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Abstract

We prove an equivariant version of Galin’s theorem on versal de-
formations of infinitesimally symplectic matrices. Matrix families of
codimension zero and one are classified, and the results are used to
study the movement of eigenvalues in one parameter families.

1 Introduction

In dissipative dynamical systems, an equilibrium (trivial solution) can lose
stability when eigenvalues of a linearized vector field cross the imaginary axis
as a bifurcation parameter is varied. Generically, such a loss of stability oc-
curs at a steady-state bifurcation where a simple eigenvalue passes through 0,
or at a Hopf bifurcation where a pair of simple complex conjugate eigenvalues
passes through the imaginary axis away from zero.

Suppose now that the dynamical system is equivariant with respect to
a compact Lie group of symmetries Γ, and that the trivial solution is in-
variant under Γ. Then the eigenvalues passing through the imaginary axis
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need not be simple, see Golubitsky, Stewart and Schaeffer [6]. Indeed, in a
steady-state bifurcation generically the multiplicity of the eigenvalue pass-
ing through zero has multiplicity equal to the dimension of an absolutely
irreducible representation of Γ. (These dimensions are finite but may be
arbitrarily large as in the case of Γ = O(3).) The situation for Hopf bifur-
cation is analogous. The corresponding local dynamics for the steady-state
and Hopf bifurcations with symmetry are far richer than in the bifurcations
without symmetry. Nevertheless, the expected movement of eigenvalues and
the resulting change in stability of the trivial solution is (up to multiplicity)
identical in the symmetric and nonsymmetric contexts.

The situation is considerably more complicated for local bifurcations in
Hamiltonian systems. One intrinsic difficulty is that it is impossible to prove
that a solution is asymptotically stable by a purely linear analysis. A neces-
sary condition is that the solution is spectrally stable, that is the linearization
is semisimple and all the eigenvalues lie on the imaginary axis. If there are
eigenvalues lying off the imaginary axis, then the solution is both linearly
and nonlinearly unstable.

Suppose that we agree to concentrate on the linear aspects of these local
bifurcations. Then the simplified question is how can a trivial solution lose
spectral stability and become linearly unstable. It is easy to see that this
can only happen if eigenvalues moving along the imaginary axis happen to
collide. If they collide at zero there is a steady-state bifurcation, otherwise
there is a 1-1 resonance. After the bifurcation, the eigenvalues either remain
on the imaginary axis or they move into the left and right-half of the complex
plane. We say that the eigenvalues pass or split. It is splitting of eigenvalues
that corresponds to loss of spectral stability and is dangerous in the sense
of Krein. It is well-known that, in the absence of symmetry, generically the
colliding eigenvalues are simple and split. A 1-1 resonance at which splitting
occurs is often called a Hamiltonian Hopf bifurcation, see [8].

Again the presence of a compact Lie group of symmetries Γ changes the
expected behaviour at a local bifurcation. However this time the effect of Γ
is not restricted to forcing multiplicity of eigenvalues. Indeed, Γ-equivariance
strongly alters the expected movement of eigenvalues and has corresponding
implications for the spectral stability of the trivial solution. The required
computations have been performed in the case of steady-state bifurcation by
Golubitsky and Stewart [5] and in the case of the 1-1 resonance by Dellnitz,
Melbourne and Marsden [3]. However these computations are ad hoc and
mode interactions, for example, would very likely be intractable by these
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methods.
Even when there is no symmetry, the computation of movement of eigen-

values is nontrivial using ad hoc methods. Galin [4] (see also Koçak [7], and
when there is a time-reversal symmetry, Wan [11], [12])) was able to tackle
such problems in a more organized manner by computing normal forms for
parametrized families of linear Hamiltonian vector fields. Then the compu-
tation can be performed using the simpler normal forms. In this paper, we
present the equivariant analogue of Galin’s results.

We summarize Galin’s results leaving precise definitions for later. Let J
be a nonsingular skew-symmetric real m×m matrix. Necessarily m = 2n is
even. Let sp2n denote the vector space of infinitesimally symplectic matri-
ces A, those satisfying AJ +JAt = 0. Two matrices A and A′ are equivalent
if there is a nonsingular matrix P that is symplectic (PJP T = J) such that
PAP−1 = A′. The orbit of A consists of all matrices in sp2n that are equiv-
alent to A. Define codimA to be the codimension of the orbit of A in sp2n.
It follows from results of Arnold [1] that codimA is the minimal number
of parameters required in a versal unfolding and is equal to the dimension
of the centralizer of A. Moreover a versal unfolding of A can be computed
by exhibiting a basis for the centralizer. Galin’s codimension formula gives
codimA in terms of the sizes of the Jordan blocks of A.

Of course, eigenvalues are invariants of the orbits in sp2n, and for this
reason it is not possible to have an orbit of codimension zero. Moreover, the
codimension of an orbit has an arbitrarily large lower bound depending on the
size of the matrices under consideration. To get around these problems it is
convenient to identify orbits that share certain common features if the exact
values of the eigenvalues are ignored. The resulting collections of orbits are
called bundles and have the property that there are bundles of codimension
zero. Moreover the union of bundles of codimension zero forms an open dense
subset of sp2n. In addition, the codimension of a bundle is independent of
the size of the matrices, and it is possible to isolate those parts of a matrix
that have positive codimension.

