Polynomial decay of correlations for flows,
including Lorentz gas examples
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Abstract

We prove sharp results on polynomial decay of correlations for nonuniformly hyper-
bolic flows. Applications include intermittent solenoidal flows and various Lorentz gas
models including the infinite horizon Lorentz gas.
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1 Introduction

Let (A, pa) be a probability space. Given a measure-preserving flow 73 : A — A and
observables v,w € L?*(A), we define the correlation function py.,(t) = [y v wo Tydus —
fA vdup fA wdpy. The flow is mizing if limy o po 1 (t) = 0 for all v,w € L2(M).

Of interest is the rate of decay of correlations, or rate of mixing, namely the rate at which
puw converges to zero. Dolgopyat [17] showed that geodesic flows on compact surfaces of
negative curvature with volume measure up are exponentially mixing for Holder observables
v, w. Liverani [22] extended this result to arbitrary dimensional geodesic flows in negative
curvature and more generally to contact Anosov flows. However, exponential mixing remains
poorly understood in general.

Dolgopyat [18] considered the weaker notion of rapid mizing (superpolynomial decay of
correlations) where p, ,(t) = O(t?) for sufficiently regular observables for any fixed ¢ > 1,
and showed that rapid mixing is ‘prevalent’ for Axiom A flows: it suffices that the flow
contains two periodic solutions with periods whose ratio is Diophantine. Field et al. [19]
introduced the notion of good asymptotics and used this to prove that amongst C” Axiom A
flows, r > 2, an open and dense set of flows is rapid mixing.

In [24], results on rapid mixing were obtained for nonuniformly hyperbolic semiflows,
combining the rapid mixing method of Dolgopyat [18] with advances by Young [30} B31] in
the discrete time setting. First results on polynomial mizing for nonuniformly hyperbolic



semiflows (py.w(t) = O(t™?) for some fixed ¢ > 0) were obtained in [25]. Under certain
assumptions the results in [24] 25] were established also for nonuniformly hyperbolic flows.
However, for polynomially mixing flows, the assumptions in [25] are overly restrictive and
exclude many examples including infinite horizon Lorentz gases.

In this paper, we develop the tools required to cover systematically large classes of
nonuniformly hyperbolic flows. The recent review article [26] describes the current state of
the art for rapid and polynomial decay of correlations for nonuniformly hyperbolic semiflows
and flows and gives a complete self-contained proof in the case of semiflows. Here we provide
the arguments required to deal with flows. Our results cover all of the examples in [20].

By [24], rapid mixing holds (at least typically) for nonuniformly hyperbolic flows that
are modelled as suspensions over Young towers with exponential tails [30]. See also Re-
mark Here we give a different proof that has a number of advantages as discussed in
the introduction to [26]. Flows are modelled as suspensions over a uniformly hyperbolic
map with an unbounded roof function (rather than as suspensions over a nonuniformly
hyperbolic map with a bounded roof function). It then suffices to consider twisted transfer
operators with one complex parameter rather than two as in [24], reducing from four to
three the number of periodic orbits that need to be considered in Proposition [6.6] Also,
the proof of rapid mixing only uses superpolynomial tails for the roof function, whereas [24]
requires exponential tails.

Examples covered by our results on rapid mixing include finite Lorentz gases (including
those with cusps, corner points, and external forcing), Lorenz attractors, and Hénon-like
attractors. We refer to [26] for references and further details.

Examples discussed in [25] 26] for which polynomial mixing holds include nonuniformly
hyperbolic flows that are modelled as suspensions over Young towers with polynomial
tails [31]. This includes intermittent solenoidal flows, see also Remark

The key example of continuous time planar periodic infinite horizon Lorentz gases is
considered at length in Section[d} In the finite horizon case, exponential decay of correlations
for the flow was proved in [4]. In the infinite horizon case it has been conjectured [20)], 23]
that the decay rate for the flow is O(t~1). (An elementary argument in [5] shows that this
rate is optimal; the argument is reproduced in the current context in Proposition )
We obtain the conjectured decay rate O(t~!) for planar infinite horizon Lorentz flows in
Theorem [9.1]

Remark 1.1 (a) In [25], the decay rate O(t ') was proved for infinite horizon Lorentz gases
at the semiflow level (after passing to a suspension over a Markov extension and quotienting
out stable leaves as in Sections |3 and @ It was claimed in [25] that this result held also
in certain special cases for the Lorentz flow, and that the decay rate O(t~(1=9)) held for all
€ > 0 in complete generality. The spurious factor of t¢ was then removed in an unpublished
preprint “Decay of correlations for flows with unbounded roof function, including the infinite
horizon planar periodic Lorentz gas” by the first and third authors. Unfortunately these
results for flows do not apply to Lorentz gases since hypothesis (P1) in [25] is not satisfied.
The situation is rectified in the current paper. (The unpublished preprint also contained
correct results on statistical limit laws such as the central limit theorem for flows with
unbounded roof functions. These aspects are completed and extended in [7].)

(b) A drawback of the method in this paper, already present in [I8] and inherited by [24] 25|



20], is that at least one of the observables v or w is required to be C™ in the flow direction.
Here m can be estimated, with difficulty, but is likely to be quite large. In the case of the
infinite horizon Lorentz gas, this excludes certain physically important observables such as
velocity. A reasonable project is to attempt to combine methods in this paper with the
methods for (stretched) exponential decay in [4, [12] to obtain the decay rate O(t~1) for
Holder observables v and w (cf. the second open question in [26, Section 9]).

In Part I of this paper, we consider results on rapid mixing and polynomial mixing for a
class of suspension flows over infinite branch uniformly hyperbolic transformations [30]. In
Part II, we show how these results apply to important classes of nonuniformly hyperbolic
flows including those mentioned in this introduction. The methods of proof in this paper,
especially those in Part I, are fairly straightforward adaptations of those in [26]. The main
new contribution of the paper (Section |§| together with Part II) is to develop a general
framework whereby large classes of nonuniformly hyperbolic flows, including fundamental
examples such as the infinite horizon Lorentz gas, are covered by these methods.

Remark 1.2 The paper has been structured to be as self-contained as possible. It does
not seem possible to reduce the results on flows in Part I of this paper to the results on
semiflows in [26]. Instead, it is necessary to start from scratch and to emulate, rather than
apply directly, the methods in [26]. Some of the more basic estimates in [26] are applicable
and are collected together at the beginning of Sections 4| (Lemma to Proposition
and Section [5| (Propositions to , as well as in Section (Propositions
and . Also, results on nonexistence of approximate eigenfunctions in [26] are recalled
in Sections [6.2] and Section [R.4]

Notation We use the “big O” and < notation interchangeably, writing a,, = O(b,) or
an, < by if there is a constant C' > 0 such that a, < Cb, for all n > 1. There are
various “universal” constants C1,...,Cs > 1 depending only on the flow that do not change
throughout.

Part I
Mixing rates for (Gibbs-Markov flows

In this part of the paper, we state and prove results on rapid and polynomial mixing for
a class of suspension flows that we call Gibbs-Markov flows. These are suspensions over
infinite branch uniformly hyperbolic transformations [30]. In Section [2| we recall material
on the noninvertible version, Gibbs-Markov semiflows (suspensions over infinite branch
uniformly expanding maps). In Section [3| we consider skew product Gibbs-Markov flows
where the roof function is constant along stable leaves and state our main theorems for such
flows, namely Theorem (rapid mixing) and Theorem (polynomial mixing). These
are proved in Sections [4 and [f] respectively. In Section [6] we consider an enlarged class
of Gibbs-Markov flows that can be reduced to skew products and for which Theorems
and [3.2] remain valid.



We quickly review notation associated with suspension semiflows and suspension flows.
Let (Y, 1) be a probability space and let F' : Y — Y be a measure-preserving transformation.
Let ¢ : Y — R be an integrable roof function. Define the suspension semiflow/flow

F:Y? =YY%, Y9 ={(y,u) €Y x[0,00) : u € [0,0(y)]}/ ~, (1.1)

where (y,(y)) ~ (Fy,0) and Fi(y,u) = (y,u + t) computed modulo identifications. An
Fi-invariant probability measure on Y¥ is given by u¥ = u x Lebesgue/ fy pdp.

2 Gibbs-Markov maps and semiflows

In this section, we review definitions and notation from [26), Section 3.1] for a class of Gibbs-
Markov semiflows built as suspensions over Gibbs-Markov maps. Standard references for
background material on Gibbs-Markov maps are [I, Chapter 4] and [2].

Suppose that (Y, 1) is a probability space with an at most countable measurable parti-
tion {Y;, j > 1} and let F : Y — Y be a measure-preserving transformation. For 6 € (0, 1),
define dg(y,y') = 60°WY) where the separation time s(y,y') is the least integer n > 0 such
that F™y and F"y' lie in distinct partition elements in {Y;}. It is assumed that the partition
{Y;} separates trajectories, so s(y,y’) = oo if and only if y = 3/. Then dp is a metric, called
a symbolic metric.

A function v : Y — R is dg-Lipschitz if [v|g = sup,,,/ [v(y) — v(y')]/dg(y,y’) is finite.
Let F»(Y) be the Banach space of Lipschitz functions with norm |[v|g = [v|eo + |v]g-

More generally (and with a slight abuse of notation), we say that a function v : ¥ — R
is piecewise dg-Lipschitz if |17jv]9 = SUPy v, yty lv(y) — v(y')|/de(y,y’) is finite for all j.
If in addition, sup; |1?jv|9 < oo then we say that v is uniformly piecewise dg-Lipschitz. Note

that such a function v is bounded on partition elements but need not be bounded on Y.

Definition 2.1 The map F : Y — Y is called a (full branch) Gibbs-Markov map if
° F!yj :Y; = Y is a measurable bijection for each j > 1, and

e The potential function log(dji/djio F) : Y — R is uniformly piecewise dy-Lipschitz for
some 0 € (0,1).

Definition 2.2 A suspension semiflow F; : Y¥ — Y7 as in (I.1)) is called a Gibbs-Markov
semiflow if there exist constants Cy > 1, 6 € (0,1) such that F:Y — Y is a Gibbs-Markov
map, ¢ : Y — RT is an integrable roof function with inf ¢ > 0, and

\lngo\g < Clinf?jap for all j > 1. (2.1)

(Equivalently, log ¢ is uniformly piecewise dp-Lipschitz.) It follows that supy ¢ < 2C inf?jgo
for all j > 1.
For b € R, we define the operators

My:L®(Y) = L®(Y),  My=¢"voF.



Definition 2.3 A subset Zy C Y is a finite subsystem of Y if Zy = ﬂnzo F~"Z where Z is

the union of finitely many elements from the partition {Y;}. (Note that F|z, : Zo — Zy is
a full one-sided shift on finitely many symbols.)

We say that M, has approzimate eigenfunctions on Zy if for any ag > 0, there exist
constants «, & > ag and C' > 0, and sequences |bg| — 00, ¥ € [0,27), up € Fo(Y) with
lug| = 1 and |ug|op < C|bg|, such that setting ny = [£1n|bg|],

|(My ur)(y) — € PFug(y)| < Clog| ™™ for ally € Zo, k > 1. (2.2)

Remark 2.4 For brevity, the statement “Assume absence of approximate eigenfunctions”
is the assumption that there exists at least one finite subsystem Z; such that M} does not
have approximate eigenfunctions on Zj.

3 Skew product Gibbs-Markov flows

In this section, we recall the notion of skew product Gibbs-Markov flow [26], Section 4.1]
and state our main results on mixing for such flows.

Let (Y,d) be a metric space with diamY < 1, and let F' : Y — Y be a piecewise
continuous map with ergodic F-invariant probability measure . Let W?* be a cover of Y
by disjoint measurable subsets of Y called stable leaves. For each y € Y, let W#(y) denote
the stable leaf containing y. We require that F'(W*(y)) C W*(Fy) for ally € Y.

Let Y denote the space obtained from Y after quotienting by YW, with natural projection
7 :Y — Y. We assume that the quotient map F : ¥ — Y is a Gibbs-Markov map
as in Definition with partition {Y;}, separation time s(y,y’), and ergodic invariant
probability measure i = 7, .

Let Y; = 7’1_1}7]; these form a partition of Y and each Y is a union of stable leaves. The
separation time extends to Y, setting s(y,y’) = s(7y,7y’) for y,y' € Y.

Next, we require that there is a measurable subset Y C Y such that for every y € Y
there is a unique y € YN We(y). Let m: Y — Y define the associated projection my = g.
(Note that Y can be identified with Y, but in general m.p # fi.)

We assume that there are constants Cy > 1, v € (0, 1) such that for all n > 0,

d(F™y, F™y') < Coy™ for all y,9/ € Y with 3y € W*(y), (3.1)
d(F™y, F™y') < Coy*W¥)=" forall y,y/ € Y. (3.2)

Let ¢ : Y — R* be an integrable roof function with inf ¢ > 0, and define the suspension
ﬂowﬂ F,:Y? > Y¥asin with ergodic invariant probability measure pu¥.

In this subsection, we suppose that ¢ is constant along stable leaves and hence projects
to a well-defined roof function ¢ : Y — RT. It follows that the suspension flow F}; projects
to a quotient suspension semiflow F; : Y* — Y¥. We assume that F; is a Gibbs-Markov
semiflow (Definition . In particular, increasing v € (0, 1) if necessary, is satisfied
in the form

lo(y) — o(y)] < Crinfy, ") for all y,3f €Y, j > 1. (3.3)

'Strictly speaking, F; is not always a flow since F' need not be invertible. However, F; is used as a model
for various flows, and it is then a flow when ¢ is the first return to Y, so it is convenient to call it a flow.



We call F; a skew product Gibbs-Markov flow, and we say that F; has approximate eigen-
functions if F; has approximate eigenfunctions (Definition .
Fix n € (0,1]. For v: Y% — R, define
vy, u) — vy, )]
vly = sup AT [olly = [0l + |v]5,
T aweye, gy WAy, ) + o)} oo
/
v(y,u) —v(y,u
hop= s ) vl
(y’u)7(y’ul)ey(p7u¢ul |u o u |

, [0l = [0l + [Vloo -

(Here |u—u/| denotes absolute value, with u, v’ regarded as elements of [0, c0).) Let H~ (Y ¥)
and H.,(Y?) be the spaces of observables v : Y¥ — R with [jv[|y < oo and |[v||,,, < o0
respectively.

We say that w : Y¥ — R is differentiable in the flow direction if the limit dyw =
lim;_o(w o F} — w)/t exists pointwise. Note that dw = % on the set {(y,u) : y €
Y,0 < u < ¢(y)}. Define Hy0m(Y¥) to consist of observables w : Y¥ — R that are m-
times differentiable in the flow direction with derivatives in #.(Y¥?), with norm |[w||,0m =
> i 0wl

We can now state the main theoretical results for skew product Gibbs-Markov flows.

Theorem 3.1 Suppose that Fy : Y¥ — Y¥ is a skew product Gibbs-Markov flow such that
p € LYY for all ¢ € N. Assume absence of approrimate eigenfunctions.
Then for any q € N, there exists m > 1 and C > 0 such that

|pvw(®)] < Cllvlly|wllyomt™? for allv e Hy(Y?), w € Hyom(Y?), t > 1.

Theorem 3.2 Suppose that Fy : Y¥ — Y¥ is a skew product Gibbs-Markov flow such that
(e >t) = Ot=P) for some B > 1. Assume absence of approzimate eigenfunctions. Then
there exists m > 1 and C > 0 such that

P00 ()] < Cllvllymllwllyom t™ P for all v € Hyy(Y?), w € Hayom(V?), t > 1.

Remark 3.3 Our result on polynomial mixing, Theorem implies the result on rapid
mixing, Theorem (for a slightly more restricted class of observables). However, the proof
of Theorem plays a crucial role in the proof of Theorem justifying the movement of
certain contours of integration to the imaginary axis after the truncation step in Section[5.2
Hence, it is not possible to bypass Theorem even when only polynomial mixing is of
interest.

These results are proved in Sections [4] and [f respectively. For future reference, we
mention the following estimates. Define ¢, = Z;L:_& o I,
Proposition 3.4 Letn € (0,3). Then
(a) fY ©"o Fi1{¢n>t} dp < (n+1) fY ©"ypst/my di for alli >0, n>1,¢> 0.
(b) If p(p > t) = O(t™F) for some B> 1, then [, @"l(psp dpu = O(t=B-—m),



Proof Writing ¢" o F' = ¢ 0 F'l(,opisi/ny + " © F'l{popi</n}, We compute that

/YsD” 0 F'lyy, 5y dpt

= /Y@n ° Fil{(poFi>t/n}1{<pn>t} dp + /Y 9077 o Fil{gooFiSt/n}l{kpn>t} dp
4 n—1 £\
< / (pn © FZl{gpoFi>t/n} dp + Z/ (*> 1{<pon>t/n} dp
Y =0 /Y

t\"
=/ " (o> t/n} dMJrn/ (*) Lost/my dp < (n+1)/ O ost/ny dpts
Y y \n Y

proving part (a). Part (b) is standard (see for example |26, Proposition 8.5]). |

4 Rapid mixing for skew product Gibbs-Markov flows

In this section, we consider skew product Gibbs-Markov flows F; : Y¥ — Y% for which the
roof function ¢ : Y — R™ lies in L4(Y) for all ¢ > 1. For such flows, we prove Theorem |3.1
namely that absence of approximate eigenfunctions is a sufficient condition for rapid mixing.
For notational convenience, we suppose that inf ¢ > 1.

4.1 Some notation and results from [26]

Let H = {s € C : Res > 0} and H = {s € C : Res > 0}. The Laplace transform
Pow(s) = fooo et py,w(t) dt of the correlation function p, ,, is analytic on H.

Lemma 4.1 ( [26, Lemma 6.2] ) Letv € L' (Y%?), € >0, r > 1. Suppose that

(1) s = pyw(s) is continuous on {Res € [0,€]} and b — py.(ib) is C" on R for all
w e Hy(Y?).

