (which may be difficult
to characterize, see [31, pp. 28-30]). Unfortunately, by this criterion X fails to be a
reasonable space — there are linear operators on X’ that commute with translations
yet are not multiplication operators.

Example 3.6. We have the Lebesgue decomposition X = X, ® Xing (absolutely
continuous measures and singular measures). Consider the bounded linear operator
L : X — X that restricts to the identity on X,. and twice the identity on Aji,g,
that is, Lu = uac + 2using Where u = uac + Using. This operator commutes with
translations (indeed, with all elements of E(n)) but is not a multiplication operator.
A less trivial example is the unbounded operator Lu = Auae + (1 + A)?Uging.
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Although it is not the case that any bounded linear operator on X that commutes
with translations is a multiplication operator, we show in the appendix that this
property becomes valid on restriction to certain subspaces:

(i) The subspace X,. consisting of Fourier transforms of absolutely continuous
measures (L! functions).

(ii) The subspace Xgirac generated by the Fourier transforms of the Dirac mea-
sures.

Motivated by these considerations, we make the following definition.

Definition 3.7. An (unbounded) linear operator L : X — X is an E(n)-equivariant
linear operator if there is a measurable map ¢ : R* — L(C®) (the multiplier) such
that

1. u(z) = [e~*=du(k) transforms under L to Lu(z) = [ e~ *2g.du(k).

2. L commutes with the action of O(n) C E(n).

Remark 3.8. (a) In the theory of linear operators that commute with a finite-
dimensional action of a compact Lie group. the terminology ‘commuting’ and ‘equi-
variant’ are used interchangeably. Example 3.6 shows that the E(n)-equivariant
linear operators are a proper subset of the commuting linear operators.

(b) In applications, the entries of ¢ are usually polynomials, in which case, we say
that L is an E(n)-equivariant linear partial differential operator. However, C'*°
multipliers arise in our reduction procedure later in the paper.

(¢) An E(n)-equivariant linear operator L : X — X is bounded if and only if the
entries of ¢ are bounded. For each k € R", ¢ is an element of L(C®) and we can
define the operator norm |g;|. Then L is bounded if and only if sup,, |gx| < o0, in
which case ||L|| = supy, |gk|-

We say that ¢ : R* — L(C?) is locally bounded if ¢ is bounded on each bounded
subset of R™.

Proposition 3.9. Suppose that L is an E(n)-equivariant linear operator with mea-
surable, locally bounded multiplier q. Then L is densely defined and closable.

Proof. The domain of L contains F M, (Fourier transforms of compactly supported
measures) which is dense by Proposition 3.1. Next, we prove that the linear operator
L induced on M is closable. Suppose that {u,} is a sequence in in the domain of
L and py, = 0, Ly, — v € M. Tt is sufficient to prove that (Luy)(E) — 0 for any
bounded subset E C R”. But |Lu,(E)| = | [z adpn| < suppep |aelllpnll = 0. O

Under the hypotheses of the proposition, L extends to a closed operator (which we
also denote by L) with domain X[L] which is a Banach space in the graph norm
l|lullr = |Ju|| + || Lu||. With respect to this norm, L : X[L] — X is a bounded linear
operator.

O(n)-equivariance.

Proposition 3.10. Suppose that q : R* — L(C®) is measurable. Then q is the
multiplier for an E(n)-equivariant linear operator L : X — X (defined as in condi-
tion 1 of Definition 3.7) if and only if

(33) qar = pagrpy', A€ O(n), 4k = Ty
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Proof. Acting first by L and then by A € O(n) on u yields
(paLu)(A™'z) = / e~ A7 (p aqy)dp(k) = / e 4T (paqr)dp(k)

- / e~ (p ag 1) dp(A~TE).

On the other hand, acting first by A yields

/efik.A—lszd'u/(k) — /efik-szdN(Aflk),

and applying L yields

/ e (gupa)d(A~ k).

This establishes the first condition in (3.3) and the second condition is the reality
condition. O

Since O(n) acts transitively on vectors in R™ of the same norm, the multiplier
q: R - L(C?) is determined by its values on vectors of the form k = (a,0, ... ,0),
a > 0. In other words, g is determined by the matrices Q4 = q(a,0,... 0y, @ € [0,00).
The isotropy subgroup of vectors (a,0...,0) € R" is a copy of O(n — 1) and
conditions (3.3) reduce to the conditions

Qo is O(n)-equivariant, Q. is O(n — 1)-equivariant,
(34) Q—a = p—IQap—I = @a-

Hence, there is a one-to-one-correspondence between equivariant linear operators
L: X — X and symbols Q : R — L(C?) satisfying conditions (3.4).

Remark 3.11. (a) When s = 1, the symbol is an even function @) : R — R and we
can write Q, = P(a?). It is easily seen that L = P(—A) where A =82 +---+02
is the Laplacian.

(b) If p_; = £, then the matrices @, have real entries. This is the case, for
example, for the Navier-Stokes equations. In general, we can choose coordinates on
R® so that p_ 1 is diagonal (with diagonal entries +1). For the Boussinesq equations,
p—r = diag(—1,-1,-1,1) = (—I3) ® I and @, need not have real entries.

In general, write p_; = I, ® (—1I,,) where s; + s5 = s. Then @, has a corre-
sponding 2 x 2 block structure (independent of a) where the diagonal blocks have
real even entries and the off-diagonal blocks have purely imaginary odd entries.

Proposition 3.12. Let Q : R — L(C*) and define Q, = B~'Q,B where B =
I, ® (il,,). Then, Q, has real entries and Q) satisfies conditions (3.4) if and only
if
Qo is O(n)-equivariant, Qais O(n — 1)-equivariant,
@*tz = pfléapr-

Hence, there is a one-to-one correspondence between maps Q : R = L(R®) satisfying
these conditions and symbols Q : R — L(C?®) satisfying conditions (3.4).
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Proof. It is an easy calculation to verify that @a has real entries. Since the action
of O(n) commutes with p_r, the matrix B is O(n)-equivariant and it follows that
Q. is O(n — 1) or O(n)-equivariant if and only if Q, is. Finally, B = p_;B and a
simple calculation shows that the last condition in the proposition is equivalent to
the last condition in (3.4). O

The point of this reformulation is that for each fixed a, éa is a general real linear
map equivariant under the action of the compact Lie group O(n) or O(n—1). Hence,
we can apply the methods of equivariant bifurcation theory [8] to these maps. This
is important in Section 4 (particularly, Theorem 4.10).

3.3. Function space in the presence of bounded variables. In this subsection
we generalize to E(n)-equivariant operators on domains of the form R™ x Q where
Q) is a bounded subset of R?.

The functional-analytic prerequisites required for this generalization are not com-
pletely standard. An elementary treatment of the integration of vector-valued
functions with respect to a positive measure (Bochner integral) can be found in
Lang [18]. The generalization to integration of operator-valued functions with re-
spect to a (bounded) vector-valued measure is straightforward. Details on convolu-
tions of vector-valued measures can be found, for example, in Dinculeanu [6, §24].
All measures that we consider are bounded (finite).

