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Abstract

The transfer operator corresponding to a uniformly expanding map enjoys
good spectral properties. Here it is verified that coupling yields explicit esti-
mates that depend continuously on the expansion and distortion constants of
the map.

For nonuniformly expanding maps with a uniformly expanding induced map,
we obtain explicit estimates for mixing rates (exponential, stretched exponen-
tial, polynomial) that again depend continuously on the constants for the in-
duced map together with data associated to the inducing time.

Finally, for nonuniformly hyperbolic transformations, we obtain the corre-
sponding estimates for rates of decay of correlations.

1 Introduction

It is well-known that the transfer operator associated to a uniformly expanding map
enjoys good spectral properties. In particular, there are numerous methods for prov-
ing exponential decay of correlations for uniformly expanding maps, see for exam-
ple [1, 9, 25, 26, 28|.

Often, statistical properties of nonuniformly expanding systems are studied by
inducing to a uniformly expanding one. Young [31, 32] obtained results on decay
of correlations for large classes of such nonuniformly expanding maps, as well as
nonuniformly hyperbolic transformations. The rate of decay is related to the tails of
the inducing time, with special emphasis placed on exponential tails and polynomial
tails. Stretched exponential decay rates (amongst others) were obtained in Maume-
Deschamps [22]. The resulting decay rates have the form O(e=“"") or O(n~") where
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v € (0,1] and g > 0 are given explicitly, but the implied constants are not and nor
is ¢ in the exponential case v = 1. An improved estimate of Gouézel [17] gives sharp
decay rates in the stretched exponential case v € (0,1) but the implied constant
remains nonexplicit (as does the constant ¢ in the exponential case).

In this paper, we use an explicit coupling argument to obtain mixing rates with
uniform control on the various constants. The main novelty in our results lies in the
nonuniformly expanding/hyperbolic setting. However, even for uniformly expanding
maps, we expect that our results have numerous applications, see for example [19, 20].

Related results using the coupling method for uniformly expanding maps can be
found in both simpler and more complicated situations (usually in low dimensions)
in recent papers, for example [14, 29]. See also [21] for an approach using Birkhoff
cones for one-dimensional maps. None of these results are formulated in such a way
that they can be cited in [19, 20]. In this paper, we work in a general metric space
and present a much shorter and more elementary proof than was previously written
down. The results then feed into the more complicated argument required in the
nonuniformly expanding/hyperbolic setting.

Remark 1.1 After circulating a first version of this paper, we were made aware
by Oliver Butterley and Jean-René Chazottes of previous work of Zweimiiller [33]
which handles the uniformly expanding case. Using a coupling argument for uniform
expanding Markov maps defined on a general compact metric space, [33] shows how to
obtain exponential decay of correlations with explicit control on the various constants,
just as is shown in this paper. Moreover, the setting in [33] (within the uniformly
expanding setting) is more general than the one considered here since we assume full
branches whereas [33] assumes a “finite images” condition. Assuming full branches
simplifies matters considerably but suffices for our purposes in [19, 20].

The compactness assumption in [33] is used only to to prove existence of an
invariant density via an Arzela-Ascoli argument. The proof below of Proposition 2.5
shows how to bypass this, so that compactness of the metric space is not required.
For an alternative argument to prove existence of an invariant density without using
compactness, see (2] or [1, Lemma 4.4.1].

Hence our results for uniformly expanding maps in Section 2.1 are not new. We
include the results for a number of reasons: (a) completeness, especially as they feed
into our results for nonuniformly expanding/hyperbolic systems (Sections 2.2 and 2.3)
which are new; (b) The arguments are very short and direct; (¢) The explicit nature
of the constants is stated in a way that is convenient for easy reference (in [32] it is
necessary to read the entire proof to see that it gives explicit uniform bounds for the
constants).

Remark 1.2 Keller & Liverani [18] considered continuous families of uniformly ex-
panding maps and developed a perturbative theory that gives uniform estimates on
the spectra of the associated transfer operators. This idea was used by [13] in the sit-
uation of dispersing billiards. However, inducing from continuous families of nonuni-



formly expanding maps to families of uniformly expanding maps may fail to preserve
any useful notion of continuous dependence. In particular, the examples in [19, Sec-
tion 5] and in [20] do not satisfy the hypotheses of [13, 18].

In this paper, we do not assume any continuous dependence on parameters. In-
stead, we work with a fixed uniformly expanding map F', and give explicit estimates
on the associated transfer operator that depend continuously on the expansion and
distortion estimates of F'.

Even for nonuniformly expanding/hyperbolic dynamical systems, none of the re-
sults in this paper are particularly surprising. Nevertheless, the results go far beyond
those previously available. Some examples are listed at the end of Section 2.2. In the
case of smooth unimodal maps there are previous results [8, Theorem 1.3] showing
exponential decay of correlations up to a finite period with uniform exponent (uni-
formity of the implied constant is not claimed in [8]). Here we obtain a similar result
with uniform exponent and uniform implied constant. In the case of families of Viana
maps [30] which are known to have stretched exponential decay of correlations [16],
we obtain for the first time uniform estimates on the constants C', ¢, v in the stretched
exponential decay rate Ce™"".

Our main results are stated in Section 2 and proved for uniformly expand-
ing, nonuniformly expanding, and nonuniformly hyperbolic, transformations in Sec-
tions 3, 4 and 5 respectively.

2 Statement of the main results

In this section, we state our main results for uniformly expanding maps (Subsec-
tion 2.1), nonuniformly expanding maps (Subsection 2.2), and nonuniformly hyper-
bolic transformations (Subsection 2.3).

2.1 Uniformly expanding maps

Let (Y, m) be a probability space, and F': Y — Y be a nonsingular transformation.
Let d be a metric on Y such that diamY < 1.

Suppose that « is an at most countable measurable partition of Y, and that F
restricts to a measure-theoretic bijection from a onto Y for each a € «.

Let ( = dg{gF be the inverse Jacobian of F' with respect to m. Assume that there
are constants A > 1, K > 0 and n € (0, 1] such that for z,y in the same partition

element

d(Fz, Fy) > Md(z,y) and |log ((x) —log((y)| < Kd(Fx, Fy)". (2.1)

Let P, : L}(Y) — LY(Y) be the transfer operator corresponding to F' and m,
s0 [y Pupthdm = [, ¢tp o Fdm for all ¢ € L' and o) € L®. Then P,¢ is given



explicitly by

(Pn®)(®) = ((ya)b(va),

aco

where ¥, is the unique preimage of y under F' lying in a.
Given ¢ : Y — R, define

’¢‘77 = sup |¢(;€) — ¢(y)|

£y d(z,y)n and 16lly = [Pl + [8ly-

Let C" denote the Banach space of observables ¢ : Y — R such that ||¢||, < oco.
It is well-known that there exist constants C' > 0, v € (0, 1), such that || P ¢||, <
C™||¢l|, for all ¢ € C" with [, ¢dm = 0 and all n > 1. Our main result is:

Theorem 2.1 There ezist constants C' > 0, v € (0,1) depending continuously on A,
K and n, such that

[1Pndlln < CY* [y,
for all ¢ € C" with [, ¢dm =0, and alln > 1.