(ii) There exist constants C,a > 0 such that
1o, ()] < (Bl + 1)*|wlly  and |5, ()] < C(Jb] + 1) [l
for allw e Hy(Y?), j <7, and all s = a+ib € C with a € [0, €].
Let m = [a] +2. Then there exists a constant C' > 0 depending only on r and o, such that
|powt)] < CC|wllyomt™"  for allw € Hoyom(Y¥), t > 1. u

Remark 4.2 Since p, ., is not a priori well-defined on H, the conditions in this lemma
should be interpreted in the usual way, namely that p, ., : H — C extends to a function
g : H — C satisfying the desired conditions (i) and (ii). The conclusion for p, ., then follows
from a standard uniqueness argument.

For completeness, we provide the uniqueness argument. By [26, Corollary 6.1], the
inverse Laplace transform of p,, can be computed by integrating along a contour in H.
Since g = Py on H, we can compute the inverse Laplace transform f of g using the
same contour, and we obtain p, ., = f. Hence p, = g is well-defined on H and satisfies
conditions (i) and (ii), so the conclusion follows from [26, Lemma 6.2].



Define vs(y) = fO@(y) e*“v(y, u) du and w( fo y,u) du.

Proposition 4.3 ( [26, Proposition 6.3 and Corollary 8.6] ) Let v, w € L>(Y¥)
with fy¢vdu“’ = 0. Then pyw = Y o OJ on H where Jn is the Laplace transform of
an L function J,, : [0,00) = R for n >0, and

jn() loly lfye rvsw(s) o F"dp foralls € H, n>1.

Moreover, |Jo(t)] = O(|v]oo|w]oo t~ =) ] |

Let R: L'(Y) — L'(Y) denote the transfer operator corresponding to the Gibbs-Markov
quotient map F: Y =Y. So [pvwoF dji= [p Rvwdp forallv e L'(Y) and w € L>(Y).
Also, for s € H, define the twisted transfer operators

R(s): LYY) = LY(Y),  R(s)v = R(e *%v).

Proposition 4.4 Let 0 € (0,1) be as in Definition [2.1. There is a constant C > 0 such
that B
IR llg < O3 g p(d)[[1avlle  forve Fop(Y), n>1,

where the sum is over n-cylinders d = (V;_g 1 F=Y5., joy.evyjn1 > 1.

Proof This follows from |26, Corollary 7.2]. n

For the remainder of this subsection, we suppose that u(p > t) = O(t~?) where 8 > 1.
Fix ¢ > 0 with
max{1l,5 -1} < ¢ < f.

Let n € (0,1], v € (0,1) are as in Section [3| Shrinking 7 if needed, we may suppose without
loss that

q+2n<p,

Let 71 =" and increase 6 if needed so that 6 € [y, 1/ 3, 1).
A function f : R — R is said to be C?if fis C ‘J] and fU9) is (¢ — [¢])-Holder. Moreover,
given g : R — [0,00) and E C R, we write | (@ (b)| < g(b) for b € E if for all b,V € E,

1FEB)] < g(b), k=0,1,....[q], and [ 1D () — fLD @) < (g(b) + g(t))|p — 02710

For f : H — R and E C H, we write |f(9(s)| < g(s) for s € E if | f(9)(ib)| < g(b) in the sense
just given for ib € E and |f®)(s)] < g(s) for s € E, k =0,...,[g]. The same conventions
apply to operator-valued functions on H.

Remark 4.5 Restricting to ¢ as above enables us to obtain estimates for the rapid mixing
and polynomially mixing situations simultaneously hence avoiding a certain amount of
repetition. The trade off is that the proof of Theorem is considerably more difficult.
The reader interested only in the rapid mixing case can restrict to integer values of ¢ with
greatly simplified arguments [26, Section 7] (also see version 3 of our preprint on arxiv).

2 All series that we consider on H are absolutely convergent for elementary reasons. Details are given in
Lemma but are generally omitted.



Following [26], Section 7.4], there exist constants My, M; and a scale of equivalent norms

vl }
- [o. o)) ) b€R7
Jolly = ma { ol 37ty

on Fy(Y) such that
IR(s)"||ls < My forall s=a+ibe C with a € [0,1] and all n > 1. (4.1)
Proposition 4.6 There is a constant C' > 0 such that

|IRD(s)||y < C foralls=a+ibeC with0<a<1.

Proof It is shown in [26, Proposition 8.7] that [|[R@ (s)|ls < C(|b|+1). Using the definition
of || ||», the desired estimate follows by exactly the same argument. |

Remark 4.7 Estimates such as those for B in Proposition hold equally for R@) for
all ¢ < q. We use this observation without comment throughout.

Define Hs = H N Bs(0) for 6 > 0. Let T = (I — ]%)_1. We have the key Dolgopyat

estimate:

Proposition 4.8 Assume absence of approximate eigenfunctions. Then f(s) c Fo(Y) —

Fo(Y) is a well-defined bounded operator for s € H\ {0}. Moreover, for any § > 0, there
exists a, C' > 0 such that

IT@ (s)|lg < C|b|*  for all s = a+ibe C\ Hy with 0 < a < 1. |

Proof For the region 0 < a < 1, |b| > 4, this is explicit in [26, Corollary 8.10]. The
remaining region A = ([0,1] x [—4,4]) \ Hy is bounded. Also, 1 ¢ spec R(s) for s € H \
{0} by [26, Proposition 7.8(b) and Theorem 7.10(a)]. Hence |T(9||s is bounded on A by
Proposition [4.6] |

Proposition 4.9 ( [26, Proposition 7.8 and Corollary 7.9] ) There exists 6 > 0 such
that R(s) : Fo(Y) — Fo(Y) has a C7 family of simple eigenvalues X(s), s € Hs, isolated in
spec R(s), with \(0) =1, N'(0) = —|p|1, |A(s)| < 1. The corresponding spectral projections

P(s) form a C9 family of operators on Fy(Y') with P(0)v = [¢ v df. |

4.2 Approximation of v, and w(s)

The first step is to approximate v, W(s) : Y — C by functions that are constant on stable
leaves and hence well-defined on Y.
For k > 0, define Ay : L®(Y) — L®(Y),

Aw=woFrfor—woFrloroF k>1, Ajw=wonr.

10



Proposition 4.10 Let w € L™®(Y). Then
(a) Agw is constant along stable leaves.
(b) Sp_o(Agw)o F"F =wo FPor.

Proof Part (a) is immediate from the definition and part (b) follows by induction. n

Define R , .
Vi(s) = e 5?17 Ao, Wi(s) = e *PFApw(s).

By Proposition (a), these can be regarded as functions Vj, W), on Y. Similarly we write
Agw € L*(Y).
Also, for k > 0, we define Ej, : L>®(Y) — L*(Y),
Ekw:woFk—woFkow.
Lemma 4.11 Let v,w € L*(Y¥). Then

ﬁv,w:%‘}‘“@h—l(zgn'f'z n,k+zzaj,k)7

n=1 n=1k=0 7=0 k=0

n—1

on H, where
An(s) = / e s (Ep_1w(s)) o Fdu,
Y

Bus(s) = [ 7o By, (840(s)) 0 F* dp
Y
Ciuls) = [ Rl U+ LOT () RITIT, () Wi(s)di
Y
All of these series are absolutely convergent exponentially quickly, pointwise on H.

Proof Since this result is set in the right-half complex plane, the final statement is el-
ementary. We sketch the arguments. Let s € C with a = Res > 0. It is clear that
lvs] < a Hv|ewe® and |W(s)|ee < a '|w|s. Hence \A\n(s)\ < 20720 |w]ooe 1)
and | By x(s)| < 4a72J0]oo|w]ooe™@™= Y. Similarly, [V;(s)|se < 207 |v]so and [Wi(s)]so <
207 |w|oe . As an operator on L®(Y), we have |R(s)|so < e @ Hence |@k(s)| <
4(1_2(1 _ 6_0‘)_1”U| ‘ —a max j Lk).

By Proposition Pow(s) = Ji Jo(s )+l [y e, @(s) o F™dp for s € H. By
Proposition (b), for each n > 1,

/e_sso"vs fu\(s)oF”du:/ e %y, W(s) o F" Yomo Fdu
Y

—|-/ —SPny )oF”1 A(s)oF"_loﬂ')OFd,u
Y

3
—

/ “SPnyg (ARW(s)) o FF Lo Fdy + A\n(s).
Y

i

0

11



Also, by Proposition [4.10(b), for each n > 1, 0 <k <n—1,

/ e *Prus (Apw(s)) o Frh=lo Fdy = / ety o (Apw(s)) o F2=Fq,
Y Y

n
— Z/ e~ spnok™ (Ajvs) o Fni Apw(s) o Fenh dp + E”’k(s)
j=0"Y

n
= Z /Y e 5ol Avug Ap(s) o F" R4 dpi - Emk(s).
7=0
Next,

e RIAug Aypo(s) o F" % d

Y
= /e—ssonkRjAjvs (e75%k Ap(s)) o ek dfi = /
Y

= [ Rl R e P ) W) dn = [

/ efs‘P”OFjAjvs Ap(s) o F i qp = /
y
. E(s)"_kRjAjvs Wi(s) di

Y

R(s)" F T RITIV,(5) Wi(s) d.

Altogether,

where

n—1 n 0o

ﬁ(s)"_k_laj by, = Z Z E(s)”_k_laj b, + Z ZE(S)”_k_laj by
=0 0<j<kn=k+1 j>k>0n=j
Jj—1 o

o~ k [e'S)
=3 "T(s)aj b+ > Y R(sY KT (s)aj by = D R(s)™*U=k"L0T(5)q; by,
k=0 j=0 j=1 k=0 k=0
This completes the proof.

For w € L*°(Y%¥), we define the approximation operators

w(Frry,u) — w(F*'nFy,u) k>1

Awly,u) = {w(ﬂ'y,u) k=0

Ekw(y,u) = w(Fky,u) — w(FkWy,u), k>0,

for y €Y, u € [0, p(F*y)].

12



Proposition 4.12 (a) Let w € H,(Y¥), k > 0. Then for ally € Y, u € [0, p(F*y)],
|Agw(y, u)| < 2091wl (FFy)"  and  |Byw(y, u)| < 20931 |wl,o(FFy)".
(b) Let w € Ho(Y¥), k > 0. Then for all y,y' € Y, u € [0, o(F*y)] N[0, o(F*y")],
|£kw(y, u) — ﬁkw(y',uﬂ < 4C’27f(y’y/)_k|w|7<p(Fky)".
(¢) Let w € Hyy(Y¥?), k> 0. Then for ally € Y, u,u’ € [0, p(F*y)],

By u) — Bpw(y, u)] < 2wl glu — o]

Proof (a) Clearly |Aqw(y, u)| < |w|eo. By (3.1)), for k > 1,

|Apw(y, w)| < [wlyo(FFy)(d(Frry, FFtnFy) 4 5 F mu k)
= |w|yo(FFy)d(FFry, F*1nFy) < Coy* 1 w|,p(Fry).

Also, |Ajw| < 2|w|es, SO
|Agw(y, w)| < 2Cs||w]ly min{1, 7 o(F*y)} < 20091 |wllyp(F*y)".

This proves the estimate for &kw, and the estimate for Ekw is similar.
(b) First suppose that & > 1 and note by (3.2) that

d(FFry, Frmy') < Coy* W)=k, d(F*tnFy, F*1npy) < Oy Wy )=k
It follows that

lw(FEmy,u) — w(Frry' u)| < \wa’f Yd(FFry, Frmy') + Sl i)
< wlyp(FEy) (Coy*@¥) =k 1 s =ky < 9005wy k|| o(Fry).

Similarly, [w(FF~ 1w Fy,u) — w(F*'nFy' u)| < 2Coy*@¥) =k |w|,p(F*y). Hence

|Apw(y,u) — Agw(y',u)| < Jw(FFry,u) — w(Frry, u)l
+ |w(Fk_17rFy, u) — w(Fk_ley', u)l
< A0y W) Rl |, (Fy).

Also, [Apw(y, u) — Agw(y', u)| < 4w|s, s0
|Apw(y, u) — Agw(y’, u)| < ACoE YY) ™  w|, o (Fry)n.

The case &k = 0 is the same with one term omitted.
(c) For k > 1,

[Apw(y, u)=Apw(y, o)| < [w(F*ry, u) —w(Fry,o)|
+ lw(F* ' nFy,u) — w(FF Py, )| < 2|w|oon|u — u'|".
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The case k = 0 is the same with one term omitted. [ |

We end this subsection by noting for all k£ > 0 the identities
o(Fry) ~ P(FFy) _
Agvg(y) = / e Agv(y, u) du, Agw(s)(y) = / e Apw(y, u) du,
0 0
o(Fky) R @(FFry) ~
B = [ e Balade, BaGw) = [ e Bl du
0 0

4.3 Estimates for A, and B, ;

We continue to suppose that p(e > t) = O(t=%) where 8 > 1, and that ¢, 1, 71, 0 are as
in Subsection Let ¢ =1/(2C). As shown in the proofs of Propositions and
below, A,, and B, ; are Laplace transforms of L* functions A, B, : [0,00) = R. In this
subsection, we obtain estimates for these functions A,,, B,, j.

Proposition 4.13 There is a constant C > 0 such that
JyopoFMy, sndu <Cn [y @ligseimydp foralln>1,t > 0.
Proof Since F' is Gibbs-Markov, there is a constant Cy (called Cs in [26]) such that
|R(P1ipse)loe < Co Y #(Y5) 1y Ploo L1y, o>}
< 2CoCh Z p(Y;)inty; 901{infyj p>cicy S K [yolipsecy dp,

where K = 2CoCy. Similarly, |Rp|e < K|p[1 and [Rl{gseyloo < Kpu(p > dc).
Now

n
/Y o F My sty dn <Y /Y 00 F" ol ipopisi/my dit
=0

=> / @ R0l popisi/my) A= > / @ R (L{psi/my R 0) dpu.

/Y —Jy

J J
For1<j<n-—1,

‘ Jy @ BV (Lgpsimy R 0) du) < [oh| R (1gpsi/ny B2 9)|oo
<[Pl R @lool R i pst/miloo < [0l1|RPloo R1{pst/nyloo < K2 |@liu(p > dt/n).
For j = n,
|y ¢ B (psiymyRI0) dp| < [Rolo [y 0 Lipsiyny din < K@l [y 01qpseimy dp.

Finally for 5 = 0,

| [y ¢ B (psimpRI0) dp| < [0[1|R(0 1ipsi/my) oo < Kol [y @1 {psertm) dit,

completing the proof. [ |
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Proposition 4.14 There is a constant C > 0 such that
|An ()] < CrPyR 0] o |wly (84 1)"FY for allv € L®(Y?), w € Hy(Y?), n>1, ¢ > 0.

Proof We compute that

An(s) = /Ye_w"vs (Ep—1w(s)) o Fdu

©(y) o(Fmy) o~
:// v(y,u)/ e SenW B w(Fy, o) du’ dudp
Y JO 0

e(y) Pn+1(y)—u ~
= / / v(y,u) / e By qw(Fy,t — on(y) +u) dt dudp.
Y Jo on(y)—u

Hence

/ / 1{<pn(y) u<t<pnt1(y )fu}En—lw(Fyu t— (pn(y) + u) du dlu“

By Proposition a), |En_1w(Fy,t — on(y) + u)| < 2C27) Hwl,p(Fy)" and so
|4 (t)] < 2027?71|U|00|w|"/ fy ppoF'le, sty dp.
The result follows from Propositions [3.4(b) (with = 1) and |

Proposition 4.15 There is a constant C > 0 such that
|Bpi(t)] < CnPAyoly|wleo (t4+1)"P7Y for all v € Ho(Y?), w e L®(Y?), n>1,k>0,t>0.
Proof We compute that

~

Bpi(s —/ —senot B vy (AR@(s)) o F2F dy

F2ny) SO(FTL "
/ / / slen(Ery)=w'+w) By (g ') Agw(F2*y, u) du’ du dys

e(F*y)  ron(Fy ~ ~
/ / / e~ Bv(y, ¢n(F™y) — t +u)Apw(F>" " y, u) dt dudp.
Pn— 1 F"Jrly)—i-u

Hence
F2n
B k(t) = /Y/O g 1 (Frtty)tust<pn(Fry)+u}
X Eno(y, on(F™y) — t + u)Agw(F" "y, u) du dp.

By Proposition [L12(a), |E,u(y,en(F™y) — t + u)| < 20097[v]y0(F"y).  Also
|Agw(F?Fy u)| < 2|w|s. Hence

| Bk (t)] < 202797 [v]y|w]oo /Y o F? o "y, opnsy dp
— 27 ol wle /Y oo FM, o dp.

The result follows from Propositions [3.4(b) and |
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4.4 Estimates for @,k

For the moment, we suppose that u(p > t) = O(t~?) where 8 > 1, and that ¢, 1, 71, 0
are as in Subsection First, we estimate the inverse Laplace transform Wy (t) : Y — R
associated to Wy(s) : Y — C.

Proposition 4.16 There is a constant C > 0 such that

W) < C(k + 1P wl|, (t+1)"7 for allw € Ho(Y?), k>0, t > 0.

Proof For all k£ > 0,

_— o(F
Wi(s)(y) = e WAL (s / SO A (y, u) du

0

<Pk+1 .
/ R w(y, t — pu(y)) dt.
©

k

Hence B
Wi(t)(Y) = g y)<t<or ) Acw(y, t — ¢r(y)),

and [Wy,(t)| < 2Coy¥ " Hw|, (¢ o Fk)"1{¢k+l>t} by Proposition (a). It follows that

We(®)1 = [We(t)1 < 2C2(k + D)y Hwlly fy "L {psesger1) dit
< (k4 1P wlly (¢ + 1) 70 < (k+ )Py | (84 1)79

by Proposition |
Proposition 4.17 There exists C' > 0 such that

[(ROD(s)|lg < Cl(|s| + 1) for all s =a+ibe C witha € [0,1] and all £ > 1.

