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Abstract
Consider a fast-slow system of ordinary differential equations of the form ẋ = a(x, y)+ε−1b(x, y), ẏ = ε−2g(y),
where it is assumed that b averages to zero under the fast flow generated by g. We give conditions under which
solutions x to the slow equations converge weakly to an Itô diffusion X as ε → 0. The drift and diffusion
coefficients of the limiting stochastic differential equation satisfied by X are given explicitly.

Our theory applies when the fast flow is Anosov or Axiom A, as well as to a large class of nonuniformly
hyperbolic fast flows (including the one defined by the well-known Lorenz equations), and our main results do not
require any mixing assumptions on the fast flow.

1 Introduction

Let {φt}t≥0 be a smooth, deterministic flow on a finite dimensional manifold M , with in-
variant ergodic probability measure µ. One should think of φt as the flow generated by an
ordinary differential equation (ODE) with a chaotic invariant set Ω ⊂ M and µ supported
on Ω. Define y(t) = φty0 where the initial condition y0 is chosen at random according to µ.
Hence y(t) = y(t, y0) is a random variable on the probability space (Ω, µ); from here on we
omit y0 from the notation, as is conventional with random variables. Let a, b : Rd×M → Rd

be vector fields with suitable regularity assumptions. We are interested in the asymptotic
behaviour of the ODE

dx(ε)

dt
= ε2a(x(ε), y) + εb(x(ε), y) , x(ε)(0) = ξ

as ε → 0 and t → ∞, with ε2t remaining fixed. The initial condition ξ ∈ Rd is assumed
deterministic. Due to the dependence on y0, we interpret x(ε) as a random variable on Ω
taking values in the space of continuous functions C([0, T ],Rd) for some finite T > 0.

To make the statement of convergence precise, we define yε(t) = y(ε−2t) and xε as the
solution to the ODE

dxε
dt

= a(xε, yε) +
1

ε
b(xε, yε) , xε(0) = ξ . (1.1)

In particular, we arrive at this equation under the rescaling t 7→ t/ε2 and setting xε(t) =
x(ε)(t/ε2). Our aim is to identify the limiting behavior of the random variable xε on the space
of continuous functions as ε→ 0.
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Under certain assumptions on the fast flow φt, it is known that xε →w X where X is an
Itô diffusion, and where →w denotes weak convergence of random variables on the space
C([0, T ],Rd). At an intuitive level, the a term averages to an ergodic mean, via a law of large
numbers type effect and the b term homogenizes to a stochastic integral, via a central limit
theorem type effect. This type of problem is often referred to as deterministic homogeniza-
tion, since the randomness is not coming from a typical stochastic process, but rather from a
ergodic dynamical system with random initial condition.

Assuming rather strong mixing conditions on φt, one can show that xε converges weakly
to the solution X of an Itô SDE

dX = ã(X)dt+ σ(X)dB , X(0) = ξ (1.2)

where B is an Rd valued standard Brownian motion, the drift ã : Rd → Rd is given by

ãi(x) =

∫
Ω

ai(x, y)dµ(y) +

∫ ∞
0

∫
Ω

b(x, y) · ∇bi(x, φty)dµ(y)dt (1.3)

for all i = 1, . . . , d and the diffusion coefficient σ : Rd → Rd×d is given by

σ(x)σT (x) =

∫ ∞
0

∫
Ω

(
b(x, y)⊗ b(x, φty) + (b(x, φty)⊗ b(x, y)

)
dµ(y)dt . (1.4)

The mixing assumptions required on φt are typically very strong. For instance, the above
result follows from [PK74] under the assumption of phi mixing with rapidly decaying mix-
ing coefficient (L1/2-integrable). Such an assumption is quite reasonable in the setting of
ergodic Markov processes (as intended in [PK74]). Unfortunately this is quite unreasonable
for general ergodic flows. In particular, for most natural deterministic situations it is difficult
to prove any mixing properties at all. On top of that, it is seldom clear that the formulas for ã
and σ are even well-defined.

In this article, we show that for a very general class of ergodic flows, the above result
holds with explicit (but sometimes more complicated) formulas for ã and σ that generalise
the ones given above.

1.1 Anosov and Axiom A flows
One well-known class of fast flows to which our results apply is given by the Axiom A
(uniformly hyperbolic) flows introduced by Smale [Sma67]. This includes Anosov flows
[Ano67]. We do not give the precise definitions, since they are not needed for understanding
the paper, but a rough description is as follows. (See [Bow75, Rue78, Sin72] for more de-
tails.) Let φt : M → M be a C2 flow defined on a compact manifold M . A flow-invariant
subset Ω ⊂ M is uniformly hyperbolic if for all x ∈ Ω there exists a Dφt-invariant split-
ting transverse to the flow into uniformly contracting and expanding directions. The flow
is Anosov if the whole of M is uniformly hyperbolic. More generally, an Axiom A flow
is characterised by the property that the dynamics decomposes into finitely many hyperbolic
equilibria and finitely many uniformly hyperbolic subsets Ω1, . . . ,Ωk, called hyperbolic basic
sets, such that the flow on each Ωi is transitive (there is a dense orbit). If Ω is a hyperbolic
basic set, there is a unique φt-invariant ergodic probability measure (called an equilibrium
measure) associated to each Hölder function on Ω. (In the special case that Ω is an attractor,
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there is a distinguished equilibrium measure called the physical measure or SRB measure
(after Sinai, Ruelle, Bowen).) In the remainder of the introduction, we assume that Ω is a
hyperbolic basic set with equilibrium measure µ (corresponding to a Hölder potential). We
exclude the trivial case where Ω consists of a single periodic orbit.

Given b : Rd ×M → R, we define the mixed Hölder norm

‖b‖Cα,κ =
∑
|k|≤bαc

sup
x∈Rd

∥∥Dkb(x, ·)
∥∥
Cκ

+
∑
|k|=bαc

sup
x,z∈Rd

∥∥Dkb(x, ·)−Dkb(z, ·)
∥∥
Cκ

|x− z|α−bαc

for α ∈ [0,∞), κ ∈ [0, 1), where the second summation is omitted when α is an integer.
Here Dk is the differential operator acting in the x component and ‖·‖Cκ is the standard
Hölder norm acting in the y component. If b : Rd ×M → Rm is vector-valued, we define
‖b‖Cα,κ =

∑m
i=1 ‖bi‖Cα,κ .

We write b ∈ Cα,κ(Rd ×M,Rm) if ‖b‖Cα,κ < ∞. Let Cα,κ
0 (Rd ×M,Rm) denote the

space of observables b ∈ Cα,κ(Rd ×M,Rm) with
∫

Ω
b(x, y)dµ(y) = 0 for all x ∈ Rd. When

m = 1, we write Cα,κ(Rd ×M) instead of Cα,κ(Rd ×M,Rm) and so on. We also write
Cκ

0 (Ω,Rm) to denote Cκ observables v : Ω → Rm with mean zero. We now state the main
result.

Theorem 1.1. Let Ω ⊂ M be a hyperbolic basic set with equilibrium measure µ. Let κ > 0
and suppose that a ∈ C1+,0(Rd ×M,Rd), b ∈ C2+,κ

0 (Rd ×M,Rd). Then

(i) The limit

B(v, w) = lim
n→∞

n−1

∫
Ω

∫ n

0

∫ s

0

v ◦ ϕrw ◦ ϕsdrdsdµ,

exists for all v, w ∈ Cκ
0 (Ω) and the resulting bilinear operator B : Cκ

0 (Ω)×Cκ
0 (Ω)→ R

is bounded and positive semidefinite.

(ii) The drift and diffusion coefficients given by

ãi(x) =

∫
ai(x, y)dµ(y) +

d∑
k=1

B(bk(x, ·), ∂kbi(x, ·)) , i = 1, . . . , d ,

(σ(x)σT (x))ij = B(bi(x, ·), bj(x, ·)) + B(bj(x, ·), bi(x, ·)) , i, j = 1, . . . , d ,

are Lipschitz.

(iii) The family of solutions xε to the ODE (1.1) converges weakly in the supnorm topology
to the unique solution X of the SDE

dX = ã(X)dt+ σ(X)dB , X(0) = ξ (1.5)

where B is a standard Brownian motion in Rd.

(iv) Let v, w ∈ Cκ
0 (Ω). If in addition the integral

∫∞
0

∫
Ω
v w ◦ φtdµdt exists, then

B(v, w) =

∫ ∞
0

∫
Ω

v w ◦ φtdµdt .
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By part (i), the B-terms in the formulas for ã and σ can be written as

B(bk(x, ·), ∂kbi(x, ·)) = lim
n→∞

n−1

∫
Ω

∫ n

0

∫ s

0

bk(x, φry)∂kb
i(x, φsy)drdsdµ(y)

and
B(bi(x, ·), bj(x, ·)) = lim

n→∞
n−1

∫
Ω

∫ n

0

∫ s

0

bi(x, φry)bj(x, φsy)drdsdµ(y) .

By part (iv), if the integrals
∫∞

0

∫
Ω
bi(x, y)bj(x, φty)dµ(y)dt,

∫∞
0

∫
Ω
bk(x, y)∂kb

i(x, φty)dµ(y)dt

exist for all i, j, k and x ∈ Rd, then the coefficients ã and σ are given by the formulas in (1.3),
(1.4). In general, even for nonmixing flows φt, the bilinear operator B can still be written
down explicitly, in terms of the finer structure of the flow, see (2.1).

Remark 1.2. The Lipschitz statement in Theorem 1.1(ii) follows from boundedness of B
together with the regularity assumptions on a and b. A consequence of this is the uniqueness
of the limiting diffusion X as stated in part (iii).

Remark 1.3. Since the expression defining σσT is symmetric and positive semidefinite, a
square root σ always exists. Also, it is a standard result that the diffusion X is independent
of the choice of any square root σ.

Remark 1.4. In the special case b(x, y) = h(x)v(y) considered in [KM16], B(vi, vj) is
defined through its symmetric part, denoted 1

2
Σij and its anti-symmetric part, denoted 1

2
Dij .

One easily recovers the above via the Itô-Stratonovich correction.

1.2 Non-uniformly hyperbolic flows
For the sake of exposition, we have stated the homogenization results for fast flows that are
uniformly hyperbolic. In reality, the results apply much more generally. The convergence
result stated in Theorem 1.1(iii) can be recast in an abstract framework as explained in Sec-
tion 2. In brief, we only require that φt satisfies an iterated central limit theorem (CLT)
along with a moment control estimate. As shown in [KM16], the assumptions in Section 2
hold true for broad classes of flows which have a Poincaré map modelled by a Young tower
[You98, You99]. In the case of Young towers with exponential tails, or at least superpoly-
nomial tails, Theorem 1.1 goes through unchanged. This includes the case of Hénon-like
attractors and the classical Lorenz equations.

When the Poincaré map is modelled by a Young tower with tails that decay more slowly,
the assumptions in Section 2 still hold provided the return time function for the Young tower
lies inLq for some q > 11/2. In this case, Assumption 2.2 below holds with p = 2(q−1)/3 >
3 by [KM16, Proposition 7.5] and the discussion in [KM16, Section 10]. It then follows from
Theorem 2.3 below that Theorem 1.1 goes through under stronger regularity assumptions
(depending on the value of p) on b.

1.3 Mixing hypotheses
An important feature of the program initiated by [MS11], and continued in [GM13, KM16]
and the current paper, is that in our main results we make no mixing assumptions on the fast
flow φt. (The only role of mixing is to obtain simplified formulas for the drift and diffusion
coefficients.)
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To understand the significance of the lack of mixing assumptions, it is convenient to re-
call part of the history of the study of mixing for Axiom A dynamical systems. The discrete
time case, namely Axiom A diffeomorphisms, is very well-understood: any hyperbolic basic
set for an Axiom A diffeomorphism is mixing up to a finite cycle, and in the mixing case
Hölder observables enjoy exponential decay of correlations [Bow75, Rue78, Sin72]. For
Axiom A flows it is trivial to construct examples with no mixing properties: constant suspen-
sions (more generally, suspensions where the roof function is cohomologous to a constant),
do not mix. However, [BR75] asked whether mixing Axiom A flows are automatically expo-
nentially mixing. This turned out to be false: [Pol84, Rue83] independently gave examples
of mixing Axiom A flows that do not mix exponentially quickly and [Pol85] showed that
Axiom A flows can mix arbitrarily slowly. Eventually [Dol98] gave examples of Anosov
flows that mix exponentially quickly, but at the time of writing there are no known examples
of robustly exponentially mixing Anosov flows.

