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Abstract. The admissible symmetry groups of attractors for continuous equi-
variant mappings were classified in Ashwin and Melbourne [1994] and Mel-

bourne, Dellnitz and Golubitsky [1993]. We consider extensions of these results
to include attractors in fixed-point subspaces, attractors for equivariant diffeo-

morphisms and flows, and attractors in the presence of a continuous symmetry
group. Our results lead to surprising (if somewhat speculative) implications

for both theory and applications of equivariant dynamical systems.

1. Introduction

Suppose that Γ ⊂ O(n) is a compact Lie group acting on Rn. We are interested
in the possible symmetry groups for attractors of Γ-equivariant dynamical systems.
If A is a subset of Rn, define the symmetry group of A to be the subgroup of Γ

ΣA = {γ ∈ Γ; γA = A}.
Also, define the subgroup of elements that fix A pointwise

TA = {γ ∈ Γ; γx = x for all x ∈ A}.
It is easily seen that TA is a normal subgroup of ΣA (see Proposition 3).

Following Melbourne et al [1993], we define an attractor to be a Liapunov stable
(not necessarily asymptotically stable) ω-limit set. An attractor A is said to be
Σ-symmetric if ΣA = Σ and TA = 1. When Γ is finite, the combined results of
Melbourne, Dellnitz and Golubitsky [1993] and Ashwin and Melbourne [1994] yield
a classification of the (strongly) admissible subgroups Σ: those subgroups for which
there exists a continuous Γ-equivariant mapping f : Rn → R

n with a (connected)
Σ-symmetric attractor. We note that when Σ is admissible, the attractor can be
constructed so as to be asymptotically stable.

In order to state these results, we recall some notation. An element τ ∈ Γ is a
reflection if dim Fix(τ) = n − 1. Define KΣ to be the set of reflections in Γ − Σ
and set LΣ =

⋃
τ∈KΣ

Fix(τ). If I is a subgroup of Γ, define IR to be the subgroup
generated by reflections in I. Finally, we say that Σ is a cyclic extension of a
subgroup ∆ if ∆ is normal in Σ and Σ/∆ is cyclic.

Theorem 1. Suppose that Γ is a finite subgroup of O(n), n ≥ 3, and that Σ is a
subgroup of Γ. Then the following statements are equivalent.

(a) Σ is strongly admissible,
(b) Σ fixes a connected component of Rn − LΣ, and
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(c) There is an isotropy subgroup I ⊂ Γ such that IR ⊂ Σ ⊂ I.

A subgroup Σ is admissible if and only if it is a cyclic extension of a strongly
admissible subgroup.

Remark 1. (a) Theorem 1 is proved in Melbourne et al [1993] and Ashwin and
Melbourne [1994]. Condition (b) is the more geometric characterization of strong
admissibility, while condition (c) is convenient for doing calculations.
(b) Conditions (b) and (c) are equivalent for all n ≥ 1. In addition, the last
statement of Theorem 1 is valid for n ≥ 1. In fact the theorem fails only when
n = 2 and Γ ⊂ O(2) is cyclic. In this case, conditions (b) and (c) hold for all
subgroups Σ and indeed all subgroups are admissible. However, only Γ and 1 are
strongly admissible (Ashwin and Melbourne [1994], Theorem 7.2(a)).

The setting in Theorem 1 can be generalized to include various combinations of
the following three issues.

(i) Attractors in proper fixed-point subspaces (TA 6= 1).
(ii) Attractors for differentiable/invertible mappings or flows.
(iii) Attractors in the presence of a continuous group of symmetries.

In each of these situations, the results in Melbourne et al [1993] place (nonoptimal
and sometimes vacuous) restrictions on the possible symmetry groups of attractors.
Eventually, we would like to have classifications of the admissible and strongly
admissible subgroups in each of these situations. The purpose of this paper is to
describe some partial progress in these directions.

Our results on (i) are complete and are described in Section 2. The impor-
tant issue here is to take account of hidden symmetries. There is an additional
subtlety because of recent work of Alexander et al [1992] and Buescu and Stew-
art [1993] indicating that ω-limit sets that lie in proper invariant subspaces often
enjoy attracting properties in a strong measure-theoretic sense and yet violate our
topological notion of stability. Thus it is important to rule out such ω-limit sets
when proving inadmissibility of a subgroup Σ. In Section 2 we give an appropriate
generalization of the definition of attractor that includes these examples and for
which our theorems still hold.

In Section 3 we describe some partial results on (ii). Additional restrictions
on symmetry groups are obtained for invertible mappings and we conjecture that
these conditions are optimal (at least in high enough dimensions) even for diffeo-
morphisms and flows. Moreover, in the presence of differentiability assumptions, we
expect that admissible symmetry groups may occur in a structurally stable fashion.

So far we have dealt with finite groups Γ and divided the subgroups of Γ into those
that are admissible and those that are not admissible. In contrast, in situation (iii)
where Γ is not assumed to be finite but an arbitrary compact Lie group, it is possible
that some admissible subgroups occur as the symmetry group of an attractor only
in degenerate situations. Examples of this phenomenon for specific actions of Γ are
given in Ashwin and Chossat [1992] and Ashwin and Stewart [1993]. These results
are extended in Section 4.