Proof By Proposition there exists a constant M > 0 such that ||§(p)(s)Hb < M for

all p < q. Also ||R(s)"||, < M1 by ([(4.1)).
For ¢ > 1, note that (R¢)(@ consists of £7 terms (counting repetitions) of the form

ﬁm E(m) . _ﬁnké(pk)énk+17
where n; > 0,1 <p; <q,ni+---+npy1 +k=4,p1+---+pr=q. Since k < gq,
Hﬁmfg(m) ... R R(Pk) Rrk+ Iy < MiHqu'

Hence |[(R)@(s)llo < (Mo + 1)(|s| + DII(R)D(s) s < £9(]s]| + 1). u

Proposition 4.18 Letv € 1, (Y¥). Define Io(s) = [ fo e sW =y (y, u) dudu. Then

Z?O:Ofy‘/}jdp =1y onH.

16



Proof For j > 1,
. P(Fly) ; . ,
/ Vi(s)dp = / / eIV~ (v (Firy, u) — v(F ' rFy, u) dudp
Y
Q(Fiy ,
/ / s(p(F/y)—u )U(Fjwy,u) du dp

p(FIly L ,
// s(p(F/ ™) —u Wy(FI Yy, u) du dy,

while nyO Ydp = [y g #lY) ¢ —s(e@W) =y (1y, u) du dp. Hence

F"y)
Z / ) dyu = / / PED =0y (F g, ) du dp

e(F7y) J
/ / CE D=0y (Fy u) dudp = Zs(s) + To(s),

where

P(F7y) ;
= / / eIV (o (F 1y ) — v(Fy, u)) dudp.
Y JO
By (3.1),
o(F 7y, w) — o(Fy,w)| < |oly o(Fy)d(Fmy, Fy) < Coy”loly o(F7y).
Also, [v(F7my, u) — v(F7y,u)| < 2[v]e, s0

l(F ry,u) — v(Fy, u)| < 2079 ||v]| o(Fy)".

Hence |Z;(s)| < 2Co ||v]ly [y (0 0 F)M M dp = 2Con |[v]|y [y ¢ dp — 0 as J — oo.

From now on, we specialize to the rapid mixing case, so ¢ and § are arbitrarily large

and all functions previously regarded as C? are now C*°. Note that

1 ,
min{r], {0} < 5 ) < i), (4.2)

Proposition 4.19 For each r € N there exists C' > 0 such that

7‘

IRV ($)llo < Csl + D0 Plelly  for all v € Hy(Y?), s € H, j > 0.

Proof For j >0,

. ; (Fly) i -
Ti(s)(w) = e DA () = [ e 0 Ky, )
0

Hence

~(r) o(Fiy)  s(o(Fy)—) ] -
TO(s)() = (1) /0 ¢S EED D) (o(Fiy) — u) A ju(y, w) du.
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By Proposition [{.12(a), [Aju(y,u)| < 209 '|vll,@(Fiy)".  Hence [V\7(s)| <
2057 [vlly "+ 0 FI. - B

Fix a (j + 1)-cylinder d for the Gibbs-Markov map F : Y — Y. Since F’d is a partition
element,

7 —1 —1 .
10V (8) oo < Cod ™M 0lly |1 0122 < (2C1) F2Coyd Yoy infpyy o2 (4.3)
Let v,y € d with o(F7y) > ¢(F7y'). Then

V() ) = V()W) = (1) (I + Lo + I3+ 1),

where
o(F . ~
_ P(FIy)— w(p (F7y) —u)"Ajo(y,u) du,
<p(FJy
p(F . . ~
_ / p(Fiy)—u) _ ,—s(p(Fiy =N (p(Fly) — u)"Ajo(y, u) du,
0
oF —s(cp Fiy"—u) J r J o TYA
:/0 {(p(Fy) —u)" = (p(F'y") —u)"}Ajv(y, u) du,
(p . ~ ~
/ eI (o(Fiy) — u) {Aju(y, u) — Ajo(y',u)} du.
0

By (3.3),

[(Fly) — p(Fiy)| < Chinf g4 07" 7Y) = 01?09 inf 75 0.
Hence by Proposition [£.12|(a,b),
|V§-’”><s><y> V7)) < (sl + D3 ol int g 07

At the same time, the supnorm estimate (4.3 yields

V7 (5)() = V57 () )] < A lolly ink g 0+
Combining these estimates and using (4.2) we obtain that
= T\ i/3 S / : T
VP ($)@) = V)] < (sl + D20 @) o] inf "+
In other words,
(7 i/3 . r
1757 (3)lo < (Is] + D7 o]l inf 7y ™+
Using this and @, it follows by Proposition that
IIRJ“V " $)ls < (sl + D70l Sy Ad)infg o7 0 FI
— /3 ,
< (sl + V1ol S 0 F dp = (Is| + 1) vl fye™ du,

completing the proof. [ |

Define D; o = }?ieij“Vj, j4,£ > 0. Let § and X be as in Proposition and recall that
Hs = HN Bg(O).
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Proposition 4.20 For each r € N, there exists o, C > 0 such that for all v € H,(Y?),
J, >0, and all s = a+ib € C with a € [0,1],

(a) DY) ()]0 < C(C+ 1) (1b] + 1)2[o]l, for s & H;,

(0) | & {Dj(s) - L Vi) dpd oo < CE+ 1) 972 0ll, for s € H.

Proof Letp e N, p <r. By Propositionsi4.17]and |4.19 ||R7+1V(p Nl < 7]/3(|b|—|-1)||v\|,y,

and [[(R)®)(s)llp < (¢+1)7(b] + 1), .
For s ¢ Hy, it follows from Proposition that [|7®)(s)||g < (|b] + 1) for some a > 0.
Combining these estimates,

(RITRIMV) ) (8)]oo < RTRHV) O (s) g < (€4 1) (6] + 1) 2,

completing the proof of (a). R R

Next, suppose that s € H;. By Proposition R = AP+ RQ where P(s) is the spectral
projection corresponding to A(s) and Q(s) = I — P(s). By Proposition A(s) is a C*
family of isolated eigenvalues with A(0 ) =1, N(0) # 0 and |A(s)| < 1, and P(s) is a C™
family of operators on Fp(Y) with P(0)v = fY vdp. Also

T=0-XN"'P+Q; onHy)\ {0},
where @1 = fQ is C'*° on Hs. Hence
R'T =1 -XN""NP+RQ,=(1-2)""AP(0) + \Q2+ R‘Q: on Hy \ {0},

where Qy = (1—X)"}(P—P(0))is C* on Hs. Also, (1-X\) "X = (1-\)"1=(\14 . 41),
SO
Djy—(1=N)""PO)R™V; = Qj¢ on Hy,

where R o
Qiv=(— "1+ +1)P(0) + \Q2 + R‘Q1) RITV.
It follows from the estimates for RI*1V; and R’ that |(R€Q1RJ+1V) )(8)|oo < (£ +
" 1/ vy for s € Hs. Since [A(s)] < 1, the proof of Proposition applies equally

t0 A, 50 1QY)(8)|se < (¢4 1) 157 o]l for s € Hy.

Finally P(0)R/*'V; = [ V;dji = [, V;j du completing the proof of part (b). |

By Lemma C = E]O‘,C;czo @k is analytic on H. As shown in the next result, C
extends smoothly to H.

Corollary 4.21 Assume absence of eigenfunctions, and let r € N. There ezists o, C > 0
such that R
IC ()] < OBl + Dol wlly,

for all s = a+ib € H with a € [0,1], and all v,w € H(Y?) with [, vdu? =0
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Proof Let ¢ = max{j — k — 1,0}. Recall from Lemma that @k = [z D; Wy, dja.
Let p € N, p < r. By Proposition u Wi(t), < (k+ 1)p+3 k||w||7 (t+1)~P+2) 5o
\W@ )1 < (k+ 1)"34F||wll,. Combining this with Proposition ( ),

r a r 3 r
IC) ()] < B + 1) "k + 1) ol ]|, for [b] > 4,

and the proof for |b| > ¢ is complete.
For |b| < ¢, we use Proposition to write

C= Ej,k fy {DM - (1= /\)71 fY ‘7] d:“’}Wk dp+(1— )‘)71[0 Zk fY Wi dj.

Proposition [.20(b) takes care of the first term on the right-hand side, and it remains to
estimate g = (1 — \)~!'Iy. Now

e(y)
b0 = | [ s dudu=leh [ vdus =0, (4.4)
v Jo Ye
so it follows from Proposition [4.9 that g is C°° with |¢(")(s)| < |v|se on Hs. |

Proof of Theorem [3.1] Recall that § and ¢ can be taken arbitrarily large. Hence it
follows from Proposm that supg |j§)r) | € |V|oo|w|oo for all » € N. Similarly, by Propo-
sitions {.14| and 4.15 supﬁlgg)] < N3y vl |w], and supH]B(T)\ < N3l Jw] oo
Combining these with Corollary {.2T] and substituting into Lemma we have shown
that Py : H — C extends to py : H — C. Moreover, we have shown that for every r € N
there exists C, a > 0 such that

15) (s)| < C(|b] + 1D)*||v]]y|lwl]l, for s = a +ib € C with a € [0, 1],

VW

for all v,w € H(Y?) with [}, vdu? = 0. The result now follows from Lemma and
Remark [£.2] n

5 Polynomial mixing for skew product Gibbs-Markov flows

In this section, we consider skew product Gibbs-Markov flows F; : Y¥ — Y¥ for which the
roof function ¢ : Y — R¥ satisfies u(¢p > t) = O(t™?) for some § > 1. For such flows,
we prove Theorem namely that absence of approximate eigenfunctions is a sufficient
condition to obtain the mixing rate O(t~(#=1)),

If f:R — R is integrable, we write f € R(a(t)) if the inverse Fourier transform of f is
O(a(t)). We also write R(¢7P) instead of R((t +1)7P) for p > 0.

Proposition 5.1 ( [26, Proposition 8.2] ) Let g : R — R be an integrable function such
that g(b) — 0 as b — +oo. If |f@| < g, then f € R(|g|1t79). |

The convolutlon f * g of two integrable functions f,g : [0,00) — R is defined to be
(f*g)( fo g(t —x)dx.
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Proposition 5.2 ( [26, Proposition 8.4] ) Fizb > a > 0 with b > 1. Suppose that f,g :
[0,00) — R are integrable and there exist constants C, D > 0 such that |f(t)| < C(t+1)7¢
and |g(t)] < D(t+1)7° for t > 0. Then there erists a constant K > 0 depending only on a
and b such that |(f xg)(t)| < CDK(t+ 1)~ fort > 0. |

Proposition 5.3 Define f(b) = b='(e=®% — 1) for b € R\ {0}. Then there exists C' > 0
such that |1y f9(b)]lg < Cinfy @ |b|==" for all b € R\ {0}.

Proof This is contained in the proof of [26, Proposition 8.13]. |

5.1 Modified estimate for Rjﬂ‘_/j

Proposition 5.4 There exists C > 0 such that
; . i/3 (-
IRV @) lg < O o]l ol =4,
for all v € Hy(Y?) such that v is independent of u, and allb# 0, j > 0.

Proof Recall that
, @oFJ . @oF7
Vi(s) = e ** 7 Ajug = / e~ s F =) gy Ajo = / e du Ajv.
0 0

Hence RIV;(s) = [ e du R/ (Ajv) = —s 1 (e™*¢ — 1)R/(Ajv). It follows that
RITIV,(ib) = iR(f(b) R (Av)), (5.1)
where f(b) = b1 (e —1).

Let d € Y be a j-cylinder and let 5,3/ € d. Then the arguments in the proof of
Proposition [4.12((a,b) show that

1Aj0(y)| < Aol o(Fiy)",  [Aju(y) — Aju(y)] < /) o], o(Fiy).
On the other hand, [A;v(y) — Aju(y)| < l[v]ly @(Fy)", so by (@2,
1Aj0(y) — Aju(y)] < 420599 v, o(Fiy)".
Using (3.3)), it follows that
1a(ly, 0 FP)Ajvlss < 7] |l0lly supy, " < 2017 0], infy, o7,
and similarly,
=i j/3 . =i /3 .
La(ly, o F)Ajule <7 [lvllyinfy, ¢, [la(ly, o F)Ajvlle < 41> |lv]l, infy, .
By Proposition [£.4]
| | B P
115, B (Aj0)lle = IR (15, 0 F)Az0)|lg < 7 ||vll, infy .
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Hence by Proposition [5.3
15, S DB R (Aj0) o < infy, T |b[ =0 15, B (Az0)]lo
< lelly it 201077,
Applying Proposition once more and using (5.1),

IRFHTD @b)[lg = | R(FO ORI (A0)) o < > (V) |15, £ D (0) R (Aj0)lo
k

1/3 _(1—
< A3 ol fy T2 dpa b0

as required. ]

Let V;(t) : Y — R denote the inverse Laplace transform associated to YA/J(S) Y — C.
Proposition 5.5 There is a constant C' such that
IR+1T;(0)l0 < O ol (2 +1)77,
for all v € Hyn(Y?) with v(y,0) =0 and all j >0, t > 0.

Proof For j >0,

R o(Fiy) ; - P(Fiy) _ .
7,(s)(y) = / S EEN-DK oy, u) du = /O R v(y, p(Fiy) — 1) dt,
0

S0
Vi) (y) = Yppiy)>n vy, o(F7y) —t).
Recall that ¢ = 1/(2C4). Fix a (j 4+ 1)-cylinder d. By Proposition [4.12(a), for y € d,

Vi) W) < 207 ol o(FI9) L1 ooty

< AC Cor] |0l inf @nl{infﬁjdgox't}' (5.2)
For y,y/ € d,
o (FTy) — o(Fy)| < Chinf gy 07"V
so by Propositions (b,c), for t € [0, o(Fiy)] N[0, p(Fiy')],
A0y, (Fly) — t)=Ajo(y, o(FIy') — 1)
< 4Cy; @Yol inf 7, g 97+ 200] ool o (FTy) — o(Fiy)|?
<A ||y g inf gy 0" (5.3)
Similarly, for t € [p(Fy'), o(F7y)],
|A0(y, p(FIy) = 1)] = [A0(y, o (F7y) = t) = Aj0(y,0)] < 2[0]ocyl(FIy) — ¢
< 2ol (FIy) — (FIy)[" < 33 o]y inf iy 0. (5.4)
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For y,y' € d with p(Fly) > o(Fly'),

Ajoly, o(Fly) —t) = Ajo(y,o(Fiy) —t),  @(Fiy') >t
Vit)(y) = Vi) (y) = 3 Aju(y, (Fiy) — 1), (Fly) >t > p(Fly)
0, p(Fiy) <t

If (F7y') > t, then using (5.3)),

Vi (8)(y) — Vi) ()] < 71|y

. _ n

'77771{‘1ﬁjd <P‘00>t}1an]d ¥

(yJJ')*jH
v

S . . _ n
S %771{1nf17jdgo>c/t}mfFJd ¥

If (Fly) >t > p(F7y'), then using (5.4),

Vi) () = Vi) <1 oloonling o, ooyt prad

Hence in all cases,

Vi()(y) = Vi (&))< 4@ o

. o
%nl{mfﬁjd <p>c’t}lanJd wr.

On the other hand, by ). V;()(w) ~ ;)W) <A ol 06y e gup -y Com-
bining these estimates and using (4.2]),

i/3ns / .
V3(0)(w) = Vi)W < A 00 ol g oyt 0

Hence y
3 )
11aV3®llo < 210l ing 1, ey i €7

By Proposition [£.4]
IRPHT;(0) 0 << A2 10l ) ity ey (a0 )
<ol [ Vgorssene o FY i =Pl [ Aoy du
Now apply Proposition (b) |

Corollary 5.6 Let £ : R — R be C* with [s*)(b)| = O((b? + 1)) for all k € N. Then
kR [lg € R(Y2|0]ly t=7) for all v € Hyy(Y¥), § > 0.

Proof Write v(y,u) = wvo(y) + vi(y,u) where vo(y) = v(y,0). We have the corre-
sponding decomposition V; = V;o + Vj1. The function g(b) = r(b)[b]"0=" is inte-
grable and [|(kR/*1V;0) @ (ib) g < 7{/|[v]ly, g(b) by Proposition 5.4} so [|xRI*1V g €
R(’y{/gHva t~9) by Proposition Also, K € R(t™?) by Proposition so |[kRITIV4lg €
R(fy{/SHUH%n t~9) by Propositions |5.2| and |
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5.2 Truncation

We proceed in a manner analogous to [20, Section 8.4], replacing ¢ by a bounded roof
function. Given N > 1, let Y/(N) = UjZl:infyj o> Yj. Define ©(N) = N on Y(N) and
©(N) = ¢ elsewhere. (Unlike [26], it is not sufficient to take ¢(N) = min{yp, N}.) Note
that p(N) < 2C1N by (3.3).

Consider the suspension semiflows F; and Fi; on Y¥ and Y% respectively. (Here,
Fi 4 is computed modulo the identification (y, o(N)(y)) ~ (Fy,0) on Y*N)) Let p, ., and
pywre denote the respective correlation functions. In particular, piar®(t) = [yom vw o
Fnp dp?™) — oo v dp?™) [ oo w dp?™) where the observables v,w : Y#(V) — R are
the restrictions of v, w : Y¥¢ — R to Y¥WV),

(N)

Proposition 5.7 ( [26], Proposition 8.19] ) There are constants C, ty > 0, Ny > 1 such
that
|00,(8) = P ()] < Clofoo|w]oo (BN 7 + N=071),

for all v,w € L>®(Y¥), N > Ny, t > to. |

We make the following abuse of notation regarding norms of observables v : Y¥(V) — R,
Define ||v|,, = ||v'||y,5 Where v is the extension of v by zero to Y¥. (In other words, the
factor of ¢ on the denominator in the definition of |v|, is not replaced by ¢(N).)