Remark 2.2 For example, take R = 2K/(1 — A™") and £ = ¢ #(1 — A™"). Then
Theorem 2.1 holds with C' = 4ef(1 + R) and v =1 — €.

Next, let M be the collection of probability measures on Y that are equivalent to
m and satisfy L, < oo where L, = |log j—gh. Given p € M, define ¢, = d;l—’:F and let
P, be the corresponding transfer operator.

Proposition 2.3 For all x,y in the same partition element,

[log Cu(w) —log Cu(y)| < Kud(Fa, Fy)",
where K,, = K + (A" +1)L,,.

Proof Note that log(, = log( + h — h o F where h = log %. Hence |log ¢, (z) —
log Cu(y)| < [log((x) —log C(y)| + |hlyd(z,y)" + [hlyd(Fz, Fy)" < (K + LA™ +
L,)d(Fx, Fy)". ]

In other words, the hypotheses of Theorem 2.1 are satisfied with m and K replaced
by 1 and K. Hence, we obtain:

Corollary 2.4 Let p € M. There ezist constants C > 0, v € (0,1) depending
continuously on X\, K,, and n, such that

”P;]QSHT] < C'Yn|¢|na

for all ¢ € C" with [, ¢pdp =0, and all n > 1. [



Of special interest is the case where p is the unique absolutely continuous F-
invariant probability measure. For this special case, we prove:

Proposition 2.5 The invariant probability measure p lies in M, and there is a con-
stant R depending continuously on A\, K and n (chosen as in Remark 2.2 say) such
that J p
-R ~ ar < B ‘10 o
©C c2dm = & dm
In particular, the constants C and ~ in Corollary 2.4 depend continuously on A\, K
and 7.

<R.
7

Remark 2.6 A standard extension of these results is to treat observables ¢ : Y —
R that are piecewise Holder (relative to the partition «) and possibly unbounded.
Provided P,,¢ € C®, our results go through unchanged (with obvious modifications
to the constant C'). For instances of this extension, we refer to [23, Lemma 2.2] or [19,
Proposition 4.7].

2.2 Nonuniformly expanding maps

Let F' : Y — Y be a uniformly expanding map with probability measure m (not
necessarily invariant), constants A, K and 7, and partition «, as in Subsection 2.1.
Let 7 : Y — Z% be an integrable function that is constant on partition elements.
Define the Young tower [32]

A={(y,0) eY xXZ :0<(<71(y)—1}

and f: A — A,
y7£ + 1 ) g S TY) — 27
flo. )= 0D E=TW)
Let 7 = [,, 7dm. Let ma be the probability measure on A given by ma(A x {¢}) =

77'm(A) for all £ > 0 and measurable A C {y € Y : 7(y) > £ + 1}.
Let da be the metric on A given by

1 040
dly,y), (=10

Given ¢ : A — R, define |¢], = sup, ,ca % and [|¢||, = |®l, + |P|o-

Let L: L'(A) — L'(A) denote the transfer operator corresponding to f and ma,
so [\ Lodma = [ oo fduforall ¢ € L', 1 € L.

When the measure m on Y is F-invariant, ma is an ergodic f-invariant probability
measure on A and mp is mixing under f if and only if ged{7(a) : a € a} = 1.
Accordingly, we say that the tower f : A — A is mizing if ged{7(a) : a € a} =1,
and nonmixing otherwise, even though we do not assume that ma is f-invariant.

dA((yag)v <y/’gl)) = {
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Mixing Young towers In the mixing case, there exist 4 > 0 and a finite set of
positive integers {I} with ged{l} =1 such that m({y € Y : 7(y) = I;;}) > 4.

Theorem 2.7 Let ¢ : A — R be an observable with ||¢||, < oo and [, ¢pdma = 0.

e Suppose that m(t > n) < Con™? for some B > 1 and all n > 0. Then there
exists a constant C > 0 depending continuously on A\, K, n, max{I;}, 6, § and
C;, such that for alln >0

/ 16| dma < C¢fln .
A

o Suppose that m(t > n) < Cre= " for some A >0,0< v <1 and all n > 0.
Then there exist constants B > 0 and C > 0 depending continuously on \, K,
n, max{I}, §, A, v and C;, such that for alln >0

/A L] dma < C|@llye "

Nonmixing Young towers In the nonmixing case, define
d=ged{j>1:m{yeY : :7(y) =4}) >0} > 2.

There exist 6 > 0 and a finite set of positive integers {I;} with gcd{I;} = d such that
m({y €Y :7(y) = Iy}) = 6.

Theorem 2.8 Let ¢ : A — R be an observable with ||¢[, < oo and [, ¢pdma = 0.
Then Theorem 2.7 holds with [, |L"$| dma replaced by fA}Zi;(l) L"d““qb! dmn.

Theorem 2.8 has the following equivalent reformulation which gives uniform mix-
ing rates up to a cycle of length d. We state the reformulation for the case of
(stretched) exponential mixing. The polynomial mixing case goes the same way.

Write A = Ey U --- U Ey where f(FE;) = Ej11moad and f¢: E; — E; is a mixing
tower for j =1,...,d.

Corollary 2.9 Suppose that we are in the situation of Theorem 2.8 and that m(T >

n) < Cre= " as in the second part of Theorem 2.7. Fiz j = 1,...,d. Then there
exist uniform constants B, C' > 0 as in Theorem 2.7 such that

)/A¢¢OfnddmA—/A¢dmA/A¢dmA‘ §C||¢||n|¢|ooe_3m,

for alln > 1 and all ¢, € L™ supported in E; with ||¢l], < oco.



Examples In [19, 20], we verified for specific families of nonuniformly expanding
maps that the corresponding induced maps F' are uniformly expanding, as in Subsec-
tion 2.1, with uniform constants A, K, 7. A key ingredient in this verification is the
work of [3, 5, 7, 15] on strong statistical stability (where the density of the invariant
measure varies continuously in L'). Tt follows from this abstract framework (specifi-
cally condition (U1) in [7]) that the data d = ged{I;} > 1 and § > 0 associated with
the inducing time 7 varies continuously in the mixing case and upper semicontinu-
ously in general (so d can decrease under small perturbations but cannot increase).
Hence for the examples in [19, 20|, uniform estimates on decay of correlations follow
immediately from Theorems 2.7 and 2.8.

Specifically, we obtain uniform polynomial decay of correlations for intermittent
maps [20, Example 4.9], uniform exponential decay of correlations (up to a finite
cycle) for smooth unimodal and multimodal maps satisfying the Collet-Eckmann
condition [20, Example 4.10], and uniform stretched exponential decay of correlations
for Viana maps [20, Example 4.11].

2.3 Nonuniformly hyperbolic transformations

Let T : M — M be a diffeomorphism (possibly with singularities) defined on a
Riemannian manifold (M,d). Fix a subset Y C M. It is assumed that there is
a “product structure”: namely a family of “stable disks” {I¥/*} that are disjoint
and cover Y, and a family of “unstable disks” {W"} that are disjoint and cover Y.
Each stable disk intersects each unstable disk in precisely one point. The stable and
unstable disks containing y are labelled W*(y) and W*(y).