We assume that the functional analysis has been worked out for systems of
equations posed on  alone. Let Z be a suitable Banach space of functions from
Q to C. We suppose that Z is closed under pointwise multiplication and complex
conjugation: if f,g € Z, then fg, f € Z where (fg)(z) = f(2)g(z) and f(z) = f(2).
For simplicity, we assume that Z is a Banach algebra under pointwise multiplication.

Let u be a vector-valued Borel measure with values in Z (u : B — Z is count-
ably additive and p(@) = 0). As for complex measures, there is an associated
positive ‘total variation’ measure |u| defined by |u|(E) = sup Y .o, |u(E;)| where
the supremum is taken over all partitions of E. It is no longer the case that |u| is
automatically finite. We restrict attention to the space Mz of bounded measures p
for which ||p|| = |p|(R™) < co. Then Mz is a Banach space [18] and is moreover a
Banach algebra under convolution of measures [6]. Similarly, we define the Banach
module M7.

Let X3 consist of the Fourier transforms u(z) = [e **du(k) of measures in

% subject to the usual reality condition and with norm derived from the norm on
M. The basic properties of X'?, Proposition 3.2 and so on, generalize immediately
to X7.

Remark 3.13. The definition of the norm on X7} relies on the fact that the Fourier
transform operator on M9 is one-to-one. This is immediate from the injectivity
for complex-valued measures together with the fact that bounded linear functionals
separate points of Z*.

Remark 3.14. Given p € M% and z € Q, we define p, € M?*, p,(E) = p(E, z). At
the level of functions, u € X naturally determines a function @ : R® x  — R?,

a(z,2) = [ e *odu, (k).

Symmetry. Next, suppose that p : O(n) — GL(R®) defines a physical action of
E(n) on functions @ : R® x Q — R®, (y-@)(x,2) = pat(y~'z,2). As usual, we can
assume that the action of O(n) on R? is orthogonal. A computation as in the proof
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of Proposition 3.4 shows that the action of E(n) on X§ is isometric. Moreover, if
u(z) = [e~*2du(k) and v = (A, t) € E(n), then

(- u)(@) = pa / eFLdp(ATE).

Bounded linear operators. During the remainder of this subsection, we write X' =
X5 and M = M3, Let p be a fixed measure in M and let B(Z?®) denote the
space of bounded linear operators on Z°. Suppose that ¢ : R® — B(Z?) is simple:
g =Y, 9ixa;, where g; € B(Z®) and A; € B. We define the integral [gdu € Z*
by the formula [gdp = >"7_; gi(p(As))-

Recall that ¢ : R* — B(Z?) is strongly measurable if ¢ is the pointwise limit
p-almost everywhere of simple functions ¢,,. The ¢,, can be modified so that |¢,| <
2|g| almost everywhere. The function ¢ is said to be integrable if [ |g|d|u| < oo.
In this case, the integral [qdp = lim [ ¢,dp € Z° is well-defined and | [ gdp| <
[ lal dlul-

We say that a map ¢ : R* — B(Z?®) is completely measurable if ¢ is strongly
measurable with respect to every measure p € M. Suppose in addition that ¢
is bounded, |||l = supy, |gx| < oo, and that ¢ satisfies conditions (3.3). Then ¢
induces a bounded linear operator L : M — M, where Lu(E) = Jpadp and a
bounded E(n)-equivariant linear operator L : X — X with ||L|| = ||Z]] = ||glleo. If
u(z) = [e~**du(k) is an element of X, we write Lu(z) = [ e~ *2q.du(k).

Remark 3.15. (a) Consider the closed subspace Xgirac generated by the Dirac mea-
sures. A typical element of Xgirac has the form u(z) = Y e %2 f; (countable
sum) where fr € Z°, f . = fr and ||u|| = X |f| < oo. In this case, Lu(z) =
e T ar(fr).

(b) Next, we let X1 denote the closed subspace of X consisting of functions
u(z) = [e 2 frdk where f € L'(R",Z®) (f is strongly measurable and norm
integrable with respect to Lebesgue measure). When Z is finite-dimensional, X1
coincides with the subspace X,. of absolutely continuous measures, but in general
X1 is a proper subspace of X,.. We have Lu(z) = [ e~ g (fy)dk.

Unbounded linear operators. Let D be a fixed subspace of Z°. Suppose that the
values of ¢ are (unbounded) operators on Z° and that the domain of g, contains
D for each k € R". Suppose moreover that there is a norm ||p on D such that
(D,||p) is a Banach space and ¢, : D — Z? is a bounded linear operator for each k.
As before, we require that the map ¢ : R* — B(D, Z*) is completely measurable.

Let Mp C M denote the Banach space of Borel measures with values in D. If
q is bounded, then ¢ induces a bounded linear operator L:Mp— M, ﬁu(E) =
[ adp. More generally, if ¢ is locally bounded, then ¢ induces an unbounded
operator L: Mp > M, whose domain includes the dense subspace Mp . of
compactly supported measures. We can also regard L as an unbounded operator
L: M — M. The corresponding unbounded linear operator L : X — X is by
definition E(n)-equivariant. More precisely, L : X — X is an E(n)-equivariant
linear operator if the multiplier ¢ : R* — L(Z*) can be viewed as a completely
measurable, locally bounded map ¢ : R* — B(D, Z?®) (for some subspace D C Z?*)
satisfying conditions (3.3).

Let @ : R — L(Z?) be the corresponding symbol. We say that L is an equivariant
partial differential linear operator if @ is polynomial, that is, Q, = a®My + --- +
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aMy + My where My, ..., My € L(Z?®). (Since the operators M; are not bounded,
polynomial does not imply analytic.)

In this definition, the operators M; need not be partial differential operators on
Z?*. However, nothing in the sequel is changed if we insist that the M; are partial
differential operators.

Remark 3.16. A necessary condition for L : X — X to be densely-defined and clos-
able is that each operator g, € L(Z?) is densely-defined and closable. Conversely,
it seems reasonable to conjecture that if the subspace D C Z? is dense and each op-
erator gy, is closable, then L : X — X is densely-defined and closable. Four special
cases of this conjecture are easily verified. It is clear that L is densely-defined and
closable on restriction to Xgirac. The same is true on restriction to X1 (since L!-
convergence implies that there is a subsequence that converges almost everywhere).
The closability of L holds on the whole of X if ¢ is a simple function. Finally, if
Z = C we have Proposition 3.9.

4. STEADY-STATE BIFURCATION WITH NONZERO CRITICAL WAVENUMBER

A basic result of equivariant bifurcation theory Golubitsky et al [8, Proposi-
tion XTII, 3.2] catalogues steady-state bifurcation with a compact symmetry group I'
in terms of the absolutely irreducible representations of I'. Suppose that I' is a com-
pact Lie group acting on a finite-dimensional vector space V and that L: V —» V
is a linear map commuting with the action of I'. If L has a zero eigenvalue, then
generically ker L is an absolutely irreducible representation of T' (that is, the only
commuting linear maps are real scalar multiples of the identity). Moreover, it is
generically the case that ker L is the entire center subspace of L. Ruelle [26, Theo-
rem 1.2 and p. 140] proves an infinite-dimensional version of this result under the
technical assumption that 0 is an isolated eigenvalue of finite multiplicity.