With this convention, v € H.,,(Y¥) restricts to v|ypw) € Hyny(Y?WN)) with
vy |y < l|vllyy. The similar convention applies to observables w € H (Y #(M).
However, restricting w € H0.m(Y¥) to Y#(N) need not preserve smoothness in the flow
direction. Below we prove:

Lemma 5.8 Assume absence of approximate eigenfunctions. In particular, there is a finite
union Z C Y of partition elements such that the corresponding finite subsystem Zy does not
support approzimate eigenfunctions. Choose N1 > |1z¢|s0 + 3.

There exist m > 1, C' > 0 such that

e ()] < Cllollyllwllyomt~#7Y,
for allv € Hoy (YY), w € Hog,m(YEN), N> Ny, ¢ > 1.

Proof of Theorem Let m > 1, N; > 3 be as in Lemma As discussed above,
the observable v : Y¥ — C restricts to an observable v : Y?®) — C with no increase in
the value of ||v]|..,, but restricting w € H.0.m(Y?) to Y¥(M) need not preserve smoothness
in the flow direction. To circumvent this, following [25 26] we define an approximating
observable wy : Y¥&V) — R, N > Ny,

w(y, u) (y,u) Y(N) x [N =2, N]
wn(y,u) = § 277 (u— N +2Ydy;(y) (y,u) €Y(N) x [N —2,N —1],
w(y, u+¢(y) — N) (y,u) € Y(N) x (N =1, N]
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where the dy ;(y) are linear combinations of Hw(y, N —2) and Fw(y, py) — 1), j =
0,...,m, with coefficients independent of y and N uniquely specified by the requ1rements
ijN(y,N 2) = & w(y, N—2) and dwy(y, N —1) = & w(y, p(y) —1) for j = 0,.

It is immediate from the definitions that wy is m-times differentiable in the ﬂow dlrec—
tion. We claim that ||wy|y,0,m < C’'||w||4,0,m+1 for some constant C’ independent of N. By

Lemma [5.8] -

’ptrunc(t” < CC/”UH%nHwH%OMH ==,

UV, WN

Also,

05 (8) = il (6)] < [vloo(|w]oo + | |oo)n? N (F S)
= [0]oo(|w]oo + [ ]00) P ™ (Sn) < 2[v]oclwlocpt(p > N) < [0]oo|t]oe N7,
SO
o )] < Mol lwllyomer (E7FD + N7P).
Taking N = [t], the result follows directly from Proposition
It remains to verify the claim. Fix k € {0,...,m}. Let (y,u), (y/,u) € Y(N) x [N —
2, N — 1], where y, ¢’ lie in the same partition element. Then
|0Fwn (y, u)| < (2m + D3 [div(y)]
< OXo(10]w(y, N = 2)[ + |0 w(y, ¢(y) — D) < 2C[wl|.0,m,

where C' is a constant independent of N. Also, by (3.3), for 0 < j <m
0]w(y, o(y) — 1) = dw(y, o(y') = DI < 10] M wlsololy) — (6] < CLUH T wloop(y)y* ¥
Hence
|0Fwn (y, w)| — Ofwn (', w)| < (2m+ Y30 dn i (y) — d i ()]
<Y, (1ofw(y, N = 2) = dlw(y', N = 2)| + [0} w(y, o(y) — 1) — Hw(y,e(y) — 1))
<2030 [0l wlye(){d(y, y') + ")} + C YT [0 w(y, w(y) — 1) — Hw(y, (y') — 1)]
< 20wl 0me@){d(y,y') + 7@V} + CC Jw )
< 3CC1[[wly 0 mereW){d(y,y) + 7@V}

7,0, m+1¢(y)7°

This completes the verification of the claim on the region Y (N) x [N — 2, N — 1] and the
other regions are easier to treat. |
Our strategy for proving Lemma is identical to that for [26, Lemma 8.20]. The first

step is to show that the inverse Laplace transform of pifinc can be computed using the
imaginary axis as the contour of integration.

*In fact dn;(y) = (1/§)07w(y, N — 2) for 0 < j < m but the remaining formulas are messier. When
m = 1, for instance, dn2(y) = —3w(y, N — 2) — 20,w(y, N — 2) + 3w(y, o(y) — 1) — dww(y, ¢(y) — 1),
dna(y) = 2w(y, N = 2) + dew(y, N = 2) = 2w(y, p(y) — 1) + dew(y, ¢(y) — 1)
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Proposition 5.9 Let N > Ny, v,w € H(Y ‘p(N)). Then there exists e > 0, C' >0, a > 0,

such that ptr“nc is continuous on {Res € [0, €|} and |W( )| < C(|b]+1)* for all s = a+1ib
with a € 0, e].

Proof In this proof, the constant C' is not required to be uniform in N. Consequently, the
estimates are very straightforw/ag compared to other estimates in this section.

The desired propertles for piranc will hold provided they are verified for all the constituent
parts in Lemma Note that if f is integrable on [0, c0), then f satisfies the required
properties with a = 0. Hence the estimate in Proposition already suffices for Wj,. Also,
the proof of Proposition suffices after truncation since ¢"+3 becomes (2C;N)"+2¢.
(Actually, the factor " *3 is easily improved to ¢"+127 which is integrable when 7 = 0 so
truncation is not absolutely necessary for the term Rj“Vj.)

By definition of Ny, the truncated roof function ¢(N') coincides with ¢ on the subsystem
Zy, so absence of approximate eigenfunctions passes over to the truncated flow for each
N > Nj. Since p(N) < 2C1N, all estimates related to R and T in Section {4/ now hold
for ¢ arbitrarily large. Hence the arguments in Section [4 yield the desired properties for
> 0<jk<oo Cjk- Also, it is immediate from the proof of [26, Proposition 6.3] that |Jo(t)| <
Nu(p(N) >t) so Jo(t) =0 for t > N and hence Jy is integrable.

It remains to consider the terms A,, and B,,. Here, we must take into account that the
factor of ¢ in the definition of | ||, is not truncated. Starting from the end of the proof of

Proposition we obtain
[An(t)] < 4C1CoNAT Holoolwly fy 97 0 FMy,  5ey dps.

A simplified version of Proposition combined with Proposition (b) yields

/ "o F" i, >ty dp < Z/ TR ot /my dps
Y =0/

n—1

- Z IQPMRI{@»/H}‘M " /Y P fpst/my dp < nf1g= (=),
§=0

Hence |A,(t)] < n 97 ] |w]y 7. Similarly |B, x(t)] < nPH 1P ], w]|e O,
Hence ), -, A, and 20<k<n<oo B, 1. are integrable, completing the proof. |

Choose 1 : R — [0,1] to be C* and compactly supported such that ©» = 1 on a
neighbourhood of zero. Let k,,(b) = (1 — 1(b))(ib)~™, m > 2.

Corollary 5.10 Let N > Ny, m > a+2, v € Ho (YN, w € Hy0m(YPWN)). Then

pre(t) = [ Oy + [ e (™ o, ()b

trunc

Proof As in [26, Section 6.1], we can suppose without loss that p,7,' vanishes for ¢ near

zero, so that

—_—

p%%nc(s) — s_mpf)rg?f (s) for all s € H. (5.5)
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By Proposition it follows as in the proof of [26, Lemma 6.2] that

frune(t) =[5, e pns(ib)db = [, w(b)e™ pirane(ib)db + [°2 (1 — (b)) plrne (ib)db.

pv,w —00

By Proposition equation (5.5) extends to H \ {0} and the result follows. n

From now on we suppress the superscript “trunc” for sake of readability. Notation
R, T and so on refers to the operators obtained using ¢(N) instead of ¢. We end this
subsection by recalling some further estimates from [26]. The first is a uniform version of

Proposition [£.8]

Proposition 5.11 ( [26, Proposition 8.27] ) Assume absence of approximate eigen-
functions. Then there exists m > 2 such that

[6m (B)T(ib)||lg € R(t™9)  uniformly in N > Nj. ]

The remaining estimates in this subsection are required when b is close to zero. By
Proposition for each N > 1 there exists § > 0 such that

R(ib) = M(b)P(b) + R(ib)Q(b) for |b] < 6,

where A\, P and Q = I — P are C*™ on (—6,0) and A(0) = 1, M'(0) = —i|e(N)|; and
P0)v = f? vdf. In fact, as shown in [26], Section 8.5], § > 0 can be chosen uniformly in N.

Moreover, ||R(@ (ib)||y is bounded uniformly in N on (—4,4), so A, P, Q are C? uniformly
in N on (—d,9).

Define
P(b) = b~ (P(b) — P(0)), A=0b"1(1—-A0D)).

Proposition 5.12 There exists a constant C' > 0, uniform in N > 1, such that
IAH@ (@) g, (A PYD(ib)llg < Clo| == for [b] < 5,

b|=0=" g < B —2n

1 g < 5 —1

the proof of [26, Proposition 8.26] gives the same estimates for At completing the estimates
for ALP. |

Proof By [26, Proposition 8.18], | P4V (b)|ls < { . The argument in

5.3 Proof of Lemma 5.8

Let ¢ and k,, be as in Corollary with the extra property that suppy C (—9,9). By
Proposition [5.1}
Y, km € R(t7P) forall p >0, m>2. (5.6)

By Corollary we need to show that 1(b)pyw(ib) € R(||v||lypllw|,t~#~D) and
Fm (D) pow(iD) € R(|[v]lyqllwll D) for all v € H.,,,(YPIN)), w € Ho (Y*I)), uniformly
in N Z Nl.

gyl
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Let A = Yo A,, B = Yooy Z;é én,k-, C = > k=0 éj,k. By Lemma it remains
to show that each of the terms

I, A, ¢B, C; bmds  KmA, EmB, £mC,

lies in R(||v||y.y /1w, t~#~D) uniformly in N > 1.

By Propositions and J, A B e R(|[v||y||wl t=B~Y). (Estimates such
as these that hold even before truncation are clearly independent of N.) By (5.6) and
Proposition [5.2] uniformly in N > 1,

WT, b4, 6B, kmd, kmA, kmB € R(||]ly[w], D).

Hence it remains to estimate 1/16 and mmé . The next lemma provides the desired estimates
and completes the proof of Lemma (recall that ¢ > g —1).

Lemma 5.13 Assume absence of approximate eigenfunctions. There exists Ny > 1, m > 2,
such that after truncation, uniformly in N > Ny,

(a) kmC € R(l[vllynllwlly ™), and
(b) € € R([[o]lqllwl ¢~C~0),
forallt>1,veH,,(Y?), weH, (Y?).
Proof (a) Let { = max{j —k — 1,0} and recall that
Cik = J¢ DjWidi,  Djy= RITRIT'V;.

By Proposition we can choose m > 2 such that ||kp,_5T|lp € R(t~9) uniformly in
N > Nj. Write kK, = K3km—s5kKe, where k; is C'°°, vanishes in a neighborhood of zero, and
is O(|b|="). Then R R
|kmDjiloo < [l53R lgllkm—5T o]l s BTV lg.

The estimates for R¢ and RV, in Proposition and Corollary hold even before
truncation and hence are uniform in N > 1. Using (5.6)) and Propositions and

IksRllo € RUE+ 1), IR Villo € RO vl ),
uniformly in N > 1. Since ¢ > 1, it follows from Proposition [5.2] that uniformly in N > Ny,
g /3 - /3 _
R Dseloo € R(EA+ 1T 0870433 ol £79) € R((C+ 1) ol 7).

Also, |[Wi|1 € R((k + 1)P+14F||lw|, t=7) by Proposition and this is uniform in N > 1.
Applying Proposition [5.2] once more, uniformly in N > Ny,

kmCix € R(G + 1)k + 1P ol llwll £9),

and part (a) follows.
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(b) As in the proof of Proposition we write
Dje=1-N" [, Vydu+ Qju,

where R -
Qje=(— A 4+ DP0) + X Qo + REQl)R]_'_l‘/j-

Here, Q3 = (1 — A)"1(P — P(0)) = A" !P.
By Proposition [4.18]

6 = Zj,k fY DMWk dp = Zj,k: fy QMWk dp+ (1 - )\)_1[0 Zk fY Wk dp,

where Iy(s) = [y f“p e~ 5=y (y, u) du dp.
Choose 11 to be C*° with Compact support such that ¢1 = 1 on supp ¢. By Corollary[5.6|
and Propositions and uniformly in N > 1,

WA Qo BRIV < [N A Pllollen RV lg € R((€+ 1)1 vl t79).

The other terms in QJ ¢ are simpler and we obtain that [¢)Q; ¢|c € R(((+ 1)573/3”1)”%77 t9).
Hence by Proposition [£.16] uniformly in N > 1,

vy /Y QWi dp € R(|[v]lypllwll, t79), Y /Y Wi dp € R(JJwll, 7).
J.k k

To complete the proof, it remains to estimate (1 — A\)~'Iy. Recall from ) that
Ip(0) = 0, so (1 — A) "' Iy = A~'T; where

N (v)
Ti(s) = s~ (Tols) — o(0)) = 57 /Y /0 e 00 1) (y, ) dudg,

with inverse Laplace transform I[;(¢ fy fo 1{<p >t+u}o(y,u) dudp. By Propo-

sition ( ), ()] < |v|eo fywl{¢>t}du < \v\oot’(fg’l), uniformly in N > 1, so
I, € R(Jv|so t=®=D). Combining this with Proposition we obtain that

V(1 =Ny = A € R(EI % [v]oo tPY) € R(Jv|oo t— ),

uniformly in N > 1. |

6 General Gibbs-Markov flows

In this section, we assume the setup from Section [3| but we drop the requirement that ¢ is
constant along stable leaves.

In Subsection we introduce a criterion, condition (H), that enables us to reduce
to the skew product Gibbs-Markov maps studied in Sections and [5] This leads to
an enlarged class of Gibbs-Markov flows for which we can prove results on mixing rates
(Theorem below). In Subsection we recall criteria for absence of approximate
eigenfunctions based on periodic data.
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6.1 Condition (H)

Let F': Y — Y be a map as in Section I with quotient Gibbs-Markov map F : Y — Y,
and define Y Y, N Y. Let ¢ :Y — RT be an integrable roof function with inf ¢ > 1 and
associated suspension flow F} : Y¥ — Y%,

We no longer assume that ¢ is constant along stable leaves. Instead of condition
we require that

lo(y) — ()| < Chinfy,y* @) for all y,y € Y;, j > 1. (6.1)

(Clearly, if ¢ is constant along stable leaves, then conditions (3.3) and (6.1)) are identical.)
Recall that 7 : Y — Y is the projection along stable leaves. Define

X(y) = 2nlo(p(F my) — p(F"y)),

for all y € Y such that the series converges absolutely. We assume

(H) (a) The series converges almost surely on Y and x € L>(Y).
(b) There are constants C3 > 1, v € (0,1) such that

IX(y) = x(@)] < Cs(d(y,y) +v*@¥))  for all y,y € Y.

When conditions (6.1)) and (H) are satisfied, we call F; a Gibbs-Markov flow. (If ¢ is constant
along stable leaves then x = 0, so every skew product Gibbs-Markov flow is a Gibbs-Markov
flow.)
Since inf ¢ > 0, it follows that ¢, = Z?:_& @o FJ > 4]x|s + 1 for all n sufficiently large.
For simplicity we suppose from now on that inf ¢ > 4|x|oc + 1 (otherwise, replace F' by F™).
Define

p=p+x—xokF (6.2)
Note that inf @ > inf ¢ — 2|x|o > 1 and [, ¢du = [, pdp, so $:Y — R* is an integrable
roof function. Hence we can define the suspension flow Ft Y% — Y?. Also, a calculation
shows that ¢(y) = > o2 (@(F"my) — (F"nFy)), so ¢ is constant along stable leaves and
we can define the quotient roof function ¢ : ¥ — R* with quotient semiflow F : RS o
In the remainder of this section, we prove that Ft is a skew product Gibbs-Markov flow
(and hence F; is a Gibbs-Markov semiflow), and show that (super)polynomial decay of
correlations for ﬁt is inherited by Fj.

Proposition 6.1 Let F; : Y¥ — Y% be a Gibbs-Markov flow. Then F,:Y? 5 Y% isa
skew product Gibbs-Markov flow.

Proof We verify that the setup in Section [3|holds. All the conditions on the map F Y —
Y are satisfied by assumption. Hence it suffices to check that ¢ satisfies condition

Let y,y € Y; for some j > 1. By (B.2), d(y,y) < Coy* s(Wy) and d(Fy,Fy)
Coys )1, By (H)(b), Ix(y) — x@)] < 202037 W) and |y(Fy) — x(Fy)|
2(3’20375(3/4/)*1. Hence by and ,

12(y) — 21| < le(y) — o) + Ix(¥) — x@)| + Ix(Fy) — x(Fy')| < infy,p~*@¥).

<
<
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Also, infy, ¢ < infy, $+2[x]o < ir}fyj (ﬁ—l—% infp < infngé—i—%infyj ¢. Hence infy, p < 2infy,
and |¢(y) — ¢(v¥)| < infngéfys(y’y ) as required. n

Corollary 6.2 There is a constant C > 0 such that

lo(y) — ¢(y)] < Cinfy,p{d(y,y) + d(Fy, Fy') + @)} for ally,y' € Y;, j > 1.

Proof Let =Y NW4(y), ¥ =Y NW*(y). Since ¢ is constant along stable leaves, it
follows as in the proof of Proposition [6.1] that

12(y) — 2(1)| = [2(§) — ¢(F')] < infy, @) = infy, >4,
Hence by (6.2) and (H)(b)

le(y) = (W) < 12(y) = ()] + IX(Fy) = x(FY)| + [x(y) = x(¥)]
< infy,p{y* @) + d(Fy, Fy') + ")+ d(y,y)}.