Suppose that there is a partition {Y} of Y and integers 7(j) > 1 with ged{7(j)} =
1 such that T™D(W*(y)) € W*(T7™Wy) for all y € Y;. Define the return time function
7:Y = Z" by 7|y, = 7(j) and the 1nducedmapF Y =Y by F(y) =T"W(y).

Let s denote the separation time with respect to the map F : Y — Y. That is,
if y,z € Y, then s(y, z) is the least integer n > 0 such that F"z, Fy lie in distinct
partition elements of Y.

(P1) There exist constants Ko > 1, pg € (0, 1) such that

(0,

(i) If z € W*(y), then d(F™y, F"z) <

(i) If z € W*(y), then d(F™y, F"z)

(iii) If y,2 € Y, then d(TVy,T7z) <
min{7(y), 7(2)}.

Let Y =Y/ ~ where y ~ z if y € W*(z) and define the partition {Y;} of Y. We

obtain a well-defined return time function 7 : Y — Z* and induced map F : Y — Y.

Suppose that the map F : Y — Y and partition o = {Y} separate points in Y, and

let s denote also the separation time on Y. Fix 0 € (0,1). Then dp(y,z) = Hs(yz
defines a metric on Y. Suppose further that F' : Y — Y is a uniformly expanding

1007

S(y7z)_n
Y

< K,
K( ( z)+d(Fy,Fz)) for all 0 < j <
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map in the sense of Subsection 2.1 on the metric space (Y, dy), with partition a and
constants A = 1/6 > 1, K > 0, n = 1. Let fiy denote the F-invariant probability
measure on Y from Proposition 2.5. We assume that 7 : Y — Z7* is integrable. We
suppose also that there is an F-invariant probability measure gy on Y such that
Telly = Jly where 7 :Y — Y is the quotient map.

As in Subsection 2.2, starting from F : Y — Y and 7: Y — Z*, we can form the
quotient tower f : A — A with f-invariant mixing probability measure fin. Similarly,
starting from F: Y — Y and 7: Y — Z*, we form the tower f : A — A such that
F=f:Y —Y with f-invariant mixing probability measure pa.

Define the semiconjugacy 7= : A — M, w(y,{) = T'y. Then u = m.ua is a
T-invariant mixing probability measure on M.

As in Subsection 2.2, we restrict to the cases u(t > n) = O(n=?), § > 1, and
p(r >n)=0( "), A>0,ve(0,1].

Theorem 2.10 Letn € (0,1]. Then there exist C' > 0, B > 0 depending continuously
on the constants in Theorem 2.7 (associated to the nonuniformly expanding map f :
A — A) as well as n, py and Ko, such that | [,,vw o T"dp — [, vdp [, wdp| <
Cap|[v|l,l|lwlly, for allv,w € CY (M), n > 1, where a, = n~B=Y or e=B"" respectively.

Remark 2.11 Note that there is no assumption about contraction rates along stable
manifolds for T'; all that is required is exponential contraction/expansion for the
induced map F' : Y — Y. This is in contrast to [31] where exponential contraction
is assumed for 7' (this restriction is also present in [6]) and [4] where polynomial
contraction is assumed for 7.

The method for removing such assumptions on contractivity of 7" is due to Gouézel
(based on ideas in [11]) and was used previously in [24, Appendix B].

3 Proof for uniformly expanding maps

In this section, we prove Theorem 2.1 and Proposition 2.5.
For ¢ : Y — (0,00), we define |¢|,, = |logv|,. Note that

e—|¢|n,e/ Ydm < < 6¢n,e/ W dm. (3.1)
Y Y
Also, for at most countably many observables ¢y : Y — (0, 00),
‘Z%’ < sup [Yp|,e- (3.2)
A L k

Proposition 3.1 Let ¢ : Y — (0,00). Then |Pp|ye < K 4+ A7), 0.



Proof For a € a write ¢, = 1,9. Then P,¢ = > Py, For y € Y, we have
(Prnta)(y) = ((Ya)¥(ya) where y, is the unique preimage of y under F' lying in a.
Let x,y € Y with preimages x4, y, € a. Then

[ log(Prnta)(w)—log(Prmtba) (y)] < |log ((7a) —log ((ya)| + |log 1 (xa) — log ¥(ya)|
S Kd(me Fya)n + |77Z}|77,€ d(xaaya)n S (K + A_n|w|n,€)d(xvy)na

and so | Prtglne < K+ A7"1|, . The result follows from (3.2). |

Proposition 3.2 Let ¢ : Y — (0,00). For each t € [0, e~ 1¥Ine)

< |w’n,f

—1 .
’¢ v ne  1— t€|7/)|n,£

Proof Let x(y) =logv(y). Note that

e 1
er —t [, vdm  1—ter [ Ydm

C%log(e”—t/ywdm) =

By (3.1),
1 1 1

<
1 —te=rW [ 4 dm 11— to(y)t [y v dm — 1 — tel¥hne’
for all y € Y. Hence, by the mean value theorem, forx,y €Y,

‘lOg “(93 /wdm log —t/l/)dm < ) l{( )| < |77Z)|777€d(x7y>n.

1 —telblne = 1 — teltlhne

This completes the proof. |

Fix constants R > 0 and & € (0,e™ ), such that R(1 — &ef') > K + A™"R. (For
example, choose R and ¢ as in Remark 2.2.)

Proposition 3.3 Let ¢ : Y — (0,00) with |¢],¢ < R. Then |P,vl,, < R.

Proof By Proposition 3.1, |P,¢],¢ < K+ AX""R < R. |
Lemma 3.4 Let ¢y, ¥y : Y — (0,00) with |¢1|pe < R, |o]pe < R, and [, ¢y dm =
Jy Y2dm. Let ) = Pyib; — € [ by dm for j =1,2. Then

(a) [ilne < R for j=1,2,

(b) Poibr — Pty = by — iy,

(c) [y drdm= [, ydm = (1-E) [} ¢rdm.



Proof By Propositions 3.1 and 3.2,

"o - | [Potlilne K +ATR
’wj‘n,é - ’me] f/y% dm‘n,ﬁ S 1_ fe‘Pml/’j‘W S 1 — f@R S Ra
proving part (a). Parts (b) and (c) are immediate. |

Now we are ready to prove Theorem 2.1 taking C' = 4e®(1 + R) and y =1 — €.

Proof of Theorem 2.1 Assume first that |¢[, < R. Later we remove this restric-
tion.

Since [, ¢dm = 0, there exists x,y € Y such that ¢(z) < 0 < ¢(y). Hence it
follows from the assumption |¢|, < R that |¢|. < R.