Our simplest result (Theorem 12) is that if Γ is connected and abelian (a torus),
then ω-limit sets typically are fully symmetric. The situation is more subtle if
Γ is not connected and abelian, since there are bounds on the symmetry groups
of relative periodic orbits (Field [1980], Krupa [1990], Field [1991]). However in
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Theorem 15 we show that ‘sufficiently chaotic’ ω-limit sets typically have symmetry
at least Γ0 (the connected component of the identity in Γ).

For example, if Γ = SO(2) then ω-limit sets typically are fully symmetric. If
Γ = O(2), sufficiently chaotic ω-limit sets typically have symmetry SO(2) or O(2).
On the other hand, there can exist robust D1-symmetric period two points. We
conjecture that these subgroups O(2), SO(2) and D1 are typically the only ones
that arise as the symmetry group of an attractor.

Finally, in Section 5 we consider the implications of our results both for theory
(detectives, see Barany, Dellnitz and Golubitsky [1993] and Dellnitz, Golubitsky
and Nicol [1993]) and applications (turbulent Taylor vortices, see Brandstater and
Swinney [1987] and the Faraday experiment, see Gluckman et al [1993]). These
implications are rather surprising, yet necessarily speculative due to the vagueness
of the phrase ‘sufficiently chaotic’.

Throughout this paper we shall make frequent use of the following result of
Chossat and Golubitsky [1998].

Proposition 2. Suppose that f : Rn → R
n is continuous and commutes with a

matrix ρ. Let A ⊂ Rn be an attractor for f . If A ∩ ρA 6= ∅, then ρA = A.

Remark 2. Proposition 2 was originally proved under a different definition of at-
tractor in Chossat and Golubitsky [1988], Proposition 1.1, and was reproved under
the current definition in Melbourne et al [1993], Proposition 4.8.

2. Attractors in fixed-point subspaces

In this section we extend the results of Melbourne et al [1993] and Ashwin and
Melbourne [1994] to include attractors that lie in proper fixed-point subspaces.

Proposition 3. Suppose that Γ ⊂ O(n) is a finite group and that A is a subset of
R
n. Then TA is an isotropy subgroup of Γ and ΣA is contained in the normalizer

N(TA) of TA.

Proof. Let V = Fix(TA). Then it is immediate from the definition of TA that
A ⊂ V . We claim that V = Fix(I) for some isotropy subgroup I ⊂ Γ. Then TA ⊂ I
but since A ⊂ Fix(I) we have also that I ⊂ TA. It follows that TA = I is an
isotropy subgroup of Γ.

To prove the claim, observe that if v ∈ V and Σv is the isotropy subgroup of v,
then v ⊂ Fix(Σv) ⊂ Fix(TA) = V . It follows that

V =
⋃
v∈V

Fix(Σv).

Since Γ is finite, there are finitely many isotropy subgroups and so V = Fix(Σv0)
for some v0 ∈ V . The claim follows with I = Σv0 .

Finally we show that ΣA ⊂ N(TA). Suppose that t ∈ TA and σ ∈ ΣA. If x ∈ A,
σx ∈ A and hence tσx = σx. It follows that σ−1tσx = x and σ−1tσ ∈ TA as
required.

Definition 1. A pair of subgroups (Σ, T ) of Γ is (strongly) admissible if there is
a continuous Γ-equivariant map f : Rn → R

n with a (connected) attractor A such
that ΣA = Σ and TA = T .

Remark 3. Thanks to Proposition 3 we may restrict attention exclusively to pairs
(Σ, T ) where T is an isotropy subgroup and Σ ⊂ N(T ). If T = 1 then we recover
the notion of (strong) admissibility in Ashwin and Melbourne [1994].
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As pointed out in Melbourne et al [1993] the results there extend to give re-
strictions on the symmetries of attractors in fixed-point subspaces. The argu-
ment is standard. It is well-known that f : Rn → R

n restricts to a mapping
g : Fix(T ) → Fix(T ). Moreover, g commutes with the action of the normalizer
N(T ) on Fix(T ). Let Γ′ = N(T )/T . Then we can regard Γ′ as a finite subgroup
of O(m) where m = dim Fix(T ) and g as a Γ′-equivariant mapping. If A is an
attractor for f with TA = T and ΣA = Σ then A is a Σ′-symmetric attractor for
g where Σ′ = Σ/T . In addition, the restrictions in Melbourne et al [1993] are
obtained without using the fact that TA = 1. Hence we have the following result.

Proposition 4. Suppose that (Σ, T ) is a (strongly) admissible pair of subgroups
in Γ. Let Γ′ = N(T )/T and Σ′ = Σ/T . Then Σ and Σ′ are (strongly) admissible
subgroups of Γ and Γ′ respectively.

The conditions in Proposition 4 are not optimal. This is due to the existence of
hidden symmetries, see Golubitsky et al [1984] or Golubitsky et al [1988]. These are
elements γ ∈ Γ that do not lie in N(T ) (and hence do not preserve Fix(T )), yet have
the property that γFix(T ) ∩ Fix(T ) 6= {0}. A simple example of this phenomenon
occurs for the 12 element group Γ = T ⊂ O(3). Since Γ contains no reflections,
every subgroup Σ is strongly admissible. We consider the pair (Σ, T ) = (D2,Z2).
The isotropy subgroup Z2 has a one-dimensional fixed-point subspace and D2 is the
normalizer of Z2 in T. Hence Σ′ = Γ′ (= Z2) so that Σ′ is a strongly admissible
subgroup of Γ′. Thus both conditions in Proposition 4 are satisfied. However a
connected attractor A with D2-symmetry in Fix(Z2) must intersect the origin so
that γA ∩ A 6= ∅ for all γ ∈ T. By Proposition 2, ΣA = T. It follows that the pair
(D2,Z2) is not strongly admissible.