Galin’s results are obtained by computing the centralizers of the nor-
mal forms computed by Williamson [13] and applying Arnold’s results [1]
on parametrized families of matrices. We obtain an equivariant version of
Galin’s results by computing the centralizers of the equivariant normal forms
given in Melbourne and Dellnitz [9], and applying Arnold’s results. In stating
the results, we shall assume some familiarity with the notation and results
in [9], in particular Sections 1 and 2 of that paper.
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In Section 2 we state the equivariant problem precisely, and proceed as
in [9] to reduce to a nonequivariant problem over a real division ring. Then
in Section 3 we present codimension formulas over the three nonisomorphic
real division rings R, C and H (the real, complex and quaternionic numbers).
The codimension formula over R is Galin’s original formula.

In Section 4 we define the codimension of a bundle and list versal unfold-
ings for bundles of codimension zero and one. As an application, in Section 5
we give simplified proofs of results in [5] and [3]. Finally, in Section 6 we
verify the codimension formulas presented in Section 3.

2 The equivariant Galin theorem

We begin by recalling some notation from [9]. Suppose that Γ is a compact
Lie group acting on Rn. By a Γ-equivariant matrix we mean an n × n real
matrix that commutes with the action of Γ. Let skΓ denote the set of nonsin-
gular skew-symmetric Γ-equivariant matrices. If R ∈ skΓ, we define spΓ(R)
to be the vector space of Γ-equivariant matrices satisfying MR+RMT = 0.
The pair of matrices (M,R) is called a Γ-symplectic pair. Two Γ-symplectic
pairs (M,R) and (M ′, R′) are equivalent, (M,R) ∼ (M ′, R′), if there is a
nonsingular Γ-equivariant matrix P such that

PMP−1 = M ′, PRP T = R′.

Suppose that (M,R) is a Γ-symplectic pair. An unfolding of M is a
parametrized family of matrices M(α) ∈ spΓ(R) where α ∈ Rk for some k,
M(α) is smooth (C∞) in α in a neighborhood of 0, and M(0) = M . Suppose
that M(α) and N(β) are two unfoldings of M , with α ∈ Rk and β ∈ R`.
We say that N(β) factors through M(α) if there is a mapping φ : R` → Rk

smooth near 0 satisfying φ(0) = 0 such that (N(β), R) ∼ (M(φ(β)), R),
for β near 0, where the family of transformations giving the equivalence is an
unfolding of the identity matrix. An unfolding M(α) of M is versal if every
unfolding of M factors through M(α).

The orbit of M consists of all matrices M ′ ∈ spΓ(R) such that (M,R) ∼
(M ′, R). Finally we define the centralizer C(M,R) to consist of those matri-
ces in spΓ(R) that commute with M .

Theorem 2.1 Let (M,R) be a Γ-symplectic pair. Then M has a versal
unfolding M(α). Moreover if k is the minimal number of parameters in a
versal unfolding, then
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(a) k is equal to the codimension of the orbit of M in spΓ(R).

(b) k = dimC(M,R).

(c) A versal unfolding of M is given by

M(α) = M + α1G
T
1 + · · ·+ αkG

T
k ,

where {G1, . . . , Gk} is a basis for C(M,R).

Proof When Γ = 1, the result reduces to Lemmas 2 and 3 and Theorem 1
in Galin [4] which themselves follow from results of Arnold [1]. The proof
for a general compact Lie group Γ is completely analogous to this special
case. �

We define the codimension of M , codimM , to be the number k charac-
terized in Theorem 2.1. It follows from the theorem that we can calculate
codimM and a versal unfolding of M by computing the centralizer C(M,R).

To simplify the computations, we exploit the isotypic decomposition of
Rn under the action of Γ. Recall from Subsection 2.1 of [9] that

M ∼= M1 ⊕ · · · ⊕M`, R ∼= R1 ⊕ · · · ⊕R`,

where Mj, Rj ∈ Hom(Dmjj ) and for each j, Dj is isomorphic to one of the
real division rings R,C or H. In addition, Rj ∈ skj the set of nonsingular
skew-symmetric matrices with entries in Dj. In the obvious notation, Mj ∈
spj(Rj). We say that (Mj, Rj) is a symplectic pair over Dj.

Define C(Mj, Rj) to consist of those matrices G ∈ spj(Rj) satisfying
GMj = MjG. Then it follows easily that

dimC(M,R) = dimC(M1, R1)⊕ · · · ⊕ dimC(M`, R`).

In addition, if Mj(αj) is a versal unfolding of Mj, then a versal unfolding
of M is given by

M(α) = M1(α1)⊕ · · · ⊕M`(α`).