Write ¢ = ¢ — 1y, where ¢g = 1 + max{0, ¢} and ¢; = 1 — min{0, ¢}. Then
Yy 1Y = [1,00) and [, g du= [, ¥5 du<1+|¢lo <1+ R. Fora,y €Y,

llog vy () —log vy (y)| < [v5 (2) — ¥y ()] < lo(z) — é(y)l,

50 |77Z)(j)E|n,€ < |¢|n <R.
Define

fa= Pt —¢ [ wtdm nzo
Y
By Lemma 3.4(a), W,ﬂﬂn,e < R for all n > 0. By Lemma 3.4(b,c),

Pho = Ppiby — Priby =¥ — 1y, (3.3)
and [, vEdm =" [, v5dm < (1+ R)y". By (3.1),

YE < eR/ YEdm < ef'(1+ R)y" (3.4)
Y
Next, we recall the inequality
la — b| < max{a,b}|loga —logb|, for all a,b > 0. (3.5)
By (3.5) and the definition of |¢|,, for z,y € Y,

| (2) — ¥ (y)| < max (v, (), 9, (y)) [log ¥y (x) — log vy, (y)]
< ef(1+ Ry Wy e d(z,y)" < e"R(1+ R)y"d(z,y)".

Hence, [¢F], < e®R(1+ R)y™. By (3.3),
|Prol, < 2e"R(1+ R)Y". (3.6)

Finally, we remove the restriction |4, < R. Note that u = R|¢|; "¢ satisfies
lul, < R, and therefore it follows from (3.6) that

|P:~b¢|n = R_l‘¢’n !PZZU\n < 26R(1 + R)y" |¢’n

10



Also, [, Pl¢dm =0, so | P ¢l < |Pro|,. Hence
1Pl < 21561, < 4e™(1+ R)y" [g,,
as required. |

Proof of Proposition 2.5 We construct an invariant probability measure u € M
and show that |42, , < R.

By Proposition 3.3, [P 1],, < R for all n > 0. In particular, it follows from (3.1)
that |Pp1]e < eff. By (3.5),

|Pull, < |Pulloo|Pullye < e"R.

Also, [,(Pn1—1)dm =0, so by Theorem 2.1, ||P(P,1 —1)||, < Ce®Ry". Hence
we can define .
pum 1 i pum— n - n
p=lim Pjl=1 +Z;Pm(Pm1 1)ecm
It is immediate that fY pdm = 1and P,,p = p, so p is an invariant density. Moreover,
forx,y €Y,

|log p(z) —log p(y)| = lim_|log(F1)(x) —log(F1)(y)] < Rd(x,y)",
so that |p[,¢ < R. |

Remark 3.5 In this paper, we have restricted attention to expanding maps F': Y —
Y satisfying the full branch condition Fla = Y for all a € a. This is a reasonable
restriction for situations where the expanding maps are obtained by inducing nonuni-
formly expanding maps as in [19]. More generally, the restriction is justified by the
family of examples Fs : [0,1] — [0,1] depicted in Figure 1 below. Note that each
map preserves Lebesgue measure and is mixing. Moreover, we can take A = 2 and
K =0 for all 6. Nevertheless, correlations decay arbitrarily slowly as § — 0. (Explicit
constants depending on ¢ can be computed from [33].)

4 Proof for nonuniformly expanding maps

In this section, we prove Theorems 2.7 and 2.8. The coupling technique from prob-
ability theory, on which our proofs are based, was introduced to dynamical systems
by Young [32], and has since been used in various ways by numerous authors, includ-
ing [10, 12, 33]. Our proof is in many ways similar to those in the above works, but
is also different: to obtain explicit control on various constants, we developed a new
(to the best of our knowledge) construction of coupling and the method to apply it.

11



Figure 1: A family of uniformly expanding maps Fj : [0,1] — [0,1] with A = 2 and
K = 0 but with arbitrarily slow decay of correlations.

4.1 Outline of the proof

Let Ay = {(y,k) € A : k = {} denote the ¢-th level of the tower. Our strategy is
to construct a countable probability space (W, P) and a random variable h : W — N
such that every sufficiently regular observable ¢ : A — [0,00) with [ AYdma =1
can be decomposed into a series ¢ = Y, 1, where ¥, : A — [0, 00) are such that
Js Ywdma =P(w) and L")y, = P(w)T1a,.

Now let ¢ : A — R and suppose that LY¢ = C(¢» — 4') where 1 and 1’ can be
decomposed as above and C' > 0, N € N are constants. We have LM, = LMw)
and so L" (¢, — },) = 0 whenever n > h(w). Therefore

'w7

/ |LN* g dma < C Z / L™y + L") dma

weW:h(w

=C Z /¢w+¢)dmA_2OP(h>n)

weW:h(w)>n

In this way, decay rates for L"¢ reduce to tail estimates for h.

4.2 Recurrence to A

Given ¢ : A — [0, 00), define

Wl —sup  sup  He8¥m) —los vy, n)l
T 20 (ym)#y m)edn d(y,y')" ’

where log () = —oo and log0 — log 0 = 0.
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As in Section 3, we fix constants R > 0 and & € (0,e™ %), such that R(1 — &eft) >
K + A"R. (For example, choose R and ¢ as in Remark 2.2.) Using notation from

Section 3, (L¢)(y,¢) = {Zaea ) dlar(a) = 1) =0

Proposition 4.1 Let ¢ : A — [0, 00) with ||, < R. Then

(a) e 17 Yvdma < P la, <efi7 Y dmp.
AO A0

(b) |L¢|n,£ <R.
(c) Ift €[0,&], then ' = Lp —t7 [, Lipdmala, is nonnegative and [{'[, < R.

Proof (a) This is the counterpart of (3.1).
(b) Let (y,), (v, ¢) € Ap. If £ > 1, then it is immediate that |log(Ly)(y,?) —
log(LY) (v, ¢)| < Rd(y,y’)". The same calculation as in Proposition 3.1 shows that

| log(L)(y, 0) — log(Le)(y, 0)] < (K + A7"R)d(y,y)" < Rd(y,y')".
(c) It follows from (b) that |Lt|,, < R. Hence, by (a), ' > 0. As in part (b), it
is immediate that |log/(y, ) —log/ (v, ¢)| < Rd(y,y')" for £ > 1. Also, ¢'(y,0) =
x(y)—t [, xdm where x : Y — [0, 00) is given by x(y) = (L#)(y,0), so it follows from
Proposition 3.2 that |log/(y,0) — log /' (y/,0)] < (K + A"R)(1 — tef')~td(y,y')" <
Rd(y,y)". n

Define N = N; + N, where
N, = max{I}}, N,= mm{n > 1:ma(Upsnly) < 2 7€ 1}
Let A be the set of observables 1) : A — [0, 00) such that [¢]. < 7 [, ¥ dma and
Y], < R. Define B = LV A.

Corollary 4.2 (a) If vp : A — [0,00) is supported on Ay, and |¢],, < R, then
e A.

(b) If " € A (or B) and t > 0, then L1y, b + 1" and tip belong in A (or B). In
particular, B C A.

Proof Part (a) follows from Proposition 4.1(a). Next, let v € A. We show that
L1 € A, the remaining statements in part (b) are immediate. By Proposition 4.1(b),
|L|, 0 < R. Also, using the definition of A and Proposition 4.1(a),

1 Tava LYoo < 1h]oo < eRT/ Ydma = eRT/ Ly dmy, and
A A

11a, L) |oe < eRf/

Ao
Hence | L] < €7 [ Lip dma, so Lip € A. [

Ly dma < ef7 / Ly dm.
A
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Proposition 4.3 If{ € A, then maxo<j<n, on LIy dma > %67R77'71 fA Ydmp.