Nevertheless, it is possible to state a theorem that is completely analogous to
Theorem 1 and which takes account of these hidden symmetries. We begin by
refining the terminology used in the introduction.

Define KΣ,T to be the set of elements τ ∈ Γ − Σ such that Fix(τ) intersects
Fix(T ) in a codimension one subspace. (Think of KΣ,T as being made up elements
in N(T ) − Σ that act as reflections on Fix(T ) (cf. the definition of KΣ) together
with ‘hidden reflections’ in Γ−N(T ).) Then we set LΣ,T =

⋃
τ∈KΣ,T

Fix(τ). If I is
a subgroup of Γ, define IT to be the subgroup generated by elements in KT,T ∩ I.
Finally, we say that a pair (Σ, T ) is a cyclic extension of a pair (∆, T ) if Σ is a
cyclic extension of ∆.

Theorem 5. Suppose that Γ is a finite subgroup of O(n), that T is an isotropy
subgroup of Γ with dim Fix(T ) ≥ 3, and that Σ is a subgroup of Γ satisfying T ⊂
Σ ⊂ N(T ). Then the following statements are equivalent.

(a) The pair (Σ, T ) is strongly admissible.
(b) Σ fixes a connected component of Fix(T )− LΣ,T .
(c) There is an isotropy subgroup I ⊂ Γ such that IT ⊂ Σ ⊂ I.

A pair (Σ, T ) is admissible if and only it is a cyclic extension of a strongly admissible
pair.

Proof. Many of the details of the proof are exactly the same as for the corresponding
results in Melbourne et al [1993] and Ashwin and Melbourne [1994]. In these cases,
we give the references and omit the details.

The proof of equivalence of (b) and (c) is identical to that required to prove
equivalence of (b) and (c) in Theorem 1, (changing Rn to Fix(T ), LΣ to LΣ,T and
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IR to IT ) see Ashwin and Melbourne [1994], Theorem 3.2. Similarly, the fact that
condition (a) implies condition (b) and necessity of the condition for admissibility
are proved by adapting the arguments used to prove Melbourne et al [1993], Propo-
sition 4.9, and Melbourne et al, Theorem 4.10, respectively. (Alternatively, see the
end of this section where these implications are rederived for a more general notion
of attractor).

It remains to prove that condition (b) implies condition (a) and that the condition
for admissibility is sufficient. Suppose that C is a connected component of Fix(T )−
LΣ,T fixed by Σ. Let C ′ consists of those points in C with isotropy subgroup
T . Following the argument (and using the terminology) in Section 6 of Ashwin
and Melbourne [1994], an Eulerian, extendable Σ-graph may be embedded in C ′.
Let A be the embedded graph. Then ΣA = Σ, TA = T and γA ∩ A = ∅ for
γ ∈ N(T )−Σ. Moreover, A is topologically transitive under a suitable Σ-equivariant
mapping (Ashwin and Melbourne [1994] Theorem 4.3). Provided γA∩A = ∅ for all
γ ∈ Γ−N(T ) we may prove as in Ashwin and Melbourne [1994], Theorem 5.4, that
(Σ, T ) is strongly admissible and that any cyclic extension of (Σ, T ) is admissible.

Let H = {x ∈ Fix(T ); γx ∈ Fix(T ) for some γ ∈ Γ−N(T )}. Then H is a finite
union of proper subspaces of Fix(T ) and A can be embedded so that A ∩ H is
finite. A problem arises only if A intersects two points (not necessarily distinct) of
H related by an element γ ∈ Γ − Σ. Such a situation can be avoided by changing
the embedding slightly unless these points are also related by an element σ ∈ Σ.
But this means that A contains a point x with σx = γx, that is x ∈ Fix(δ) where
δ = γ−1σ. But δ 6∈ Σ contradicting the fact that x has isotropy T .

There are two further statements of the characterization of strong admissibility
in Theorem 5. Define MΣ =

⋃
γ∈Γ Fix(γ). We have the conditions

(d) Σ fixes a connected component of Fix(T )−MΣ,
(e) There is an isotropy subgroup I ⊂ Γ such that Σ ⊂ I and such that if J ⊂ I

is an isotropy subgroup and Fix(J) intersects Fix(T ) in a codimension one
subspace then J ⊂ Σ,

which are clearly equivalent to conditions (b) and (c) respectively. Note that con-
dition (d) is particularly easy to state.

Remark 4. (a) When T = 1 we have Fix(T ) = R
n, LΣ,T = LΣ and IT = IR and

recover Theorem 1.
(b) If KT,T ⊂ N(T ) (that is, there are no hidden reflections) then Proposition 4
is optimal. The easiest way to verify this condition is to check that there are no
isotropy subgroups J with dim Fix(J) = dim Fix(T )− 1.
(c) As in Ashwin and Melbourne [1994] there is the possibility of additional topo-
logical restrictions when Fix(T ) is one- or two-dimensional. Again as in Ashwin
and Melbourne [1994], these restrictions are very mild. Theorem 5 fails only when
dim Fix(T ) = 2, Γ′ = N(T )/T is a cyclic subgroup of O(2), and (Σ, T ) is a pair
with Σ 6= T and Σ 6= N(T ). Such pairs are admissible (as cyclic extensions of the
strongly admissible pair (T, T )) but are not strongly admissible by Proposition 4
and Ashwin and Melbourne [1994], Theorem 7.2(a). This is the case even though
conditions (b) and (c) may be valid. Finally, the pair (N(T ), T ) is sometimes but
not always strongly admissible depending on the validity of conditions (b) and (c).
(d) If Σ is an isotropy subgroup of Γ, then (Σ, T ) is strongly admissible (with I = Σ
in condition (c)).