When T is not compact, zero eigenvalues are typically neither isolated nor of
finite multiplicity. In particular, the results of [8, 26] do not apply to problems
with (noncompact) Euclidean symmetry. The aim of this section is to obtain the
required generalization. In particular, we prove Theorem 1.1. Throughout, we
assume a physical action of E(n) on X = X%. In view of Example 3.6, we modify
the definition of absolute irreducibility. We recall that the E(n)-equivariant linear
operators are the subclass of commuting linear operators that are defined by a
completely measurable, locally bounded multiplier ¢ : R* — B(D, Z*%).

Definition 4.1. An E(n)-invariant subspace Y of X is absolutely irreducible if
every bounded E(n)-equivariant linear operator on X leaving Y invariant restricts
to a real multiple of the identity on Y.

On the subspace Xgjrac, the definitions of absolute irreducibility in terms of
commuting linear operators and equivariant linear operators coincide:

Proposition 4.2. Suppose that Xgirae = Y & Y where Y, Y are closed E(n)-
inwvariant subspaces. Then Y is absolutely irreducible if and only if every bounded
commuting linear operator on'Y is a real scalar multiple of the identity.

This proposition is not required in the sequel and the proof is deferred to the
appendix.

In Subsection 4.1, we define a suitable notion of genericity for E(n)-equivariant
linear partial differential operators. In Subsection 4.2, we analyze the structure
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of the spectrum of an E(n)-equivariant linear operator, leading to a classification
of the four types of local bifurcation (depending on whether there is a steady-
state or Hopf bifurcation with zero or nonzero critical wavenumber). The specific
case of steady-state bifurcation with nonzero wavenumber is considered in detail in
Subsections 4.3 and 4.4. In particular, in Subsection 4.4, we prove that the kernel
is generically absolutely irreducible.

4.1. Relatively bounded perturbations and genericity. The results in this
paper rely on various genericity assumptions on the linearizations of E(n)-equivariant
systems equations. We require genericity within the class of linear partial differen-
tial operators. Hence, we must consider unbounded perturbations while avoiding
singular perturbations. For example, suppose that Z* = C so Remark 3.11(a) im-
plies that L is a polynomial function of the Laplacian, L = bgA% + --- + by A + by,
where d is a positive integer and by # 0. Then L + eAP is an allowable ‘small’ per-
turbation if and only if p < d. This is made precise through the notion of relative
boundedness.

Suppose that L, M are (unbounded) operators defined on X. Following Kato [14,
p.190], we say that the operator M is relatively bounded with respect to L if the
domain of M includes the domain of L and there exist constants a,b > 0 such that

[|[Mul| < allu|| + b||Lu||, for all u in the domain of L.

When L is bounded, there are no relatively bounded perturbations other than
the bounded ones. This degenerate situation is excluded by the following definition.
We say that an E(n)-equivariant linear operator M is second order if the symbol
Q takes the form @, = a>H where H : Z° — Z° is a bounded linear operator.

Definition 4.3. An equivariant linear operator L : X — X is nondegenerate if
every second order equivariant linear operator is relatively bounded with respect
to L.

A closed, densely defined linear operator L : X — X is sectorial if there is an open
sector S of the complex plane with vertex By € R such that S is symmetric with
respect to the real axis, S contains the half-line (—oo, 8p) and the angle opening of
the sector is less than 7 radians, see Figure 1(a), and moreover, ||[(L — o)~ =
O(1/]o — Bol) as |o| = oo for 0 € C— S. (This is equivalent to the definition in
Henry [10] with L replaced by —L. The sector can be chosen so that specL C
S.) The sectorial operators are precisely those operators that generate analytic
semigroups (semiflows) on X' [10]. Define 5*(L) = sup R(spec L) = sup{R(0), o €
spec L}. (By convention, sup(f)) = —oo.) Then 8*(L) < oo for L sectorial and this
supremum is attained provided the spectrum is nonempty.

Proposition 4.4. Suppose that L : X — X is sectorial. Then the sectoriality of L
is preserved under small relatively bounded perturbations. That is, if M is relatively
bounded and € is small enough, then L+ eM is sectorial. Moreover, 3*(L + eM) is
upper-semicontinuous at € = 0.

Proof. We give the proof, which is standard, for completeness. Since L is sectorial,
there are constants K, R > 0 such that |[|[(L—oI)7!|| < K/|o— 8| foralloc € C- S,
|o — Bo| > R. Let M be relatively bounded. We can suppose without loss that the
constants a and b in the definition of relatively bounded satisfy a,b < 1.
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FIGURE 1. (a) A sector S with vertex Gy containing the spectrum
of the sectorial operator L. (b) Under a relatively bounded per-
turbation, the spectrum of L is constrained to lie in S — T's.

It is immediate that L 4+ eM is densely defined for all e. Moreover L + eM is
closed if |e| < 1 [14, Theorem IV,1.1]. Let u € Dy, C Dy C X. We compute that

IM(L = o)~ ull < (L = o)~ ull + | L(L — o 1)~ ull
< L= o)~ llull + lull + [olI(Z = o 1) 7 {[{full-
Hence
IM(L = o)™ | <1+ K/|o = Bo| + |o|K/|o = fo| < K,
where K' =1+ K/R + K + |6o|K/R. In particular, I + eM (L — oI) is invertible
if |e] < 1/K' and
ML+ eM = o) | < (L = oD)THII(I + eM (L = oI)=) 7|
< K(1—eK"Y o= Bol-

This shows that L + eM is sectorial. Moreover, if S is the sector for L then
we have shown that the spectrum of L + eM is contained in the union of S and
the ball of radius R, center By. We have also reproved the well-known state-
ment that any compact subset I' of the resolvent of L lies also in the resolvent
of L + eM for € small (‘upper-semicontinuity’ of the spectrum [14]): replace K' by
sup, er {1+ (1 + |o)II(L — o1)~1[[}.

Now choose R > |3*(L) — Bo| and for each § > 0 consider the compact set

Is={0c€C, |od — | <R; R(o) > p*(L)+doro &S},

see Figure 1(b). For e small, we have spec(L+eM) C S—T and hence g*(L+eM) <
B*(L) + 6. O

Remark 4.5. Suppose that L : X — X is an E(n)-equivariant linear operator on
X with symbol @ : R — L(Z?%). If L is sectorial on X, then each operator @, is
sectorial on Z°. In particular, the conclusions of Proposition 4.4 are valid for Q,.
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Let S denote the set of sectorial, nondegenerate E(n)-equivariant linear partial
differential operators on X. We define a topology on & in terms of the relative
bounded perturbations. For each L € § and for each r > 0, define B,.(L) to consist
of all operators in 8 of the form L + M where Dy D Dy, and there is an 7’ < r
such that ||[Mu|| < r'(||u]| + || Lul||) for all u € Dy,.