On the other hand, it is well-known since [Rat73] that mixing is irrelevant for certain sta-
tistical properties. In particular, the central limit theorem holds for all Axiom A flows, even
the nonmixing ones [MT04]. This theme has been extended significantly over the years; in
particular [KM16] verified that the statistical properties required to apply rough path the-
ory, namely the iterated CLT and moment estimates, hold for all Axiom A flows and for the
nonuniformly hyperbolic flows described in Subsection 1.2. As a consequence the homoge-
nization results in [KM16] and the current paper are independent of mixing properties of the
fast flow.

For the specific classes of examples mentioned in this paper, the fast flow has a Poincaré
map with good mixing properties, and this happens to be useful for establishing the iterated
CLT and moment estimates at the level of the Poincaré map; these properties then lift to
the flow. But this should not be confused with assuming mixing for the flow itself. Mixing
remains poorly understood for flows, and moreover there are examples where mixing fails or
happens arbitrarily slowly. Our results on homogenization hold regardless of these issues.

1.4 Previous results
It is only fairly recently that results on homogenization have been obtained in a fully de-
terministic setting with realistic assumptions on the fast dynamics. The first such results
were obtained by [Dol04, Dol05] for discrete time systems where the fast dynamics is uni-
formly or partially hyperbolic with sufficiently fast decay of correlations. As explained in
Subsection 1.3, a program to remove mixing assumptions on the fast dynamics was initiated
in [MS11] where the authors prove a result on homogenization for general fast flows that are
uniformly or nonuniformly hyperbolic, but under the assumption that the noise appears addi-
tively in the slow ODE, that is b(x, y) = h(y). This was extended to the case of multiplicative
noise b(x, y) = h(x)v(y) in the scalar case d = 1 by [GM13] who also treated the discrete
time situation. The case b(x, y) = h(x)v(y) was treated in general dimensions in [KM16]
(again for both discrete and continuous time). We remark that the results of the current article
should carry over to the discrete time setting, but this requires additional work to incorporate
the discrete time rough path theory introduced in [Kel16].

Homogenization results for chaotic systems have many interesting physical applications,
most notably in stochastic climate models [MTVE01]. For more examples, see [PS08, Sec-
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tion 11.8].

1.5 Outline of the article
To prove Theorem 1.1 (or more precisely Theorem 2.3, the abstract version) we reformulate
the slow equation (1.1) as an ODE of the form

dxε = F (xε)dVε +H(xε)dWε ,

where Vε and Wε are function space valued paths that are smooth (in time) for each fixed ε.
The path Vε is a smooth approximation of a function space valued drift and the path Wε is a
smooth approximation of a function space valued Brownian motion. To be precise, we take

Vε(t) =

∫ t

0

a(·, yε(r))dr and Wε(t) = ε−1

∫ t

0

b(·, yε(r))dr .

The operators F (x), H(x) are Dirac distributions (evaluation maps) located at x, that is
F (x)ϕ = ϕ(x) for any ϕ in the function space and similarly for H .

Remark 1.5. Note that although F,H are both Dirac distributions, they will act on different
domains, hence the different labels.

One should think of the pair (Vε,Wε) as “noise” driving the solution xε. Using the theory
of rough paths, we build a continuous solution map from the “noise space” into the “solution
space”. The “noise space” will contain not just smooth paths, but also paths of Brownian
regularity (which is the type of regularity we expect from the limitingWε). Since the solution
map is continuous, a weak convergence result for the noise processes can be lifted to a weak
convergence result for the solution, via the continuous mapping theorem.

The outline of the article is as follows. In Section 2 we write the abstract formulation of
Theorem 1.1; this constitutes the main result of the article. In Section 3 we give an overview
of rough path theory and state the tools that will be used. In Sections 4, 5 and 6 we state and
prove a localized version of the main result. In Section 7 we lift the localized result to the
full result.

1.6 Notation
We write Eµ for expectation with respect to µ and write E when referring to expectation on
a generic probability space. We write for example a ∈ C1+ if there exists α > 1 such that
a ∈ Cα. For a normed linear space B we write L(B,R) for the space of bounded linear
functionals on B, with the usual norm ‖f‖L(B,R) = sup‖x‖B=1 |f(x)|. We write an . bn as
n→∞ if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 The abstract convergence result

We now state an abstract version of Theorem 1.1. Let φt : M → M be a smooth flow on
a finite dimensional manifold and suppose that Ω ⊂ M is a closed flow-invariant set with
ergodic probability measure µ. For v ∈ L1(Ω,Rm) with

∫
Ω
vdµ = 0, we define

Wv,n(t) = n−1/2

∫ tn

0

v ◦ φs ds and Wv,n(t) = n−1

∫ tn

0

∫ s

0

v ◦ φr ⊗ v ◦ φsdrds .
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By definition of the tensor product for vectors, Wv,n takes values in Rm×m. Recall that, due to
the dependence on the (omitted) initial condition of the flow, Wv,n(t) and Wv,n(t) are random
variables on the probability space (Ω, µ).

For v, w ∈ L1(Ω,R), we define

vt =

∫ t

0

v ◦ φsds and St =

∫ t

0

∫ s

0

v ◦ φrw ◦ φsdrds .

Fix κ > 0. The abstract assumptions are as follows.

Assumption 2.1. There exists a bilinear operator B : Cκ
0 (Ω) × Cκ

0 (Ω) → R such that for
every m ≥ 1 and every v ∈ Cκ

0 (Ω,Rm),

(Wv,n,Wv,n)→ (Wv,Wv)

as n → ∞, in the sense of finite dimensional distributions, where Wv is a Brownian motion
in Rm and Wv is the process with values in Rm×m defined by

Wij
v (t) =

∫ t

0

W i
vdW

j
v + B(vi, vj)t .

(Here, the integral is of Itô type.)

Assumption 2.2. There exists p > 3, and for all v, w ∈ Cκ
0 (Ω) there exists K = Kv,w,p > 0

such that
(Eµ|vt|2p)1/(2p) ≤ Kt1/2 and (Eµ|St|p)1/p ≤ Kt

for all t ≥ 0. If the estimates hold for all p > 3 then we say the estimates hold for p =∞.

Theorem 2.3. Suppose that Assumptions 2.1 and 2.2 hold with some p ∈ (3,∞] and κ > 0.
Suppose that a ∈ C1+,0(Rd×M,Rd) and b ∈ Cα,κ

0 (Rd×M,Rd) for some α > 2 + 2
p−1

+ d
p
.

Then we have the same conclusion as Theorem 1.1(i,ii,iii).

We now show how Theorem 1.1 follows from Theorem 2.3.

Proof of Theorem 1.1. Assumptions 2.1 and 2.2 (with p = ∞) are valid for hyperbolic ba-
sic sets by [KM16, Theorem 1.1] and [KM16, Proposition 7.5, Remark 7.7] respectively.
Hence Theorem 1.1(i,ii,iii) follows from Theorem 2.3. Moreover, Theorem 1.1(iv) follows
from [KM16, Theorem 1.1(b)].

Remark 2.4. In [KM16], we considered the special case where b(x, y) = h(x)v(y) is a
product (for some v : M → Re and h : Rd → Rd×e) under less stringent regularity conditions
on b. It is easy to check that when b is a product, the method in this paper applies provided
b ∈ Cα,κ for some α > 2+2/(p−1) recovering the results of [KM16]. The only place where
the additional regularity is required for general b is in the tightness estimates in Section 5
below.

Remark 2.5. A general formula for the bilinear operator B in the case of (not necessarily
mixing) Axiom A flows can be obtained by considering the associated suspension flow. The
same is true for nonuniformly hyperbolic flows modelled as a suspension flow over a Young
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tower. We recall the basic definitions; further details can be found in [KM16] and references
therein.

Suppose that f : Λ → Λ is a map with ergodic invariant probability measure µ. Let
r : Λ → R+ be an integrable roof function with r̄ =

∫
Λ
r dµ. Define the suspension Λr =

{(x, u) ∈ Λ×R : 0 ≤ u ≤ r(x)}/ ∼ where (x, r(x)) ∼ (fx, 0). Define the suspension flow
φt(x, u) = (x, u+ t) computed modulo identifications. The measure µrΛ = µΛ×Lebesgue/r̄
is an ergodic invariant probability measure for φt.

Our results apply in particular to the case where Λ is a Young tower with return time
function lying in Lq for some q > 11/2, and r is a bounded piecewise Hölder roof function.
Since Young towers are mixing up to a finite cycle, by taking a smaller Poincaré cross-section
we may suppose without loss of generality that Λ is mixing. Given v ∈ Cκ

0 (Ω,Rm), we define
the induced observable ṽ ∈ L∞(Λ, µΛ) by setting ṽ =

∫ r
0
v ◦ φtdt. Similarly, we associate w̃

to w. By [You98, You99], ṽ and w̃ have summable decay of correlations (exponential decay
when Λ is Axiom A or a Young tower with exponential tails, and decay rate O(1/nq−1) in
general), so in particular the series

∑∞
n=1

∫
Λ
ṽ w̃ ◦ fn dµΛ is absolutely convergent.

Moreover, as shown in [KM16, Corollary 8.1],

B(v, w) = (r̄)−1

∞∑
n=1

∫
Λ

ṽ w̃ ◦ fn dµΛ + (r̄)−1

∫
Λ

S(v, w)dµΛ , (2.1)

where

S(v, w)(y) =

∫ r(y)

0

(∫ s

0

v(φuy)du

)
w(φsy)ds .

is the iterated integral of the path (v ◦ φt, w ◦ φt) along the orbit until its return to Λ.

Remark 2.6. There is a slightly simpler way of writing B which gives a more geometric
description of the bilinear form. We introduce the symmetric and anti-symmetric parts

A(v, w) =
1

2

(
B(v, w) + B(w, v)

)
and D(v, w) =

1

2

(
B(v, w)−B(w, v)

)
.

For the symmetric part, it follows from the product rule that

S(v, w) + S(w, v) =

(∫ r

0

v ◦ φtdt
)(∫ r

0

w ◦ φtdt
)

= ṽw̃

and hence

A(v, w) =
∞∑
n=1

1

2r̄

∫
Λ

(
ṽ w̃ ◦ fn + w̃ ṽ ◦ fn

)
dµΛ +

1

2r̄

∫
Λ

ṽw̃dµΛ .

In particular the symmetric part of the bilinear form is completely determined by the cross
correlations between induced observables. Similarly

D(v, w) =
∞∑
n=1

1

2r̄

∫
Λ

(
ṽ w̃ ◦ fn − w̃ ṽ ◦ fn

)
dµΛ +

1

2r̄

∫
Λ

(
S(v, w)− S(w, v)

)
dµΛ .
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The advantage here is that the expression

1

2

(
S(v, w)(y)− S(w, v)(y)

)
is equal (by Green’s theorem) to the signed area traced out in R2 by the loop (v(φty), w(φty))

r(y)
t=0

(closed by the secant joining the endpoints).

In the remainder of this section, we describe some elementary properties that follow imme-
diately from the assumptions on the fast dynamics. Firstly, we show that in Assumption 2.2
the constant K can be chosen uniformly in v, w. Define the incremental objects

vs,t =

∫ t

s

v ◦ φrdr and Ss,t =

∫ t

s

∫ r

s

v ◦ φuw ◦ φrdudr .