6 IAN MELBOURNE

Two situations in which Proposition 4 is optimal are given in Remark 4(a) and
(b). We give two further instances in which Proposition 4 is optimal.

Corollary 6. (a) If Γ is generated by reflections, (Σ, T ) is strongly admissible if
and only if Σ is an isotropy subgroup (equivalently Σ is strongly admissible).

(b) Suppose that dim Fix(T ) = n − 1. Then (Σ, T ) is strongly admissible if and
only if Σ is strongly admissible.

Proof. (a) By Ashwin and Melbourne [1994], Corollary 3.3, the isotropy subgroups
of Γ are the same as the strongly admissible subgroups. Now apply Proposition 4
and Theorem 5(c).
(b) Since dim Fix(T ) = n− 1, LΣ,T = LΣ.

If T = 1 we can proceed as in Ashwin and Melbourne [1994]. Also if T is
generated by a single reflection, we can apply Corollary 6(b). At the other extreme,
when T = Γ, there is the single pair (Γ,Γ) which is trivially strongly admissible.
The next case to consider is when T is a maximal isotropy subgroup of Γ.

Proposition 7. Suppose that Γ is a finite subgroup of O(n) and that T is a max-
imal isotropy subgroup of Γ. Let d = dim Fix(Γ) − dim Fix(T ). If d ≥ 2 any pair
(Σ, T ) is strongly admissible. If d = 1 the only strongly admissible pairs are (Γ, T )
(if N(T ) = Γ) and (T, T ). Any other pair (Σ, T ) is admissible if Σ/T is cyclic and
inadmissible if the quotient is noncyclic.

Proof. The pairs (Σ, T ) with Σ = Γ (if applicable) and Σ = T are strongly admis-
sible by Remark 4(d) so we may suppose that Σ 6= Γ and Σ 6= T . Since T is a
maximal isotropy subgroup, our only choice of isotropy subgroup in condition (c)
is I = Γ. If d ≥ 2, ΓT is trivial and condition (c) is satisfied. However, if d = 1,
then condition (e) fails with J = Γ.

Remark 5. (a) If dim Fix(T ) is odd, then N(T )/T is isomorphic to Z2 or 1. In
addition, if dim Fix(T ) = 1 we have d = 1 and there are three possibilities:

(i) N(T ) = T . There is a single pair (T, T ) which is strongly admissible.
(ii) N(T ) = Γ. There are two pairs (T, T ) and (Γ, T ) both of which are strongly

admissible.
(iii) N(T ) 6= T,Γ. There is a pair (T, T ) which is strongly admissible and a pair

(N(T ), T ) that is nonstrongly admissible.

(b) Part (a) applies to the groups Dm ⊂ O(2) as follows. The only nontrivial
isotropy subgroup is T = D1 with dim Fix(T ) = 1. Possibilities (i), (ii) and (iii)
correspond to the case m odd, the case m = 2 and the case m even, m ≥ 4
respectively.

Finally, we address the subtlety concerning the definition of attractor that was
mentioned in the introduction. Results of Alexander et al [1992] and Buescu and
Stewart [1993] indicate that the definition of attractor as a stable ω-limit set is
often inappropriate for attractors in proper invariant subspaces. However, these
results suggest that the following definition is appropriate.

Definition 2. Suppose that TA = T . Then A is an attractor in Fix(T ) if

(i) A is an ω-limit set,
(ii) A is Liapunov stable for the map f restricted to Fix(T ),
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(iii) For any point y ∈ A there is an open neighborhood V of y (in Rn) such that
any smaller neighborhood V ′ of y has a subset V ′′ of (Lebesgue) measure
greater than half that of V ′ such that ω(z) = A for z ∈ V ′′.

In the remainder of this section we show that Theorem 5 remains valid when
we allow this different notion of an attractor in Fix(T ). From now on we take the
obvious generalization of the definition of (strong) admissibility of a pair (Σ, T ).
Of course, it is sufficient to show that condition (b) implies condition (a) and
that the necessary condition for admissibility is valid. We begin by generalizing
Proposition 2.

Proposition 8. Let Γ ⊂ O(n) with isotropy subgroup T and ρ ∈ Γ. Suppose that
f : Rn → R

n is continuous and Γ-equivariant. Let A ⊂ Fix(T ) be an attractor in
Fix(T ). If A ∩ ρA 6= ∅ then ρA = A.

Proof. First note that by equivariance, ρA is an attractor in Fix(ρTρ−1). Suppose
that A ∩ ρA 6= ∅ and let y ∈ A ∩ ρA. Choose neighborhoods V for y respect to
A and ρA as in part (iii) of Definition 2 and let V ′ be the intersection of these
neighborhoods. Then the two subsets V ′′ corresponding to the two attractors must
intersect and there is a point z such that ω(z) = A and ω(z) = ρA.