3 Codimension formulas over a real division

ring

Suppose that D is a real division ring and that (M,R) is a symplectic pair
over D. Suppose further that (M,R) is in normal form, that is (M,R) is
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a direct sum of normal form summands from Table 1, 2 or 3 of [9]. In this
section we give a formula for codimM = dimC(M,R). Verification of the
formulas is postponed to Section 6.

Recall that normal form summands are determined uniquely by their
modulus µ, size k, and index ρ = ±1. A summand of modulus µ has a
quadruplet of eigenvalues ±µ, ±µ̄. Each modulus has nonnegative real part
and in addition has nonnegative imaginary part when D = R or H.

We begin by grouping together those normal form summands of (M,R)
with the same modulus µ to obtain the direct sum

(M,R) =
⊕
µ

(Mµ, Rµ).

Now matrices that commute with M preserve the generalized eigenspaces
of M . Moreover, in the case D = C, commuting matrices preserve the
eigenspaces of µ and µ̄ separately. It follows that the centralizer of M block-
diagonalizes into a direct sum of centralizers of the summands Mµ so that

dimC(M,R) =
∑
µ

dimC(Mµ, Rµ).

Hence it is sufficient to give a formula for dimC(M,R) where (M,R) is in
normal form and all the summands of M have the same modulus µ.

It is convenient to divide the complex plane into four regions,

region I µ not real or purely imaginary.

region II µ real and nonzero.

region III µ purely imaginary and nonzero.

region IV µ = 0.

We shall write µ ∈ I if µ is in region I, and so on. Suppose that (M,R)
consists of r normal form summands each with modulus µ. Let k1 ≥ · · · ≥ kr
be the sizes of the normal form summands. Define the weight w(µ) of µ to
be w(µ) = 1 if µ ∈ III and w(µ) = 2 if µ ∈ I. If µ ∈ II then w(µ) = dimRD
(= 1, 2 or 4). In these cases, the dimension of the centralizer of M is given
by

dimC(M,R) = w(µ)
r∑
i=1

(2i− 1)ki. (3.1)
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Next suppose that µ = 0. If D = C then dimC(M,R) is still given by
equation (3.1) with w(0) = 1. If D = H then the formula is modified slightly:

dimC(M,R) =
r∑
i=1

[2(2i− 1)ki − δi],

where δi = 1 if ki is odd and δi = 0 if ki is even. Finally we consider the
case D = R and µ = 0. Suppose that there are r summands from row 5 of
Table 1, [9] of size k1 ≥ · · · ≥ kr, (ki even) and s summands from row 6 of
size `1 ≥ · · · ≥ `s (`j odd). Then

dimC(M,R) = 1
2

r∑
i=1

(2i− 1)ki +
s∑
j=1

[2(2j− 1)`j + 1] + 2
r∑
i=1

s∑
j=1

min(ki, `j).

Observe that when D = R, the codimension formulas coincide with those of
Galin.

Remark 3.1 Suppose that a symplectic pair (M,R) over D has several sum-
mands with the same modulus µ. Then it follows from the formulas in this
section that dimC(M,R) is rather large. In particular, if r ≥ 2 in the above
codimension formulas, then dimC(M,R) ≥ 4. If r ≥ 2 and µ ∈ I, then
dimC(M,R) ≥ 8. The consequence for Γ-symplectic pairs of small enough
codimension is that normal form summands with common modulus lie in
distinct isotypic components. We shall exploit this fact in Section 4.

4 Codimension of bundles

In this section we consider bundles of Γ-equivariant infinitesimally symplectic
matrices and enumerate the bundles of low codimension. The definitions and
basic properties are presented in Subsection 4.1. In Subsection 4.2 we list
the normal form summands whose bundles have low codimension. Using this
information, we enumerate in Subsection 4.3 the bundles of infinitesimally
symplectic matrices with codimension ≤ 1.

4.1 Bundles of infinitesimally symplectic matrices

Our aim in this section is to define the notions of bundle and bundle codimen-
sion. The definition of bundle is somewhat longwinded and we proceed in the
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following stages. In the first and most tedious stage we consider symplectic
pairs over a real division ring D and define bundle equivalence of those sym-
plectic pairs possessing a single quadruplet of eigenvalues. Then we define
bundle equivalence for Γ-symplectic pairs possessing single quadruplets of
eigenvalues. Finally, we define bundle equivalence for arbitrary Γ-symplectic
pairs.

Suppose that D is a real division ring and that (M,R) is a symplec-
tic pair over D with a single quadruplet of eigenvalues ±µ, ±µ̄. By The-
orem 2.4 in [9], (M,R) can be written uniquely as a direct sum of normal
form summands (Mi, Ri), i = 1, . . . , r, where (Mi, Ri) has modulus µi, size ki,
k1 ≥ · · · ≥ kr, and index ρi. Let q denote the number of moduli with nega-
tive imaginary part (so q = 0 except possibly when D = C and µ ∈ I ∪ III).
Define indk =

∑
ki=k

ρi. We associate with the symplectic pair (M,R) the
set of invariants

I = {q; k1, . . . , kr; indk1 , . . . , indkr}.