The result follows since yS(F¥FY) = ~=1rsy') |

Next, we relate the two suspension flows F; : Y¥ — Y% and ﬁt : Y% = Y?. Note that
(y, p(y)) is identified with (F'y,0) in the first flow and (y, ¢(y)) is identified with (F'y,0) in
the second flow. Define

9+ Y9 = Y% gi(y,u) = (y,u+ x(y) + |xleo),
g- Y2 =Y? g (y,u) = (y,u— x(y) + |x]o);

computed modulo identifications. Using (6.2)) and the identifications on Y%,

9+(y, 0(y) = (y, (y) + x(¥) + [Xloo) = (¥, P(y) + X(FY) + [X]o0)
~ (Fy, x(Fy) + [xlso) = g+ (Fy,0),

so g4+ respects the identification on Y% and hence is well-defined. It follows easily that
gy Y¥P — Y? is a measure-preserving semiconjugacy between the two suspension flows.
Similarly, g is well-defined and g— o g4 = Fy,|, : Y¥ = Y¥. ]

Given observables v,w : Y? - R, let t =vog_,w=wog_:Y?% — R. When speaking
of H,(Y¥) and so on, we use the metric d1(y,y') = d(y,y')" on Y instead of d. Let y; = 7.

Let H3 ,(Y¥?) = {v : Y¥ = R : |v|3, < oo} and H}; ,,(V¥) = {w:Y¥ = R:
[wl[3,0,m < 0o} where
10115, = [[0lln + 1100 Fapygollym [wll0m = llwlly0m + l[w o Fayi ll.0,m-

Lemma 6.3 Let v € H:,(Y?), w € H: (. (Y¥), for some m > 1. Then © € Hy, »(Y?),

5 7,0,m
W€ My 0m(Y?), and [[0]l5, n < 4C3[|0[[5 ), [[@]l5;.0m < 2C3]|w]|

vn?

*
7,0,m

Proof We have o(y,u) = v(y,u — x(¥) + |X|oo)- It is immediate that |0]ec < [V]co-
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Now let (y,u), (v',u) € Y?. Suppose without loss that X( ) > x(y'). First, we consider
the case u — ( )+ IXloo < @(y), u— X)) + IX]loo < ¢(¥'). By (H)(b) and the definition of
lv

0y, u) = 0y, w)| < oy, u = x@) + Ixloo) = 0(¥'su = Xx(y) + [X]o0)|
+ o u = x@) + Ixloo) = 0(¥'su = Xx(y') + [x]oo)|
< Jolye@)(dy,y') + 7)) + [v]oen X () = X&)
< 2y ¢ W) (d(y, y') + 7)) + )00y Cs(d(y, y') + 7*@¥))7
< 2050l @ (W) (i (3, ) + 7).

Second, we consider the case u > x(y) + [X|loo = X(¥) + |X|oo- Then we can write
9-(y,u) = Fo(y,u = x(y) — [X|oo), 9- (¥, u) = Fo(y', u — x(¥') — |x[oc) Where 0 = 2[x|oc, sO

0(y,u) — 0(y, u)| = |vo Fu(y,u—x(y) — Xloo) = v 0 Fo(y'su— x(¥) = Ixloo)|

Proceeding as in the first case,

5(y, u) — 5(y/, )| < 2C5]|v o Fylly @) (di(y, o) + ;).

This leaves the case u < x(¥) + [X|oo < 2[X|oo and u > min{(y) + x(y) — [x|oo, ¢(¥') +

X)) = |X|oo} = inf ¢ — 2|x|oo- This is impossible since inf ¢ > 4|x|oo. Hence
5y ) = 3y’ w)] < 205013, @ (1) (dr(y. ") + 7)) for all (y.u), (¢, u) € Y7,

50 [, < 2Calif,
The estimate for |0|oo,, splits into cases similarly. Let 0 < u < v’ < @(y). Then

o) — g,y < & Pl = X@) F Xl < 0(v)
’UOF\oon|u—u|77 w > x(y) + Xl

This leaves the case u' — x(y) + |x|loo > ¥(y) and u < x(y) + |X|oo- But then v/ —u >

e(y) +2x(y) > ¢(y) = 2xlo > 59(y) = 3. so we obtain [0(y,u) — d(y,u)| < 2| <
4|v]oo|u —u'[7. Hence [0]o, < 4[Jv[%, completing the estimate for [|7][,, ;. The calculation
for w is similar. |

_ We say that a Gibbs-Markov flow has approximate eigenfunctions if this is the case for
F; (equivalently FY}).

Theorem 6.4 Suppose that F; : Y¥ — Y% is a Gibbs-Markov flow such that u(p > t) =
O(t=5) for some B > 1. Assume absence of approzimate eigenfunctions. Then there exists
m > 1 and C > 0 such that

|90, ()] < Cllvll3 yllwll 00 P70 for all v € 13, (Y¥), w € Hy g, (YF), > 1.
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Proof Since g4 is a measure-preserving semiconjugacy and g o g4+ = Fy)y |,

/vwoFtd,u‘P:/ vog_ogrwog_ogyoFdu?
Y Ye

=/ 5og+wol3tog+du“"=/ i o Fy dp?
Y Y@

where F; does not possess approximate eigenfunctions. Note also that u(@ > t) = O(t?).
By Lemma [6.3] & € Hoy (Y?), @ € Hyy 0.m(Y?).

By Theorem we can choose m > 1 such that |pyw(t)] = | [ys 0 o Fydu? —
Jys 812 fyo @A) < [l all @l 0m £ < 8CH0 ¢, '

H:,nHw’ :,O,m

6.2 Periodic data and absence of approximate eigenfunctions

In this subsection, we recall the relationship between periodic data and approximate eigen-
functions and review two sufficient conditions to rule out the existence of approximate
eigenfunctions. We continue to assume that F; is a Gibbs-Markov flow as in Subsection [6.1

Define ¢, = Z?;& @poFJ. Similarly, define ¢,, and @,,. If y is a periodic point of period p
for F' (that is, FPy = y), then y is periodic of period £ = ¢,(y) for F; (that is, Fry = y).
Recall that 7 : Y — Y is the quotient projection.

Proposition 6.5 Suppose that there exist approzimate eigenfunctions on Zy C Y. Let
o, C by, ng be as in Definition . If y € 712y is a periodic point with FPy = y and
Fry =y where L = ¢,(y), then

dist(bgni L — poy, 27Z) < C(inf ) " 1L|bk| ™  for all k > 1. (6.3)
Proof Define jj = 7y € Zy and note that Py = FPry = 7FPy = 3. By ,
@p(y) = &p(y) = p(y) + x(y) — x(F"y) = L.
Now (M}v)(y) = e®?r@Wy(Fry) = e v(y). Hence substituting 7 into (2.2), we obtain

ekl — ek | < Op|bg|~*. Also £ = ¢,(y) > pinf ¢. u

The following Diophantine condition is based on [I8 Section 13]. (Unlike in [I§], we
have to consider periods corresponding to three periodic points instead of two.)

Proposition 6.6 Let yi,y2,y3 € JY; be fized points for F', and let L; = ¢(y;), i =1,2,3,
be the corresponding periods for Fy. Let Zy C Y be the finite subsystem corresponding to
the three partition elements containing wyy, TY2, TY3.

If (L1—L3)/(L2—L3) is Diophantine, then there do not exist approzimate eigenfunctions
on Zy.

Proof Using Proposition the proof is identical to that of |26, Proposition 5.3]. |

The condition in Proposition is satisfied with probability one but is not robust.
Using the notion of good asymptotics [19], we obtain an open and dense condition.
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Proposition 6.7 Let Zy C Y be a finite subsystem. Let yo € 7' Zy be a fized point for F
with period Lo = @(yo) for the flow. Let yy € ®'Zy, N > 1, be a sequence of periodic
points with FNyy = yn such that their periods Ln = on(yn) for the flow Fy satisfy

Ly = NLy+ r+ ExyY cos(Nw + wy) + o(vY),

where K € R, v € (0,1) are constants, Eny € R is a bounded sequence with
liminfy oo |En| > 0, and either (i) w = 0 and wy = 0, or (i) w € (0,7) and wy €
(wo — m/12,wp + w/12) for some wy. (Such a sequence of periodic points is said to have
good asymptotics.)

Then there do not exist approximate eigenfunctions on Zy.

Proof Using Proposition the proof is identical to that of [26l Proposition 5.5]. |

By [19], for any finite subsystem Zj, the existence of periodic points with good asymp-
totics in 7717 is a C%-open and C*°-dense condition. Although [19] is set in the uniformly
hyperbolic setting, the construction applies directly to the current set up as we now ex-
plain. Assume that (Y, d) is a Riemannian manifold. Let Z; and Z3 be two of the partition
elements in Z and set Z; = Int fr_IZj for j = 1,2. Assume that Z1, Z5 are submanifolds of
Y and that F' and ¢ are C" when restricted to Z; U Zs for some r > 2.

Let yg € Z1 be a fixed point for F' and choose a transverse homoclinic point in Z5. Fol-
lowing [19], we construct a sequence of N-periodic points yn, N > 1, for F' with orbits lying
in Z7 U Zs. The sequence automatically has good asymptotics except that in exceptional
cases it may be that liminfy_ . |En| = 0. By [19], the liminf is positive for a C? open and
C" dense set of roof functions ¢.

Combining this construction with Proposition it follows that nonexistence of ap-
proximate eigenfunctions holds for an open and dense set of smooth Gibbs-Markov flows.

Part 11
Mixing rates for nonuniformly hyperbolic
flows

In this part of the paper, we show how the results for suspension flows in Part I can be
translated into results for nonuniformly hyperbolic flows defined on an ambient manifold. In
Section [7] we show how this is done under the assumption that condition (H) from Section [6]
is valid. In Section [8 we describe a number of situations where condition (H) is satisfied.
This includes all the examples considered here and in [26]. In Section [9 we consider in
detail the planar infinite horizon Lorentz gas.

7 Nonuniformly hyperbolic flows and suspension flows

In this section, we describe a class of nonuniformly hyperbolic flows T} : M — M that
have most of the properties required for T; to be modelled by a Gibbs-Markov flow. (The
remaining property, condition (H) from Section [6] is considered in Section [§])
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In Subsection we consider a class of nonuniformly hyperbolic transformations f :
X — X modelled by a Young tower [30, B1], making explicit the conditions from [30] that
are needed for this paper. In Subsection we consider flows that are Holder suspensions
over such a map f and show how to model them, subject to condition (H), by a Gibbs-
Markov flow. In Subsection we generalise the Holder structures in Subsection to
ones that are dynamically Hélder.

In applications, f is typically a first-hit Poincaré map for the flow 7T; and hence is
invertible. Invertibility is used in Proposition but not elsewhere, so many of our results
do not rely on injectivity of f.

7.1 Nonuniformly hyperbolic transformations f: X — X

Let f : X — X be a measurable transformation defined on a metric space (X,d) with
diam X < 1. We suppose that f is nonuniformly hyperbolic in the sense that it is modelled
by a Young tower [30, BI]. We recall the metric parts of the theory; the differential geometry
part leading to an SRB or physical measure does not play an important role here.

Product structure LetY be a measurable subset of X. Let WW?* be a collection of disjoint
measurable subsets of X (called “stable leaves”) and let W" be a collection of disjoint
measurable subsets of X (called “unstable leaves”) such that each collection covers Y.
Given y € Y, let W*(y) and W"(y) denote the stable and unstable leaves containing y.

We assume that for all y,y" € Y, the intersection W*(y) N W¥(y') consists of precisely
one point, denoted z = W?3(y) N W*(y’), and that 2 € Y. Also we suppose there is a
constant Cy4 > 1 such that

d(y,2z) < Cad(y,y) forally,y' €Y, z=W?(y) N W"(y). (7.1)

Induced map Next, let {Y;} be an at most countable measurable partition of ¥ such
that Y; = Uyey, W3(y) NY for all j > 1. Also, fix 7 : ¥ — Z* constant on partition

elements such that f7Wy e Y forally € Y. Define F: Y — Y by Fy = fTWy. Let u be
an ergodic F-invariant probability measure on Y and suppose that 7 is integrable. (It is
not assumed that 7 is the first return time to Y.)

As in Section |3] we suppose that F(W?(y)) C W*(Fy) for all y € Y. Let Y denote the
space obtained from Y after quotienting by W?, with natural projection 7 : ¥ — Y. We
assume that the quotient map F : Y — Y is a Gibbs-Markov map as in Definition with
partition {Y;} and ergodic invariant probability measure ji = 7.u. Let s(y,y’) denote the
separation time on Y.

Contraction/expansion Let Y; = 7?_1}7]-; these form a partition of Y and each Y} is a
union of stable leaves. The separation time extends to Y, setting s(y,y') = s(7y, 7y’) for

v,y €Y.
We assume that there are constants Cy > 1, v € (0, 1) such that for alln > 0, y,y' €Y,
d(f"y, f"y) < Cor¥"Wd(y,y) for all y € W*(y), (7.2)

d(fmy, fry') < Coy*@¥)=vn®  for all ' € W(y), (7.3)
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where ¥, (y) = #{j = 1,...,n : fly € Y} is the number of returns of y to Y by time n.
Note that conditions and are special cases of and where Y can be
chosen to be any fixed unstable leaf. In particular, all the conditions on F' in Sections
and [f] are satisfied.

In Sections and [9) we make use of the condition

FW™(y)NY;) = WYFy)nY forally€Y;, j> 1. (7.4)

Remark 7.1 Further hypotheses in [30] ensure the existence of SRB measures on Y, YV
and X. These assumptions are not required here and no special properties of p and i (other
than the properties mentioned above) are used.

Remark 7.2 The abstract setup in [30] essentially satisfies all of the assumptions above.
However condition is stated in the slightly weaker form d(f™y, f*y') < Cony¥»W). As
pointed out in [16], the stronger form is satisfied in all known examples where the
weaker form holds.

Condition is not stated explicitly in [30] but is an automatic consequence of the
set up therein provided f : X — X is injective. We provide the details in Proposition
In the examples considered in this paper and in [26], the map f is a first return map for a
flow and hence is injective, so condition is not very restrictive.

Condition is also used in [26], Section 5.2] but is stated there in a slightly different
form. In [26], the subspace X is not needed (and hence not mentioned) and the stable
and unstable disks W*(y), W"(y) are replaced by their intersections with Y. Hence the
condition F(W"(y)NY;) D W*(Fy) for y € Yj in [26, Section 5.2] becomes F(W*"(y)NY;) D
W% (Fy)NY for y € Y; in our present notation and hence holds by .

Proposition 7.3 d(f"y, f"y') < 0204(7w"(y)d(y,y’) + Vs(y’yl)_w"(y)) for all y,y €Y,
n > 0.

Proof Let z=W?9(y) N W"(y'). Note that s(z,y’) = s(y,y’) and 1, (2) = ¢ (y). Hence

d(f"y, f"y) < d(fMy. f72) + d(f"z, f1y) < oy Wd(y, 2) + 7))
S 0204(71’[)”(?!)(1(3/’ y/) —+ fys(yvy/)_wn(y))’

as required. |

7.2 Holder flows and observables

Let T} : M — M be a flow defined on a metric space (M, d) with diam M < 1. Fix n € (0, 1].

Given v : M — R, define |v|oy, = sup,_, [v(z) — v(z')|/d(z,2")" and |[v|cy = [v]oo +
[v|gn- Let C"(M) ={v: M — R |[v]|gy < oc}. Also, define |v]go,n = sup,eps, i=0 [v(Tix) —
v(x)|/t7 and let CON(M) = {v : M — R : |v]oo + [v|gom < o0}. (Such observables are
Holder in the flow direction.)

We say that w : M — R is differentiable in the flow direction if the limit Qw =
limy—yo(wo Ty — w) /t exists pointwise. Define [[w]|cnm = 371, |0fw|| oy and let CP™ (M) =
{w: M —=R:|w|onm < oo}
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Let X C M be a Borel subset and define C"(X) using the metric d restricted to X. We
suppose that Tj, )z € X for all x € X, where h: X — R lies in C"7(X) and infh > 0. In
addition, we suppose that for any D; > 0 there exists Do > 0 such that

d(Tyx, Tyz') < Dad(z,2')" for all t € [0, Dy], x,2" € M. (7.5)

Define f : X — X by fz = Tj(,)z. We suppose that f is a nonuniformly hyperbolic
transformation as in Subsection with induced map F'= f7:Y — Y and so on.
Define hy = 25;(1) ho f7. We define the induced roof function

1
p=h Y 5 RY, o(y) = iU R(fy).
Note that h < ¢ < |hleoT s0 ¢ € LY(Y) and inf > 0. Define the suspension flow
F:Y? -5 Y? asin (L.1).

To deduce rates of mixing for nonuniformly hyperbolic flows from the corresponding
result for Gibbs-Markov flows, Theorem we need to verify that

(i) Condition (6.1 holds.
(ii) Condition (H) from Section [6] holds.

(iii) Regular observables on M lift to regular observables on Y¥.

Ingredients (i) and (ii) guarantee that the suspension flow F; : Y¥ — Y% is a Gibbs-Markov
flow and ingredient (iii) ensures that Theorem applies to the appropriate observables
on M.