Proposition 2.7. If the fast flow satisfies Assumption 2.2, then

(Eµ|vs,t|2p)1/(2p) . ‖v‖Cκ |t− s|
1/2 and (Eµ|Ss,t|p)1/p . ‖v‖Cκ ‖w‖Cκ |t− s|

for all s, t ≥ 0, v, w ∈ Cκ
0 (Ω).

Proof. By stationarity it suffices to check the claim with s = 0. Consider the family of
linear operators {Lt : Cκ

0 (Ω) → L2p(Ω), t > 0} given by Ltv = t−1/2vt. Since ‖Ltv‖∞ ≤
t1/2 ‖v‖∞ it is certainly the case that Lt : Cκ

0 (Ω) → L2p(Ω) is bounded for each t. By
Assumption 2.2, for each v ∈ Cκ

0 (Ω), there exists a constantK = Kv such that ‖Ltv‖2p ≤ Kv

for all t > 0. By the uniform boundedness principle, there is a uniform constant K such that
‖Ltv‖2p ≤ K ‖v‖Cκ for all v ∈ Cκ

0 (Ω), t > 0. This establishes the desired estimate for vt.
The estimate for St is proved similarly by considering the family of bilinear operators

{Bt : Cκ
0 (Ω)× Cκ

0 (Ω)→ Lp(Ω), t > 0} given by Bt(v, w) = t−1St.

The next result is a collection of simple facts that will be used throughout the rest of the
article.

Proposition 2.8. If the fast flow satisfies Assumptions 2.1 and 2.2, then

(a) The covariance of Wv is given by EW i
v(1)W j

v (1) = B(vi, vj) + B(vj, vi) for all v ∈
Cκ

0 (Ω,Rm).

(b) B(v, v) ≥ 0 for all v ∈ Cκ
0 (Ω).

(c) |B(v, w)| . ‖v‖Cκ ‖w‖Cκ for all v, w ∈ Cκ
0 (Ω).

(d) (Wv,n,Wv,n)→w (Wv,Wv) as n→∞ in the supnorm topology, for all v ∈ Cκ
0 (Ω,Rm).

Proof. (a) It follows from Assumptions 2.1 and 2.2 that

EµW
i
v,n(1)W j

v,n(1)→ EW i
v(1)W j

v (1), EµWij
v,n(1)→ EWij

v (1) = B(vi, vj),

where we have used the fact that Itô integrals have zero mean. Taking expectations on both
sides of the identity

W i
v,n(1)W j

v,n(1) = Wij
v,n(1) + Wji

v,n(1)

9



and letting n→∞ yields the desired result.
(b) It follows from part (a) that B(vi, vi) = 1

2
EW i

v(1)2 ≥ 0.
(c) Define Sijt using the definition of St but with v = vi and w = vj . We note that n−1Sijn =
Wij

v,n(1) and hence by Proposition 2.7, Eµ|Wij
v,n(1)| . ‖vi‖Cκ ‖vj‖Cκ . By Assumptions 2.1

and 2.2, |B(vi, vj)| = limn→∞ |EµWij
v,n(1)| . ‖vi‖Cκ ‖vj‖Cκ .

(d) Since the limiting random variable is (almost surely) continuous, it is sufficient to prove
the weak convergence result in the Skorokhod topology. But this is a simple consequence of
[Bil99, Theorem 13.5], combined with the Assumptions 2.1 and 2.2.

Finally, we show that convergence as n → ∞ of the sequence of processes (Wv,n,Wv,n)
implies convergence as ε→ 0 of the family of processes

W (ε)
v (t) = ε

∫ tε−2

0

v ◦ φs ds, W(ε)
v (t) = ε2

∫ tε−2

0

∫ s

0

v ◦ φr ⊗ v ◦ φs dr ds, ε > 0.

Before doing so, we need the following elementary lemma.

Lemma 2.9. Suppose that a : R → R is bounded on compact sets. Let b > 0, T ≥ 0. If
limε→0 ε

ba(ε−1) = 0, then limε→0 ε
b supt∈[0,T ] |a(tε−1)| = 0.

Proof. The proof is standard and included just for completeness.
Fix δ > 0. Choose ε0 > 0 such that εba(ε−1) < δ/T b for ε < ε0. Now choose ε1 > 0

such that εb1 supt≤ε−1
0
|a(t)| < δ.

We show that supt∈[0,T ] |εba(tε−1)| < δ for all ε < ε1. There are two cases. If ε/t ≥ ε0,
then |εba(tε−1)| ≤ εb1 supt≤ε−1

0
|a(t)| < δ. If ε/t < ε0, then |εba(tε−1)| ≤ T b(ε/t)b|a(tε−1)| <

δ.

Proposition 2.10. If Assumption 2.1 holds, then (W
(ε)
v ,W(ε)

v )→w (Wv,Wv) as ε→ 0 in the
supnorm topology, for all v ∈ Cκ

0 (Ω,Rm).

Proof. Let n = [ε−2]. We have

W (ε)
v (t) = εn1/2Wv,n(t) + ε

∫ tε−2

tn

v ◦ φs ds.

As ε→ 0, εn1/2 → 1. Also, ‖
∫ tε−2

tn
v ◦ φs ds‖∞ ≤ t ‖v‖∞ and hence W (ε)

v −Wv,n →w 0.
Similarly,

W(ε)
v (t) = ε2nWv,n(t) + ε2

∫ tε−2

tn

∫ s

0

v ◦ φr ⊗ v ◦ φs dr ds = ε2nWv,n(t) + ε2A(ε)(t),

where

A(ε)(t) =

∫ tε−2

tn

∫ s

tn

v ◦ φr ⊗ v ◦ φs dr ds+

∫ tε−2

tn

∫ tn

0

v ◦ φr ⊗ v ◦ φs dr ds.

Now |A(ε)(t)| ≤ t2|v|2∞ + t|v|∞|vtn|. By the ergodic theorem, ε2vε−2 → 0 almost every-
where, and hence by Lemma 2.9 supt∈[0,T ] ε

2|vtε−2| → 0 almost everywhere. It follows that
supt∈[0,T ] ε

2|A(ε)(t)| → 0 almost everywhere, and so W(ε)
v −Wv,n →w 0.

Altogether, we obtain that (W
(ε)
v ,W(ε)

v )− (Wv,n,Wv,n)→w 0 as required.
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3 Some rough path theory

In this section we formalize some of the ideas from rough path theory put forward in Sec-
tion 1: namely, that one can build a continuous map from “noise space” to “solution space”.
This map is constructed using rough path theory [Lyo98]. The formulation of rough path
theory that we employ closely follows the recent book [FH14]. Before going into the theory,
we list some preliminary facts concerning tensor products of Banach spaces.

3.1 Tensor products of Banach spaces
Let A,B be Banach spaces (over R). The algebraic tensor product space A ⊗a B is defined
as the vector space

A ⊗a B = span{x⊗ y | x ∈ A , y ∈ B} .
That is,A⊗aB is the space of finite sums

∑
n xn⊗yn for xn ∈ A, yn ∈ B. For f ∈ L(A,R),

g ∈ L(B,R) we define a linear functional f ⊗ g : A ⊗a B → R by

(f ⊗ g)
∑
n

xn ⊗ yn =
∑
n

f(xn)g(yn) . (3.1)

A norm ‖·‖A⊗B : A ⊗a B → R+ is called admissible if

‖x⊗ y‖A⊗B = ‖x‖A ‖y‖B and ‖f ⊗ g‖L(A⊗aB,R) = ‖f‖L(A,R) ‖g‖L(B,R) (3.2)

for all x ∈ A, y ∈ B and all f ∈ L(A,R) and g ∈ L(B,R). By [LC85, Lemma 1.4], to
check admissibility it is sufficient to check (3.2) with = replaced by ≤.

For an admissible norm ‖·‖A⊗B we define the tensor product space A ⊗ B as the com-
pletion of A ⊗a B under the norm ‖·‖A⊗B. Hence (A ⊗ B, ‖·‖A⊗B) is a Banach space. All
tensor products we consider will be constructed using an admissible norm.

The admissibility requirement guarantees that f ⊗ g ∈ L(A ⊗a B,R) and since A ⊗a B
is (by definition) dense in A ⊗ B, f ⊗ g extends uniquely to an element of L(A ⊗ B,R).

3.2 Spaces of rough paths
In this subsection, we show how to build a “noise space” of Banach space valued paths as
mentioned in Section 1.5. Recall that this should include smooth paths and also Brownian-
like paths. It turns out that it is necessary also to add extra structure to the set of paths. The
resulting space is called the space of rough paths.

Let A be a Banach space. For β ∈ (1
2
, 1), we define C β = C β(A) to be the set of all

continuous paths V : [0, T ]→ A with V (0) = 0 and

|V |Cβ = sup
s,t

|V (s, t)|
|t− s|β

<∞ ,

where V (s, t) = V (t)− V (s). The pair (C β, | · |Cβ) is a Banach space.
Let B be a Banach space with tensor product space B⊗B. For γ ∈ (1

3
, 1

2
], the space C γ =

C γ(B) is defined to be the set of all continuous paths (W,W) : [0, T ] → B × (B ⊗ B)
with (W (0),W(0)) = 0 and such that

sup
s,t

‖W (s, t)‖B
|t− s|γ

<∞ and sup
s,t

‖W(s, t)‖B⊗B
|t− s|2γ

<∞ ,

11



where W (s, t) = W (t)−W (s) and W(s, t) = W(t)−W(s)−W (s)⊗W (s, t). The set C γ

is known as the set of γ-rough paths and forms a complete metric space under the metric

ργ((W1,W1), (W2,W2)) = sup
s,t

‖W1(s, t)−W2(s, t)‖B
|t− s|γ

+ sup
s,t

‖W1(s, t)−W2(s, t)‖B⊗B
|t− s|2γ

.

We also make use of the norm-like object

|||(W,W)|||C γ = sup
s,t

‖W (s, t)‖B
|t− s|γ

+ sup
s,t

‖W(s, t)‖1/2
B⊗B

|t− s|γ
,

which shows up in some estimates, but does not play any role in defining the topology.
Finally, we define the set of (β, γ)-rough paths C β,γ = C β(A)×C γ(B); this is a complete

metric space with the product metric.

Remark 3.1. One should think of C β,γ as the “noise space”. This space clearly contains
irregular Brownian paths, in addition to smooth paths. The pair W = (W,W), when com-
bined with the rough path topology, is what we mean by “extra structure”. We view W(t) as
a candidate for the integral

∫ t
0
W ⊗ dW and W(s, t) as a candidate for

∫ t
s
W (s, r)⊗ dW (r).

Note that since W is only Hölder continuous, there may be many candidates for the integral
W; hence it must be specified.

Next, we define a subspace C γ
g ⊂ C γ known as the geometric rough paths. LetW : [0, T ]→

B be a smooth (piecewise C1) path and let W : [0, T ] → B ⊗ B be the path of Riemann
integrals

W(t) =

∫ t

0

W ⊗ dW =

∫ t

0

W ⊗ Ẇ dt . (3.3)

The γ-geometric rough paths C γ
g are defined as the closure of the set of all such smooth pairs

(W,W) in C γ .

Remark 3.2. The smoothness of W combined with the admissibility of the tensor product
space ensure that t 7→ W (t) ⊗ Ẇ (t) is a piecewise continuous map and hence Riemann
integrable.

3.3 Rough differential equations
Suppose that V,W are smooth and that F : Rd → L(A,Rd), H : Rd → L(B,Rd). Under
suitable regularity assumptions on F,H , the ODE

X(t) = ξ +

∫ t

0

F (X)dV +

∫ t

0

H(X)dW

has a unique solution X . We call the map Φ : (V,W ) 7→ X the solution map. In this
subsection, we show how the map Φ extends to the space of rough paths C β,γ .