Proposition 4.6. The family {B,(L)} is a basis for a topology on S.

Proof. Let Ly € B,,(L1). Tt is sufficient to prove that B.(Lg) C B, (L;) for some
r > 0. By definition of B,,(L;), there is an r; < r; such that ||(Lg — L1)z| <
r1(||z]| + || L1z||) for all z € Dr,. Choose r € (0,(ry —r1)/(1+r1)). If L € B,(Ly),
we compute that

(L = Ly)z|| < (L = Lo)=|| + [[(Lo — L)zl < (r + ri)llll + 7l Lozl + ri[| L1z|
< (r+r)llell +r(l(Lo — Li)zl| + (| Lizll) + ril| Lz
< (r+r+rr)(llell + (| Lazl),

where r +r] +rr} <ry. Hence L € B,,(L1) and so B,(Lo) C By, (L1) as required.
O

From now on, we assume that S is endowed with the topology in Proposi-
tion 4.6. It follows from Proposition 4.4 that §*(L) = sup R(spec L) is an upper-
semicontinuous function on 8. A generic property is (for our purposes) one that
holds on a open and dense subset of S.

4.2. Classification of bifurcations. Recall that 8* = supR(spec L) < oo. Let
B(a) = sup R(spec Q,) < B*. Condition (3.4) implies that )_, is similar to @, and
has the same spectrum. Hence 3 is even.

Proposition 4.7. If L € 8, then $(a) - —00 as a — +o0.

Proof. Let s = limsup,_,., B(a) < f* < co. We show that s = —oo. Suppose
for contradiction that s is finite. Since L is nondegenerate, the perturbation with
symbol ea’Is is relatively bounded. Hence for e small enough, the perturbed
operator is sectorial with 3.(a) = B(a) + ea®. Hence 3¢ > limsup B.(a) = +o0
which is a contradiction. O

Remark 4.8. It is clear that |J,spec Q. C specL. The reverse inclusion fails in
certain pathological cases (even if the closure is taken on the left-hand-side). For
example, suppose that there are no bounded variables (Z = C) and let s = 2,
n > 1. Consider the nondegenerate linear partial differential operator L(u,v) =
(—=A%y — 2u — Av, —Au — 2v) which is Euclidean equivariant when the action of
o4 2

O(n) on R? is trivial. Then Q, = aa2 2 22 . A calculation shows that L
is sectorial and that the spectrum of L lies inside the real axis. However,

Uspec Qo = (—00,—2], spec L = (—o0,—2]U {-1}.

We note that det(Q, — o) = (0 + 1)a* + 02 + 40 + 4. Tt follows that the matrix
family (Q, — o)~! is uniformly bounded eventually in a if and only if ¢ # —1. This
accounts for the fact that —1 € spec L (see Proposition A.3).

On the other hand, it is clear that this situation is nongeneric: after applying
the relatively bounded perturbation €(0, Av) say, the determinant of @, — o is a
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polynomial of degree six in a so that (Q, —o) ' — 0 as a = oo for each 0 € C. In
particular, (Q, — oI)~! is always eventually uniformly bounded and it follows that
spec L = |J, spec Q, for the perturbed operator. Further details can be found in
the appendix, where it is shown in particular that generically spec L = |J, spec Q.
when there are no bounded variables.

In view of Remark 4.8 and the associated results in the appendix, the following
assumption is justified.

(H1): spec L = |Jspec Q-

The origin in & is a sink under L if 8* < 0 and is unstable if 8* > 0. Now we
restrict to the critical case 8* = 0. It follows from assumption (H1), the evenness of
B and Proposition 4.7 that 3(a) = 0 for some a > 0. Define the critical wavenumber
ap = inf{a > 0, B(a) = 0}.

(H2): The map a — @, is analytic at ag.

Here, we mean analyticity in the sense of Kato [14, p. 375], ‘holomorphic of type
(A)’. That is, there is a neighborhood I of ag such that the Q,, a € I, are closed on
a common domain D C Z* and for each fixed f € D, the map a — @, f is analytic
on I.

Since @ is polynomial in a, assumption (H2) is automatic when Z = C and for
infinite dimensional Z if the operators @), are bounded. In general, write @, =
Mo+ Mi(a—ag) +---+ Mp(a—ag)?. If each M; is relatively bounded with respect
to My, then assumption (H2) is valid.

Assumption (H2) implies that the operators @, are mutually relatively bounded
for a near ag. Hence, (3 is upper-semicontinuous at ag and it follows that 3(ag) = 0.

(H3): 0 is isolated in R(spec Qq,)-
Hence, there is a spectral splitting Z° = E. ® E; where E., E, are closed subspaces
invariant under @,, (the center subspace and stable subspace respectively) such
that R(spec Quo|r.) = 0 and R(spec Qu,|E,) < 0. By conditions (3.4), E, and E;
are O(n)-invariant (resp. O(n — 1)-invariant) when ag = 0 (resp. ag > 0).

(H4): dim E. < occ.

There are four quite distinct situations (local bifurcations) to consider. After
rescalings, these are as follows:

(i) ap =0, 0 € spec Qq, (steady-state bifurcation with zero wavenumber).

(ii) ag = 1, 0 € spec @1, (steady-state bifurcation with nonzero wavenumber).
(iii) ag =0, +i € spec Qo, (Hopf bifurcation with zero wavenumber).
(iv) ap =1, +i € spec Q1, (Hopf bifurcation with nonzero wavenumber).

We focus on case (ii) in this paper, but it should be fairly clear how to proceed with
the remaining cases. Case (i) occurs in the nonlinear heat equation and case (ii) is
relevant for the Boussinesq equations and for Ginzburg-Landau theory in general.

4.3. Steady-state bifurcation problems with nonzero critical wavenum-
ber.

Definition 4.9. Let L : X — X be a sectorial nondegenerate E(n)-equivariant
partial differential operator (L € 8) and assume that L satisfies hypotheses (H1-
H4). In case (ii) above (ap = 1, 0 € spec@)1) we say that L is a steady-state
bifurcation problem with nonzero wavenumber.
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Theorem 4.10. Let L be a steady-state bifurcation problem with nonzero wavenum-
ber. Generically,

(a) ker Q1 is an O(n — 1)-irreducible subspace of Z° and E, = ker Q1.

(b) B(a) is an isolated eigenvalue of Q, for a close to 1 and the corresponding
eigenspace is O(n — 1)-irreducible and isomorphic to ker Q1.

(¢) B(a) <0 for a # £1.

(d) B is analytic at 1 and 1 is a nondegenerate critical point.

Proof. We begin by establishing part (a). Write E. = Eg @ F where Ey is the
zero generalized eigenspace of the finite-dimensional matrix Qi|g, and F is the
sum of the remaining generalized eigenspaces in E.. Since (J; commutes with the
action of O(n — 1) on Z*%, the subspaces ker Q1, Eo, E. and so on are O(n — 1)-
invariant. Perturbing by second order (hence relatively bounded) partial differential
operators as necessary, we may arrange that Q1|g, is semisimple. Hence, without
loss of generality, we may suppose that Ey = ker Q1.