Proof It follows from the definition of N, and A that ma(URy, 1 A0)|¢Y]e <
1 [y ¥ dma. Hence

/ Ydma = / LN20h dmpa + / LN20h dma
A U2y A U

oo
0=No+1 Ay

1
S/ LNdemA+_/wdmA7
Unz, Ay 2 Ja

SO fUévfoAz LN2ypdmp > 3 [\ ¥ dma.

Next, if ¢ < Ny then (LM9)(y,f) = (L™>7%))(y,0), and so fAz LN2qp dma <
ma(A)) LN 1ayle < ma(Ar) maxo<j<n, |L79 1a,|0o.  Hence, by Proposi-
tion 4.1(a,b),

0<j<N2

LY dma < D1, e < ef'7 /Ljd .
/UfZ’OAL, dma < OggzﬁJ U 1ayloo < €T max A W dma
The result follows. |

Proposition 4.4 If [¢],, < R, then [, L") dma > (e70)" [, 1 dma for all n >
Ny.

Proof By Proposition 4.1(a), infa, v > e fi7 onwdmA. By our assumptions,
ma({z € Ay : flvx € Ag}) > 6/7 for every I;,. Hence

/ L% dma = / Y 1a, 0 fdma > / ¥ 1a, 0 f*dma
Ao A Ao

> ighb mal{z € Ao : ffrx € Ag}) > e 6 [ dma.
0 Ao

By [27], every n > Nj can be written as n = ), nil;, where n; are nonnegative
integers. By Proposition 4.1(b), it follows inductively that

/ L™pdma > (e_Rc?)Zk"k/ wdmpa > (e_R5)”/ Y dma,
Ao Ag

Ap

as required. [

Lemma 4.5 Ifvy € B, then on Ydma > € [ bdma, where e = ze” B (e o)V,

1
2

14



Proof By definition of B, there exists ¢’ € A such that LY1+N2¢/ = ). By Propo-
sition 4.3, there exists j < N, such that on Liy dmpy > e B771 [ @/ dma. By
Proposition 4.4 (taking n = Ny + Ny — j > Ny),

/ Ydma = / LN N2 dmp > (e gy N2 / LIy dma
Ag Ag

Ap

e—RT—l(e—Ra)N1+N2/ ¢’dmA :e/ Y dma,
A A

as required. [

1
>
-2

4.3 Decomposition in B

Next, we introduce constants p,, t, € [0,1],

ti=1—¢ t,=min{ty, eFma (U2, A0}, n>2,
pa=Ee po=(1=8e pu=ty—tap, n>1.

The monotonicity of the sequence t, ensures that p, > 0 for all n. Note that

Zf:_lpn =1
Let By = Ag and E, = {(y,¢) € A : 0 =71(y) — k, ¢ > 1} for k£ > 1. Then
{Ey, E1, ...} defines a partition of A and ma(Ey) = ma(Ay) for all k.

Proposition 4.6 If ¢ € B with [, ¥ dma =1, then fU?‘i g, Y dma <ty forn>1.

Proof By Lemma 4.5, fU?‘i 5 Ydmpa < IUZ’i B Yvdma <1—e=1t; foralln>1.
By definition of B, for n > 2 we have in addition that fUE‘i g, Ydma <
ma (U2, Ap)|1]oo < eftFma(U2, Ay). The result follows by definition of ¢,,. |

Proposition 4.7 Let p;, q; € [0,00) be sequences such that Y 2~ p; =372 q; < 00
and Z?:o g > Zf:o p; for all k > 0. Then there exist sy, ; € [0,1], 0 < j < k, such
that Z?:o Sk;q; = D for all k>0 and Zzozj sk; =1 for all j > 0.

Proof We assume that ¢; > 0 for all j; otherwise set sj ; = 0 ; for & < j whenever

q; = 0.
For k = 0, choose sp0 = po/qo. Next let k& > 1, and suppose inductively that

s have been constructed for 0 < j < k' < k — 1, such that Z?l:o Sk jq; = pr for
K <k—1land Y s, <1lforj<k—1
Define si 0, Sk.1,-- -, Skr € [0,1] (in this order) by

k—1 j—1
. Pr — 2 _i—qg Sk,j'4j .
Sk,j:mm{l—ZSk@j, ZJ 0 }, 7=0,1,... k.

o 4
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By construction, Zf:o skiq < pr. I Z?:o 5k;q; < Pk, then necessarily
S swy = 1for all j < k, and so

k k k1 k
Z%/ Zzsk'gqg —Zsk,ij+Zpk' < Zpku
k=0 =0 K'=0 k=0

=0 j=0

which is a contradiction. Hence Zj:O Sk.iq; = Dk-

By the above construction, Z?:o Sk;4; = pr for k> 0 and Z;o:] s,; < 1forj > 0.
Since also > pj = D72 ¢; < 00, we conclude that ;7 . s;, ; = 1. |

Lemma 4.8 Let v : A — [0,00) be such that L") € B for some n > 0. Then
Y =>"7" | g, where iy : A — [0,00) are such that

(i) L"p_y = pa7 [y hdmals,, (i) LFpy € A for all k>0,
(i) [ i dma = py [\ dma for all k > —1.

Proof First we consider the case n = 0. Suppose without loss that f AYdma = 1.
Define ¢_1 = p_1714, in accordance with properties (i) and (iii).

By Lemma 4.5, fAO@/JdmA > €. Hence t = p_y/ onzbdmA = &e/ fAOzbdmA €
0,&]. Since ¢ € B C LA, it follows from Proposition 4.1(c) that

1/)/ = %U _t%fAO@Z)dmA 1A0 = %U _p—l'fle = ¢ _¢—1

is nonnegative and [¢'|,, < R. Setting gy = ¢'14,, we obtain that {1, = ¢¥_1 + go
where go is nonnegative and |go|,, < R. By Corollary 4.2(a), go € A.

Define g, = ¢1p, for k > 1. Note that L*g; is supported on A and |L¥gyl|,, < R.
By Corollary 4.2(a), L*g, € A.

Now ¢ = Yla, + D poy G = Vo1 + Y _pey k- By Proposition 4.6,

p 1+Z/ggdma—1— 3 [ grms =1t = S
j=k+1 Jj=-1

Setting q, = fA gr dmpa, we have that Zk 0l > Zk op; for all & > 0. Choose
sk; € [0,1] as in Proposition 4.7, and define Yt A — [0 00), k>0, by

k
Ve = 22520 Sk, 95

By construction, condition (iii) holds for all k. Condition (ii) is satisfied by Corol-
lary 4.2(b). Finally, by Proposition 4.7,

o0 co k oo 00 [e'e)
S U= skigi =D skigi= g =% —1t_1,
k=0 Jj=0

k=0 j=0 j=0 k=j

16



completing the proof for n = 0.