For the moment, we suppose that F is C1 and H is C2. Recall that β > 1
2

and γ > 1
3

and suppose in addition that β + γ > 1. For (V,W,W) ∈ C β,γ there is a class of paths
X : [0, T ]→ Rd known as controlled rough paths for which one can define the integrals∫ t

0

F (X)dV and
∫ t

0

H(X)dW ,

12



with the shorthand W = (W,W). We call X a controlled rough path if X(s, t) = X(t) −
X(s) has the form

X i(s, t) = X ′i(s)W (s, t) +O(|t− s|2γ)
for all i = 1, . . . , d and 0 ≤ s ≤ t ≤ T , where X ′i ∈ Cγ([0, T ], L(B,R)). For a thorough
treatment of controlled rough paths and their use in defining the above integrals, see [FH14,
Section 4].

Since β + γ > 1, the dV integral is well-defined as a Young integral [You36], namely∫ t

0

F (X)dV = lim
∆→0

∑
[tn,tn+1]∈∆

F (X(tn))V (tn, tn+1)

where ∆ = {[tn, tn+1] : 0 ≤ n ≤ N − 1} denotes partitions of [0, t]. The integral is defined
pathwise, for each fixed V .

The dW integral is defined as a compensated Riemann sum∫ t

0

H(X)dW = lim
∆→0

S∆ (3.4)

where

Si∆ =
∑

[tn,tn+1]∈∆

H i(X(tn))W (tn, tn+1) +
d∑

k=1

(
X ′k(tn)⊗ ∂kH i(X(tn))

)
W(tn, tn+1) (3.5)

with ∆ as above. The dual tensor product X ′i(tn)⊗ ∂kH i(X(tn)) is defined as in (3.1). Note
that the integral is defined pathwise, for each fixed path (W,W). In the special case where
W is a Brownian path and W is the iterated Itô integral, dW becomes Itô integration.

A controlled rough path X is said to solve the RDE dX = F (X)dV + H(X)dW with
initial condition X(0) = ξ if it solves the integral equation

X(t) = ξ +

∫ t

0

F (X)dV +

∫ t

0

H(X)dW ,

for all t ∈ [0, T ]. For a thorough treatment of rough differential equations, see [FH14, Sec-
tion 8]. In particular, we have the following basic result which includes existence, uniqueness
and continuous dependence of solutions to RDEs.

Theorem 3.3. Let γ ∈ (1
3
, 1

2
] and γ′ ∈ (1

3
, γ). Suppose that F ∈ C1+δ′(Rd, L(A,Rd)),

H ∈ C
1
γ

+δ(Rd, L(B,Rd)), where δ, δ′ > 0,. Then there exists β∗ = β∗(γ, γ
′, δ′) ∈ (1

2
, 1)

such that the solution map Φ : C β,γ → Cγ′([0, T ],Rd) given by

Φ(V,W,W) = X

is continuous for β ∈ (β∗, 1),

The solution map Φ is a genuine extension of the classical solution map in the sense
that, if V,W are smooth paths and W is the iterated integral above W (as in (3.3)) then
X = Φ(V,W,W) agrees with the solution to the classical ODE dX = F (X)dV +H(X)dW
with the same initial condition.
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Proof of Theorem 3.3. This is (a slight modification of) a standard result in rough path theory.
Indeed when V = 0, it follows from [FH14, Theorem 8.5]. The extension to nontrivial V is
a simple exercise in controlled rough paths.

To apply rough path theory in Banach spaces one typically assumes an embedding

L(B, L(B,R)) ↪→ L(B ⊗ B,R) .

See for instance [FH14, Section 1.5]. We do not assume such an embedding. However,
since we only interested in results concerning RDEs (and not general controlled rough paths)
it is sufficient to assume the tensor product norm used to construct B ⊗ B is admissible. In
particular, the only elements of L(B, L(B,R)) required to satisfy the above embedding are of
product form. That is, they are described by (f, g)x = f(x)g for all x ∈ B, with f ∈ L(B,R)
and g ∈ L(B,R). Specifically, they are described by (f, g) = (X ′k(t), ∂kH(X(t))) where
(X,X ′) is the controlled rough path candidate for the solution to the RDE. But clearly we can
always perform such an embedding, by the identification (f, g) ∼ f ⊗ g and by admissibility
we have that f ⊗ g ∈ L(B ⊗ B,R) as required.

In the remainder of the article we will use the following result which is an immediate
consequence of Theorem 3.3.

Corollary 3.4. Suppose that Vε, Wε are smooth paths, and that Wε is the iterated inte-
gral of Wε (as in (3.3)). Let γ ∈ (1

3
, 1

2
]. Suppose that F ∈ C1+(Rd, L(A,Rd)) and

H ∈ C
1
γ

+(Rd, L(B,Rd)), and that Xε solves the ODE

dXε = F (Xε)dVε +H(Xε)dWε Xε(0) = ξ . (3.6)

If (Vε,Wε,Wε)→w (V,W,W) in the C β,γ topology for all β ∈ (1
2
, 1), then Xε →w X in

the supnorm topology, where X solves the RDE

dX = F (X)dV +H(X)dW , X(0) = ξ , (3.7)

with W = (W,W).

Next, we list some properties of solutions to RDEs. Since these properties are completely
standard, no proof will be given.

Proposition 3.5. When X solves the RDE (3.7) we can always take X ′k(·) = Hk(X(·)) in
the definition of the dW integral in (3.4), (3.5).

Proposition 3.6. Assume the set up of Theorem 3.3 and suppose moreover that W = (W,W) ∈
C γ
g . Then the classical chain rule

ϕ(X(t)) = ϕ(X(s)) +
d∑

k=1

∫ t

s

∂kϕ(X)F k(X)dV +

∫ t

s

∂kϕ(X)Hk(X)dW ,

is valid for any smooth ϕ : Rd → R.

This result is an immediate consequence of the fact that the integrals are limits of smooth
integrals, for which the chain rule holds. (The result fails for general rough paths W ∈ C γ .)

The last result is an extension of the standard Kolmogorov continuity criterion to (smooth)
rough paths, taking values in R. A proof can be found in [Gub04, Corollary 4]. The one
dimensional case turns out to be sufficient for our needs, even in the Banach space setting.
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Lemma 3.7. Let T > 0 and let Wε, W̃ε : [0, T ] → R be smooth paths. Define Iε(s, t) =∫ t
s
Wε(s, r)dW̃ε(r). Let p > 1 and γ ∈ (0, 1

2
− 1

2p
), and suppose that M , M̃ are constants.

(a) If (E|Wε(s, t)|2p)1/(2p) ≤M |t− s|1/2 for all ε > 0, s, t ∈ [0, T ], then there is a constant
C depending only on T , d, p, γ such that(

E

(
sup

s,t∈[0,T ]

|Wε(s, t)|
|t− s|γ

)2p)1/(2p)

≤ CM , for all ε > 0 .

(b) If

(E|Wε(s, t)|2p)1/(2p) ≤M |t− s|1/2 and (E|W̃ε(s, t)|2p)1/(2p) ≤ M̃ |t− s|1/2

and
(E|Iε(s, t)|p)1/p ≤MM̃ |t− s|

for all ε > 0, s, t ∈ [0, T ], then there is a constant C depending only on T , d, p, γ such
that (

E

(
sup

s,t∈[0,T ]

|Iε(s, t)|
|t− s|2γ

)p)1/p

≤ CMM̃ , for all ε > 0 .

4 The localized convergence result

In this section, we state the localized version of Theorem 2.3.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold with some p ∈ (3,∞] and κ > 0.
Suppose that a ∈ C1+,0(Rd×M,Rd) and b ∈ Cα,κ

0 (Rd×M,Rd) for some α > 2 + 2
p−1

+ d
p
.

Moreover, suppose that a, b have compact support in the sense that there exists E > 0 such
that a(x, y) = b(x, y) = 0 for any |x| > E and y ∈ M . Then the conclusions from Theo-
rem 2.3 hold.

The proof is split into several steps:

1. In the remainder of this section, we reformulate xε into a rough path framework and
show that xε solves a ODE of the form (3.6).

2. In Section 5, we use the theory from Section 3 to show that xε →w X where X is
defined by an RDE of the form (3.7).

3. In Section 6, we show that the RDE in step 2 can be re-written as the desired Itô SDE.

The proof of Theorem 4.1, which is a simple combination of the above facts, can be found
at the end of Section 6. Then in Section 7, we show how Theorem 2.3 follows from Theo-
rem 4.1.
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4.1 The rough path reformulation of the fast-slow system
We define Cθ(Rd,Rd) to be the vector space of continuous functions u : Rd → Rd with
components u1, . . . , ud ∈ Cθ(Rd). This is a Banach space with norm ‖u‖Cθ =

∑d
i=1 ‖ui‖Cθ .

Since α > 2 + 2/(p− 1) + d/p, we can choose θ > 2 + 2/(p− 1) such that α > θ+ d/p.
For the reformulation described in step 1 above, we take A and B to be the Holder spaces
A = C1+(Rd,Rd), B = Cθ(Rd,Rd). For ε > 0, we define the smooth paths

Vε(t) =

∫ t

0

a(·, yε(r))dr and Wε(t) = ε−1

∫ t

0

b(·, yε(r))dr, t ∈ [0, T ] .

Proposition 4.2. If a and b are as in Theorem 4.1, then Vε and Wε take values in A and B
respectively for each ε > 0, t ∈ [0, T ].

Proof. By definition, ‖Wε(t)‖B =
∑d

i=1 ‖ε−1
∫ t

0
bi(·, yε(r))dr‖Cθ . But

sup
x

∣∣∣ ∫ t

0

Dk
xb
i(·, yε(r))dr

∣∣∣ ≤ t sup
x

sup
y∈Ω
|Dk

xb
i(x, y)|

and similarly

sup
x,x′

|
∫ t

0
Dk
xb
i(x, yε(r))dr −

∫ t
0
Dk
xb
i(x′, yε(r))dr|

|x− x′|bθc−θ
≤ t sup

x,x′
sup
y∈Ω

|Dk
xb
i(x, y)−Dk

xb
i(x′, y)|

|x− x′|bθc−θ
.

By definition of the Holder norm, it follows that

‖Wε(t)‖B ≤ ε−1t
d∑
i=1

sup
y∈Ω

∥∥bi(·, y)
∥∥
Cθ

= ε−1t ‖b‖Cθ,0

which is finite by the assumption on b. Similarly, ‖Vε(t)‖A ≤ t ‖a‖C1+,0 <∞.

For x ∈ Rd, we define the multidimensional Dirac distribution operator H : Rd →
L(Cθ(Rd,Rd),Rd) by setting H(x)(u) = u(x). It is easily shown that

Proposition 4.3. H ∈ Cθ(Rd, L(Cθ(Rd,Rd),Rd)) for all θ ≥ 0.

In this way, we obtain operators F : Rd → L(A,Rd) and H : Rd → L(B,Rd). The
following result states that the above definitions are sufficient to reformulate (1.1) in the
rough path framework of Corollary 3.4.

Lemma 4.4. Suppose that a and b are as in Theorem 4.1 and define F,H, Vε,Wε as above.
Then the solution xε to the ODE (1.1) satisfies the ODE

dxε = F (xε)dVε +H(xε)dWε , xε(0) = ξ . (4.1)

Moreover, F ∈ C1+(Rd;L(A,Rd)) and H ∈ Cθ(Rd;L(B,Rd)) where θ > 2 + 2
p−1

.

Proof. The regularity of F and H follows immediately from Proposition 4.3 and the choice
of A,B.
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For each fixed y, the function x 7→ a(x, y) is by assumption in A and so the operation
F (x)a(·, y) = a(x, y) is well-defined. Hence for fixed x, t,

F (x)
dVε(t)

dt
= F (x)a(·, yε(t)) = a(x, yε(t)) .

Similarly, H(x)dWε(t)
dt

= ε−1b(x, yε(t)). It follows that

dxε(t)

dt
= a(xε(t), yε(t)) + ε−1b(xε(t), yε(t)) = F (xε(t))

dVε(t)

dt
+H(xε(t))

dWε(t)

dt
.