It is now an easy matter to show that condition (b) implies condition (a) in
Theorem 5. Suppose that A is a connected attractor in Fix(T ) and that ΣA = Σ.
By Proposition 8, we deduce that A ∩ LΣ,T = ∅. Hence the connected set A lies in
a connected component of Fix(T )−LΣ,T which is therefore fixed by Σ as required.

Finally, suppose that (Σ, T ) is admissible. We follow the proof of Melbourne
et al [1993], Theorem 4.10, to show that (Σ, T ) is a cyclic extension of a strongly
admissible pair. Let A be a Σ-symmetric attractor in Fix(T ). Let H be the union
of all fixed-point subspaces not intersected by A:

H =
⋃

Fix(γ)∩A=∅

Fix(γ),

where γ ∈ Γ, and set L = H ∩Fix(T ). The Γ-equivariant map f restricts to a map
g : Fix(T )→ Fix(T ). Let PL ⊂ Fix(T ) denote the preimage set

PL =
⋃
n≥0

g−n(L).

By Definition 2(iii) A is an attractor (stable ω-limit set) for g and we may apply
Melbourne et al [1993], Corollary 2.5. Since A∩L = ∅, A is covered by finitely many
connected components C0, . . . , Cr−1 of Fix(T ) − PL and these connected compo-
nents are permuted cyclically by g. Moreover Σ acts on the connected components
and this action commutes with the cyclic action of g.

Define ∆i = {σ ∈ Σ; σCi = Ci}. As in Melbourne et al [1993] we deduce that the
∆i are all equal (to ∆ say), and that Σ is a cyclic extension of ∆. It remains to show
that the pair (∆, T ) is strongly admissible, that is, ∆ fixes a connected component
of Fix(T ) − L∆,T . This reduces to showing that L∆,T ⊂ L and the argument is
identical to that in Melbourne et al [1993] (except that we use Proposition 8 instead
of Proposition 2 at the appropriate moment).
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3. Attractors for homeomorphisms and diffeomorphisms

Let Γ ⊂ O(n) be a finite group acting on Rn. Recall that τ ∈ Γ is a reflection if
dim Fix(τ) = n− 1. Let K denote the set of reflections in Γ and set

L =
⋃
τ∈K

Fix(τ).

Observe that elements of Γ permute the connected components of Rn − L.

Proposition 9. Suppose that f : Rn → R
n is a continuous one-to-one Γ-equivariant

map. Then f2 fixes each connected component of Rn − L.

Proof. Let τ ∈ K. Since f is one-to-one and Γ-equivariant, the subspace Fix(τ)
is backward as well as forwards invariant under f , and hence f permutes the two
connected component of Rn − Fix(τ). Suppose that H ⊂ L is a reflection hyper-
plane. Then Rn −H consists of two connected components permuted by f . Since
f is one-to-one, f either fixes each connected component or interchanges them. In
each case, the components are fixed by f2.

Now suppose that C is a connected component of Rn − L. We may write L =
Fix(τ1) ∪ · · · ∪ Fix(τk) and hence C = C1 ∩ · · · ∩ Ck where Cj is a connected
component of Rn−Fix(τj). Then f2(C) = f2(C1)∩· · ·∩f2(Ck) = C1∩· · ·∩Ck = C
as required.

Theorem 10. Suppose that A is a Σ-symmetric ω-limit set for a continuous one-
to-one Γ-equivariant map f : Rn → R

n. Then either

(i) Σ contains no reflections and fixes a connected component of Rn − L, or
(ii) Σ contains no reflections and has an index two subgroup that fixes a connected

component of Rn − L, or
(iii) Σ contains one reflection τ and Σ = ∆⊕ Z2 where ∆ fixes a connected com-

ponent of Rn − L and Z2 is the subgroup generated by τ .

In particular, if Σ is an admissible subgroup, then one of conditions (i)–(iii) is valid.
Moreover, if Σ is strongly admissible, then either condition (i) or condition (iii) is
valid.

Proof. By Proposition 9, the ω-limit set A intersects at most two connected com-
ponents of Rn − L. Let C be a component intersected by A. Since each reflection
τ ∈ Σ maps C into distinct components τC, it follows that Σ contains at most
one reflection and that if A contains a reflection then A intersects precisely two
connected components.

If A is contained in a single connected component C of Rn−L, then Σ fixes A and
hence C so that condition (i) is satisfied. Otherwise, A intersects two connected
components C1, C2 of Rn − L. Define ∆i = {σ ∈ Σ; σCi = Ci}. Since f is
equivariant and interchanges C1 and C2, ∆1 = ∆2.

Set ∆ = ∆1 = ∆2. Then ∆ is the kernel of the action of Σ on {C1, C2} and
hence is a normal subgroup. Moreover Σ/∆ acts fixed-point freely on {C1, C2} so
that ∆ is of index one or index two in Σ.

If Σ contains no reflections we are in one of the situations described in (i) and (ii).
We show that if Σ contains a reflection τ then condition (iii) is valid. Indeed ∆
and the subgroup of Σ generated by reflections are normal subgroups of Σ and we
obtain the required direct sum decomposition for Σ.



GENERALIZATIONS OF A RESULT ON SYMMETRY GROUPS OF ATTRACTORS 9

Finally, we rule out condition (ii) when Σ is strongly admissible. If a connected
attractor A intersects two connected components of Rn−L then A∩L 6= ∅. Hence
A∩Fix(τ) 6= ∅ for some reflection τ ∈ Σ. By Proposition 2 Σ contains the reflection
τ .