In the remainder of this subsection, we deal with ingredients (i) and (iii). First, we
verify that ¢ satisfies condition (6.1). Let d1(y,y’) = d(y,y’)" and 71 = "

Proposition 7.4 Let y,y' €Y for some j > 1 and let £ =0,...,7(y) — 1. Then
[he() = he(y))| < CaCilhly (i (9,5') + 7).
Moreover,
p(y) = @) < 2C3Cu(int h) 7! |hly infy, 57" for all y,y €V, j > 1.
Proof Note that 14(y) = 0, so by Proposition
d(f'y, 1'y) < CaCuldly, ) +7°@¥)). (7.6)

Hence

~

-1
he(y) — he(y)] < IR(f1y) — R(f7Y)

J

Il
=)

/-1

< [hly Y- d(fy, 1Y) < CoCilhly i (y,y) + 217,
=0

establishing the estimate for hy. Also, 7(y) < (inf h)~'infly,¢, so taking £ = 7(y) and
using (7.3)) with n = 0, we obtain the estimate for ¢. |

Next we deal with ingredient (iii) assuming (ii). Define 7 : Y% — M as 7(y,u) = T,y.
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Proposition 7.5 Suppose that the function x : Y — R satisfies condition (H).
Then observables v € C"(M) N CY"(M) lift to observables © = vom :Y? — R that lie

in H, (Y¥) where vo = ~T and the metric d on'Y is replaced by the metric da(y,y') =

d(y,y' )"
For m > 1, observables w € C"™ (M) lift to observables w =wom € H3, (,,(Y?).
Moreover, there is a constant C > 0 such that |0 < C([lvllgn + lvllcom) and

H?;Qvn -
3p0m < Cllwllgnm-

il

Proof Let o = 2|x|o. We show that |00 Fy||y,.n < ||v||cn +]|v]|con- The same calculation
with o — 0 shows that [7sy < [0lcn + [2llcns 50 (31, < l0llen + 0]l cans We take
D1 = |hloo + 2|X|co With corresponding value of Ds in ([7.5)

Let (y,u), (v, u) € Y¥ with y,y' € Y; for some j > 1. There exists ,¢' € {0,...,7(y) —
1} such that

u € [he(y), her1 (V)] O [her (Y)s hera ()]
Suppose without loss that ¢ < ¢'. Then
u=he(y) +r=nhe(y)+ 7,

where r € [0, |h|oo] and v’ = u—he(y') > u—hy(y') > 0. Note that T,y = T T,y = Tr f1y.
Hence 9(y,u) = v(T} f%) and so 9 o F,(y,u) = v(Tysrfy). Similarly, Ty’ = T, f' and
vo F,(y,u) = v(Tyqr ). Also, o 41 € [0, D1]. By (7.5) and (7.6)),

2
[Tt y) = 0TS Y < J0lond(Toir 9, Toir [')" < D3 [0l nd(F1y, )"
< [vln(daly, ') + 5.
Since u > hy(y') > £inf h, it follows from Proposition that
V0(Toir Y ) =0T FY)| < 0l ol = 717 = 0] con () — he(y))]
< [0l gom €da(y, o) +713) < (inf B) " ol o ulda(y, )7 + 15 )).
Hence
‘@ © Fo(?/, U) —9Po Fa’(y/7 u)’ = ”U(Tcr—l-rféy) _ U(Ta+r’ffy/)’
< (Jolen + lolena)(w+ 1)(daly. ) + 35"

whenever s(y,y’) > 1. For s(y,y’) = 0, we have the estimate |0 o F,(y,u) — 0o Fy(y',u)| <
2|v|00 = 2|v|007§(y’y) < |v|eo 0 (y)(da(y, y') + yg(y’y )), so in all cases we obtain

[0 Fo(y,u) — 0 Fo(y',u)| < ([vllon + [vlcon) (uw+ D (da(y, ') + 7))
< 2([0ll g + [l goa) o) (da(y, ') + 57 4)).
Also,
00 Foy,u) — 00 Fy(y,u)| = [0(Toruy) — v(Toyuwy) < |v]gomlu —u'|",

50 ||V 0 Fy||yoy < V|0 + |]com as required. |
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7.3 Dynamically Holder flows and observables

The Hélder assumptions in Subsection can be replaced by dynamically Holder as follows.
We continue to assume that inf A > 0.

Definition 7.6 The roof function h, the flow T; and the observable v are dynamically
Hélder if v € C%"(M) for some 1 € (0,1] and there is a constant C' > 1 such that for all
v,y €Y), =1,

(a) |h(ffy) — h(f%")| < C(d(y,y" )" +~+*@¥)) for all 0 < £ < 7(y) — 1.

(b) For every u € [0,¢(y)] N [0,¢(y')], there exist t,t' € R such that [t — ¢/| <
Cu+ 1)(d(y,y")" +v*@¥)), and setting z = W*(y) N W*(y'),

max {[v(Ty) — v(Ti2)|, [0(Tuy') — v(Ty2)|} < Clu+ 1)(d(y,y')" +7°E¥)),

Also, we replace the assumption w € C"™(M) by the condition that 9Fw lies in C%7(M)
and satisfies (b) for all k =0,...,m.

Remark 7.7 In the proof of Proposition[7.5] we showed that [v(T,y) —v(Tuy')| = |o(y, u)—
oy, u)| < (u+1)(d(y, v )+v*@¥)) (for modified d and ~) under the old hypotheses. Hence,
taking t = t’ = u, we see that Definition is indeed a relaxed version of the conditions in
Subsection

It is easily verified that condition remains valid under the more relaxed assumption
on h in Definition [7.6|(a). Also, it follows as in the proof of Proposition that |0(y,u) —
0y, W) < |vlgon|u = u'[".

Next we estimate |0(y, u)—0(y’, u)| and |vo F, (y, u) —vo F, (v, u)]| for (y,u), (y',u) € Y¥,
where 0 = 2|x|eo. If s(y,y’) = 0, then |[0(y,u) — (v, u)|, |0 0o Fy(y,u) — 0o Fy(y,u)| <
[v]oo (y)(d2(y, y) + yg(y’y/)) as in the proof of Proposition Hence we can suppose that
y,y' € Yj for some j > 1. Set z = W*(y) N W"(y) and choose ¢, as in Definition [7.6{b).
Then

[y, w) =iy, w)| = [v(Tuy) — v(Tuy/)|
< [0(Tuy) — o(Ti2)| + [v(Twz) — o(Tu))| + [0(Thz) — v(Ty2)|
< 4Co() Ay, y)" + 7 YY) + 0] ot — '] < o(y)(daly, ') + ¥5@)).
Hence |i(y,u) — 5(y/,u)] < (y)(da(y,y')" + v¥Y)) for all (y,u), (v,u) € V¥, and so
v E va,n(Y@).

To proceed, we recall that z = W#(y) N W"(y/), so Fz = W*(Fy) N W"(Fy') by (7.4).
Hence

d(Fy,Fy') < d(Fy, Fz) + d(Fz, Fy') < d(y, z) + ¥*%Y) < Cad(y,y/) +y"@¥). (7.7)

To control ¥ o Fy(y,u) — v o F,(y',u), we assume without loss that p(y) > »(y/), and
distinguish three cases.
If u+ 0 < (y'), we argue as in the bound for o(y,u) — 0(y, u).
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If u+ o > p(y), then there exists 0 < @ < o and @ > @ such that T, ,y = Ty Fy and
Tuioy = Ty Fy'. By Corollary and (7.7)),
a— ' = |e(y) — o) < () (dly,y) + 7))

and so )
[(TaFy) = o(TuFy)| < o) (da(y,y) + 7).
On the other hand, choosing ¢ and ¢ for % as in Definition [7.6[b), we get
[(TaFy) — v(TaFy)

< [o(TaFy) — o(TeF2)| + [o(Ty F2) — o(TaFy)| + [o(TsF) — o(Ty F2)

< 20(a+ V)(d(Fy, Fy)" + 7)ol o[ = 77 < do(y,y') + 75"
where we have used ([7.7)) and @ < 0. Hence

00 Fy(y,u) =0 Fp(y',u)| < [v(TaFy) — o(TaFy)| + o(TaFy') — v(Tw FY)|
< @) (da(y,y) + %",

Finally, if o(v') < u+ 0 < ¢(y), there exist 0 < w1, us < ¢(y) — ¢(y') such that
Fy=T, Tytoy and T4 oy = T, Fy'. Using again Corollary and (7.7),
|00 Fo(y,u)—0 0 Fo(y', u)| = [v(Tutoy) — v(Tutoy)l
< [0(Turoy) — v(FY)| + [0(Fy) — o(FY)| + (FY) — v(Tusoy')|
= [0(Tutoy) = V(T +uroy)| + [0(FY) — v(Fy)| + [0(FY) — v(Tu, Fy')|
< p(y)(da(y, ') + %)),

This completes the verification that ¥ € H3, (Y¥). A similar argument shows that

w e H;Q,O,m(YW’% completing the verification that Proposition holds under the modified
assumptions.

8 Condition (H) for nonuniformly hyperbolic flows

In this section, we consider various classes of nonuniformly hyperbolic flows for which con-
dition (H) in Section |§| can be satisfied. We are then able to apply Theorem to obtain
results that superpolynomial and polynomial mixing applies to such flows as follows:

Corollary 8.1 Let Ty : M — M be a nonuniformly hyperbolic flow as in Section|7.4 and
assume that condition (H) is satisfied. Then

(a) Fy : Y¥? — Y¥ is a Gibbs-Markov flow.

(b) Suppose that (¢ > t) = O(tP) for some B > 1 and assume absence of approzimate
etgenfunctions for Fy. Then there exists m > 1 and C > 0 such that

1pow(®)] < Collen + vl o)l com t~FY,

for allv € C"(M)NCO"(M), we C?"™ (M), t > 1.
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Proof Part (a) follows from the discussion in Section (so ingredient (i) is automatic
and ingredient (ii) is now assumed).

As described in Section [6.1], there is a measure-preserving conjugacy from F; to T}, so
part (b) is immediate from Theorem combined with Proposition |

The analogous result holds for nonuniformly hyperbolic flows and observables satisfying
the dynamically Holder conditions in Section

We verify condition (H) for three classes of flows. In Subsection we consider roof
functions with bounded Hélder constants. In Subsection [8.2] we consider flows for which
there is exponential contraction along stable leaves. In Subsection [8.3] we consider flows
with an invariant Holder stable foliation. These correspond to the situations mentioned
in [26, Section 4.2].

Also, in Subsection we briefly review the temporal distance function and a criterion
for absence of approximate eigenfunctions.

8.1 Roof functions with bounded Holder constants

We assume a “bounded Holder constants” condition on ¢, namely that for all y,y' € Y,

lo(y) — o(y)] < Crd(y,y") forally € W*(y), (8.1)
lp(y) — ()] < C1y* @) for all y € W(y), s(y, ) > 1. (8.2)

This leads directly to an enhanced version of (6.1)):
Proposition 8.2 [¢(y) — ¢(y)| < C1Cu(d(y, ') ++*¥)) for all y,y' €Y, s(y,y) > 1.
Proof Let z=W?*(y)NW?*(y'). Then

() — ()] < le(y) — ()] + le(2) — o)
< Ci(d(y, z) + 7)) < C1Cu(d(y, o) + @),

as required. |

Lemma 8.3 If conditions and are satisfied, then condition (H) holds.
Proof By and , forally e Y, n >0,
lp(F"my) — p(F"y)| < Crd(F"my, F"y) < C1Cxy"d(my, y) < C1C2y".
It follows that
IXW)| < 0o le(Frmy) — o(Fry)| < C1Co(1 — 7).

Hence |x|o0o < C1C2(1 — )71 and condition (H)(a) is satisfied.
Next, let y,y' € Y, and set N = [$s(y,v')], 1 = A2, Write

x(y) —x(') = A(my,7y') — Aly,y') + B(y) — B(y),
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where

N-1 00
Alp,q) = Y (p(F"p) —p(F"q)),  Bp) =Y (o(F"mp) — p(F"p)).
n=0 n=N

By the calculation for |x|., we obtain |B(p)| < C1C2(1 —v)~14N for all p € Y. Also,
1 /
PV <) = 5 1yf 0 5o B(p) = O(")) for p = g,y
For n < N — 1 we have s(F™y, F™y') > 1, so by Propositions and

[o(F™y) — @(F™y)| < C1Cu(d(F™y, FMy') + @) ") < C(y"d(y, ) +*@v)™™),

where C' = 2020102. Hence

N-1
< le(Fy) — o(Fy)] < C Y (3 d(y, i) + @) )
n=0
< C(1 -y Hdly,y) + 0Ny < 01— 9)THd(y, ) + 1),

Similarly for A(my,my’). Hence |x(y) — x(v')| < d(y,y’) + 7] swy') , so (H)(b) holds. |

8.2 Exponential contraction along stable leaves

In this subsection, we suppose that h € C"(X) and that f is exponentially contracting
along stable leaves:

d(f™y, f*y') < Coy™d(y,y’) for alln >0 and all y,y' € Y with v/ € W*(y). (8.3)
Note that this strengthens condition . Proposition becomes
d(f"y, [*y') < CoCa(y"d(y, ') +7*¥) 70 W) foralln >0, y,y €Y. (8.4)
Lemma 8.4 If condition is satisfied, then condition (H) holds.

Proof Let v; =7", v = 711/2. We verify condition (H) with vo and d;(y,v") = d(y,y')",

using the equivalent definition for y,
X(y) = 2alo(h(fMmy) — h(f"y)).
By (8.3),

IXW)| < D02 [hlgd(fmy, fry)" < Colhly > 0o Aidi(my,y) < Colhly(1 — 1)~

Hence |x|oo < Ca|h|y(1 —~1)~" and condition (H)(a) is satisfied.
Next, let 4,7/ € Y and set N = [%s(y,y’)]. Write x(y) — x(v') = A(my, my") — Ay, y') +
B(y) — B(y'), where

N-1 00
A(p,q) = > ((f"p) — h(f"q)), = > (h h(f"p)).
n=0 n=N
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By the calculation for |y|s, we obtain |B(p)| < Ca|hl,(1 — 1) 14 for all p € Y. Also,
1 / / !
W <t =479, s0 Blp) = 05 for p =y, .
Finally, by (8.4)) using that 1, < n,

N-1 N-1
Al )| < [y - d(f™, ) < CoCalhly > (ida(y,y') + 7))
n=0 n=0

< CoCylhly(1 =) "My, y) + 1)
< CyCulhly(1 = 31)Hda(y,¢) + 7)),

Similarly for A(my,my’). Hence |x(y) — x(v')| < di(y,vy) + vs(y’y/), so (H)(b) holds. |

Remark 8.5 In cases where h lies in C"(X) and the dynamics on X is modelled by a Young
tower with exponential tails (so ux (7 > n) = O(e~) for some ¢ > 0), it is immediate that
p € L1(Y) for all ¢ and that condition is satisfied. Assuming absence of approximate
eigenfunctions, we obtain rapid mixing for such flows.

8.3 Flows with an invariant Holder stable foliation

Let T; : M — M be a Holder nonuniformly hyperbolic flow as in Section [7.2] For simplicity,
we suppose that (M, d) is a Riemannian manifold and that Y is a smoothly embedded cross-
section for the flow. We assume that the flow possesses a Ti-invariant Holder stable foliation
W?#$ in a neighbourhood of A. (A sufficient condition for this to hold is that A is a partially
hyperbolic attracting set with a D7Tj-invariant dominated splitting TAM = FE*° & E,
see [3].) We also assume that diamY can be chosen arbitrarily small. In this subsection,
we show how to use the stable foliation W?* for the flow to show that y is Holder, hence
verifying the hypotheses in Section

Remark 8.6 As discussed in [26] Section 4.2(iii)], this framework includes (not necessarily
Markovian) intermittent solenoidal flows, and yields polynomial decay O(t*(ﬁfl)) for any
prescribed 8 > 1. These results are optimal by [27] in the Markovian case and by [§] in
general.

First, we show that if W*(y) and W*%(y) coincide for all y € Y, then F} : Y¥ — Y ¥ is
already a skew product (so x = 0).

Proposition 8.7 Suppose that W*(y) and W*(y) coincide for all y € Y. Then ¢ is
constant along stable leaves W*(y), y € Y.

Proof For yseY,
{Toyy:y €W (yo)} = {Fy:y € W(yo)} = FW?*(yo) C W*(Fyo) = W**(Fyp).
But setting to = ¢ (1),

{Thoy -y € W(yo)} = Tey W™ (o) € W (Tioyo) = W™ (Fyo).
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Hence ¢[yss(yy) = ©(y0)- |

Let Y = W¥(yo) for some fixed yo € Y and define the new cross-section to the flow
Y* = Uy ey W*(y). Shrinking Y if necessary, there exists a unique continuous function
r:Y — R with |r| < §inf¢ such that r|g = 0 and {T.»(y) 1y €Y} C Y™ Moreover, r
is Holder since Y is smoothly embedded in M and Y™ is Holder by the assumption on the
regularity of the stable foliation WW*®. Define the new roof function

YT S RY, o (Thyy) = ely) +r(Fy) —r(y).
We observe that ¢* is the return time for the flow 7} to the cross-section Y*.

Lemma 8.8 Under the above assumption on W**, condition (H) holds.

Proof We show that x = —r. The result follows since r is Holder.
Let n > 0, y € Y. By Proposition applied to ¢* : Y* — R, we have that
O (Trpnmy) F"1y) = @ (T (prny) F™y). Hence by definition of ¢*,

Q(F"my) — p(F"y) = r(F'my) — r(F"y) + r(F"Ty) — r(F"ry).

Let  be the Hélder exponent of r. By (7.2), |p(F"71y) — p(F"y)| < 2Ca|r|,(y")™ so the

series X (y) = Yoo (@(F"my) — ¢(F™y)) converges absolutely. Moreover,
N-1
X(y) = lim > (p(F"my) — p(F"y))

N—oo
n=0

= lim (r(my) = r(y) + r(FNy) = r(Fmy)) = r(my) - (y).

Finally, r(7y) = 0 since 7| = 0. n

8.4 Temporal distance function

Dolgopyat [18, Appendix] showed that for Axiom A flows a sufficient condition for absence of
approximate eigenfunctions is that the range of the temporal distance function has positive
lower box dimension. This was extended to nonuniformly hyperbolic flows in [25], 26]. Here
we recall the main definitions and result.

We assume that condition (H) holds, so that the suspension flow Y¥ — Y% is a Gibbs-
Markov flow (and hence conjugate to a skew product flow). We also assume the dynamically
Holder setup from Section [7.3] In particular, the Poincaré map f : X — X is nonuniformly
hyperbolic as in Section and Y has a local product structure. Also we assume that the
roof function ¢ has bounded Hoélder constants along unstable leaves, so condition is
satisfied.