In the incremental form, we have precisely (4.1).

4.2 Tensor product of Holder spaces
As preparation for the application of rough path theory in Section 5, we define the tensor
product B ⊗ B for the Hölder space B = Cθ(Rd,Rd).

First we consider the scalar situation. Define Cθ,θ(Rd×Rd) to be the space of continuous
functions u : Rd × Rd → R with bounded norm

‖u‖Cθ,θ =
∑
|k|≤bθc

sup
x

∥∥Dk
xu(x, ·)

∥∥
Cθ

+
∑
|k|=bθc

sup
x,x′

∥∥δx,x′Dk
xu(x, ·)

∥∥
Cθ

|x− x′|θ−bθc
, (4.2)

with the shorthand δx,x′u(x, z) = u(x, z)− u(x′, z), where the second summation is omitted
if θ is an integer. Expanding the inner norm, we obtain

‖u‖Cθ,θ =
∑

|k|≤bθc,|l|≤bθc

sup
x,z
|Dk

xD
l
zu(x, z)|+

∑
|k|=bθc,|l|≤bθc

sup
x,x′,z

|δx,x′Dk
xD

l
zu(x, z)|

|x− x′|θ−bθc

+
∑

|k|≤bθc,|l|=bθc

sup
x,z,z′

|δz,z′Dk
xD

l
zu(x, z)|

|z − z′|θ−bθc
+

∑
|k|,|l|=bθc

sup
x,x′,z,z′

|δx,x′δz,z′Dk
xD

l
zu(x, z)|

(|x− x′||z − z′|)θ−bθc
.

Here, we use the shorthand δz,z′u(x, z) = u(x, z)− u(x, z′) and δx,x′δz,z′u(x, z) = u(x, z)−
u(x′, z)− u(x, z′) + u(x′, z′). It follows that we could equally define the norm in (4.2) with
the roles of x and z reversed.

Let ι : Cθ(Rd)⊗a Cθ(Rd) ↪→ Cθ,θ(Rd × Rd) denote the embedding

ι

(∑
n

un ⊗ vn
)

(x, z) =
∑
n

un(x)vn(z).

Define the tensor product norm ‖·‖Cθ⊗Cθ by setting ‖
∑

n un ⊗ vn‖Cθ⊗Cθ = ‖ι(
∑

n un ⊗ vn)‖Cθ,θ ,
and take the completion to obtain the tensor product space (Cθ(Rd)⊗ Cθ(Rd), ‖·‖Cθ⊗Cθ).

Proposition 4.5. The tensor product norm ‖·‖Cθ⊗Cθ is admissible.

Proof. By an obvious factorization we have that ‖u⊗ v‖Cθ⊗Cθ = ‖u‖Cθ ‖v‖Cθ for every
u, v ∈ Cθ(Rd). It remains to check that ‖f ⊗ g‖L(Cθ⊗aCθ,R) ≤ ‖f‖L(Cθ,R) ‖g‖L(Cθ,R) for all
f, g ∈ L(Cθ,R). Notice that∣∣(f ⊗ g)

∑
n

un ⊗ vn
∣∣ =

∣∣∑
n

f(un)g(vn)
∣∣ =

∣∣f(∑
n

ung(vn)
)∣∣ (4.3)
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≤ ‖f‖L(Cθ,R)

∥∥∑
n

ung(vn)
∥∥
Cθ
.

But∥∥∑
n

ung(vn)
∥∥
Cθ

=
∑
|k|≤bθc

sup
x
|
∑
n

Dk
xun(x)g(vn)|+

∑
|k|=bθc

sup
x,x′

|
∑

n δx,x′D
k
xun(x)g(vn)|

|x− x′|θ−bθc
.

For each fixed x,∣∣∑
n

Dk
xun(x)g(vn)

∣∣ =
∣∣g(∑

n

Dk
xun(x)vn

)∣∣ ≤ ‖g‖L(Cθ,R)

∥∥∑
n

Dk
xun(x)vn‖Cθ

≤ ‖g‖L(Cθ,R)

∑
n

|Dk
xun(x)| ‖vn‖Cθ ,

and similarly |
∑

n δx,x′D
k
xun(x)g(vn)| ≤ ‖g‖L(Cθ,R)

∑
n |δx,x′Dk

xun(x)| ‖vn‖Cθ . Substitut-
ing this back into (4.3), we obtain∣∣(f ⊗ g)

∑
n

un ⊗ vn
∣∣ ≤ ‖f‖L(Cθ,R) ‖g‖L(Cθ,R)

∥∥ι(∑
n

un ⊗ vn
)
‖Cθ,θ .

Hence ‖f ⊗ g‖L(Cθ⊗Cθ,R) ≤ ‖f‖L(Cθ,R) ‖g‖L(Cθ,R).

Next, we define the tensor product B ⊗ B = Cθ(Rd,Rd)⊗ Cθ(Rd,Rd) to be the space of
d× d “matrices” with entries in Cθ(Rd)⊗ Cθ(Rd), endowed with the norm
‖
∑

n un ⊗ vn‖Cθ⊗Cθ =
∑d

i,j=1 ‖
∑

n u
i
n ⊗ vjn‖Cθ⊗Cθ .

Corollary 4.6. Cθ(Rd,Rd)⊗ Cθ(Rd,Rd) is a Banach space with admissible tensor product
norm ‖·‖Cθ⊗Cθ .

Proof. Completeness is an immediate consequence of the completeness of Cθ(Rd)⊗Cθ(Rd).
Admissibility of ‖·‖Cθ⊗Cθ is proved by a calculation similar to the one in Proposition 4.5.

5 Convergence to the RDE

The objective of this section is to use Corollary 3.4 to characterize the ε → 0 limit of the
solution xε for the fast-slow ODE (1.1) as the solution to an RDE.

We suppose throughout that Assumptions 2.1 and 2.2 are valid with p > 3 and κ > 0,
and that a, b are as in Theorem 4.1. Define Vε : [0, T ] → A and Wε : [0, T ] → B as in
Section 4.1; in particular, A = C1+(Rd,Rd) and B = Cθ(Rd,Rd) where θ > 2 + 2/(p− 1)
and α > θ+d/p. Define B⊗B as in Section 4.2, and the iterated integral Wε : [0, T ]→ B⊗B
by

Wε(t) =

∫ t

0

Wε ⊗ dWε = ε−2

∫ t

0

∫ r

0

b(·, yε(u))⊗ b(·, yε(r))dudr .

The integral is well defined by Remark 3.2.
Let Wε = (Wε,Wε) : [0, T ]→ B × (B ⊗ B). Define ā ∈ A by

ā =

∫
Ω

a(·, y)dµ(y) . (5.1)
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We now state the main result of this section.

Theorem 5.1. The family {xε}ε>0 is tight in C([0, T ];Rd). Moreover, every limit point X
satisfies an RDE of the form

dX = F (X)ādt+H(X)dW , X(0) = ξ , (5.2)

where W is a limit point of {Wε}ε>0 in C γ for all γ ∈ (1
3
, 1

2
− 1

2p
).

Remark 5.2. Evidently it suffices to prove Theorem 5.1 for γ arbitrarily close to γ∗ = 1
2
− 1

2p
.

By Lemma 4.4, H is Cθ where θ > 2 + 2
p−1

= 1
γ∗

. Hence θ > 1
γ

for γ close to γ∗ ensuring
that H has the regularity required in Corollary 3.4.

The second aim of this section is to characterise the finite-dimensional distributions of the
limit points of Wε. This is done in Lemma 5.12.

To control the tightness of Wε, we make use of Besov spaces described in Subsection 5.1.
In Subsection 5.2, we prove tightness of (Vε,Wε) and deduce tightness of xε. In Subsec-
tion 5.3, we complete the proof of Theorem 5.1 and characterize the limit points of (Vε,Wε).

5.1 Besov spaces
Let s > 0 and fix (arbitrarily) an integer m > s. The classical Besov space Bs

p = Bs
p(Rd) can

be defined (for all p ≥ 1) as the set of all Lp functions u : Rd → R such that

‖u‖Bsp =

(
‖u‖pLp +

∫
|σ|≤1

|σ|−sp−d ‖∆m
σ u‖

p
Lp
dσ

)1/p

<∞

where
∆σu(x) = u(x+ σ)− u(x) and ∆l+1

σ = ∆σ ◦∆l
σ

and ‖·‖Lp is the standard Lp norm on Rd. For more details, see [Tri85, Tri06].

Remark 5.3. The classical Besov spacesBs
p,q typically come with two indices of integrability

and norm ‖u‖Bsp,q =

(
‖u‖qLp +

∫
|σ|≤1
|σ|−sq−d ‖∆m

σ u‖
q
Lp
dσ

)1/q

. In this article, we always

take p = q. Hence our Besov spaces Bs
p are really the same as the Slobodeckij spaces,

when s 6= N. The norm we employ is not the most standard choice but is well known to be
equivalent to the usual Besov norm [Tri85, Section 2.5.12].

For κ ∈ [0, 1), we also introduce a norm on functions u = u(x, y) that are Bs
p in the x

variable and Cκ in the y variable:

‖u‖Bsp;Cκ =

(∫
‖u(x, ·)‖pCκ dx+

∫
|σ|≤1

σ−sp−d
(∫

‖∆m
σ u(x, ·)‖pCκ dx

)
dσ

)1/p

,

with ∆m
σ acting only in the x component.

Lemma 5.4. We have the embeddings

‖u‖Cθ . ‖u‖Bθ+d/pp
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and

‖u‖Cθ,θ .
(∫

‖u(x, ·)‖p
B
θ+d/p
p

dx+

∫
|σ|≤1

|σ|−pθ−2d

∫ ∥∥∆m
x,σu(x, ·)

∥∥p
B
θ+d/p
p

dxdσ

)1/p

.

Proof. The first estimate can be found in [Tri85, Section 2.7.1]. The second estimate is
obtained by applying the first estimate in the x coordinate (for each fixed z) and then in the z
coordinate (for each fixed x).

Lemma 5.5. If u ∈ Cα,κ(Rd ×M) and has compact support (in the sense of Theorem 4.1)
then ‖u‖Bsp;Cκ <∞ for any s < α.

Proof. Since m > s is arbitrary, it suffices to take m = dse. The ‖u‖Lp part is obviously
finite for any p ≥ 1, since u is bounded and has compact support. Hence it suffices to bound
the semi-norm part of the Besov norm. We claim that

sup
x∈Rd
‖∆m

σ u(x, ·)‖Cκ ≤ ‖u‖Cα,κ |σ|
α . (5.3)

In this case∫
|σ|≤1

|σ|−sp−d
∫ ∥∥∆m

x,σu(x, ·)
∥∥p
Cκ
dxdσ ≤ ‖u‖pCα,κ

∫
|σ|≤1

|σ|−sp−d|σ|αpdσ <∞

as required, since α > s.
All that is left is to prove the inequality (5.3). By the chain rule, we have that

u(x+ σ, y)− u(x, y) =

∫ 1

0

Dxu(x+ (1− ζ)σ, y)dζ · σ .

Repeating this identity, and writing δy,y′u(x, y) = u(x, y)− u(x, y′) we obtain

∆m−1
σ u(x, y)−∆m−1

σ u(x, y′)

=

∫
[0,1]m−1

Dm−1
x δy,y′u(x+ ((m− 1)− (ζ1 + · · ·+ ζm−1)σ, y)dζ · σm−1 .

It follows easily that

|∆m
σ u(x, y)−∆m

σ u(x, y′)| ≤ sup
x
|Dm−1δy,y′u(x+ σ, y)−Dm−1δy,y′u(x, y)||σ|m−1

≤ ‖u‖Cm−1+ζ,κ |σ|m−1+ζ |y − y′|κ .

This proves (5.3).

5.2 Tightness of (Vε,Wε)ε>0 and (xε)ε>0

Firstly, we estimate ‖Vε(s, t)‖A.