Now suppose L™ € B for some n > 1. Setting ¢/ = L") and applying the result
for n = 0, we can write ¢’ = Y > | 1)} where v} satisfy properties (i)—(iii). Define
Y = (ﬁ—% o f™) 4 with the convention that 0/0 = 0. Then L"), = %an = 1, SO
properties (i)—(iil) are passed down from ¢}, to 1. Also Y po |ty = (i—:of”)zp =1. N

Let W be the countable set of all finite words in the alphabet N = {0,1,2,...}
including the zero length word, and let W}, be the subset consisting of words of length
k. Let P be the probability measure on W given for w = wy - --wy € W by P(w) =
D—1Pw; - * * Pw,- Define h: W — N by h(w) = Yw + N|w|, where Sw = w; + - -+ 4+ wy,
and |w| = k for w = wy - - - wy.

Proposition 4.9 Let ¢ € B with [\vdma = 1. Then ¢ = > .y Yw, where
Yw : A = [0,00) are such that [, ¢, dma = P(w) and L"), = P(w)71a,.

Proof Write ¢ = > |4y as in Lemma 4.8 (with n = 0). By properties (iii)
and (i), [, ¥rdma = p; for all k > —1, and ¢y = p_1T1a,.

Also LF*Nq) € B by property (ii), allowing us to apply Lemma 4.8 to each 1y,
(with n = k + N), yielding

R R B SR S (VR ST §
k=0 k=0 =0
where
/ Y dmpa = pj/ Y dmpa = pipr,
A A
LM Ny = p—lT/ Y dma 1a, = p_1DeT1a,-
A

At the next step,

Y= 1+ Zw—Lk + Z (@D—l,j,kz + Z %‘,j,k)a
k=0 i=0

j=0
[ee]
=Yt Y Vet Y Yowt ) i
weW; weWs 1,5,k=0

where
/ Uik = DiDiPes LMYk = poapipeT 1,
A
In particular, for the terms ¢_;, with w € Wy U W; U W, we have the required
properties [, ¥_1, dma = P(w) and LMep oy = P(w)Tla,.
In this way we obtain ¢ = »  _, ¢_1, where fA _1pdma = P(w) and
LM = P(w)T1a,. N
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4.4 Proof of Theorems 2.7 and 2.8

Let ¢ : A — R be an observable as in Theorem 2.7, i.e. |||, < co and [, ¢ dma = 0.
Define ¢, 9" : A — [0, 00) by

2 ¢

Y=l enLarry v

Then L"¢ = ||¢]l,(1 + R~1)(¢) — '), where ¢ = LN¢b, o/ = LN4)'.
Now [, thdma = [ 1’ dma = 1. Next,

<14+ R <eft<7el,

~ 1
o <1
[l < +1+R—1—

Also, [)] >1—(14+ R =1+ R)"and ||, < (1+ R, so for 2,y € A,

R+1
1+ R

[ log () —log ¥(y)| < [~ oo [¥0(2) — (y)]| < da(z,y) = Rda(z,y).
Thus ‘1;’7775 < R. We have shown that ¢ € A, and hence ¢ € B. Clearly, ¢/ € B.

We have shown that ¢ and ¢’ satisfy the hypotheses of Proposition 4.9 and hence
admit the decompositions given in the conclusion of Proposition 4.9. We are there-
fore in the situation described in Subsection 4.1 (with C' = ||¢]],(1 + R™'), and the
argument there shows that

J 1LY ol dms < 2ol (1+ RB(h > n).
A

To prove Theorem 2.7, it remains to estimate the decay of P(h > n).

Recall that W, is the subset of W consisting of words of length k. Then P(W}) =
(1 — p_1)kp_1. Elements of W}, have the form wy ---wy where wy, ..., w, can be
regarded as independent identically distributed random variables, drawn from N with
distribution P(w; = n) = p,/(1 — p_1). Also, P(|lw| > n) = (1 —p_1)"™

Polynomial tails

Proposition 4.10 Suppose that there exists C; > 0 and > 1 such that m(r >
n) < Cmn= forn > 1.

Then P(h > n) < Cn=B=Y for n > 1, where C depends continuously on Cy, 3,
R, N and p_.
Proof Let t, = 7efma (U2, Ar). Then

Pn =ty —tuy1 <ty — oy = 7ema(Ay) = em(r > n) < el n=b.

18



Using the inequality Zjan*5 <n P4 fnoo v %dr < Bn~=D /(B — 1), we obtain

_1 67/’/_([_3_1)

— Oy,
b—1

P(wy >n) = (1—p_1)" Y p; < Cref(1-py)

jzn
where C; = Ce(1 —p_1)7'B(8 — 1)71. Tt follows that for w € W, k > 1,

P(Xw >n|we Wy) =Pw, + -+ +wg > n)

k
< N P(w; > n/k) = kP(w;, > n/k) < CikPn= D,

Hence

P(Xw >n) = i]P’(Ew >n|w e Wy)P(Wy)

k=1

<O DS R (1 = py)ip_y = Gl Y,
k=1

where Cf = Cip_1 > pe k?(1 — p_1)*. Finally,

P(h(w) > n) = P(Xw + N|w| > n)
< P(Zw > n/2) + P(lw| > n/(2N)) < €287 1n=B=D 4 (1 — p_y /N,

The result follows. [ |

(Stretched) exponential tails

Proposition 4.11 Let Xi,..., X, be nonnegative random wvariables. Suppose that
there exist a > 0, v € (0, 1], such that

PX; >t|Xi=21,...,X;1 =xj1) < Ce=t"
forallt >0,1<j<kandx,...,xj_1 > 0. Then for all B € (0,a/2], t >0,
P(Xi+-+ X > 1) < (14 BC) e,
where C depends continuously on C', v and .

Proof Note that E(e®X1) = [FP(efX > t)dt = 1+ [“P(e’* > t)dt. Making
the substitution ¢ = ¢”*", we obtain

E(e’BX?) = 1+B’y/ STLPTP(X, > ) ds < 1+C@7/ 7 lem =P g < 1480,
0 0
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where C = Cy fooo s1~le=3987 dg. Similarly, ( xj | X1,...,X;21) < 1+4pC;. Hence

E(eﬁ(Xl-&-"'-ﬁ-Xk)'y) < E(eﬂ(X?+~~+XZ)) = E[E(eﬂ<X?+"'+X’Z) | Xi,... ,Xk_1)]
= E[QB(X¥+'“+XZ—1)E(€’BX’Z | Xi,... ,Xk:—l)]
<(1 —i—ﬁCl)E(eﬂ(X?*"'*XZfl)) <. < (14 BCHR

The result follows from Markov’s inequality. |

Proposition 4.12 Suppose that there ezxist C, A > 0, v € (0,1] such that m(r >
n) < Cre= 4" forn > 1.

Then P(h > n) < Ce 8" for alln > 1, where C > 0 and B € (0, A) depend
continuously on C, A, v, R, N and p_;.