Let y1,ys € Y and set yo = W¥(y1) N W*(ya), y3 = W*(y1) N W*(ys). Define the
temporal distance function D : Y XY — R,

Dyiy) = > (9(F"y1) = o(F"y2) = o(F"ys) + o (F"ya) ).

n=—oo
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It follows from the construction in [26, Section 5.3] (which uses (7.4) and (8.2))) that inverse
branches F™y; for n < —1 can be chosen so that D is well-defined.

Lemma 8.9 ( [26, Theorem 5.6)) Let Zy = (.-, F~"Z where Z is a union of finitely
many elements of the partition {Y;}. Let Zy denote the corresponding finite subsystem of
Y. If the lower boz dimension of D(Zyx Zy) is positive, then there do not exist approzimate
eigenfunctions on Z. |

Remark 8.10 For Axiom A attractors, Z; can be taken to be connected and D is continu-
ous, so absence of approximate eigenfunctions is ensured whenever D is not identically zero.
For nonuniformly hyperbolic flows, where the partition {Y;} is countably infinite, Zj is a
Cantor set of positive Hausdorff dimension |25, Example 5.7]. In general it is not clear how
to use this property since D is generally at best Holder. However for flows with a contact
structure, a formula for D in [21, Lemma 3.2] can be exploited and the lower box dimension
of D(Zy x Zp) is indeed positive, see [25, Example 5.7]. The arguments in [25, Example 5.7]
apply to general Gibbs-Markov flows with a contact structure. A special case of this is the
Lorentz gas examples considered in Section [9]

9 Billiard flows associated to infinite horizon Lorentz gases

In this section we show that billiard flows associated to planar infinite horizon Lorentz gases
satisfy the assumptions of Section [8.1}] In particular, we prove decay of correlations with
decay rate O(t~1).

Background material on infinite horizon Lorentz gases is recalled in Subsection [9.1] and
the decay rate O(t~1) is proved in Subsection In Subsection we show that the same
decay rate holds for semidispersing Lorentz flows and stadia. In Subsection we show
that the decay rate is optimal for the examples considered in this section.

9.1 Background on the infinite horizon Lorentz gas

We begin by recalling some background on billiard flows; for further details we refer to the
monograph [13].

Let T? denote the two dimensional flat torus, and let us fix finitely many disjoint convex
scatterers S, C T? with C® boundaries of nonvanishing curvature. The complement @ =
T2\ U Sy is the billiard domain, and the billiard dynamics are that of a point particle that
performs uniform motion with unit speed inside @), and specular reflections — angle of
reflection equals angle of incidence — off the scatterers, that is, at the boundary 0Q). The
resulting billiard flow is T} : M — M, where the phase space M = @ x S! is a Riemannian
manifold, and T} preserves the (normalized) Lebesgue measure pys (often called Liouville
measure in the literature).

There is a natural Poincaré section X = 0Q x [—7/2,7/2] C M corresponding to
collisions (with outgoing velocities), which gives rise to the billiard map denoted by f : X —
X, with absolute continuous invariant probability measure py. The time until the next
collision, the free flight function h: X — R™, is defined to be h(x) = inf{t > 0: T)z € X}.
The Lorentz gas has finite horizon if h € L*°(X) and infinite horizon if h is unbounded.
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In the finite horizon case, [4] recently proved exponential decay of correlations. In this
section, we prove

Theorem 9.1 Let n € (0,1]. In the infinite horizon case, there exists m > 1 such that
pow(t) = OF™Y) for allv e CM(M) N CO"(M) and w € CT™(M) (and more generally for
the class of observables defined in C’or’ollary below).

Let us fix some terminology and notations. The billiard map f : X — X is discontinuous,
with singularity set S corresponding to the preimages of grazing collisions. Here, S is the
closure of a countable union of smooth curves, X \ S consists of countably many connected
components X,,, m > 1, and f|y,, is C2. If x,2’ € X, for some m > 1, then, in particular,
xz,x’ and fxz, fo' lie on the same scatterer (even when the configuration is unfolded to
the plane). Throughout our exposition, d(x,z’) denotes the Euclidean distance of the two
points, i.e. the distance that is generated by the Riemannian metric on X (or M).

It follows from geometric considerations in the infinite horizon case that px(h > t) =
O(t=2). Moreover, as the trajectories are straight lines, we have

|h(z) — h(2')| < d(z,2") + d(fz, f2') for all z,2’ € X, m > 1; and (9.1)
d(Tyx, Tpx) < |t —t/| for allz € X and t,t' € [0, h(x)). (9.2)

The billiard maps considered here (both finite and infinite horizon) have uniform con-
traction and expansion even for f. There exist stable and unstable manifolds of positive
length for almost every x € X, which we denote by W*(z) and W"(z) respectively, and
there exist constants Cy > 1, v € (0, 1) such that for all z,2' € X, n >0,

d(f"z, ff2') < Coy"d(z,2’) for 2’ € W*(x). (9.3)
d(z,x') < Coy"d(f"z, f*a') for fMa’ € W*(f"x). (9.4)

This follows from the uniform hyperbolicity properties of f, see in particular [13, For-
mula (4.19)].
Furthermore, there is a constant Cs > 1 such that for z,2’ € X,

d(Tyz, Tyz") < Csd(z,2") for ' € Wo(x), t € [0, h(x)] N[0, h(z")]. (9.5)
A(T_y2,T_4x') < Csd(z,2") for ' € W¥(z), t € [0, h(f 2)] N[0, h(f12)]. (9.6)

To verify , note that d(z,z’) consists of a position and a velocity component. In
course of the free flight, the velocities do not change, while for 2/ € W#(z), the position
component can only shrink as stable manifolds correspond to converging wavefronts. A
similar argument applies to (9.6]).

Remark 9.2 (a) In the remainder of the section — and in particular in the proof of Propo-
sition below — we apply repeatedly, but always in the case when either ' € W*(z),
or fa' € W¥(fz). As all iterates f™,n > 0 are smooth on local stable manifolds (while all
iterates f~", n > 0 are smooth on local unstable manifolds), both of these conditions imply
z, 2’ € X,, for some m > 1.

(b) For larger values of ¢ than those in (9.5), we note that d(Tiz,Tyz') may grow large
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temporarily: it can happen that one of the trajectories has already collided with some scat-
terer, while the other has not, hence even though the two points are close in position, the
velocities differ substantially. Similar comments apply to . This phenomenon is the
main reason why we require the notion of dynamically Holder flows 7} in Definition [7.6]

In [30], Young constructs a subset ¥ C X and an induced map F' = f7 : Y — Y that
possesses the properties discussed in Section including . The tails of the return
time 7 : Y — Z* are exponential, i.e. u(r > n) = O(e~“") for some ¢ > 0. Moreover, the
construction can be carried out so that diamY is as small as desired. This is proved in
[30] for the finite horizon, and in [I1] for the infinite horizon case. We mention that

and ([7.3]) follow from (9.3)) and (9.4]), respectively, while ([7.1)) holds as the stable and the
unstable manifolds are uniformly transversal, see [I3, Formulas (4.13) and (4.21)].

Proposition 9.3 For ally,y' €Y;, j>1, and all 0 < ¢ < 7(y) — 1,
B(ffy) = B(fY)| < 205Cy (v d(y, o) + 77y,

Proof Let z = W5(y) n W(y'). By (7.4), Fz € W*(Fy'). By (9.3) and (9.4), for
0<l<7(y),

d(fﬁy, FY) <Ay, fo2) + (2 1Y) < Co(nfd(y, =) + "W d(F 2 FY)).
Using also and .,
d(f'y, £Y) < Co(y' Cad(y,yf) + 70 Coy" )71,
Hence by (9.1)), for ¢ < 7(y) — 1,
(') — h(FY)| < d(ffy, foY) + d(F Ty, £Y) < Ald(y,y) + 770y,

as required. |

Define the induced roof function ¢ = 3 ;- Yho ft. Using (7.3), it is immediate from
Proposition - 9.3| that ¢ has bounded Holder constants in the sense of Section

Corollary 9.4 Conditions (8.1) and (8.2) hold.

Proof If y € W*(y), then s(y,y’) = 0o so |¢(y) — ¢(v')| < d(y,y’) by Proposition
If y € W*(y), then d(y,y) < Coy*®¥) by (73), so |o(y) — ()] < v*@¥) by Proposi-
tion 0.3 B

Proposition 9.5 For diamY sufficiently small, there exist an integer ng > 1 and a con-
stant C > 0 such that for all y,y' € Y, s(y,y’') > no, and all u € [0, p(y)] N [0,¢(y')], there
exist t,t' € R such that

it —u| < Cd(y,y), d(Tyy, Tyz) < Cd(y,y'),
it —ul <Oy*WY) ATy, Tyz) < Cy*WY),

where z = W*(y) N W¥(y').
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Proof Define hy(y) = Z?;é h(fiy) for y € Y, 0 < ¢ < 7(y). By Proposition there is
a constant C' > 0 such that

T(y)—1

he(y) = he() < D I(Fy) = b(fy)] < Cldly,y) + ")), (9.7)

=0

for all y,y' € Yj, j > 1 (which is equivalent to s(y,vy’) > 1) and all 0 < £ < 7(y).

Now consider y,y' € Y with s(y,y’) > ng, and v € [0,0(y)] N[0, 0(y)]. Let z =
We(y) N WH(y").

Choosing t. By , d(y,z) < Cyd(y,y"). Also, s(y, z) = co. We can shrink Y if necessary
so that CdiamY < inf h.

Write T,y = T, f‘y where 0 < £ < 7(y) — 1 and 7 € [0, h(f%y)). (When u = ¢(y), we
take £ = 7(y) — 1, r = h(f%y).) Similarly, write T,z = T, f¥ z. Note that u = hy(y) +r =
hg/(z) =+ r,

First we show that |[¢ — ¢'| < 1. By (9.7),

(0 =0 =1)infh < hy(2) = hpg1(2) < he(y) — hey1(2) + he(2) — he(y)
< he(y) — b (2) — h(f2) + C diam Y
=+ —r— h(ff2) + CdiamY < CdiamY < inf h.

Hence ¢ < ¢/ + 1. Similarly, (¢/ — ¢ —1)inf h < hp(y) — her1(y) < infh, so [ — '] < 1.
If £ = ¢, then we take t = u. By (9.7),

[r — 7| = |he(y) — he(2)| < Cd(y, z) < CCud(y,y').

By (9.3 . d(ffy, ff2) < Cad(y, z) < CC4d(y,y'). Without loss, 7 < ', so by (9.2)) and (9.5)
d(Tuy. Tyz) = (T fy, T f'2) < d(Ty f oy, T f*2) + d(To f 2, T f2)
< Csd(f'y, ['2) + |r — '] < d(y.y).

If ¢/ = ¢ —1, then we take t = u +r + s where s = h(f"12) —¢' > 0. Then Ty = T, f'y
and Tyz = Tp T ff 12 = Tr+h(fé—1z)fe_12 =T, f'z.

Note that u = hy(y) +r = he(z) — s, hence r + s = hy(z) — hy(y) < Cd(y, z) by (9.7).
In particular, |t —u| =r+ s < CCyd(y,y'). Also 0 <r <r+s < CdiamY < inf h. Hence

by (0.3) and (9.5),
d(Tuy, Tyz) = (T, fly, T f'2) < Csd(f'y, f'2) < C2Csd(y, 2) < C2CuCsd(y,y).

The argument for ¢/ = ¢ + 1 is analogous.
Choosing t'. This goes along similar lines. We can shrink diamY and increase ng so that
C(Cy + 1)(diamY +~™) < inf h. Note that s(z,9") = s(y,y’) > no > 1.

Since s(z,y’) > 1, it follows from (7.4) that Fz € W¥(Fy'). Write T,z = T_rf ‘Pz
where 0 < ¢ < 7(y) — 1 and r € [0,h(f~“FDF2)). Similarly write T,y = T_ f ' Fy/.
Note that u = hr()_¢(2) =7 = hey—e(y) — 7"
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Again, we show that [¢ — ¢'| < 1. By (9.7),

(0= =1)infh < hogyy_p—1(y) = hrgy)—e(y)
< hrgyy—o—1(Y') = Prgyy—e(2) + C(diam Y +~")
= —r — h(fTW 1Y) 4 C(diam Y 4+ ™) < C(diam Y + 4"0) < inf h.

Hence ¢ < ¢'+1. Similarly, (¢/ —£—1)infh < hr(, ) (z) hr)—e(2) <infhso [{—{'| < 1.
If ¢ = ¢, then we take t’ = u. It follows from and (| . ) that

I —1"| = By oY) = By —e(2)] < ClA(Y, 2) + 7)) < C(Co + 1)y* @2,
Also, by and ,
d(f'Fy, f'Fz) < Cad(Fy, Fz) < C3y~7*W2),
Without loss, ' < r, so by , and ,
ATy, Tuz) = d(T_p [~ Fy T f ' F2)

< AT f Fy T f F2) + d(T_ f F2, T . f°F2)
< Csd(f'Fy f T Fz) + | — | < W) = o)

If £ = ¢ — 1, then we take t' = u — 1/ — s where s = h(f~“"DFz) —r > 0. Then
Ty =T . fYFy and Tyz = T_,,/_STuz =T . fV'Fxz.

Note that u = hy(y)_¢(y') =" = hry)—p(2)+s, hence 1’ +5 = ho()_p(y') —hry)—p(2) <
C(Co + 1)) by (9.7 ©-7). In partlcular |t’—u| =7 5 <y*WY) Also, 0 <1’ <T +s<
C(Cy + 1)y™ < inf h. Hence by (7.3), (9.4) and (9.6)),

d(Tyy', Tyz) = d(T_T/fJ,Fy’,T_T/f*ZIFz) < C5d(f*£/Fy', fﬁf/Fz) < ),
The argument for £ = ¢’ + 1 is analogous. |

Corollary 9.6 Let v € CO"(M), w € CO™(M) such that Ofw € C*"(M), for all k =
0,...,m. Suppose also that there is a constant C > 0 such that |v(x) — v(z")| < Cd(z,z")"
and |0Fw(x) — OFw(x")| < Cd(x,2')" for all z,2' € M of the form x = Ty, *’ = T,y where
v,y €Y; for some j > 1, u e [0,0(y)], v €[0,0(y)], and for all k =0,...,m. Then h,
Ti, v and w are dynamically Holder in the sense of Definition [7.6,

Proof Condition (a) of Definition[7.6]follows from Proposition[9.3} To check condition (b),
we distinguish two cases. If s(y,y') < ng, we may take t = t' = u and use that |v(z)—v(z’)| <

2|v|0e < Y™ for any z, 2’ € M. If s(y,y’) > ng, Proposition applies and, along with
Formulas (9.1)—(9.6), implies Definition [7.6[b) . n
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9.2 Tail estimate for ¢ and completion of the proof of Theorem

Since

px(z € X : h(x)

>t) =02 (9.8)
wly €Y :7(y) >n)

O(e™) for some ¢ > 0, (9.9)

a standard argument shows that u(¢ > t) = O((logt)?t=2). In fact, we have

Proposition 9.7 u(¢ >t) = O(t™2).

The crucial ingredient for proving Proposition is due to Szasz & Varju [29].

Lemma 9.8 ( [29, Lemma 16], [15, Lemma 5.1] ) There are constants p,q > 0 with
the following property. Define

Xy(m) ={z € X : [h(z)] =m and h(T7z) > m'™9 for some j € {1,.. .,blogm}}.
Then for any b sufficiently large there is a constant C' = C(b) > 0 such that
px (Xp(m)) < Cm™Pux(z € X : [h(x)] =m) for allm > 1. ]
For b > 0, define

Yo(n) ={y €Y :7(y) <blogn and O<r?a>% )h(Tey) < in and ¢(y) > n}.
SU<T(y

Corollary 9.9 For b sufficiently large, u(Yy(n)) = o(n=2).

Proof Fix p and ¢ as in Lemma Also fix b sufficiently large.

Let y € Yp(n). Define hi(y) = maxo<scr(y) h(f*y) and choose ¢1(y) € {0,...,7(y) — 1}
such that hy(y) = h(f*®y). Define hy(y) = MaX)<f<r(y), (461 (1) h(f%y). Then hi(y) and
ha(y) are the two largest free flights h o f* during the iterates £ = 0,...,7(y) — 1.

We begin by showing that these two flight times have comparable length. Indeed, let

m; = [hi], i =1,2. Then n < ¢ < hy + (7 — 1)hy <n/2+ (blogn)hy. Hence
n n
—1< < < —. 9.10
2blogn =Mm2 == 2 ( )

In particular, m; > mé_q and mg > mi_q for large n.

Choose £5(y) € {0,...,7(y) — 1} such that £5(y) # £1(y) and ha(y) = h(f2®y). We
can suppose without loss that ¢;(y) < f2(y). For large n, it follows from that
faWy e Xy(mi(y)). Hence

Yy(n) € f¢Xy(m) for some £ < blogn, m > n/(2blogn) — 1,
and so

p(Yo(n)) < px(Yo(n) x 0) < blogn > px (Xp(m)).
m>n/(2blogn)—1
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By Lemma and ,

1(Yy(n)) < logn > m~Pux(x € X : [h(z)] =m)
m>n/(2blogn)—1

< logn(n/logn)~ P = o(n2),
as required. ]

Proof of Proposition Define the tower A = {(y,¢) € Y XZ : 0 < { < 7(y) — 1}
with probability measure ua = p X counting/7 where 7 = fY Tdp. Recall that pux = mepa
where 7(y,£) = f'y.