Choose an O(n — 1)-invariant inner product on the finite-dimensional subspace
kerQ;. Write kerQ; = V @ V+ where V is O(n — 1)-irreducible and V= is an
invariant complement. Let W = V1 @ F @ E, so that Z° = V @ W is a closed
O(n — 1)-invariant splitting.

Now consider second order perturbations of the form L+eM, € > 0, where M has
symbol R defined by R,|v = 0, R,|w = —a’Iy. (Note that Ry is required to be
O(n)-equivariant.) Using this perturbation, we can arrange that E. = ker@Q, = V.
In fact, the irreducibility of ker @; = E. is generic, openness following from upper-
semicontinuity of the function max R spec Q1|g,, see Remark 4.5.

Suppose then that V =ker Q; = E. is O(n — 1)-irreducible (and Z° = ker )1 ®
E,). The zero eigenvalues of ()1 constitute a finite system of eigenvalues in the
terminology of [14]. Since 0 is isolated in the spectrum of @i, we can apply [14,
Chapter VII, Theorem 1.7]: for a near 1, there is an analytic family of operators
T, similar to the operators @), (the similarity transformation also is analytic in a),
such that

(i) T, preserves V and E;, and
(ii) specTy|g, is uniformly bounded into the left-half-plane.

It follows that B(a) = max R(spec Q,|v) for a close to 1.

The symmetry properties of (), are inherited by T, and by Proposition 3.12, we
can regard T,|y as a real matrix equivariant under the action of O(n — 1). The
irreducible representations of O(n — 1) are absolutely irreducible and we can write
T.|lv = o(a)Iy where o(a) € R. It is immediate from the above considerations that
B = o is analytic at a = 1. In addition, part (b) is proved.

Next we prove part (¢). It is convenient to momentarily drop the normalizing
assumptions 8* = 0 and ap = 1. Let ag > 0 be least such that 8(ag) = 8* < oo and
suppose that ap > 0. Consider the relatively bounded perturbation with symbol
R, = —ea®Iz. where € > 0. Then 3 is transformed under perturbation to 3¢(a) =
B(a) — ea®.

It follows from the definition that ag is an isolated critical point. (Otherwise the
analytic map [ is constant on a neighborhood of ag contradicting the minimality of
ag.) There is a neighborhood (ag — d,a¢ + §) on which 3 is analytic and such that
ap is the unique critical point in this neighborhood. After perturbation, generically
agp becomes a nondegenerate critical point a§ (completing the proof of part (d)).
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By construction, 8(a) is bounded away from 8* for 0 < a < ag—4. This property
is clearly preserved for 3¢ provided € > 0 is small enough. Since —ea? is strictly
decreasing, we have §¢(a) < 3¢(a§) for all a > ag + d. This completes the proof of
part (c). O

4.4. Absolute irreducibility of ker L. Recall from Subsection 3.1 that X' (1) is
the subspace of X arising from the Borel measures supported on the unit sphere
S7=1in R*. We show that there is a natural correspondence between E(n)-invariant
subspaces U of X(1) and O(n — 1)-invariant subspaces V' (complexified) of Z*.

This correspondence is most easily seen in the context of measures defined by L*
functions on S™~1. Since O(n) acts transitively on S"~!, given k € S"~!, we can
choose Ay, € O(n) such that A (1,0,...,0) = k. Let V be an O(n — 1)-invariant
subspace of Z* and define V¥ = p4, V (the O(n—1)-invariance of V guarantees that
Vi is independent of the choice of Ay). Let U consist of those functions u € X(1)
of the form u(z) = [g,_, €% f(k)dk where f : S"™' — Z* is in L' and satisfies
f(k) € V¥ almost everywhere. Then it is readily checked that U is E(n)-invariant
and is absolutely irreducible if and only if V' is irreducible under the complexified
action of O(n — 1).

For transforms of general Borel measures, we choose Ay, as before but ensuring
that there is a piecewise smooth (measurable and bounded suffices) dependence on
k € S"7. Define B(k) = p,. for k € S"~. Let U C X(1) consist of the Fourier
transforms of measures u € M supported on S~ ! that satisfy

/ B(k)du(k) € V' for all Borel sets E C S™ L.
E

Proposition 4.11. Suppose that V is a closed O(n — 1)-invariant subspace of Z*
and that there is a closed splitting Z° =V & V. Then the corresponding subspace
U C X is well-defined (independent of the choice of Ay) and is E(n)-invariant.
Moreover, U is absolutely irreducible if and only if V is O(n — 1)-irreducible.

Proof. We define a symbol @ : R — L(Z?) as follows: @, = I for a = £1 and

Qo = Izs elsewhere. Let L: X — X, L : M — M be the corresponding bounded
E(n)-equivariant linear operators. We claim that ker L = U. It follows immediately
from the claim that U is well-defined and E(n)-invariant.

We now verify the claim. It is clear that ker L C X(1) so we restrict attention
to measures u € M supported in S"~!. Let ¢ : R* — L(Z?) be the multiplier
associated to Q. Then p € ker L if and only if [ akdp(k) = 0 for all Borel sets
Ec S™ ! But

dk = 4A,(1,0,...,0) = PAkZI(l,o,...,o)PZ,t = pa, Q1 B(Fk).

Since p 4, is invertible for all k, we deduce that p € ker L if and only if Q; [ B(k)du(k) =
0 for all E. In other words, [, B(k)du(k) € ker Q1 = V. It follows by definition of
U that ker L =U.
It remains to prove the statement about the absolute irreducibility of U. Suppose
that L : X — X is an E(n)-equivariant linear operator leaving U invariant. Let @
be the symbol of L with corresponding multiplier q. If u € U then u is the transform
of a measure p supported in S™~! satisfying [, B(k)du(k) € V for all Borel sets
E € S™ 1. The fact that L leaves U invariant translates into the condition that
| B(k)ardu(k) € V for all E. Using the definition of B and conditions (3.3), we
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have Q1 [, B(k)du(k) € V. Now the vectors [, B(k)qrdu(k) span V (consider
0= Bk_olvdko where i, is a Dirac measure supported at some fixed ko and v is
any element of V). It follows that Q;(V) C V and that the action of L on U
determines and is determined by the action of @1 on V. But Q1|y is forced to be
a real multiple of the identity if and only if V is O(n — 1)-irreducible. In this case,
L|y is the same real multiple of the identity and U is absolutely irreducible. |

Theorem 1.1 now follows easily. More precisely, we have

Corollary 4.12. Suppose that L : X — X is a steady-state bifurcation problem
with nonzero wavenumber. Generically, ker L C X(1), in which case ker L is the
E(n)-invariant subspace of X (1) corresponding to the O(n — 1)-invariant subspace
ker Q1 C Z%. Moreover, generically ker L is E(n)-absolutely irreducible. Further-
more, the center subspace of L| x (1) is well-defined and coincides with ker L. Finally,
R(spec L|x(q)) <0 for a # 1.