Lemma 5.6. We have that supε>0 ‖Vε(s, t)‖A . ‖a‖Cη,0 |t− s| uniformly over Ω.
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Proof. Without loss, we suppose that a is real-valued. Write Vε(s, t;x) =
∫ t
s
a(x, yε(r))dr.

We have

|Dk
xVε(s, t;x)| ≤

∥∥Dk
xa(x, ·)

∥∥
C0 |t− s|, |δx,x′Dk

xVε(s, t;x)| ≤
∥∥δx,x′Dk

xa
i(x, ·)

∥∥
C0 |t− s|

and hence

‖Vε(s, t)‖A =
∑
|k|≤bηc

sup
x
|Dk

xVε(s, t;x)|+
∑
|k|=bηc

sup
x,x′

|δx,x′Dk
xVε(s, t;x)|

|x− x′|η−bηc

≤
( ∑
|k|≤bηc

sup
x

∥∥Dk
xa(x, ·)

∥∥
C0 +

∑
|k|=bηc

sup
x,x′

∥∥δx,x′Dk
xa(x, ·)

∥∥
C0

|x− x′|η−bηc

)
|t− s|

= ‖a‖Cη,0 |t− s| ,

as required.

We now obtain an analogous estimate for Wε. Again, we may suppose without loss that b
is real-valued. First, we introduce the notation

∆m
σWε(s, t;x) = ε−1

∫ t

s

∆m
σ b(x, yε(r))dr ,

for m ≥ 0, where the operator ∆m
σ is omitted when m = 0. Similarly, we write

∆m
σ ∆m′

σ′ Wε(s, t;x, x
′) = ε−2

∫ t

s

∫ r

s

∆m
σ b(x, yε(u))∆m′

σ′ b(x
′, yε(r))dudr .

Proposition 5.7. (a) Eµ

(
sup
s,t

|∆m
σWε(s, t;x)|
|t− s|γ

)2p

. ‖∆m
σ b(x, ·)‖

2p
Cκ .

(b) Eµ

(
sup
s,t

|∆m
x,σ∆m′

x′,σ′Wε(s, t;x, x
′)|

|t− s|2γ

)p
.
∥∥∆m

x,σb(x, ·)
∥∥p
Cκ

∥∥∥∆m′

x′,σ′b(x
′, ·)
∥∥∥p
Cκ

.

Proof. Recall from the introduction that yε(t) = y(tε−2) = φtε−2(y0) where φ is the underly-
ing fast flow and y0 ∈ Ω is the initial condition. Hence by change of variables,

∆m
σWε(s, t;x)(y) = ε

∫ tε−2

sε−2

∆m
σ b(x, φry)dr.

But ∆m
σ b(x, ·) ∈ Cκ

0 (Ω,R) for each x, σ, so by Proposition 2.7,

(Eµ|∆m
σWε(s, t;x)|2p)1/(2p) . ‖∆m

σ b(x, ·)‖Cκ |t− s|
1/2,

uniformly in s, t, x, σ, ε. Hence part (a) follows from the Kolmogorov criterion, Lemma 3.7(a).
Part (b) is proved almost identically using Lemma 3.7(b).

Lemma 5.8. We have that supε>0 Eµ|||Wε|||2pC γ <∞ for any γ ∈ (1
3
, 1

2
− 1

2p
).
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Proof. By Lemma 5.4, ‖Wε(s, t)‖B . ‖Wε(s, t)‖Bθ+d/pp
and hence

sup
s,t

‖Wε(s, t)‖B
|t− s|γ

. sup
s,t

1

|s− t|γ

(∫
|Wε(s, t;x)|pdx+

∫
|σ|≤1

|σ|−θp−2d

∫
|∆m

σWε(s, t;x)|pdxdσ
)1/p

.

Taking the supremum inside the integrals and using the inequality (x+ y)1/p ≤ x1/p + y1/p,

sup
s,t

‖Wε(s, t)‖B
|t− s|γ

≤
(∫ (

sup
s,t

|Wε(s, t;x)|
|t− s|γ

)p
dx

)1/p

(5.4)

+

(∫
|σ|≤1

|σ|−θp−2d

∫ (
sup
s,t

|∆m
σWε(s, t;x)|
|t− s|γ

)p
dxdσ

)1/p

=
2∑

k=1

(∫
cpkdz

)1/p

,

where dz = dx or dz = |σ|−θp−2ddxdσ respectively and cpk denotes the corresponding inte-
grands. Applying the triangle inequality, first for L2p and then for L2,∥∥∥∥∥∑
k

(∫
cpkdz

)1/p
∥∥∥∥∥
L2p(dµ)

≤
∑
k

∥∥∥∥∥
(∫

cpkdz

)1/p
∥∥∥∥∥
L2p(dµ)

=
∑
k

(
Eµ

(∫
cpkdz

)2 )1/(2p)

=
∑
k

(∥∥∥∥∫ cpk

∥∥∥∥
L2(dµ)

)1/p

≤
∑
k

(∫
‖cpk‖L2(dµ) dz

)1/p

=
∑
k

(∫ (
Eµc

2p
k

)1/2

dz

)1/p

.

Substituting into (5.4) and applying Proposition 5.7 to each term, we obtain(
Eµ

(
sup
s,t

‖Wε(s, t)‖B
|t− s|γ

)2p)1/(2p)

≤
(∫ (

Eµ

(
sup
s,t

|Wε(s, t;x)|
|t− s|γ

)2p
)1/2

dz

)1/p

(5.5)

+

(∫ (
Eµ

(
sup
s,t

|∆m
σWε(s, t;x)|
|t− s|γ

)2p
)1/2

dz

)1/p

.

(∫
‖b(x, ·)‖pCκ dz

)1/p

+

(∫
‖∆m

σ b(x, ·)‖
p
Cκ dz

)1/p

. ‖b‖
B
θ+d/p
p ;Cκ

<∞ ,

where the last inequality follows from Lemma 5.5 (since θ + d/p < α.)
We now use the same method to estimate the Wε term. Just as above, via Lemma 5.4 we

have

sup
s,t

‖Wε(s, t)‖B⊗B
|t− s|2γ

= sup
s,t
‖Wε(s, t; ·, ·)‖Cθ,θ ≤

(∫ (
sup
s,t

|Wε(s, t;x, x
′)|

|t− s|2γ

)p
dz

)1/p

+

(∫ (
sup
s,t

|∆m
x,σWε(s, t;x, x

′)|
|t− s|2γ

)p
dz

)1/p

+

(∫ (
sup
s,t

|∆m
x′,σ′Wε(s, t;x, x

′)|
|t− s|2γ

)p
dz

)1/p

+

(∫ (
sup
s,t

|∆m
x,σ∆m

x′,σ′Wε(s, t;x, x
′)|

|t− s|2γ

)p
dz

)1/p

,
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where dz is variously dxdx′, |σ|−θp−2ddxdx′dσ, |σ′|−θp−2ddxdx′dσ′ or |σσ′|−θp−2ddxdx′dσdσ′.
We apply Eµ to the left hand side, using the triangle inequality to take the L1 norm inside the
sums and integrals. Applying Proposition 5.7(b) to each term, we obtain

Eµ sup
s,t

‖Wε(s, t)‖B⊗B
|t− s|2γ

.

(∫
‖b(x, ·)‖pCκ ‖b(x

′, ·)‖pCκ dz
)1/p

(5.6)

+

(∫ ∥∥∆m
x,σb(x, ·)

∥∥p
Cκ
‖b(x′, ·)‖pCκ dz

)1/p

+

(∫
‖b(x, ·)‖pCκ

∥∥∥∆m′

x′,σ′b(x
′, ·)
∥∥∥p
Cκ
dz

)1/p

+

(∫ ∥∥∆m
x,σb(x, ·)

∥∥p
Cκ

∥∥∥∆m′

x′,σ′b(x
′, ·)
∥∥∥p
Cκ
dz

)1/p

.

=

{(∫
‖b(x, ·)‖pCκ dx

)1/p

+

(∫
|σ|≤1

|σ|−θp−2d

∫ ∥∥∆m
x,σb(x, ·)

∥∥p
Cκ
dxdσ

)1/p}
×
{(∫

‖b(x′, ·)‖pCκ dx
′
)1/p

+

(∫
|σ′|≤1

|σ′|−θp−2d

∫ ∥∥∆m
x′,σb(z, ·)

∥∥p
Cκ
dx′dσ′

)1/p}
. ‖b‖2

B
θ+d/p
p ;Cκ

<∞ ,

where the last inequality follows from Lemma 5.5. Combining (5.5) and (5.6), we obtain the
required estimate for Wε.

Finally, we have the claimed tightness result.

Corollary 5.9. (a) The family (Vε,Wε)ε>0 is tight in C β,γ for any β ∈ (1
2
, 1), γ ∈ (1

3
, 1

2
− 1

2p
).

(b) The family (xε)ε>0 is tight in C([0, T ],Rd).

Proof. We first show that Wε = (Wε,Wε) is tight in C γ . Let R > 2, γ′ ∈ (γ, 1
2
− 1

2p
), and let

BR ⊂ C γ be the ball of radiusR in the ργ′ metric. By a standard Arzela-Ascoli argument (for
instance, see [FV10, Chapter 5]) one can show that BR is sequentially compact with respect
to ργ and hence compact in C γ . Since ργ′(Wε, 0) ≤ |||Wε|||C γ′ + |||Wε|||2C γ′ and R > 2,

µ
(
Wε 6∈ BR

)
≤ µ

(
|||Wε|||C γ′ ≥ (R/2)1/2

)
.

Hence by Markov’s inequality and Lemma 5.8,

µ
(
Wε 6∈ BR

)
≤ 2pEµ|||Wε|||2pC γ′/R

p . R−p .

This proves tightness of Wε. An analogous, but simpler, argument using Lemma 5.6 shows
that Vε is tight in C β , concluding the proof of part (a).

For part (b), let xεk be a subsequence. By part (a), we can apply Prokhorov’s theorem
to (Vεk ,Wεk). Hence passing to a subsubsequence, there exists (V,W) ∈ C β,γ such that
(Vεk ,Wεk) →w (V,W) in the C β,γ topology. By Lemma 4.4 and Corollary 3.4, xεk →w X
in C([0, T ],Rd) where X satisfies the RDE (4.1) driven by (V,W). It follows that {xε}ε>0 is
weakly precompact in C([0, T ],Rd). Since C([0, T ],Rd) is Polish, we can apply Prokhorov’s
theorem to deduce that {xε}ε>0 is tight.
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5.3 Characterization of limits of (Vε,Wε)ε>0 and (xε)ε>0

We begin by describing the limit of Vε.

Lemma 5.10. Define the deterministic element V ∈ C1([0, T ],A) given by V (t) = āt where
ā ∈ A is defined in (5.1). Then Vε → V in probability in C β for any β ∈ (1

2
, 1),

Proof. Let π ∈ L(B,R). Then πVε(t) = ε2
∫ tε−2

0
(πa) ◦ φs ds. By ergodicity of µ, it follows

from the ergodic theorem that πVε(1) → πV (1) almost surely. By Lemma 2.9, πVε → πV
almost surely, and hence in probability, in C([0, T ],R).

Suppose for contradiction that Vε fails to converge weakly to V in C β . By Corollary 5.9,
the family Vε is tight in C β , so there is a subsequence such that Vεk →w Z in C β where
the random process Z differs from V . In particular, πVεk(t0) →w πZ(t0) in R for any
π ∈ L(A,R) and any t0 ∈ [0, T ]. Hence πZ(t0) has the same distribution as πV (t0) and so
P
(
πZ(t0) = πāt0

)
= 1. Since π is arbitrary, it follows that P

(
Z(t0) = āt0

)
= 1. But Z is

continuous, so Z = V with probability one, giving the desired contradiction.