Proof Following the proof of Proposition 4.10, p, < efm(r > n) < efCre 47",
Using that 7 < (2¢)%*/2 for all x,q > 0,

) o)
Yo <e /

i>n "

o0

e Mdt =e M + 7_114_1/7/ 5571 ds
An?Y

o0

1

< e A 4 Cany / e %2 ds < 3Ca, 675‘4m7
AnY

where C4, > 1 is a constant depending continuously on A,~y. Hence

Plwy >n) = (1—p_1)™" Y p; < 3(1— por) e CCpe 24

ji>n
By Proposition 4.11, for B € (0, 1 A],
P(Xw > n|w € Wy,) = Plw; + - +wy, >n) < (1+ BOCy)Fe P,

where C depends continuously on C;, A, v, R, p_;.
Let r = (1 + BC1)(1 — p_1) and choose B small enough that < 1. Then

P(Xw >n) = ZP(EM >nlwe Wy)P(W,) <ePpy Z b= (Cle B,
k=0 k=0

where C' =p_{(1 —r)~%.
Finally,

P(h(w) > n) = P(Xw + N|w| > n)
< P(Sw 2 0/2) + B(Jul 2 n/(2N)) < C'e B0/ 4 (1= p_ /e,

The result follows. |
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Proof of Theorem 2.8 As in the proof of Theorem 2.7, we can write ¢ = Cy(¢p—1)'),

where Cy = ||¢]l,(1 4+ R7"), and ¢,¢' € A with [, pdma = [ ¢'dma = 1. By

Corollary 4.2(b), |L™|, ¢, |L™ |0 < R and |L™)]oo, | L") |0e < Tel¥ for all n > 0.
Next

(L") () = (L") (y)| < IL" s |log (L") (x) — log(L"4)(y)],

so |[L™|, < 7efR. Similarly, |L"¢'],, < 7efR. Hence

1"y < Collllly + 14']ly) < Co(27e™ + 27" R) < Cil| ]y,
where C) = 27e®(1 + R)(1+ R™Y). Let ¢ = 3.0_} L*¢. Then ||@|,, < Cyd||¢],-
For r=0,...,d — 1, define A(r) = {(y,¢) € A: £ =r mod d}. Then f%: A(r) —

A(r) is a mixing Young tower with data {I;/d}, ¢, replacing the data {I;}, d, for A.
Note that Zi;é Iaey o f¥=1. Hence for r =0,...,d — 1,

d—1 d—1
ddma = Z/ Iag i dma = Z/ lagy © f¥pdma = / ddma = 0.
k=0 VA k=0 YA A

Thus for each r = 0,...,d — 1, we are in the situation of Theorem 2.7 with A, f,
¢ replaced by A(r), f4¢, ¢. In the case of polynomial tails,

d—1 d-1 d—1 d—1
A‘Z Lnd+k¢‘ dma = Z/ ‘Z LndJrk(b‘ dma = Z/ |Lndg5| dma
k=0

< Cl@lly(nd) =0 < CCrd= V)], n= "

A(r)

and similarly for the (stretched) exponential case. n

5 Proof for nonuniformly hyperbolic transforma-
tions

In this section we prove Theorem 2.10.

The separation time for F' : Y — Y extends to a separation time on A: define
s((y, 0), (¥, 0')) = s(y,y’) if £ =" and 0 otherwise. Recall that we fixed 6 € (0, 1).
Define the metric dy on A by setting dy(p, ¢) = 6°®9.

Recall that the transfer operator P correspondmg to F 'Y — Y and fiy has
the form (PO)(y) = Yoeo CWa)B(a): Also, (P'6)(y) = X ucn, Galya)9(y) where
an, = \/1—y F~*a is the partition of Y into n-cylinders and ¢, = (o F--- (o F* 1.

Proposition 5.1 Leta € oy, and y,y" € a. Then (a) Ky (a) < G(y) < Kifiy(a),
(6) 16a(y) = Gu(y)| < Kafiy (a)dg(F"y, F"y'), where Ky = e K (1 - 0) 'K
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Proof It follows from (2.1) that
[log Cu(y) —log Gu(y)| < (1= )T Kdy(F"y, F"y/).
Hence sup, ¢, < e@=)""Kinf, ¢, and
inf, ¢, = inf P"1, <[5 P"ladiiy = [3 ladiiy = fiy(a).
Thus sup, ¢, < Kijiy(a). Similarly, inf, ¢, > K; 'fiy(a). Finally,

1Ga(y) = Ga(y)] < sup G [log Galy) — log Ga(y)| < Kafiy (a)do(F™y, F"y').
|
The transfer operator L corresponding to f : A — A and fia can be written as

C(y), =7y —1,

(L)) = Y g(@)dlg),  where gy, () = {1 <l —1

fa=p
Then (L"¢)(p) = > jugeyy 9n(@)0(q) where g, = ggo f---go f*".
Define Ay = {(y,f) € A: £ =0} and Ay = {(y,¢) € A: { = 0}.
Proposition 5.2 Let p,p’ € A with s(p,p’) > n > 1. Then (a) anq:p gn(q) = 1,
(0) 1gn(p) = 92 (V)| < Kign(p)do(f"p, f'P').
Proof Part (a) is immediate since L"1 = 1. Let 7(p) = #{j € {1,....n} : fip €
Ao}. Note that r(p) = r(p'). If r(p) = 0, then g,(p) = g(p’) = 1 and (b) holds
trivially. Otherwise, we can write p = (y,£), p’ = (v/,¢) with y,9/ € Y and ¢ > 0.

Then gn(p) = Cr(p) (y) and gn(p/) = Cr(p) (y/)
Let a € ay,(p) be the cylinder containing y and y’. Then by Proposition 5.1,

192() = 92 = 16 (W) = Gy (0] < Ko fiy (a)dp(F" Py, F7 Py
< Koy (W) do(f™p, [70') = Kign(p)do(fp, [7D),
proving (b). .

Nonuniform expansion/contraction Recall that 7 : A — M denotes the pro-
jection m(y, ) = T*y. For p = (x,€),q = (y,£) € A, we write ¢ € W*(p) if y € W*(x)
and g € W*(p) if y € W*(z). Conditions (P1) translate as follows.

(P2) There exist constants Ko > 0, pg € (0, 1) such that for all p,qg € A, n > 1,
(i) If ¢ € W*(p), then d(x f™p, 7 f"q) < Kopgn(p), and
(if) If ¢ € W"(p), then d(rf"p, 7 f"q) < Kopp """,

where ,(p) = #{j = 1,...,n: fip € Ay} is the number of returns of p to Ay by
time n. It is immediate from conditions (P2) and the product structure on Y that

dnf"p,wfq) < ZKOp(r)nin{“"(p)’s(p’Q)fﬁ"(p)} for all p,g € A, n > 1. (5.1)
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Approximation of observables Given C” observables v,w : M — R, let ¢ =
vom, ¢ = wow : A — R be the lifted observables. For each n > 1, define ¢,, : A — R,

on(p) = inf{(f"q) : s(p,q) > 2kn(p)}.

Proposition 5.3 The function &n lies in L>(A) and projects down to a Lipschitz
observable ¢, : A — R. Moreover, setting Ky =1+ K2 + 27K, p = pg and 6 = p,

(a) ’(En|oo = ’(;n|oo < ’U’oo, (b) |¢O fn(p) — én(p)’ < QWKgHUchp"”(p) fOT‘p c A’
(c) |L"nllo < Ksllv||en, for alln > 1.