Proof. Tt follows from Theorem 4.10(c) that ker L C X(1). The argument used
in the proof of Proposition 4.11 shows that ker L is the E(n)-invariant subspace
corresponding to ker Q1. Absolute irreducibility follows from Theorem 4.10(a) and
Proposition 4.11. The remaining statements are immediate from Theorem 4.10. [

Since the spectrum of L is continuous, there is no splitting into center and stable
subspaces. Corollary 4.12 includes the statement that, in the best possible sense,
the ‘center subspace’ of L generically coincides with the kernel of L.

5. REDUCTION OF NONLINEAR E(n)-EQUIVARIANT PDESs

In this section, we consider E(n)-equivariant systems of nonlinear PDEs under-
going steady-state bifurcation (with nonzero wavenumber) from a trivial solution.

Let X7 denote the Banach space of functions v : R* x @ — R® introduced
in Section 3. As usual, we suppose that we are given a physical action of E(n),
u(z,2) = pau(y~'z,z), where v = (4,t) € E(n) and p is an orthogonal action
of O(n) on R® (Subsection 2.1). Let L : X§ — X% be a sectorial nondegenerate
E(n)-equivariant partial differential operator (L € 8, Subsection 4.1) and suppose
moreover that L is a steady-state bifurcation problem with nonzero wavenumber
ap = 1 (Definition 4.9).

Consider the system of nonlinear PDEs

(5.1) du/dt = ®(u,\) = Lu + N(u, \)

where A € R is a bifurcation parameter and NV : X7 x R = X7 is a nonlinear partial
differential operator. We assume that N(y-u,A) = v-N(u, A) for all v € E(n) and
that N(0,A) = 0. Thus the PDE (5.1) is E(n)-equivariant and possesses a trivial
solution v = 0. When the domain XZ[L] of L is endowed with the graph norm,
L: X;[L] — X% is bounded. We suppose that N : XY5[L] x R — X% is analytic and
(dN)o,0 = 0. In particular, ® : X§[L] x R — X} is analytic and (d®)¢,0 = L.
Provided L and N satisfy the conditions described above, we say that & : X'J x
R — X7 is a nonlinear steady-state bifurcation problem with nonzero wavenumber.

Remark 5.1. (a) It follows from Proposition 3.2(a) that the assumption of analyt-
icity of ® is satisfied by semilinear operators, where N consists of nonlinear terms
in u and A possessing derivatives of lower (or equal) order than the highest order
derivatives in L.
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(b) Our assumptions do not guarantee that equation (5.1) defines a local dynamical
system on X. The required technical hypothesis (analyticity of N on the domain
of a fractional power of L) can be found in Henry [10] but is not required for any
of our results.

Set 5*(A) = sup R(spec(d®)o,r). It is easy to see that generically, dG*/d\ #
0. To fix ideas let us suppose that dB*/dA > 0. Under the additional technical
hypothesis, the principle of linear stability [10, Theorem 5.1.1, Corollary 5.1.6]
states that the trivial solution u = 0 is asymptotically stable if A < 0 and unstable
it A>0.

By Corollary 4.12, we have generically that ker L is absolutely irreducible. Cor-
responding to ker L is the O(n — 1)-irreducible subspace ker @1 C Z*. Choose a
minimal physical representation of E(n) on X* corresponding to the irreducible
representation of O(n — 1). (In other words, C*' contains an O(n — 1)-irreducible
subspace isomorphic to ker Q1 and s’ is as small as possible.)

Now, we state precisely an ‘equilibrium’ version of Theorems 1.3 and 2.2.

Theorem 5.2. Suppose that ® : X x R — X is a nonlinear steady-state bi-
furcation problem with nonzero wavenumber. Generically, equilibrium solutions of
the partial differential equation du/dt = ®(u, ) = Lu + N(u,\) on XJ are locally
(near (u,A) = (0,0)) in one-to-one correspondence with equilibrium solutions of a
reduced pseudodifferential equation dv/dt = ®'(v,\) = L'v 4+ N'(v,\) on X* (near
(v, A) = (0,0)).

Remark 5.3. (a) Except for the fact that the reduced nonlinear operator ®’ is not a
partial differential operator, ®' enjoys all the properties of the original bifurcation
problem ®. In particular, the linear and nonlinear operators L', N’ : X¥ xR — X*'
are analytic when viewed as operators L', N' : X*'[L'] x R — X*'.

(b) The linear pseudodifferential operator L' has the same structure as an E(n)-
equivariant partial differential operator on Xgl except that the symbol is smooth
(C*°) rather than polynomial, see Proposition 5.9 and Remark 5.10 below. Anal-
ogous statements apply to the nonlinear operator N'. Such considerations are not
necessary for the proof of Theorem 5.2 and we refer to [20] for more details.

To consider nonequilibrium solutions, we replace the space X7 by the space X7,
consisting of functions u : R**! x ) — R® where the additional unbounded domain
variable is time. Define L; = —d/dt + L and ®; = —d/dt + ® = L; + N. If we
define X7 ,[L;] using the graph norm, then the operators L;, N : X7 ,[L;] — X7,
are analytic.

Theorem 5.4. Suppose that ® : X7 x R = X7 is a nonlinear steady-state bifur-
cation problem with nonzero wavenumber. Generically, zeroes of the partial dif-
ferential operator ®4(u,)\) = —du/dt + Lu + N(u,\) on X%, are locally (near
(u, A) = (0,0)) in one-to-one correspondence with zeroes of a reduced pseudodiffer-
ential operator ®,(v,\) = —dv/dt + L'v + Nil(v,\) on Xf (near (v,)) = (0,0)).

Remark 5.5. (a) The zeroes of ®; in Theorem 5.4 are of course solutions to the
original partial differential equation du/dt = ®(u, ). However, the local nature
of the reduction means that only ‘small’ zeroes/solutions are preserved. (Roughly
speaking, small means of small norm in Z* for all (z,t) € R**!. This interpretation
would be more precise if we were working with a ‘sup norm’ rather than the norm
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inherited from Fourier space.) Such solutions are called essential solutions [1].

(b) The reduced linear terms L' in Theorems 5.2 and 5.4 are identical. The new
nonlinearity N} is analytic on X7 [L}] but contains time derivatives as well as spatial
derivatives.

The remainder of this section is concerned with the proof of Theorems 5.2
and 5.4. In Subsection 5.1 we reduce the linear operator. The full nonlinear oper-
ator is reduced in Subsection 5.2.

5.1. Reduction of the linear operator. We continue to suppose that we are
given a physical action of E(n) on X§. As usual L : X§ — X§ is a steady-state
bifurcation problem with nonzero wavenumber and polynomial symbol @) : R —
L(Z?). We have the following consequence of Theorem 4.10.

Proposition 5.6. Generically, there is an open interval J = (01,d2) C (0,00),
0< 6 <1< b2, such that
() A1) = B(62).
(ii) B is analytic on J with unique critical point a = 1.
(iii) ker(Q, — B(a)ls) is an analytic family of isomorphic O(n — 1)-irreducible
subspaces, a € J.
(iv) B(a) is an isolated eigenvalue of Q,, a € J.

(See Figure 2.)