It follows from [9] that I forms a complete set of invariants for equivalence
classes of symplectic pairs over D with this single quadruplet of eigenvalues.

Now suppose that (M1, R1) and (M2, R2) are two symplectic pairs over D
each with a single quadruplet of eigenvalues (not necessarily the same quadru-
plet). Let I1 and I2 denote the corresponding sets of invariants. We say that
the pairs (M1, R1) and (M2, R2) are bundle equivalent provided the eigenval-
ues lie in the same region (I–IV) of the complex plane and I1 = I2.

Next suppose that Γ acts on Rn and that (M,R) is a Γ-symplectic pair
with a single quadruplet of eigenvalues. As in Section 2 we can write (M,R)
as a direct sum of symplectic pairs (Mi, Ri) over real division rings Dj corre-
sponding to the isotypic decomposition of Rn. Two such Γ-symplectic pairs
are bundle equivalent if the corresponding summands on each isotypic com-
ponent are bundle equivalent.

Finally, suppose that (M,R) is a general Γ-symplectic pair. Write (M,R)
as a direct sum of summands (Mµ, Rµ) that are a direct sum of all those
normal from summands with eigenvalue µ. (This is analogous to the decom-
position in Section 3 but we now decompose over quadruplets of eigenvalues
rather than moduli). Two symplectic pairs (M1, R1) and (M2, R2) are bun-
dle equivalent if there is a one-to-one correspondence between summands
(M1,µ1 , R1,µ1) and (M2,µ2 , R2,µ2) that have a single quadruplet of eigenvalues
and are bundle equivalent.
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Definition 4.1 If R ∈ skΓ, then M1,M2 ∈ spΓ are bundle equivalent if
(M1, R) and (M2, R) are bundle equivalent. An equivalence class of bun-
dle equivalent orbits in spΓ(R) is called a bundle. The bundle codimension
codimbM of M ∈ spΓ(R), is defined to be the codimension of the bundle of
orbits of M in spΓ(R).

Remark 4.2 There are certain seemingly arbitrary choices that we have
made in the definition of bundle equivalence. For example, it is not clear in
general that it is important to preserve indices. However, when D = C there
are nonisomorphic symplectic forms (see [10], [9], [2]) and corresponding to
these are noncongruent matrices R ∈ sk. Preservation of indices is crucial
to distinguish the nonisomorphic symplectic forms.

In addition, the treatment of eigenvalues and moduli is designed to be
consistent with the results in [3], see Section 5 of this paper.

Suppose that (M,R) is a Γ-symplectic pair in normal form. Let µ ∈ C
and define the deficit d(µ) = 1/2 if µ 6= 0 and d(0) = 0. Then

codimbM = codimM −
∑

d(µ),

where the sum is over all distinct eigenvalues µ of M . (Note that we work
with eigenvalues rather than moduli here.) Thus a quadruplet of eigenvalues
±µ, ±µ̄ corresponds to a deficit of 2, 1 or 0 depending on whether µ ∈
I, II ∪ III or IV.

The computation of the bundle codimension is facilitated by the follow-
ing observations. First, the bundle codimension is superadditive, that is if
(M1, R1) and (M2, R2) are normal forms and M = M1 ⊕M2, R = R1 ⊕ R2,
then

codimb M ≥ codimb M1 + codimb M2. (4.1)

We have equality in equation (4.1) if and only if M1 and M2 have no common
nonzero eigenvalues, and zero eigenvalues of M1 and M2 lie in distinct isotypic
components.

Second, if M1 and M2 have the property that common moduli lie in
distinct isotypic components, then

codimbM = codimbM1 + codimbM2 +
∑

d(µ),

where the sum is over all common eigenvalues µ.
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4.2 Normal form summands with low bundle codimen-
sion

Tables 1 and 2 contain those normal form summands (M,R) with bundle
codimension 0 and 1 respectively, together with their versal unfoldings. The
tables are obtained as follows. First set r = 1 in the codimension formulas
in Section 3 (since we are working with single normal form summands). (For
the case µ = 0, D = R, take r + s = 1.) Recall that

codimbM = codimM −
∑

d(µ), (4.2)

where the sum is over the quadruplet of eigenvalues corresponding to the
modulus µ. Given a bundle codimension, we can choose one of the four
regions for the modulus µ and solve equation (4.2) for the possible division
rings D and sizes k. For example, to find the sizes of the normal form
summands with µ ∈ II of bundle codimension 1, we solve the equation

w(µ)k = 1 +
∑

d(µ) = 2.

Hence k = 2/w(µ) yielding a summand of size 2 if D = R, size 1 if D = C,
and no solution if D = H. The region for µ, size k, and division ring D,
specify uniquely (up to index) a normal form summand (M,R) in one of
Tables 1, 2 and 3 in [9].