To apply Theorem 10 it is important to have a characterization of those sub-
groups that fix a connected component of Rn − L. The required characterization
is obtained by an argument identical to that in Ashwin and Melbourne [1994],
Theorem 3.2.

Proposition 11. A subgroup Σ ⊂ Γ fixes a connected component of Rn−L if and
only if there is an isotropy subgroup I ⊂ Γ such that Σ ⊂ I and I contains no
reflections.

Theorem 10 gives necessary conditions for (strong) admissibility. It is natural to
ask whether they are also sufficient, and also whether they depend further on the
kind of dynamical system being studied (invertible and/or differentiable mapping,
ODE or PDE). We conjecture that (at least in high enough dimensions) there is
the following very positive answer to these questions.

Conjecture 1. Suppose that Γ is a finite subgroup of O(n) with subgroup Σ and
that f : Rn → R

n is a continuous one-to-one Γ-equivariant map. Provided n is large
enough, the conditions in Theorem 10 for (strong) admissibility of Σ are sufficient
as well as necessary. Moreover, these conditions remain necessary and sufficient
even if f is a diffeomorphism (possibly for n even larger).

Remark 6. (a) For flows there are further restrictions since attractors are connected
and lie in a single connected component of Rn − L. We conjecture therefore that
Σ is admissible (and hence strongly admissible) for a flow if and only if Σ contains
no reflections and fixes a connected component of Rn − L. On the other hand,
at the level of PDEs we do not expect any reflections (there should not be any
codimension one invariant subspaces in the infinite-dimensional space of solutions)
and so all subgroups of Γ are (strongly) admissible.
(b) Pete Ashwin and Mike Field have pointed out that it should be possible to
prove the conjecture (for n ≥ 4) by adapting the methods in Williams [1967]. This
is currently being pursued in Field, Melbourne and Nicol [1993]. Note that this
approach should lead to structurally stable (indeed Axiom A) attractors with the
required symmetry group.

4. Continuous groups

In this section, we consider ω-limit sets for mappings of Rn that are equivari-
ant with respect to a continuous group of symmetries Γ ⊂ O(n). Our results in
this section are valid for all classes of mappings (from continuous mappings to dif-
feomorphisms) and even for flows. Throughout, we restrict attention to ω-limit
sets that contain points with trivial isotropy. There are obvious generalizations to
ω-limit sets that lie in fixed-point subspaces.

Denote by Γ0 the connected component of the identity in Γ. We begin by con-
sidering the case when Γ0 is abelian.

Theorem 12. Suppose that Γ ⊂ O(n) is a connected abelian group (a torus). Then
ω-limit sets for Γ-equivariant dynamical systems in Rn typically are fully symmetric.
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Corollary 13. Suppose that Γ ⊂ O(n) and that Γ0 is abelian. Let ω(x) be an
ω-limit set in Rn and suppose that

(i) Σω(x) ⊂ Γ0,
(ii) γω(x) ∩ ω(x) = ∅ for γ ∈ Γ− Γ0.

Then typically Σω(x) = Γ0.

Remark 7. (a) Theorem 12 and its corollary will be made precise below. In partic-
ular, typicality can be precisely interpreted in both a topological and a measure-
theoretic sense.
(b) Assumption (ii) in Corollary 13 is redundant if ω(x) is (Liapunov) stable or
even orbitally stable (ω(x) is orbitally stable if Γω(x) is stable).

To prove Theorem 12 we need a technical lemma.

Lemma 14. Suppose that nk is a strictly increasing sequence of positive integers
and that gk : T p → T p is a mapping of the p-torus defined by gk(θ1, . . . , θp) =
(nkθ1, . . . , nkθp). For x ∈ T p, define

O(x) = {gk(x); k = 1, 2, . . . }.

Then O(x) = T p for a residual full (Haar) measure subset of points x ∈ T p.

Proof. Passing to a subsequence, we may suppose that nk ≥ 2k. Consider the case
when nk = 2k. Then gk(x) = gk(x) where g is the expanding map that doubles
angles. It is well-known that T p is topologically transitive (even mixing) under such
a map g: a residual set of points in T p have dense orbits in T p under iteration by
g. Moreover, this subset is of full measure. It is clear that the arguments used to
prove these statements will still go through if nk ≥ 2k.

Proof of Theorem 12. Suppose that f : Rn → R
n is a Γ-equivariant mapping and

that x0 ∈ Rn. We prove that typically ω(x0) is a Γ-symmetric set. The result for
flows is proved similarly.

Let X =
⋃
γ∈Γ γω(x0) and let U be a Γ-invariant neighborhood of X. Choose

a smaller neighborhood V with V ⊂ U , and for ρ ∈ Γ define a smooth Γ-invariant
map

gρ : Rn → Γ,
satisfying gρ(x) = ρ for x ∈ V and gρ(x) = 1 for x ∈ Rn − U .

We consider perturbations of f of the form fρ = gρ · f . It is easy to check that
fρ is invertible if f is invertible. Let ωρ(x0) denote the ω-limit set of x0 under fρ.
Clearly ωρ(x0) ⊂ X. We construct a residual full measure subset R ⊂ Γ such that
ωρ(x0) = X for ρ ∈ R, thus proving the theorem.