Let V, = ker(Q, — B(a)l;) for a € J. Since fB(a) is an isolated eigenvalue of
Q. and V, is the corresponding generalized eigenspace, there is a closed O(n — 1)-
invariant splitting Z° =V, @ 17@. As in the proof of Theorem 4.10, there is an
analytic family of O(n — 1)-equivariant isomorphisms on Z* that transform the
splitting Z° =V, & I~/a into the constant splitting Z° = V; & 171 for a € J. There
is an obvious decomposition of X% (J) corresponding to the constant splitting, and
we use the family of isomorphisms to obtain a closed, L-invariant, E(n)-equivariant
splitting X5(J) = U ®U where spec L]y consists of the real eigenvalues 3(a), a € J.
Then we have the closed, L-invariant, E(n)-invariant splitting for the full space X'%:

X;=U®Y, where Y=Ua X5([0,00)—J).
Proposition 5.7. Generically, we can choose J C (0,00) so that properties (i)-
(iv) in Proposition 5.6 are satisfied and in addition
(v) spec(L|y) = [r,0] and R(spec L|y) <r,
where r < 0 is the common value of 3(0;), j = 1,2, see Figure 2.

The splitting X5 = U & Y induces a splitting XZ[L] = U[L] & Y[L] and the
bounded linear operator L : X§[L] — X% respects the splittings.

Corollary 5.8. Under the hypotheses and conclusions of Proposition 5.7, the linear
operator L|yr) : Y[L] — Y is an isomorphism.

Proof. By Proposition 5.7, the spectrum of this bounded linear operator does not
contain zero, so there is a bounded inverse defined on the whole of ). O

We can interpret Proposition 5.7 as saying that U corresponds to the critical
eigenspaces of L. Now, U can be identified with a subspace of a minimal physical
E(n)-representation X'* as defined in Subsection 2.2. Recall that s’ is chosen as
small as possible so that there is an irreducible representation p' : O(n) — GL(R*)
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FIGURE 2. (a) The part of the spectrum of L with real part greater
than r and (b) the part of the graph of 8 with values greater than
r in a generic steady-state bifurcation with nonzero wavenumber

of O(n) that contains the O(n — 1)-irreducible representation V;. We can then
identify the subspaces V,, of Z* with the (constant) O(n — 1)-irreducible subspace
V' = V; of C*'. We have the corresponding closed E(n)-invariant splitting X*' (J) =
Uaol'.

Proposition 5.9. Suppose that L : X5 — X5 satisfies the generic consequences (i)
(v) in Propositions 5.6 and 5.7. Then there is an E(n)-equivariant linear operator
L': X — X* with smooth symbol such that the properties (i)—(v) are also satisfied
by L', and, in addition, the restricted operators Ly : U — U and L'|yp : U — U’
are similar under an E(n)-equivariant change of coordinates (with analytic symbol).

Proof. Write C* = V' @ V' and define Q' : J — L(C*), Q, = (B(a)Iy+) ® (—=I;)-
Then @' is analytic and can be extended to a smooth symbol @' : R — L(C?)
by choosing a smooth extension ' : R — R of 3. Provided we choose §' even
with §'(0) = —1, the symbol Q' satisfies conditions (3.4). The corresponding E(n)-
equivariant linear operator L' : X &' 5 X% isrelated to L as required. For a suitable
choice of 3’ (it suffices that ' has critical points only at 0, £1) conditions (i)—(v)
are valid. O

Remark 5.10. There is some flexibility in the choice of the reduced linear operator
L', especially with respect to the boundedness of L. In particular we can always
choose L' to be bounded. As defined in the proof of Proposition 5.9, L' is degen-
erate. By modifying the definition of @}, on V', and modifying the extension 3’ of
B, we can arrange that L' is nondegenerate and sectorial (with spec L' = (—o0, 0])
so that I’ satisfies all of the properties of an operator in & with the exception that
L' is not a partial differential operator.

5.2. Reduction of the nonlinear operator. In this subsection, we prove The-
orem 5.4, thereby proving also Theorem 5.2.
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The spectrum of L; is the Cartesian product R(spec L) x iR. It follows from
Theorem 4.10(a) that generically ker L; = ker L. Indeed, ker(L;—oT) = ker(L—olI)
for all ¢ € C with o > r where r < 0 is as defined in Proposition 5.7. Hence, there
is generically a closed L-invariant E(n)-invariant splitting X7, = U ©® Y where U
consists of the critical eigenspaces (o close to 0) such that the conclusions of
Corollary 5.8 and Proposition 5.9 are valid now for L;. Since E(n) acts trivially on
the time variable, the modified subspace U remains E(n)-invariant.

Define the corresponding splitting X% ,[L;] = U[L;] © V[L] and the complemen-
tary projections I-E : X7, = U, E : X7, — ). Now we proceed as in the standard
Liapunov-Schmidt reduction (see for example [7]). By the implicit function theo-
rem and Corollary 5.8, the equation E®;(v + w,\) = 0 allows us to solve locally
for w = W (v, A), where W : U[L] x R — Y[L] satisfies W (0,0) = 0. Substituting
into (I — E)®;(v 4+ w, A) = 0 yields the reduced operator ¢ : U[L;] x R = U,

¢(U, )‘) = (I - E)q)t(v + W(U7/\)7 /\)

Locally, zeroes of ¢ are in one-to-one correspondence with zeroes of ®;. Moreover,
(dp)o,0 = Lilu[r,]-

The next step is to lift ¢ back to an operator on th' while preserving the local
correspondence of zeroes. As in Subsection 5.1, we can embed U/ inside th'. Then a
crude but sufficient approach is to extend ¢ to the nonlinear operator ®}(v+w, ) =
éw,A) © Li|yL, w, where L' is as in Proposition 5.9 and L; = —d/dt + L'. The
zeroes of ®, are identical to the zeroes of ¢ and hence are locally in one-to-one
correspondence with zeroes of ®;. Moreover, (d®})o,0 = —d/dt+ L' and the theorem
is proved.

With extra effort, we can perform a ‘reverse Liapunov-Schmidt reduction’ as in
Melbourne [20] to obtain a more natural reduced operator ®;. Such refinements
are not required for the results in this paper.

APPENDIX A. APPENDIX

First, we prove some auxiliary results concerning the structure of commuting
linear operators (as opposed to equivariant linear operators) as promised in Sub-
section 3.2. The issue is to what extent a bounded linear operator commuting with
translations is a multiplication operator. Throughout the appendix, we suppose
that we are in the situation of no bounded variables Z = C. Write X = X’*.

Lemma A.1. Suppose that L : X — X is a bounded linear operator that commutes
with translations and let L be the operator induced on M. If p € M, then Ly is
supported on the support of .