Finally, the centralizer C(M,R) may be computed either directly, or us-
ing the results in Section 6. We use the transpose of a set basis elements for
C(M,R) to construct a versal unfolding of M suppressing those basis ele-
ments that correspond to merely perturbing the moduli within their region.
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µ D k M R

I R, C 1

(
α + iβ 0

0 −α + iβ

)
C

(
0 −1
1 0

)
C

I H 1

(
α + iβ 0

0 −α + iβ

)
H

(
0 −1
1 0

)
H

II R 1

(
α 0
0 −α

) (
0 −1
1 0

)
III R, C 1 (iβ)C ρiC

III H 1 (iβ)H ρiH

Table 1: Normal form summands (M,R) with codimbM = 0. The first three
columns show the region of the modulus µ, the underlying division ring D,
and the size k of each summand; α > 0, β 6= 0, β > 0 unless D = C, ρ = ±1
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µ D k M R

II R 2


α 1
λ α

0

0
−α −1
λ −α


 0

0 −1
−1 0

0 1
1 0

0


II C 1

(
α + iλ 0

0 −α + iλ

)
C

(
0 −1
1 0

)
C

III R, C 2

(
iβ 1
λ iβ

)
C

ρ

(
0 −1
1 0

)
C

III H 2

(
iβ 1
λ iβ

)
H

ρ

(
0 −1
1 0

)
H

IV R 2

(
0 1
λ 0

)
ρ

(
0 −1
1 0

)
IV C 1 iλC ρiC

IV H 1 iλH iH

Table 2: Versal unfoldings of normal form summands (M,R) with
codimbM = 1. The first three columns show the region of the modulus µ,
the underlying division ring D, and the size k of each summand. The (real)
unfolding parameter is denoted by λ. The trivial unfolding parameters that
adjust the values of α and β are not shown; α > 0, β 6= 0, β > 0 unless
D = C, ρ = ±1
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4.3 Enumeration of bundles with low codimension

Now suppose that Γ acts on Rn and that (M,R) is a Γ-symplectic pair. In
Theorems 4.3 and 4.4 we give necessary and sufficient conditions for M to
have bundle codimension 0 and 1.

Theorem 4.3 Let (M,R) be a Γ-symplectic pair. Then codimbM = 0 if
and only if (M,R) is a direct sum of normal form summands (Mj, Rj) such
that

(a) codimbMj = 0 for each j, and

(b) If µ ∈ C there is at most one j such that Mj has eigenvalue µ.

Theorem 4.4 Let (M,R) be a Γ-symplectic pair. Then codimb M = 1 if
and only if (M,R) is a direct sum of a normal form (M0, R0) with
codimbM0 = 0 and a normal form summand (M1, R1) with modulus µ such
that either

(a) codimbM1 = 1 and µ is not an eigenvalue of M0, or

(b) codimbM1 = 0, µ is an eigenvalue of M0, and lies in the region II∪ III,
and either

(i) the summand of (M0, R0) with eigenvalue µ belongs to a distinct
isotypic component of Rn, or

(ii) µ is not a modulus of M0 (necessarily µ ∈ III and D = C).

The proof of Theorems 4.3 and 4.4 is almost immediate from the defini-
tions. Note that by Remark 3.1 there is at most one summand from each
isotypic component with a given modulus µ. (This is true also for bundles of
codimension two.) It is this fact that allows us to work in terms of normal
form summands.

5 Application to bifurcation theory

In this section, we apply the results of the previous section to the problems
considered by Golubitsky and Stewart [5] and by Dellnitz, Melbourne and
Marsden [3]. In particular, we recover the results in those papers without
resorting to any ad hoc computations.
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We begin with the steady-state bifurcation [5]. Looking for eigenvalues
in region IV in Tables 1 and 2 we find that zero eigenvalues occur generically
in a one-parameter family. If D = R then there is a single normal form
summand of size 2 with zero eigenvalues and a versal unfolding is given by(

0 1
λ 0

)
.

The eigenvalues are given by µ = ±
√
λ and the eigenvalues split.

On the other hand, if D = C or H, then there is a single summand of
size 1 with zero eigenvalues and a versal unfolding is given by iλD. Over D
the eigenvalue is iλ corresponding to eigenvalues ±iλ when D = C and ±iλ
with multiplicity 2 when D = H. In both cases, the eigenvalues pass through
zero along the imaginary axis.

Next we turn to the 1-1 resonance [3]. This time we look for eigenvalues
in region III. According to Table 1, generically for each β > 0 there is at
most one summand with eigenvalues ±iβ. Moreover such summands have
size 1. In a one-parameter family, this picture can change in one of three
ways corresponding to parts (a), (b)(i), and (b)(ii) of Theorem 4.4.

(a) There is a summand of size 2 with eigenvalues ±iβ.

(b)(i) There are two summands of size 1 from distinct isotypic components
with eigenvalues ±iβ.

(b)(ii) There are two summands of size 1 from the same isotypic component
with eigenvalues ±iβ, but with distinct moduli.

Case (a) can occur with D = R,C or H and the versal unfolding is(
iβ 1
λ iβ

)
R
,

where R = C if D = R, and R = D otherwise. The eigenvalues are given by
µ = iβ ±

√
λ indicating that the eigenvalues split.

Case (b)(i) corresponds to the ‘independent passing’ case in [3]. The
unfolding parameter moves the eigenvalues apart, but they remain on the
imaginary axis.