Choose a dense sequence z1, z2, . . . in ω(x0). Fix r ≥ 1, and note that since
zr ∈ ω(x0), there is an increasing sequence nk such that fnk(x0) → zr. We can
assume that fnk(x0) ∈ V for all k. Hence fnkρ (x0) = ρnkfnk(x0). By the lemma,
there is a full measure residual set Rr ⊂ Γ such that the sequence {ρnk} is dense
in Γ for ρ ∈ Rr.

We claim that for ρ ∈ Rr, Γzr ⊂ ωρ(x0). Now set R = ∩r≥1Rr and observe that
for any ρ ∈ R, ⋃

r≥1

Γzr ⊂ ωρ(x0) ⊂ X.

The left-hand-side of this inequality is dense in X and since ωρ(x0) is closed we
have ωρ(x0) = X as required.
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It remains to prove the claim. Let γ ∈ Γ and zr ∈ ω(x0). We have fnk(x0)→ zr.
Since ρ ∈ Rr, we can pass to a subsequence so that

fnk(x0)→ zr, ρnk → γ.

Using the fact that Γ ⊂ O(n), we compute that fnkρ (x0)→ γzr:

|fnkρ (x0)− γzr| = |ρnkfnk(x0)− γzr|
≤ |ρnk(fnk(x0)− zr)|+ |(ρnk − γ)zr|
≤ |fnk(x0)− zr|+ ‖ρnk − γ‖|zr|
→ 0.

It is a nontrivial problem to weaken the hypotheses in Theorem 12 and Corol-
lary 13. Some progress has been made by Ashwin and Chossat [1992] and Ashwin
and Stewart [1993]. This work shows that results for ‘sufficiently chaotic’ ω-limit
sets are significantly different from known results for relative periodic orbits. We
generalize this work in Theorem 15 below.

A set X is a relative periodic orbit if it is dynamically-invariant and consists
of finitely many group orbits permuted cyclically by the dynamics. Equivalently,
on passing to the orbit space X collapses to a periodic orbit. We denote by P a
(dynamic) trajectory in X and by abuse of notation call P the relative periodic
orbit. We shall say that P is asymmetric if ΣP ⊂ Γ0.

It follows from results of Field [1980] and Krupa [1990] that if P is an asymmetric
relative periodic orbit then typically ΣP is a maximal torus in Γ0. Of course, if Γ0 is
abelian this is a special case of Corollary 13. The situation is more subtle for relative
periodic orbits that are not asymmetric, see Field [1991]. The simplest example is
for Γ = O(2) (acting on Rn). If P is not asymmetric then ΣP = D1 (Field [1991]).
In particular, ΣP does not contain any continuous symmetries. Contrast that with
the following generalization of a result in Ashwin and Stewart [1993].

Theorem 15. Suppose that Γ ⊂ O(n). If ω(x) is not a relative periodic orbit and
asymmetric relative periodic orbits are dense in ω(x) then typically Γ0 ⊂ Σω(x).

Proof. Suppose that f : Rn → R
n is a Γ-equivariant map with ω-limit set ω(x).

Set W 0 =
⋃
γ∈Γ0 γω(x) and W =

⋃
γ∈Γ γW

0. We consider perturbations of f of
the form f̃ = g · f where g : Rn → Γ is a smooth Γ-invariant map supported
in a neighborhood of W . Let ω̃(x) denote the ω-limit set of x under f̃ . Clearly
ω̃(x) ⊂ W , indeed for small perturbations ω̃(x) ⊂ W 0. We show that typically
ω̃(x) = W 0.

Suppose z ∈ ω(x). We show that typically Γ0z ⊂ ω̃(x). The theorem follows
since we can take a countable dense subset {zr} of ω(x) as in the proof of Theo-
rem 12.

It is sufficient to prove that γ1z, . . . , γkz ∈ ω̃(x) for generators γ1, . . . , γk of Γ0

(in the sense that the elements generate a subgroup that is dense in Γ0). As pointed
out in Ashwin and Stewart [1993] there is always a finite number k of maximal tori
that together generate Γ0 and we can take the elements γi to be generators of such
tori. Note that given this number k, almost any choice of elements γ1, . . . , γk will
produce a set of generators for Γ0.

Let pj , j ≥ 1 be a sequence of asymmetric relative periodic points in ω(x)
converging to z. Make an initial perturbation so that for each j, Mjpj ⊂ ω̃(x)
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where Mj is a maximal torus in Γ0. Choose a sequence mj ∈ Mj , j ≥ 1. Then
mjpj is a sequence of points in ω̃(x) and a convergent subsequence yields a point
γ1z ⊂ ω̃(x). The sequence mj can be chosen so that γ1 generates a maximal torus
in Γ0.

The next step is to consider the sequence p2j . Make a perturbation supported
in a Γ-invariant neighborhood of these points such that the neighborhood does not
include the points p2j+1. In this way we obtain a new point γ2z ∈ ω̃(x) while
preserving the point γ1z ∈ ω̃(x). Typically, we can arrange that γ1 and γ2 generate
distinct maximal tori in Γ0. After k steps we obtain the required set of generators
γ1, . . . , γk.

We note that many of the results in this section become much simpler if we
restrict to stable ω-limit sets. However, it is more reasonable a priori to assume
only orbital stability, an assumption that does not appear to help in the proofs.

5. Implications for theory and applications

In this section we consider some (speculative) implications of our results in this
paper, especially those in Section 4.