Proof. If h € L*™(u), then the measure hy € M is defined by hu(E) = [, hdp
and satisfies ||hg|| < ||A||oo||zz||. In this notation, the condition that L : M — M
commutes with translations implies that L(e***p) = et Ly for all t € R™.
Suppose that h : R* — R is C*™ and periodic (in the sense that h can be
regarded as an element of C*(T™) for a suitable choice of torus 7). In particular,
the Fourier series of h converges uniformly on 7™. Hence, we can find sequences
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a; € R, t; € R" such that ||h— Ejvzl aje* || — 0 as N — oo. We compute that

N N
IL(hpr) = LGl < \L(h) = D azL(e™5 w)ll + 11 Y aje™ " Ly — hipl]
j=1 j=1

<NEINGR =S age® )l + (S ajeits — h)Lpl
<2\ Ellih = 3 aje™ |-

Hence L(hy) = hLp.

Now suppose that u € M, with compact support E. Let F' be a compact set
containing E and choose h smooth and periodic such that supp h|p = F — E. Then
hy = 0 and we have hL(p) = L(hp) = 0. It follows that the measure L(p) vanishes
when restricted to F'— E. Since F' is arbitrary, we deduce that supp ﬁ(u) C supp p.-

We can approximate p € M by g, € M, as in the proof of Proposition 3.1.
In particular, we can arrange that supp p,, C supp pu. It follows that supp ﬁ,um C
supp p. Since L is bounded, ﬁum — ﬁu and the result follows. O

Corollary A.2. Let L : X — X be a bounded linear operator that commutes with
translations. Then L restricts to a multiplication operator on each of the following
closed E(n)-invariant subalgebras of X :

(i) The subspace X, consisting of Fourier transforms of absolutely continuous
measures (L' functions).

(ii) The subspace Xgirac generated by the Fourier transforms of the Dirac mea-
sures.

Proof. It is immediate from Lemma A.1 that L restricts to a commuting linear
operator on Xgjrac and X,.. The corollary then follows from well-known results.
Case (ii) is particularly straightforward and case (i) is contained in [31]. There is
an elementary proof of case (i) using Lemma A.1 that we now sketch.

We identify X, with L' (R®,C?). Consider the L! function by where b € C* and
E € B. By Lemma A.1, L(bxx) = pe(b)xz where pg € L*(E, L(C?)). Moreover, it
follows from Lemma A.1 that pg and pr coincide on ENF": consider ﬁ(bx E—bxF).
Hence, there is a locally integrable map ¢ : R* — L(C?) such that L(bxz) = q(b)xs
for all Borel sets E. By linearity, L¢ = q¢ for ¢ : R* — C* simple. Since L is
bounded, it follows that ¢ € L (R™,C?). Simple functions are dense in L' and

hence L has the required form on L!(R™,C?). O

The corollary provides us with a proof of the characterization of absolutely irre-
ducible subspaces of Xgirac stated in Section 4.

Proof of Proposition 4.2. First suppose that every bounded commuting linear op-
erator on Y is a scalar multiple of the identity. Let L : X — X be a bounded
E(n)-equivariant linear operator such that L(Y) C Y. Then L|y is a bounded
commuting linear operator and is a scalar multiple of the identity, hence Y is ab-
solutely irreducible.

Conversely, if YV is absolutely irreducible, then Y C X(ag) for some ag > 0
(otherwise the operator with symbol @, = f(a?)Izs is not a scalar multiple of the
identity on Y where f : [0,00) — R is any injective bounded completely measurable
function). Any commuting linear operator Ly : Y — Y extends to a commuting
linear operator L' : Xgirac — Xairac (set L'|; = 0 say). By Corollary A.2, L' is
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a multiplication operator and hence is determined on Xgirac(ap) by a multiplier
q:S" ! = B(Z*) where S"~! is the sphere in R" of radius ag. We can extend g
to a completely measurable bounded multiplier on R™: if ag = 0, take g constant;
otherwise take g to be constant on half lines in R® — {0}. Since ¢ is completely
measurable, we obtain a bounded E(n)-equivariant linear operator L defined on
the whole of X. Moreover, L agrees with L' on Xgjrac(ao) and hence on Y. Since
Y C Alirac(ao) is absolutely irreducible, we have Lo|y = L'|y = Ly is a scalar
multiple of the identity. O

Finally, we prove some auxiliary results on the spectrum of an E(n)-equivariant
linear operator L : X — X, see Remark 4.8. We continue to suppose that X = X'¢
(no bounded variables).

Proposition A.3. Suppose that L is an E(n)-equivariant linear operator on X
with measurable, locally bounded symbol Q. Let o € C and suppose that o & spec @,
for all a € R. Then o € specL if and only if the family |(Q, — oI)7!| is not
uniformly bounded (in a).

Proof. First, suppose that the family is uniformly bounded: |(gx — oI)~!| < ¢ for
all k. By Remark 3.8(c), ||(L — oI) || < ¢ so that L — oI has a bounded inverse.
Since L is closed, the domain of (L — oI)~! is closed. Moreover, the domain of
(L — oI)~! contains the dense subspace X, = FM, and hence is the whole of X.
It follows that o & spec L.

Conversely, suppose that the family is not uniformly bounded. Then we can
choose v; € C* with |vj| = 1/2 and k; € R such that |(gx; —01)"'v;| > j. Define
u; € X by setting u;(z) = v;e*i®* + c.c. Then |jus]| = 1 but ||(L — o)1y =
2|(qr, — oI)~'v;| > 2j. Hence (L — oI)™! is not bounded so o € spec L.

Proposition A.4. Let L be a nondegenerate equivariant linear partial differential
operator with symbol Q. Generically, for all o € C, the family (Q, — oI)~! is
eventually defined and converges to the zero matriz as a — oo.

Proof. The matrix family (), commutes with the action of O(n — 1) on C* and
block-diagonalizes according to the isotypic decomposition of C* under O(n — 1).
Consider an isotypic component consisting of ¢ copies of an O(n — 1)-irreducible
representation of dimension d say. The corresponding c¢d x cd diagonal block of @,
can be identified with a ¢ x ¢ matrix.

Without loss of generality, we may restrict attention to this single block of @,
which can be identified, by Proposition 3.12, with a single almost arbitrary ¢ x ¢
matrix with real polynomial entries. (There may be additional restrictions on the
constant terms since Qo commutes with the whole of O(n). We consider only
perturbations that have no constant terms.)

By Cramer’s rule, each entry of (Q, — oI)~! is a rational function where the
denominator is the determinant of (), — oI and the numerator is the determinant of
an (s —1) x (s —1) minor. Let d be the maximum degree of the determinants of the
(s —=1) x (s — 1) minors. It is sufficient to show that generically det @, has degree
greater than d. This condition is clearly open and is dense since can make arbitrarily
small perturbations to the linear and quadratic terms of the entries of Q,. (Such
perturbations are relatively bounded since L is assumed to be nondegenerate.) O

Corollary A.5. If L is a nondegenerate equivariant linear partial differential op-
erator on X, then generically, spec L = |, spec Q,.
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Proof. One inclusion is automatic. To prove the other inclusion, suppose that
o & spec @, for all a. Then the continuous function f(a) = |(Q, —oI)~!| is defined
for all a and generically converges to 0 as a — oo by Proposition A.4. Hence, f(a)
is bounded and it follows from Proposition A.3 that o & spec L. O
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