Proof of Theorem 5.1. We have shown in Corollary 5.9 that {xε}ε>0 is tight. Let X be a limit
point, with xεk →w X in C([0, T ];Rd). By Lemma 5.8, we can pass to a subsubsequence for
which (Vεk ,Wεk) converges weakly in C β,γ . Denote the limit by (V,W). By Lemma 4.4
and Corollary 3.4, X solves an RDE of the form (4.1) driven by (V,W). By Lemma 5.10,
V (t) = āt completing the proof.

Finally, we obtain a partial (see Remark 5.14) characterization of the limit points of Wε in
terms of their finite dimensional distributions. For each fixed π ∈ L(B,Rm), let (Pπ,Ωπ,Gπ)
be a probability space endowed with a filtration {Gπt }t≥0 rich enough to support Brownian
motion. We define a stochastic process (Bπ,Bπ) : [0, T ] → Rm × Rm×m on the probability
space (Pπ,Ωπ,Gπ), where Bπ is a Rm-valued Gπt - Brownian motion with covariance

EπBi
π(1)Bj

π(1) = B(πib, πjb) + B(πjb, πib) (5.7)

and Bπ is defined by

Bijπ (t) =

∫ t

0

Bi
πdB

j
π + B(πib, πjb)t (5.8)

where the integral is of Itô type. The filtration Gπt does not appear in the sequel and is present
only to ensure that the Itô integral can indeed be constructed.) Notice that this is precisely
the structure that arises under Assumption 2.1.

Remark 5.11. Here πib denotes the observable y 7→ πib(·, y), with πi acting on b as a
function of x. By the regularity assumptions on b, it is easy to check that πib ∈ Cκ

0 (Ω,R)
and lies in the domain of B (this calculation is done explicitly in Lemma 5.12). Moreover,
by Proposition 2.8, the covariance matrix ofBπ is a symmetric, positive semi-definite matrix.
This guarantees existence of the Brownian motion Bπ and hence the pair (Bπ,Bπ).

For π ∈ L(B,Rm) we define π⊗π ∈ L(B,Rm×m) by (π⊗π)ij = πi⊗πj , where πi⊗πj
is (as usual) the dual tensor product.
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Lemma 5.12. Let π ∈ L(B,Rm) for some m ∈ N. As ε→ 0,

(πWε, (π ⊗ π)Wε)→ (Bπ,Bπ)

in the sense of finite dimensional distributions of stochastic processes.

Proof. we have

(πWε, (π⊗π)Wε)(t) =

(
ε−1

∫ t

0

(πb)(yε(r))dr, ε
−2

∫ t

0

∫ r

0

(πb)(yε(u))⊗(πb)(yε(r))dudr

)
.

Now

|(πb)(y)− (πb)(z)| = |π(b(·, y)− b(·, z))| ≤ ‖π‖L(B,Rm) ‖b(·, y)− b(·, z)‖B
≤ ‖π‖L(B,Rm) ‖b‖Cθ,κ |y − z|

κ .

Similarly, |(πb)(y)| ≤ ‖π‖L(B,Rm) ‖b‖Cθ,0 . Hence πb ∈ Cκ
0 (Ω,Rm) and the desired conver-

gence follows from Proposition 2.10.

Remark 5.13. Clearly, we can equally characterize the distribution of (π1W, (π2 ⊗ π3)W)
using this result, where each πi : B → Rmi . Simply set π = (π1, π2, π3) and then project out
the unnecessary components.

Remark 5.14. It would be natural to combine the tightness of {Wε}ε>0 with the convergence
of finite dimensional distributions of Wε obtained in Lemma 5.12 to obtain a weak limit the-
orem for {Wε}ε>0. We avoid this here since showing that the finite dimensional distributions
from Lemma 5.12 actually separate measures on C γ is a non-trivial task. Moreover, we gain
nothing by doing so since, as shown in Lemma 6.1 below, all limit points X agree.

6 Characterizing the RDE as a Diffusion

In this section we complete the proof of Theorem 4.1. The final ingredient is the following.

Lemma 6.1. Let W be any limit point of {Wε}ε>0 and letX be the solution to the RDE (5.2)
driven by W. Then X is a weak solution to the SDE (1.5).

Before proceeding with the proof of Lemma 6.1, we need two technical results concerning
the following filtration. For each π ∈ L(B,R), let {Fπ

t }t≥0 be the filtration generated by the
stochastic process πW (t) and let Ft =

∨
π∈L(B,R)Fπ

t . Note that {Ft}t≥0 is indeed a filtration
due to the properties of the sigma-algebra join.

Lemma 6.2. Let W = (W,W) be any limit point of {Wε}ε>0. For each 0 ≤ s ≤ t and
π1, π2, π3 ∈ L(B,R), we have that π1W (s, t) and (π2 ⊗ π3)W(s, t) are independent of Fs.

Proof. Let Aρs = {ρW (s) ∈ Γ} for ρ ∈ L(B,R) and some Borel measurable Γ ⊂ R. Define
the system

Ps =

{
m⋂
i=1

Aρis : ρi ∈ L(B,R),m ≥ 1

}
.

25



It is easy to see that this is a pi-system [Wil91] with Ps ⊂ Fs and hence that Fs = σ(Ps).
Thus, it suffices to show that π1W (s, t) and (π2 ⊗ π3)W(s, t) are independent from sets of
the form ∩mi=1A

ρi
s .

From Lemma 5.12 we see that π1W (s, t) is independent of ∩mi=1A
ρi
s . Indeed, one can sim-

ply take π = (π1, ρ1, . . . , ρm) and deduce that (π1, ρ1, . . . , ρm)W (t) is a Brownian motion in
Rm+1, and certainly π1W (s, t) is independent of (ρ1W (s), . . . , ρmW (s)) and hence indepen-
dent of ∩mi=1A

ρi
s . The result for (π2 ⊗ π3)W(s, t) follows similarly, using the independence

properties of Itô integral increments.

Lemma 6.3. The solution X to the RDE (5.2) is adapted to the filtration {Ft}t≥0.

Proof. We will show that X(t) is Ft-measurable for some arbitrary t. We proceed by ap-
proximating X with a Euler-type discretization. To this end, define the partition 0 = t0 ≤
t1 ≤ · · · ≤ tN = t with tn+1 − tn = t/N . Let Xn ∈ Rd satisfy the recurrence relation

X i
n+1 = X i

n +

∫
Ω

ai(Xn, y)dµ(y)(tn+1 − tn) +H i(Xn)W (tn, tn+1)

+
d∑

k=1

(
Hk(Xn)⊗ ∂kH i(Xn)

)
W(tn, tn+1) ,

for n = 0, . . . , N , i = 1, . . . , d withX i
0 = X i(0). By an inductive argument on n, we see that

Xn is Ft measurable for each n, since all terms appearing on the RHS of the recursion are
either Ft measurable or are of the form πW (tn, tn+1) where π ∈ L(B,R) is Ft measurable.
Moreover, by [Dav07, Theorem 3.3], we have that XN → X(t) as N → ∞ where the
convergence is pathwise. As pathwise limits preserve measurability, it follows that X(t) is
Ft measurable.

Remark 6.4. Note that [Dav07, Theorem 3.3] assumes the rough paths take values in fi-
nite dimensional spaces, but as with Theorem 3.3 (of this article) the proof carries through
verbatim for Banach spaces, provided the tensor product is admissible.

Proof of Lemma 6.1. Let ϕ : Rd → R be a smooth function and let L be the generator of the
SDE (1.5), given by

Lϕ(x) =
d∑
i=1

ãi(x)∂iϕ(x) +
d∑

i,j=1

1

2
(σσT )ij(x)∂2

ijϕ(x)

with

ãi(x) =

∫
Ω

ai(x, y)dµ(y) +
d∑

k=1

B(bk(x, ·), ∂kbi(x, ·))

and
(σσT )ij(x) = B(bi(x, ·), bj(x, ·)) + B(bj(x, ·), bi(x, ·)) .

By Proposition 2.8(b), σσT (x) is symmetric positive semidefinite, for each x ∈ Rd. We show
that X solves the martingale problem associated with L.
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To this end, let {Ft}t≥0 be the filtration defined above. Note that, in order to apply [EK86,
Theorem 5.3.3] we require that FX

t ⊂ Ft where {FX
t }t≥0 is the filtration generated by

X . This inclusion is guaranteed by Lemma 6.3. Thus, by [SV06, Theorem 4.5.2] (or more
precisely, [EK86, Theorem 5.3.3]) it suffices to show that

ϕ(X(t))− ϕ(X(s))−
∫ t

s

Lϕ(X(r))dr

is an Ft-martingale.
Since W ∈ C γ

g it follows from the chain rule for RDEs, Proposition 3.6, that

ϕ(X(t)) = ϕ(X(s)) +
d∑
i=1

∫ t

s

∂iϕ(X(r))

∫
Ω

ai(X(r), y)dµ(y)dr (6.1)

+
d∑
i=1

∫ t

s

∂iϕ(X)H i(X)dW ,

with the equality holding pathwise, where we have used the identityF (x)ā =
∫

Ω
a(x, y)dµ(y).

Using (6.1) together with the “divergence-form” of L,

Lϕ(x) =
d∑
i=1

∫
Ω

ai(x, y)dµ(y)∂iϕ(x) +
d∑

i,k=1

B
(
bk(x, ·), ∂k{bi(x, ·)∂iϕ(x)}

)
,

we reduce to showing that for each i = 1, . . . , d,

E(Si|Fs) =
d∑

k=1

E

(∫ t

s

Gik(X(r))dr
∣∣Fs) (6.2)

for all s ≤ t ≤ T , where

Si =

∫ t

s

∂iϕ(X)H i(X)dW ,

Gik(x) = B
(
bk(x, ·), ∂k{bi(x, ·)∂iϕ(x)}

)
.

Since we prove this for each fixed i = 1, . . . , d, we will from here on drop i from the notation,
instead working with S and Gk.

By definition of the rough integral in (3.5), using Proposition 3.5, we see that S =
lim∆→0 S∆ where the limit is defined pathwise and

S∆ =
∑

[tn,tn+1]∈∆

∂iϕ(X(tn))H i(X(tn))W (tn, tn+1)

+
d∑

k=1

(
Hk(X(tn))⊗ ∂k{∂iϕ(X(tn))H i(X(tn))}

)
W(tn, tn+1)

and ∆ = {[tn, tn+1] : 0 ≤ n ≤ N − 1} denotes partitions of [s, t].
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Next, we define

M∆ = S∆ −
∑

[tn,tn+1]∈∆

d∑
k=1

Gk(X(tn))∆tn ,

where ∆tn = tn+1 − tn. It follows directly from the regularity of b,X, ϕ that the map

t 7→
(
bk(X(t), ·), ∂k{bi(X(t), ·)∂iϕ(X(t))}

)
, [0, T ]→ Cκ(Ω)× Cκ(Ω)

is continuous. By Proposition 2.8(c), t 7→ Gk(X(t)) is continuous and hence Riemann
integrable. In particular, lim∆→0(S∆ −M∆) =

∫ t
s
Gk(X(r))dr almost surely. Hence,

E(S|Fs) = E( lim
∆→0

M∆|Fs) + E( lim
∆→0

(S∆ −M∆)|Fs)

= E( lim
∆→0

M∆|Fs) +
d∑

k=1

E

(∫ t

s

Gk(X(r))dr
∣∣Fs) .

Thus proving (6.2) reduces to showing that E(lim∆→0M∆|Fs) = 0. We claim that M∆ is
square integrable uniformly in |∆| ≤ 1 and that E(M∆|Fs) = 0 for each |∆| ≤ 1. Then by
convergence of first moments, E(lim|∆|→0M∆|Fs) = lim|∆|→0 E(M∆|Fs) = 0, completing
the proof.

It remains to verify the claim. For each x ∈ Rd let us define the projections πk(x) =
(π1(x), πk2(x), πk3(x)) : B → R3 by

π1(x) = ∂iϕ(x)H i(x), πk2(x) = Hk(x), πk3(x) = ∂k{∂iϕ(x)H i(x)}.