We begin by making a conjecture based on Theorem 15. Results of Field [1991]
impose restrictions on the continuous symmetries of relative periodic orbits that
have discrete symmetries. Let Π : Γ→ Γ0 be the projection onto the component of
the identity and suppose that S is a cyclic subgroup of Γ/Γ0. An abelian subgroup
K ⊂ Γ is of type S if K ∼= T r × S (where T r denotes the r-torus) and Π(K) =
S. In Field [1991] it is shown that all maximal abelian subgroups of type S are
conjugate. Define rk(Γ, S) = r where T r×S is maximal. Then we have the following
result.

Theorem 16 (Field [1991]). Suppose that P is a relative periodic orbit containing
points with trivial isotropy and that Π(ΣP ) = S ⊂ Γ/Γ0. Then ΣP ∼= T r ×S where
r ≤ rk(Γ, S). Moreover, typically r = rk(Γ, S).

We now state our conjecture which says roughly that ω-limit sets full into two
classes: ‘regular’ and ‘sufficiently chaotic’, and satisfy the conclusions of Theorem 16
and Theorem 15 respectively.

Conjecture 2. Suppose that A is an ω-limit set containing points with trivial
isotropy and possessing discrete symmetries S = Π(ΣA) ⊂ Γ/Γ0. Typically, either

(a) ΣA ∼= T r × S where r = rk(Γ, S), or
(b) Γ0 ⊂ ΣA.

To make the connection between theory and applications, it is convenient to call
TA the ‘instantaneous symmetry’ and ΣA the ‘symmetry on average’. As pointed
out in Dellnitz, Golubitsky and Melbourne [1992] and Melbourne, Dellnitz and
Golubitsky [1993], the instantaneous symmetry corresponds to symmetry that is
present at any instant in time whereas the symmetry on average includes also
those symmetries that are observed only in the time average. In this terminology,
Conjecture 2 suggests that in the absence of nontrivial instantaneous symmetry,
the symmetry on average contains at least the continuous symmetries unless the
dynamics is sufficiently regular.

Even for a group as simple as Γ = O(2) (acting on Rn) we see that the situation
is surprisingly complicated. The subgroups of O(2) are Zk, Dk, k ≥ 1, SO(2)
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and O(2). It follows from Corollary 13 that we can (typically) rule out attractors
with Zk-symmetry. Conjecture 2 goes further and rules out attractors with Dk-
symmetry for k ≥ 2. In fact, suppose that A is an ω-limit set for an O(2)-equivariant
dynamical system and assume that A contains points with trivial isotropy. In the
terminology of Conjecture 2 we have S = 1 or S = D1. Accordingly we have
corresponding to parts (a) and (b) of the conjecture:

(a) ΣA = SO(2) or ΣA = D1,
(b) ΣA = SO(2) or ΣA = O(2).

Our first implication is theoretical in nature. Barany et al [1993] (see also Dell-
nitz et al [1993]) investigate the problem of numerically detecting the symmetry on
average of an attractor. In particular, a satisfying solution leading to an effective
numerical algorithm is given at least for finite groups Γ. At first sight, generalizing
this to arbitrary compact Lie groups is a somewhat tedious task. However, Con-
jecture 2 suggests that for sufficiently chaotic attractors the continuous symmetries
are automatically present on average so that there is only the finite set Γ/Γ0 to
worry about. A straightforward adaptation of the methods in Barany et al [1993]
is then possible. However, there is still the problem of detecting the ‘instantaneous
symmetries’ (an a priori simpler problem).

Next we consider implications for applied problems. Gluckman et al [1993] take
time averages of chaotic surface waves in the Faraday experiment in a circular
domain. The time averages that they obtain have the full circular symmetry of
the domain. Now these time averages cannot distinguish between SO(2) and O(2)
symmetry. (A circular pattern in the plane automatically has reflection symmetry.
In the terminology of Barany et al [1993], the observation that is being averaged
is not a detective.) So the implication to be drawn from Gluckman et al [1993] is
that the solutions have SO(2) or O(2) symmetry on average. This is precisely the
prediction of Conjecture 2 for such chaotic solutions.

The point that we wish to make here is that the time average in Gluckman
et al [1993] must (typically) be as is observed. This is in contrast to the experi-
ments in square domains that are also considered in Gluckman et al [1993]. Here
the time average is observed to have D4 symmetry but the results in Ashwin and
Melbourne [1994] (more precisely, Conjecture 1) imply that the time average could
in principle be any subgroup of D4.

Our final and most surprising application is to turbulent Taylor vortices. This is a
chaotic but patterned flow that occurs in observations in the Taylor-Couette exper-
iment. The full symmetry group of the problem is Γ = SO(2)×O(2). The present
belief among physicists and mathematicians appears to be that this is a chaotic
(perhaps turbulent) solution that has no symmetry at any instant in time and yet
on average has the symmetry of regular Taylor vortices (circular symmetry in the
azimuthal direction and a reflection symmetry in the axial direction). We have
TA = 1 and ΣA = SO(2)× D1. This is in disagreement with our conjecture which
predicts that if TA = 1 then either ΣA = SO(2) × SO(2) or ΣA = SO(2)×O(2).
We believe that the solution possesses nontrivial instantaneous symmetry (that is
TA 6= 1). Indeed, if one looks at turbulent Taylor vortices there is clearly some
structure present. The structure is not exact, but exact enough that one ‘sees’ it.
It seems worthwhile performing tests to determine whether the structure of Taylor
vortices is present in the chaotic flow instantaneously or only on average.
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