Write maxo<yr(y) h(fly) = h(f@Wy) where ¢1(y) € {0,...,7(y) — 1}. Then

ply €¥': mex h(f'y) > n/2} = 7ua{(y.0) € A : h(f1Wy) > n/2}
= 7ua{(y, (1)) : h(f*Wy) > n/2} = 7pa{(y, (1(y) - hom(y, f1(y)) > n/2}
<Tua{p € A:hon(p) >n/2} =Tux{zr € X : h(z) > n/2},

and so p{y € Y : maxo<pcr(y) H(T'y) > n/2} = O(n™2) by (9.8). Hence it follows from
Corollary [9.9] that

p{y €Y : 7(y) < blogn and ¢(y) >n} =0(n"?).

Finally, by (9.9), u(t > blogn) = O(n%) = o(n™?) for any b > 2/c and so pu(p > n) =
O(n™?) as required. |

It follows from Lemma and Corollary that condition (H) is satisfied. Hence by
Corollary [8.1(a), the suspension flow F; : Y% — Y% is a Gibbs-Markov flow as defined
in Section By Proposition ulp > t) = O(t=2). By Corollary the flows and
observables are dynamically Holder (Definition . Hence it follows from Corollary (b)
that absence of approximate eigenfunctions implies decay rate O(t=1).

Finally, we exclude approximate eigenfunctions. By Corollary condition holds
and hence the temporal distortion function D : Y XY — R is defined as in Section [8.4] Let
Zo C Y be a finite subsystem and let Zy = 7~ 'Z,. The presence of a contact structure
implies by Remark that the lower box dimension of D(Zy x Zj) is positive. Hence
absence of approximate eigenfunctions follows from Lemma [8.9

9.3 Semi-dispersing Lorentz flows and stadia

In this subsection we discuss two further classes of billiard flows and show that the scheme
presented above can be adapted to cover these examples, resulting in Theorem [9.13

Semi-dispersing Lorentz flows are billiard flows in the planar domain obtained as R\J Sk
where R is a rectangle and the S, C R are finitely many disjoint convex scatterers with
C? boundaries of nonvanishing curvature. By the unfolding process — tiling the plane with
identical copies of R, and reflecting the scatterers S across the sides of all these rectangles
— an infinite periodic configuration is obtained, which can be regarded as an infinite horizon
Lorentz gas.
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Bunimovich stadia are convex billiard domains enclosed by two semicircular arcs (of
equal radii) connected by two parallel line segments. An unfolding process could reduce the
bounces on the parallel line segments to long flights in an unbounded domain, however, there
is another quasi-integrable effect here corresponding to sequences of consecutive collisions
on the same semi-circular arc.

Both of these examples have been extensively studied in the literature, see for instance
[9, 13| 14, 25, [6], and references therein. A common feature of the two examples is that
the billiard map itself is not uniformly hyperbolic; however, there is a geometrically defined
first return map which has uniform expansion rates. As before, the billiard domain is
denoted by @, and the billiard flow is T} : M — M where M = Q x S'. However, this
time we prefer to denote the natural Poincaré section 0Q x [—7/2,7/2] C M by X, the
corresponding billiard map as f: X - X and the free flight function as h : X 5 RF _where
h(%) = inf{t > 0: T}z € X} Then, as mentioned above, there is a subset X C X such
that the first return map of f to X has good hyperbolic properties. We denote this first
return map by f : X — X. The corresponding free flight function h : X — RT is given
by h(z) = inf{t > 0 : Tyx € X}. Let us, furthermore, introduce the discrete return time
7: X — ZT given by #(z) = min{n > 1: f"z € X}.

In the case of the semi-dispersing Lorentz flow, X corresponds to collisions on the
scatterers S;. In the case of the stadium, X corresponds to first bounces on semi-circular
arcs, that is, z € X if z is on one of the semi-circular arcs, but f~'z is on another boundary
component (on the other semi-circular arc, or on one of the line segments).

The following properties hold. Unless otherwise stated, standard references are [13],
Chapter 8] and [14]. As in section d(z,2") always denotes the Euclidean distance of the
two points, generated by the Riemannian metric.

e There is a countable partition X \ S = (J°_; X,,, such that f|y,, is C? and 7|x,, is
constant for any m > 1. We refer to the partition elements X, with 7|x, > 2 as
cells; these are of two different types:

— Bouncing cells are present both in the semi-dispersing billiard examples and in
stadia. For these, one iteration of f|x,, consists of several consecutive reflections
on the flat boundary components, that is, the line segments. By the above men-
tioned unfolding process, these reflections reduce to trajectories along straight

lines in the associated unbounded table.
— Sliding cells are present only in stadia. For these, one iteration of f|x, consists

of several consecutive collisions on the same semi-circular arc.

e infh > 0, and suph < o0, however, there is no uniform upper bound on %, and no
uniform lower bound for h.

e f: X — X is uniformly hyperbolic in the sense that stable and unstable manifolds
exist for almost every z, and Formulas (9.3) and (9.4) hold. This follows from the
uniform expansion rates of f, see [13, Formula (8.22)].

o If z,2/ € X,, where X,,, is a bouncing cell, in the associated unfolded table the
flow trajectories until the first return to X are straight lines, hence (9.1)) follows. If
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z,7 € X,, and X,, is a sliding cell, the induced roof function is uniformly Holder
continuous with exponent 1/4, as established in the proof of [6, Theorem 3.1]. The
same geometric reasoning applies to iy (x) = h(z) + h(fz)+ - - -+ h(f*'z) as long as
k < 7(z). Summarizing, we have

| () — hy(2)] < d(z, 2 )Y + d(fz, fo') /4 (9.11)

for z,2' € X,,, m > 1 and k < #(z) — 1. In particular, |h(z) — h(z')| < d(z,z")/* +
d(fx, fa')!/4,

e (9.2) has to be relaxed to
d(T,&,Tpz) < [t —t/| forallZ e X and t,t € [0,h(Z)). (9.12)

e (9.5) has to be relaxed to the following two formulas:

d(T,%, T,7) < d(&,&) for & e X, 7 € W(Z), t € [0,h(Z))N[0,h(F)); (9.13)
d(ffz, ff2'y < d(z,2’) for z € X,2' € W*(z), 0 < k. (9.14)

Similarly, has to be relaxed to

d(T_&, T_i') < d(z,&) for i€ X,i € W),
t € [0,h(f71E)) N[0, h(f1E)); (9.15)
A(f e, fHel) < dlaa!) forx € X,a' € W(2), 0< k. (9.16)

To verify , let us note first that d(z,z") consists of a position and a velocity
component, and in course of a free flight velocities do not change. Now the mechanism
of hyperbolicity for stadia is defocusing, see, for instance, [I3, Figure 8.1], which
guarantees that for ' € W"(x), the position component of d(z, z') in course of the free
flight is dominated by the position component at the end of the free flight. holds
for analogous reasons. To verify , by uniform hyperbolicity of f (in particular
Formula , see above), it is enough to consider how f evolves unstable vectors
between two consecutive applications of f, ie. within a series of sliding or bouncing
collisions. On the one hand, again by the defocusing mechanism, f does not contract
the p-length of unstable vectors, see [13| Section 8.2]. On the other hand, for an
unstable vector, the ratio of the Euclidean and the p-length is v/1 + V?2/ cos , where
V is the slope of the unstable vector in the standard billiard coordinates, and ¢ is the
collision angle, see [13, Formula (8.21)]. Now |V| is uniformly bounded away from oo,
see Formula [13, Formula (8.18)], while cos is constant in course of a sequence of
consecutive sliding or bouncing collisions. holds by an analogous argument.

e The map f : X — X can be modeled by a Young tower with exponential tails. In
particular, there exists a subset ¥ C X and an induced map F' = f7 : ¥ - Y
that possesses the properties discussed in Section including . The tails of the
return time 7 : Y — Z*1 are exponential, i.e. u(t > n) = O(e~“") for some ¢ > OH

It is important to note that here 7 is the return time to Y in terms of f; the return time in terms of f
has polynomial tails.
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Moreover, the construction can be carried out so that diamY is as small as desired.
The existence of the Young tower satisfying these properties is established in [14]. As
in subsection we introduce the induced roof function ¢ = ZZ& ho ft.

e By construction, for y,3’ € Y}, j > 1 and £ < 7 fixed, f‘y and f%y’ always belong to
the same cell of X.

Let us introduce 4 = ¥4 and d(y,y') = d(y,y')*/%. The following version of Proposi-
tion [9.3] holds.

Proposition 9.10 For ally,y’ €Y;, j > 1, and all 0 < < 7(y) — 1,
Ih(fly) — h(FY)| < A (d(y, ) + 5@y,

Proof The proof of Proposition applies, using (9.11)) instead of (9.1)). |
This readily implies

Corollary 9.11 Conditions (8.1)) and (8.2) hold, with v replaced by 4, and d(y,y') replaced

by d(y,y'). n

The adapted version of Proposition [9.5| reads as follows.

Proposition 9.12 For diamY sufficiently small, there exist an integer ng > 1 and a con-
stant C' > 0 such that for all y,y' € Y, s(y,yo) > no, and all u € [0, p(y)] N[0, p(y")], there
exist t,t' € R such that

[t —u| < Cd(y,y), d(Tuy, Ty2) < Cd(y,y),
[t —ul < CYE, ATy Tyz) < 00,

where z = W*(y) N W*(y').
Proof First, (9.7) can be updated as

T(y)—1
he(y) — he(y)| < D |h(fy) — (1Y) < dly. o) + 550, (9.17)
j=0

for 0 < ¢ < 7(y).

Fix y,y' € Y} for some j > 1, and u € [0, ¢(y)] N0, ¢(y')]. We will focus on choosing the
appropriate ¢ and obtaining the relevant estimates. The choice of ' is analogous. Recall
the notation d(y, z) = d(y, z)!/* and note that d(y, z) < d(y,y).

First adjustment. As in the proof of Proposition we arrive at T,y = T, fy and
T,z = Ty f'% for the same 0 < ¢ < 7(y) — 1, and such that |u — t;| < d(y,z) and
|r —r1| < d(y,z). Indeed, a priori we have Ty = T, fy and T,z = T, f*z, where, as
inf A > 0, shrinking diam Y if needed, implies [£ — ¢'| < 1. If £ = ¢/, then let t; = u,
ri =1/, and |[r — ri| < d(y,z) follows from (0.17). If ¢ = ¢ — 1, then T,z = T . ftz,
where r* = h(f"'2) — ¢ € [0,h(f*"'2)]. Note that u = hy(y) + r = hy(z) — r*, hence
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r+r* = he(2) — he(y) < d(y,z). Let t1 = u+ 7 +r* so that |t; —u| < d(y,2) and r1 =r
as Ty, z = T, f*2. Note that we do not claim anything about d(T,y, T}, z) at this point.
Second adjustment. For brevity, introduce § = ffy and 2 = f¢z. We have

Tuy =Tpj = Tof*9,  Thz=Tn2="Tef"2

for some 0 < k, k' < #(§) — 1 (note that #(j) = 7(2)), s € [0,h(f*g)) and s’ € [0, h(f¥ 2)).
Note that by - - ) and (| . for any 0 < k < 7(g) — 1, we have
d(f*g, fF2) < d(9,2) < d(y,z), hence |hy()) — hi(2)] < d(y, 2), (9.18)

where we have used (9.11). We distinguish three cases: k = K, k >7k:’ and k < K.
If k =K, (9.18) along with |r — r1| < d(y, z) implies |s — s'| < d(y, z). But then, again
by (9.18), (9.13) and (9.14), we have

d(Tuy, Ty, 2) = d(Ts f*9, Ty f72) < d(y, 2).

As |u—t1| < d(y, 2), we can fix t = t;.
If kK > k', we prefer to represent our points as

Ty =T4 =T  Thz=T,2=T,f%
for some s; > 0. Now by and as |r — r1| < d(y, ), we have s + 51 < d(y, z). Define
so = min(s, h(f¥2)/2,h(f*9)/2), 1o =so+s1+71, t=s2+5 +11.
Then Tyz = Ty, f¥2, where sy € [0, A(f*4)) N[0, A(f*2)) and
s — 82| < s < s+ 51 < d(y, 2).
Hence
ATy, Tyz) = d(Tof*9, Ts, f*2) < d(Te, ¥, Ts, f¥2) + d(Ts 9, To, *9),

where d(T,f*9, T, f*9) < d(y,z) by (912), while d(Ts, f*3, Ts, f*2) < d(y, z) by (9.13),
(9.14) and (9.18). Hence d(Tyy,Tiz) < d(y,z), as des1red On the other hand |t — ;]| =
51489 < 5145 < d(y, 2), and as we have already controlled |t; —u/|, we have [t —u| < d(y, 2).

The case when k < k' can be treated analogously. The choice of ' goes along similar
lines, so we omit the details. |

Theorem 9.13 Consider a semi-dispersing Lorentz flow or the billiard flow in a Buni-
movich stadium. Let n € (0,1]. There exists m > 1 such that p,.,(t) = O(t™1) for all
v € CNM)NCO(M) and w € C"™(M) (and more generally for the class of observables
defined in Corollary .

Proof It follows from Lemma [8.3]and Corollary[9.11] that condition (H) is satisfied. Hence
by Corollary |8.1] - , the suspension flow F; : Y¥ — Y¥ is a Gibbs-Markov flow as defined in
Section [6] The conclusmns of Corollary [9.6] follow from Propositions [9.10] and [9.12] Hence
the flows and observables are dynamically Hélder (Definition [7.6)).
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For the tail estimate on ¢, introduce 7 : ¥ — Z*, #(y) = min{n > 1 : fy € Y}.
Note that sup h < oo, and ¢(y) = ;(:ya*l h(ffy) < 7(y)suph . Also it is shown in [I5]
(both for the semi-dispersing examples and for stadia) that u(7 > n) = O(n2). Hence
ple > t) < p(Fsuph > t) = O(t3).

Finally, to exclude approximate eigenfunctions, we may appeal as at the end of Sec-
tion to the contact structure which the billiard examples have in common. The result
now follows from Corollary [8.1|(b). |

9.4 Lower bounds

In this subsection, we show that it is impossible to improve on the error rate O(t~!) for
infinite horizon Lorentz gases, semidispersing Lorentz flows, and Bunimovich stadia. The
following result is based on [5, Corollary 1.3].

Proposition 9.14 Let v € L*(M) with [,,vdun = 0. Suppose that p,.(t) = o(t™1).
Then |fg voTyds|ly = o((tlogt)'/?).

Proof Let vy = f(f voTsds. Then

t ot t s
/ vfd,uM:/ / / voTrvoTsdpMdrds:2/ / / vvoTs_pdup drds
M 0o Jo Jm o Jo Jm
t s t ot ¢
= 2/ / pop(r)drds = 2/ / pvw(r)dsdr < Zt/ pvo(T) dr.
0o Jo o Jr 0

By the assumption on p, ., we obtain |v¢|3 = o(tlogt). |

In the case of the planar infinite horizon Lorentz gas, Szdsz & Varji [29] showed that
(tlog t)_l/ 2 fot voTsds converges in distribution to a nondegenerate normal distribution for
typical Holder mean zero observables v. The result applies equally to semidispersing Lorentz
flows. Similarly, in the case of Bunimovich stadia by Bélint & Gouézel [5, Corollary 1.6].
In particular, (tlogt)~1/2| fg voTsds|e # 0. Hence by Proposition an upper bound of
the type o(t~!) is impossible and so the upper bound in Theorems and is optimal.

Remark 9.15 There is also the possibility of obtaining an asymptotic expression of the
form

pow(t) = ct™t+ O~ 279, (9.19)

(e > 0 arbitrarily small, ¢ > 0) for certain classes of observables v,w. Such results are
obtained in [27] in cases where there is a first return to a uniformly hyperbolic map f :
X — X. The first return map in the examples considered here is nonuniformly hyperbolic,
modelled by a Young tower with exponential tails, so [27] does not apply directly. In a recent
preprint, [I0] have announced the existence of a uniformly hyperbolic first return. This
combined with [27] may yield the asymptotic (9.19)). (Interestingly, the class of observables
in would be disjoint from the class of observables covered by Proposition )
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A Condition ([7.4))

In this appendix, we verify that condition ((7.4)) holds in the abstract framework of [30]. For
this purpose, we switch to the notation of [30].

Proposition A.1 Let f : A — A be an injective transformation satisfying the abstract
set up in [30, Section 1]: specifically (P1), the second part of (P2), property (iii) of the
separation time so, and (P4)(a).

Let x € A;, i > 1. Then fHi(y“(x) NA;) = v (fFix) NA.

Proof It follows from injectivity of f and hence fi, as well as (P2), that
FR(" (@) N Ay) = flont (@) 0 fA Dy (ffie) A, (A.1)

Recall from (P1) that we have the local product structure A = (Ugexu 7)) N (Upers 75) -
By (P2), ffiA,; is a u-subset of A which means that f%A; = (UkeK? ) N (Upeges 75) for
some subset K C K“. Hence vy NA = ;!N (UeeKs 'yj) =V N A, for all k € KP. Also,
e fiN; =0 for all k ¢ K.

Now, v*(fRiz)n fRiA; # 0 (it contains ffiz) so it follows from the above considerations
that v*(ffiz) N A = ~+"(ffiz) N fRiA;. Combining this with (A,

FR(Ma) N Ay DAt (f ) NA. (A.2)

It remains to prove the reverse inclusion, so suppose that y € v*(z)NA;. By (P1), there
exists 2* € y*(ffiz) N~*(fFiy) C A. By (A.2), z* = ffiz for some z € y*(z) N A;.

Since z* and ffiy lie in the same stable disk it follows from property (iii)
of the separation time that so(z*, f®y) = oo. Using property (iii) once more,
s0(z,y) > so(2*, fRiy) =o00. But z € v,(z) = vu(y) so (P4)(a) implies that d(z,y) <
Co0(#¥) = 0. Hence ffiy = fliz = 2* € ~¥(ffz). This shows that f&%(y%(z) N A;) C
y*(fFiz) N A completing the proof. |
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