Recall that i is fixed; hence we omit it from the notation. As in (5.7) (5.8), we also introduce
the R3 valued Brownian motion Bπk = (B1

πk
, B2

πk
, B3

πk
) and the corresponding R3×3 valued

Itô integral Bπk = (Bj`
πk

)j,`=1,2,3.
We can therefore write

M∆ =
∑

[tn,tn+1]∈∆

(Mn+1
∆ −Mn

∆)

where

Mn+1
∆ = Mn

∆+π1(X(tn))W (tn, tn+1)+
d∑

k=1

(
πk2(X(tn))⊗πk3(X(tn))

)
W(tn, tn+1)−Gk(X(tn))∆tn.

Note that

sup
x
‖π1(x)b‖Cκ . ‖b‖C0,κ , sup

x

∥∥πk2(x)b
∥∥
Cκ

. ‖b‖C0,κ , (6.3)

sup
x

∥∥πk3(x)b
∥∥
Cκ

. ‖b‖C1,κ .

Define the discrete time filtration Fn = Ftn for n = 0, . . . , N . Observe that

E(Mn+1
∆ −Mn

∆|Fn) = E
(
π1(X(tn))W (tn, tn+1) +

d∑
k=1

(
πk2(X(tn))⊗ πk3(X(tn))

)
W(tn, tn+1)|Fn

)
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−
d∑

k=1

E(Gk(X(tn))∆tn|Fn) .

But since X(tn) is Fn measurable, and π1(x)W (tn, tn+1) is independent of Fn for each fixed
x by Lemma 6.2,

E
(
π1(X(tn))W (tn, tn+1)|Fn

)
= E

(
π1(x)W (tn, tn+1)|Fn

)
|x=X(tn)

= E
(
π1(x)W (tn, tn+1)

)
|x=X(tn)

= E
(
B1
πk(tn, tn+1)

)
|x=X(tn) = 0

where we have used Lemma 5.12 to characterize the distribution of π1(x)W (tn, tn+1). Like-
wise, we have that

E
(
πk2(X(tn))⊗ πk3(X(tn))

)
W(tn, tn+1)|Fn

)
= E

(
B23
πk(tn, tn+1)

)
|x=X(tn) + B(πk2(x)b, πk3(x)b)|x=X(tn)

= B
(
bk(x, ·), ∂k{bi(x, ·)∂iϕ(x)}

)
|x=X(tn)= Gk(X(tn)) .

Thus Mn
∆ is an Fn-martingale. Moreover, due to the independence of the increments from

Fn, we have

E
(
(Mn+1

∆ −Mn
∆)2|Fn

)
= E

((
π1(X(tn))W (tn, tn+1) +

d∑
k=1

(
πk2(X(tn))⊗ πk3(X(tn))

)
W(tn, tn+1)−Gk(X(tn))∆tn

)2

|Fn
)

= E

((
π1(x)W (tn, tn+1) +

d∑
k=1

(
πk2(x)⊗ πk3(x)

)
W(tn, tn+1)−Gk(x)∆tn

)2)
|x=X(tn)

. E

((
π1(x)W (tn, tn+1)

)2

|x=X(tn) +
d∑

k=1

E

((
πk2(x)⊗ πk3(x)

)
W(tn, tn+1)−Gk(x)∆tn

)2

|x=X(tn) .

Using Lemma 5.12 combined with the identity Gk(x) = B(πk2(x)b, πk3(x)b), the above for-
mula simplifies to

E
(
(Mn+1

∆ −Mn
∆)2|Fn

)
. E

(
B1
πk(tn, tn+1)

)2

|x=X(tn) +
d∑

k=1

E

(
B23
πk(tn, tn+1)

)2

|x=X(tn) .

But by Lemma 5.12, Proposition 2.8(c) and (6.3), we have

E

(
B1
πk(tn, tn+1)

)2

|x=X(tn) = 2A(π1(X(tn))b, π1(X(tn))b)∆tn

. sup
x
‖π1(x)b‖2

Cκ(Ω,R) ∆tn . ‖b‖2
C1,κ ∆tn . ∆tn.

where we use the shorthand A(v, w) = 1
2
(B(v, w) + B(w, v)). Also, by the Itô isometry,

again using Proposition 2.8(c),

E

(
B23
π (tn, tn+1)

)2

|x=X(tn)
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=
(
A(π2(X(tn))b, π3(X(tn))b)

)2
∫ tn+1

tn

(r − tn)dr . ‖b‖2
C1,κ (∆tn)2 . |∆|∆tn .

It follows that for |∆| ≤ 1,

E
(
(Mn+1

∆ −Mn
∆)2|Fn

)
. ∆tn .

In particular, {Mn
∆}Nn=0 is an L2-martingale, with L2 norm bounded uniformly in |∆| ≤ 1.

Moreover M∆ = MN
∆ , so this completes the verification of the claim.

Proof of Theorem 4.1. By Theorem 5.1, we see that xε →w X along subsubsequences where
X solves the RDE (5.2). By Lemma 6.1, X is a weak solution to the SDE (1.5). In particular
all subsequences converge to the same limit. The formula for B(v, w) follows easily by
taking Eµ in Assumption 2.1 and applying Assumption 2.2 to obtain convergence of the
mean. This completes the proof.

7 Localization

In this section, we lift the localized convergence result Theorem 4.1 to the full convergence
result Theorem 2.3.

Let ηR : Rd → [0, 1] be a smooth cutoff function with

ηR(x) =

{
1 for |x| ≤ R

0 for |x| ≥ 2R
.

Let a, b satisfy the assumptions of Theorem 2.3 and define aR(x, y) = a(x, y)ηR(x) , bR(x, y) =
b(x, y)ηR(x). Clearly aR, bR satisfy all the requirements of Theorem 4.1. In particular, if we
let xε,R denote the solution to (1.1) with a, b replaced by aR, bR then Theorem 4.1 states that
xε,R →w XR where XR satisfies the SDE (1.5) with a, b replaced with aR, bR. The following
result is the final ingredient required to complete the localization argument.

Lemma 7.1. Let XR be the Itô diffusion defined by

dXR = ãR(XR)dt+ σR(XR)dB , XR(0) = ξ ,

where the drift and diffusion coefficients ãR : Rd → Rd and σR : Rd → Rd×d are given by

ãiR(x) =

∫
aiR(x, y)dµ(y) +

d∑
k=1

B(bkR(x, ·), ∂kbiR(x, ·)) , i = 1, . . . , d ,

(σR(x)σTR(x))ij = B(biR(x, ·), bjR(x, ·)) + B(bjR(x, ·), biR(x, ·)) , i, j = 1, . . . , d .

Then XR →w X in the supnorm topology, as R→∞.

Proof. Firstly, it is clear that the martingale problem associated withX is well posed. Indeed,
from [SV06, Theorem 6.3.4], it is sufficient to obtain the Lipschitz estimate

|ã(x)− ã(z)|+ |(σσT )(x)− (σσT )(z)| . |x− z| . (7.1)
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But this is immediate from Proposition 2.8(c) and the regularity of a and b.
By [SV06, Theorem 11.1.4], to prove convergence it is sufficient to show that the coef-

ficients ãR and σRσTR converge uniformly on compact sets to ã and σσT respectively. But
ãR(x) = ã(x) and σRσTR(x) = σσT (x) for all |x| ≤ R. Hence, by taking R sufficiently large,
convergence on compact sets is immediate.

Proof of Theorem 2.3. We now show that xε →w X in the supnorm topology, as ε → 0. Fix
a closed set U ⊂ C([0, T ],Rd). By the portmanteau lemma, it suffices to show that

lim sup
ε→0

µ(xε ∈ U) ≤ P(X ∈ U) . (7.2)

For R > |ξ|, we let xε,R be the solution to (1.1) with a, b replaced by aR, bR. By uniqueness
and continuity of solutions to ODEs, for each fixed ε, either xε(t) = xε,R(t) for all 0 ≤ t ≤ T
or supt≤T |xε,R(t)| ≥ R. Thus we have

µ(xε ∈ U) ≤ µ(xε,R ∈ U) + µ
(

sup
t≤T
|xε,R(t)| ≥ R

)
.

But, since aR, bR satisfy the requirements of Theorem 4.1, for each fixed R we have that
xε,R →w XR in the supnorm topology as ε → 0. Since x 7→ supt≤T |x(·)| is a continuous
function in the supnorm topology, it follows from the portmanteau lemma that

lim sup
ε→0

µ(xε ∈ U) ≤ lim sup
ε→0

µ(xε,R ∈ U) + lim sup
ε→0

µ
(

sup
t≤T
|xε,R(t)| ≥ R

)
≤ P(XR ∈ U) + P

(
sup
t≤T
|XR(t)| ≥ R

)
.

Taking lim supR→∞ on both sides and using Lemma 7.1 (and again the portmanteau lemma),

lim sup
ε→0

µ(xε ∈ U) ≤ P(X ∈ U) + lim sup
R→∞

P
(

sup
t≤T
|XR(t)| ≥ R

)
.

ButXR solves the SDE (1.5) with coefficients ãR and σR that are, by an argument identical
to (7.1), Lipschitz and bounded. It follows from [Mao07, Theorem 2.4.4] that

E sup
t≤T
|XR(t)| ≤ K , (7.3)

where K depends only on T, ξ and supx∈Rd(|ãR(x)| ∨ |σR(x)|). By Proposition 2.8(c),

|σR(x)|2 ≤
d∑

i,j=1

2|B(biR(x, ·, ), bjR(x, ·, ))|

.
d∑

i,j=1

∥∥biR(x, ·, )
∥∥
Cκ

∥∥bjR(x, ·, )
∥∥
Cκ

. ‖bR‖2
C0,κ . ‖b‖2

C0,κ

and we can similarly bound supx |ãR(x)| uniformly in R. It follows that the constant K
in (7.3) can be chosen uniformly in R. Thus

lim sup
R→∞

P
(

sup
t≤T
|XR(t)| ≥ R

)
≤ lim sup

R→∞
E sup

t≤T
|XR(t)|/R = 0 ,

which proves (7.2).
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[Sin72] Y. G. SINAĬ. Gibbs measures in ergodic theory. Russ. Math. Surv. 27, (1972),
21–70.

33



[Sma67] S. SMALE. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, (1967),
747–817.

[SV06] D. W. STROOCK and S. R. S. VARADHAN. Multidimensional diffusion pro-
cesses. Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the
1997 edition.

[Tri85] H. TRIEBEL. Theory of function spaces. Birkhäuser, 1985.

[Tri06] H. TRIEBEL. Theory of function spaces. III, vol. 100 of Monographs in Mathe-
matics. Birkhäuser Verlag, Basel, 2006.

[Wil91] D. WILLIAMS. Probability with martingales. Cambridge University Press, 1991.

[You36] L. C. YOUNG. An inequality of the Hölder type, connected with Stieltjes inte-
gration. Acta Math. 67, no. 1, (1936), 251–282.

[You98] L.-S. YOUNG. Statistical properties of dynamical systems with some hyperbol-
icity. Ann. of Math. (2) 147, no. 3, (1998), 585–650.

[You99] L.-S. YOUNG. Recurrence times and rates of mixing. Israel J. Math. 110,
(1999), 153–188.

34


	Introduction
	Anosov and Axiom A flows
	Non-uniformly hyperbolic flows
	Mixing hypotheses
	Previous results
	Outline of the article
	Notation

	The abstract convergence result
	Some rough path theory
	Tensor products of Banach spaces
	Spaces of rough paths
	Rough differential equations

	The localized convergence result
	The rough path reformulation of the fast-slow system
	Tensor product of Holder spaces

	Convergence to the RDE
	Besov spaces
	Tightness of (V,W)>0 and (x)>0
	Characterization of limits of (V,W)>0 and (x)>0

	Characterizing the RDE as a Diffusion
	Localization