Finally, case (b)(ii) only occurs when D = C and corresponds to the
‘mysterious’ cases in [3] which were apparently of a different nature to the
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independent passing cases. Here they are quite analogous. Moreover with
hindsight, we can see that this was forced from the outset by the fact that
real-complex commuting matrices preserve the eigenspaces of iβ and −iβ
separately. (We note also that this phenomenon is independent of the in-
dices ρ and hence occurs for each of the nonisomorphic symplectic forms on
C2, [2] (both complex of the same type and complex duals in the terminology
of [10])).

We illustrate this viewpoint further by making a prediction for dissipative
systems. Suppose that Γ is a group with complex irreducibles present and
consider Γ-equivariant Hopf/Hopf mode-interactions. Such an interaction is
at least codimension two. Moreover if there is a 1-1 resonance, then the
codimension is at least three and generically the linearization is nonsemisim-
ple. We claim that semi-simple 1-1 resonances can occur generically in a
three-parameter family. This is no more or less surprizing than the corre-
sponding phenomenon in one-parameter families for Hamiltonian systems.
However the significance for dissipative systems is much less due to the high
codimension.

6 Derivation of the codimension formulas

In this section, we obtain the codimension formulas listed in Section 3. We
divide the section into three subsections. In Subsection 6.1 we work within
the axiomatic framework set up in [9] and prove an abstract version of Galin’s
theorem. As in [9], it is only the case of normal form summands with mod-
ulus 0 over R that does not fit into this abstract setting. This is considered
as a special case in Subsection 6.2. Finally, in Subsection 6.3 we use these
results to derive the required formulas.

6.1 Axiomatic framework

Let D be one of the real division rings R,C or H and let M denote the space
of p × p matrices with entries in D. We denote by 1M the identity matrix
in M. Suppose that L and Q are matrices with entries in M. Define Z(L)
to be the set of matrices with entries in M that commute with L. Our aim
is to compute the centralizer

C(L,Q) = {G ∈ Z(L); GQ+QGT = 0}.
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In [9], the emphasis was on the complementary space

Z(L,Q) = {G ∈ Z(L); GQ−QGT = 0}.

We shall exploit the following relationship between C(L,Q) and Z(L,Q).

Proposition 6.1 Suppose that Q is nonsingular, QT =±Q and L satisfies
LQ+QLT = 0. Then Z(L) = C(L,Q)⊕ Z(L,Q).

Proof If G ∈ C(L,Q) ∩ Z(L,Q) then GQ = QGT = −GQ. Since Q is
nonsingular, we have that C(L,Q)∩Z(L,Q) = 0. Now write G = (C+Z)/2
where

C = G−QGTQ−1, Z = G+QGTQ−1.

An easy computation shows that if G ∈ Z(L), then C ∈ C(L,Q) and Z ∈
Z(L,Q) as required. �

Recall from [9] that a pair of matrices (L,Q) is a W-summand (of size k)
if L = Ik ⊗ π + Nk ⊗ φ and Q = Yk ⊗ τ , where π, φ, τ ∈ M and Yk is a real
nonsingular k×k matrix such that certain hypotheses are satisfied including
the following for some choice of σ1, σ2 = ±1.

(H1) φ, τ, Yk are nonsingular.

(H2) π is semisimple, τT = τ−1 = σ1τ , Y T
k = Y −1

k = −σ1Yk.

(H3) πτ = −τπT , φτ = −σ2τφ
T , NkYk = σ2YkN

T
k .

(H4) Z(π) ⊂ Z(φ).

Suppose that (Li, Qi) is a W-summand of size ki for i = 1, . . . , r, and that
k1 ≥ k2 ≥ · · · ≥ kr. Let L = L1 ⊕ · · · ⊕ Lr and Q = Q1 ⊕ · · · ⊕ Qr. Then
(L,Q) is a W-sum if

(a) Li = Iki ⊗ π +Nki ⊗ φ where π and φ are independent of i.

(b) If ki = kj then Li = Lj and Qi = Qj.

(c) If ki > kj and A is a kj × kj matrix, then Yki

(
0
A

)
=

(
YkjA

0

)
.

If (L,Q) is a W-sum, define Z(L,Q)0 to consist of those matrices H ∈
Z(L,Q) that have the form H = H1 ⊕ · · · ⊕Hr where Hi = ρiIki ⊗ 1M and
ρi = ±1. (This is slightly different from the definition of Z(L,Q)0 in [9].)
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Theorem 6.2 (Abstract Galin Theorem) Suppose that (L,Q) is a W-
sum with summands of size k1 ≥ · · · ≥ kr and let H ∈ Z(L,Q)0.

(a) If σ2 = 1, then

dimC(L,HQ) =
r∑
i=1

ki[i dimZ(π)− dimZ(π, τi)].

(b) If σ2 = −1, then

dimC(L,HQ) =
r∑
i=1

[(i− 1/2)ki dimZ(π) + δidi],

where di = dimZ(π)/2− dimZ(π, τi) and δi =

{
1; ki odd
0; ki even

.