Proof This is standard, see for example [24, Proposition B.5]. We give the details for
completeness. If s(p,q) > 2k, (p), then bn(p) = &n(q) It follows that ¢, is piecewise
constant on a measurable partition of A, and hence is measurable, and that ¢, is
well-defined. Part (a) is immediate.

Recall that ¢ = v o where v : M — R is C". Let p € A. By (5.1) and the
definition of ¢,

[$o f(p) — du(®)| = [v(nf"p) — v(7f Q)| < |[v||cnd(m f"p, 7 f"q)"
< Qanpmin{nn (p),s(p,q)—kn(p)}

Y

where ¢ is such that s(p,q) > 2k,(p). In particular, s(p,q) — kn(p) > Kn(p), so we
obtain part (b).

For part (c), first note that |L"¢,|ee < [dnloo < |[V]ee. Let p = (y,£) € A and
P =, 0) €A If dy(p,p') = 1, then

[(L"0) (D) — (L") ()] < 2[v]oe = 2[v]ocda (P, D)
Otherwise, we can write

where

I = 9n(D)(6(@) — 0u(@)), L= (9:(@) — 92(7)) $u(@)-

g

7 frq=p

As usual, preimages ¢, ¢ are matched up so that s(q,q') = k,(q) + s(p,p).
By Proposition 5.2,

’[2’ < K%’U|OO anq:ﬁgn(q)de(f"@ fn(j/) = Kf’v|wd9<ﬁ,ﬁ/).

We claim that |0, (q) — ¢,(7)| < 2"K{||v]|cnp*®P). Taking 6 = p, it then follows
from Proposition 5.2(a) that |I| < 27K ||v||cnda(p, D).

23



It remains to verify the claim. Choose ¢, ¢ € A that project onto ¢,7 € A, so
s(q,4') = 5(q.4) = kn(@) + s(p, 7).
Write () — ¢u(7) = ¢ 0 f"(G) — d o f*(¢), where ¢, ¢’ € A satisty
s(G,q) 2 260(q)  and  5(q,q') > 2kn(9).
Since ¢,(q) = ¢n(7) if 5(q,7) > 2k,(g), we may suppose without loss that
5(4,4") = s(q,7) < 2k,(q) = 26n().

Then

As in part (b),
(60 £7(2) = ¢ 0 f(@)] < 27K |[v]np™trn D@D 70D} = 2V v cp" P,

This completes the proof of the claim. |

Corollary 5.4 Suppose {b,}, n > 0 is a nonnegative non-increasing sequence, and
|L"¢l1 < byl|dlle for all all n and all mean zero dg-Lipschitz functions ¢ : A — R.
Then

’/ von"d,u—/ Ud,u/ wd,u‘ < (27K |p" /2|y + 2K b o) [|v]| o || w]] en-
M M M

Proof Suppose without loss that v is mean zero. Since m: A — M is a semiconju-
gacy and p = T, ua, it is equivalent to estimate fA oo f"dua, where ¢, 9: A — R,
¢ =vomand ¥ =wom. Assume for simplicity that n is even; the proof for n odd
requires little modification. Let ¢ > 1, and write

/wof"dm:/gzsof%of“"dm:11+12+13+14,
A A
where

I = /A(¢O fﬂ — ng)@b o f€+n d,uAa I, = AQEK (/¢ o fn/Q _ 1/371/2) o f€+n/2 dMAy

[3_/ (éz_/ &@dﬂA> &n/2of£+n/2dluAa 14_/ (5Zd/’LA/7’Zn/2dMA
A A A 8
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Proposition 5.3(a,b), |Iz] < |¢¢]eo|th © fr/2 — Unpali < 27K |v]so||w]|cn]p™2]1. By
Proposition 5.3(c),

By Proposition 5.3(b), |L| < |60 [ = dei[t]e < 27KG|p™ 1[|0]lon|w]e. By

13| = ‘/ L (L%z - / e dﬁA) U2 dﬂA’
A A
< LMLy — [ aedin)|i[tnsaloo < 2bn 2l Lo illolw]se < 2K5by o]0l cnlw]so-

Finally, 1] < | [ de dfial[wle = | fx (G — & 0 %) dfial|wloe < 20K ]lollcnw]aol ]y
by another application of Proposition 5.3(b).
Altogether,

[ oo 1 dns| < QUG + 2K b + 27 Kl ) ol [l

Letting ¢ — oo yields the result. |

By Corollary 5.4 and Theorem 2.7, it remains to estimate |p""|;. A first step
towards this is:

Lemma 5.5 [5 p" diia <277' 37, o fiv (T > )+n 307, 0 iy (1 > n/3), where
k—1 mk
TR = T oF".

Proof First write [5 p™ djia = > 5o fin(, = k). Note that ,(p) = 0 if and
only if f7(p) & Ag for all j =1,...,n, s0 fia(k, =0) =71 D jsn by (T > 7).

When #,(p) > 1, we can define r(p) = min{j € {1,...,n} : fip € Ao} and
s(p) =max{j € {1,...,n}: fip € Ag}. Hence for k > 1,

{rap) =k} = |J {ralp) = k. r(p) =1, s(p) = s}.

1<r<s<n

It is easy to check that jia{r(p) = j} = 7 'y (7 > j), so

Aalkn(p) = k) <771 iy (T > §) + ba,

j>n/3
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=ni ' Y vy eY, flyeY, ni(y) =j) <nT iv(y €Y i ma(y) > n/3).
j>n/3
This completes the proof. |

Proof of Theorem 2.10 We restrict from now on to the cases of polynomial tails
and stretched exponential tails. The sum .. fiy(7 > j) is estimated in the same
way as P(w; > n) in the proofs of Propositions 4.10 and 4.11, so it remains to show
that n > p- , p¥liy (74 > n) satisfies the required estimate.

In the case of polynomial tails, iy (7, > n) < kjiy (1 > n/k) < C.kPHn=F and
son Y o, Py (te > n) < Con~ B~ where Cy = C, S5, pFkPTL

It remains to treat the stretched exponential case. Writing X; = 7o Fj,

ﬂY(XO =Joy--, Xk = ]k) = /_ 1{TOFk:jk}1{X0:j0:~~7Xk—1:jk71} dity

S— S

o 1{T:jk}Pk1{X02j07-~-7Xk—1:jk—1} dity
S /jY(T = ']k)|Pk1{X0:]077Xk71:]k71}|00

By Proposition 5.1(a),

(Pkl{XO:j07---7Xk—1:jk—1})(y) = Z Ck(ya)1{XU:j07---7Xk—1:jk—l}

acay

< K1) v (@)L (@)mjor (0= 1)

acoy

= Kllay<7' = jo, ey T O Fk_l = jk—l)'
Hence
Ay (Xo = Jo, - X = i) < Ky (7 = i) iy (Xo = Jo, - - s Xk—1 = Je—1),
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and so
iy (Xk > n| Xo = jo,. .., Xp—1 = jx—1) < Kifiy (1 > n) < K Cre™".

By Proposition 4.11, there exists B € (0, A) and Cp € (0, p) depending continuously
on C, v and A such that

py (T > n) = py (Xo+ -+ Xpoy = n) < Cpe P,
Hence > 0, pPuy (1 > n) < {37, (pCp)*}e 8" as required. u
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