Remark 6.3 In many cases we find that dimZ(π, τi) = dimZ(π)/2 for
each i. Then we have the uniform simplified formula

dimC(L,HQ) =
dimZ(π)

2

r∑
i=1

(2i− 1)ki.

The remainder of this section is devoted to proving Theorem 6.2. We
begin by considering the structure of matrices in C(L,HQ). We can partition
such a matrix P into blocks Pij, 1 ≤ i, j ≤ r where Pij is a ki × kj matrix
with entries in M. The conditions PL = LP , PHQ+HQP T = 0 become

PijLj = LiPij, PijQj + ρiρjQiP
T
ji = 0.

Let kij = min(ki, kj).
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Proposition 6.4 A matrix P = {Pij} lies in Z(L) if and only if the follow-
ing is true.

(a) Pij =
(

0 Fij
)

if ki ≤ kj or Pij =

(
Fij
0

)
if ki ≥ kj, where Fij is a

kij × kij matrix with entries in M.

(b) Fij =

kij−1∑
s=0

N s
kij
⊗ fij,s where fij,s ∈ Z(π).

Proof See [9]. �

We shall refer to the blocks Pii as diagonal blocks and Pij, i 6= j, as
off-diagonal blocks. Note that Fii = Pii for each i.

Proposition 6.5 Suppose that P ∈ Z(L). Then P ∈ C(L,HQ) if and only
if

fij,sτj + ρiρjσ
s
2τif

T
ji,s = 0,

for all 1 ≤ i ≤ j ≤ r.

Proof Observe that P ∈ C(L,HQ) if and only if the equation PijQj +
ρiρjQiP

T
ji holds for all i, j. We shall compute the restrictions that these

conditions impose for i ≤ j. By taking transposes it can be seen that the
remaining conditions impose no further restrictions.

By [9] we have for i ≤ j,

Pij(Ykj ⊗ 1M) = (Yki ⊗ 1M)P̃ij,

where P̃ij =

(
0

F̃ij

)
and F̃ij =

kij−1∑
s=0

σs2(N s
kij

)T ⊗ fij,s. Hence

QiP
T
ji = −ρiρjPijQj

= −ρiρjPij(Ykj ⊗ 1M)(Ikj ⊗ τj)
= −ρiρj(Yki ⊗ 1M)P̃ij(Ikj ⊗ τj)
= −ρiρjQi(Iki ⊗ τ−1

i )P̃ij(Ikj ⊗ τj).

This yields the restriction

(Iki ⊗ τi)P T
ji = −ρiρjP̃ij(Ikj ⊗ τj),
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or
kj−1∑
s=0

(N s
kj

)T ⊗ τifTji,s = −ρiρj
kj−1∑
s=0

σs2(N s
kj

)T ⊗ fij,sτj.

The result follows from the linear independence of the matrices N s
kj

. �

Proof of Theorem 6.2
First suppose that P ∈ Z(L). It follows from Proposition 6.4 that each block
Pij is determined by kij elements fij,0, . . . , fij,kij−1 ∈ Z(π). For example,
block P11 is determined by k1 such elements, blocks P12, P22 and P21 by k2

elements and so on. It follows that

dimZ(L) =
r∑
i=1

(2i− 1)ki dimZ(π).

Moreover the off-diagonal blocks contribute
∑r

i=1(2i− 2)ki dimZ(π).
Now suppose that P ∈ C(L,HQ). If i < j, then it follows from Propo-

sition 6.5 that we may consider fji,s as being an arbitrary element of Z(π)
but then fij,s is determined. Hence the contribution to dimC(L,HQ) from
the off-diagonal terms is half the contribution to dimZ(L), namely

r∑
i=1

(i− 1)ki dimZ(π). (6.1)

Next we compute the contribution to dimC(L,HQ) of the diagonal
blocks. By Proposition 6.5,

fii,sτi = −(σ2)sτif
T
ii,s.

If σ2 = 1 then this implies that fii,s ∈ C(π, τi). Thus the diagonal blocks
contribute

∑r
i=1 ki dimC(π, τi) or by Proposition 6.1,

r∑
i=1

ki(dimZ(π)− dimZ(π, τi)). (6.2)

Part (a) of the theorem is obtained by adding (6.1) and (6.2).
Finally suppose that σ2 = −1. Then fii,s ∈ Z(π, τi) or C(π, τi) de-

pending on whether s is odd or even. Since dimZ(π) = dimZ(π, τi) ⊕
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dimC(π, τi) we may pair off terms so that if ki is even, the block Pii con-
tributes dimZ(π)ki/2. If ki is odd, then there is an additional term

dimC(π, τi) = dimZ(π)− dimZ(π, τi).

Putting all of this together yields part (b) of the theorem. �

6.2 The zero eigenvalue case

In this subsection we consider the zero eigenvalue case when D = R.

Theorem 6.6 Suppose that R ∈ sk, M ∈ sp(R), and that M has only zero
eigenvalues. Then the dimension of C(M,R) is given by

1
2

r∑
i=0

(2i− 1)ki +
s∑
j=1

[2(2j − 1)`j + 1] + 2
r∑
i=1

s∑
j=1

min(ki, `j).

Proof It follows from results in [9] that (M,R) ∼ (L,HQ) where L =
L1 ⊕ L2, Q = Q1 ⊕ Q2, (L1, Q1), (L2, Q2) are W-sums with summands of
even and odd size respectively and H = H1 ⊕ H2 where Hj ∈ Z(Lj, Qj)0.
Moreover we can take H2 = I. We have

L1 =Nk1 ⊕ · · · ⊕Nkr L2 =(N`1 ⊗ 1C)⊕ · · · ⊕ (N`s ⊗ 1C)
H1Q1 =ρ1Xk1 ⊕ · · · ⊕ ρrXkr H2Q2 =(X`1 ⊗ iC)⊕ · · · ⊕ (X`s ⊗ iC)

where ρi = ±1. Suppose that G ∈ C(L,HQ) and write G =

(
G11 G12

G21 G22

)
.

Observe that G11 ∈ C(L1, H1Q1) and G22 ∈ C(L2, H2Q2). Now (L1, Q1) and
(L2, Q2) are W-sums with σ2 = −1, so we apply Theorem 6.2(b). In the case
of (L1, Q1) each ki is even and dimZ(π) = 1 so that

dimC(L1, H1Q1) =
r∑
i=1

(i− 1/2)ki. (6.3)

For (L2, Q2) each `j is odd and dimZ(π) = 4, dimZ(π, τ) = 1. Hence

dimC(L2, H2Q2) =
s∑
j=1

[4(j − 1/2)`j + 1]. (6.4)
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It remains to compute the contribution of the blocks G12 and G21. These
satisfy the equations

G12L2 = L1G12 (6.5)

G21L1 = L2G21 (6.6)

G12Q2 = −H1Q1(G21)T (6.7)

G21H1Q1 = −Q2(G12)T (6.8)

We claim that equations (6.6) and (6.8) are redundant. Suppose that
G12 and G21 satisfy equations (6.5) and (6.7). Taking the transpose of
equation (6.7) yields equation (6.8). Next solve for G12 in terms of G21 in
equation (6.7) and substitute into equation (6.5) to obtain

H1Q1(G21)T (Q2)−1L2 = L1H1Q1(G21)T (Q2)−1.

Using the relations LjQj + Qj(Lj)T = 0 this reduces to equation (6.6) veri-
fying the claim.

Since equation (6.7) determines G21 once G12 is given, we have only to
compute the number of matrices G12 satisfying equation (6.5). Write G12 =
{G12

ij } 1 ≤ i ≤ r
1 ≤ j ≤ s

. Then G12
ij satisfies the equation

NkiG
12
ij = G12

ij (N`j ⊗ I2).

For each i, j, set G12
ij = {gαβ} 1 ≤ α ≤ ki

1 ≤ β ≤ `j

where gαβ = (gαβ,1, gαβ,2), gαβ,t ∈ R
for t = 1, 2. Let Et = {gαβ,t}, t = 1, 2. Then it is easily seen that

NkiEt = EtN`j .

It follows from Proposition 6.4 that for each 1 ≤ i ≤ r, 1 ≤ j ≤ s, t = 1, 2,
Et has the form (

0 Ft
)
, or

(
Ft
0

)
,

where

Ft =

min(ki,`j)∑
s=0

fij,t,sN
s
min(ki,`j)

for fij,t,s ∈ R. In particular there are min(ki, `j) degrees of freedom in Ft.
Summing over i, j and t we see that the number of matrices G12 satisfying
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equation (6.5) is given by

2
r∑
i=1

s∑
j=1

min(ki, `j). (6.9)

The dimension of C(L,HQ) is given by the sum of the contributions in
equations (6.3), (6.4) and (6.9). �

6.3 Codimension formulas

In this subsection, we use the results of Subsections 6.1 and 6.2 to derive
the codimension formulas in Section 3. Suppose that (M,R) is a symplectic
pair over D with a single quadruplet of eigenvalues ±µ, ±µ̄. If D = R
and µ = 0, then the codimension formula follows from Theorem 6.6. In all
other cases, (M,R) ∼ (L,HQ) where (L,Q) is a W-sum, H ∈ Z(L,Q)0,
and the matrices µ, φ, τi lie in one of the rows (i)–(ix) of Table 4 in [9]. The
corresponding spaces Z(π) and Z(π, τ) are given in Table 5 in [9]. For entries
other than those in row (ix), we have dimZ(π) = 2 dimZ(π, τ) and we are
in the situation of Remark 6.3. Defining the weight w(µ) to be dimZ(π)/2
yields the required result.

Row (ix) corresponds to the caseD = H and µ = 0. We have dimZ(π) = 4
and dimZ(π, τ) = 3 or 1 depending in whether the size k of the summand
is odd or even. In addition the number σ2 in the definition of W-summand
has the value −1. The required formula follows from Theorem 6.2(b).
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