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Abstract

We give a rigorous derivation of the time-dependent one-dimensional
Ginzburg-Landau equation.

As in the work of Tooss, Mielke and Demay (who derived the steady
Ginzburg-Landau equation) our derivation leads to a pseudodifferential
complex amplitude equation with nonlocal terms of all orders that yields
the cubic order Ginzburg-Landau equation when truncated. The truncation
step itself is not justified by our methods.

Furthermore, we prove that the nontruncated Ginzburg-Landau equa-
tion has a normal form SO(2) symmetry to arbitrarily high order. The
normal form symmetry forces the equation to be odd with constant coeffi-
cients. This structure is broken in the tail.

1 Introduction

Systems of partial differential equations (PDEs) such as the Navier-Stokes equa-
tions, the Boussinesq equations (modeling the planar Bénard problem), the
Kuramoto-Sivashinsky equation. and reaction-diffusion equations are often posed
on an unbounded domain. For an overview of such spatially extended systems of
PDEs, see Cross and Hohenberg [4].
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It is possible to derive finite-dimensional ordinary differential equations
(ODEs) or ‘Landau equations’ for bifurcating solutions with a prescribed spatial
periodicity and even to justify these equations rigorously via Liapunov-Schmidt or
center manifold reduction. Of course, solutions to spatially extended systems need
not be spatially periodic and these techniques are somewhat limited. To include
more general classes of solutions, it is customary to consider infinite-dimensional
modulation equations such as the ‘Ginzburg-Landau equation’, [21, 26, 5, 4]. The
ansatz is that there is some ‘basic’ spatially periodic state bifurcating at critical-
ity. The Ginzburg-Landau equation is a slowly varying amplitude or modulation
equation around this basic state. As yet there is no mathematical justification
of the planar Ginzburg-Landau (or Newell-Whitehead-Segel) equation. Center
manifold theory is not applicable due to difficulties with continuous spectra.

Newell and Whitehead [21] consider also the one-dimensional Ginzburg-
Landau equation

Ar = A+ D*A + A A. (1.1)

Recently, there has been progress towards a mathematical understanding of this
equation. Kirchgéssner [13] and Mielke [16, 17, 18] restrict attention to steady-
state equations and view the single unbounded spatial direction as an evolution
variable. Then a center manifold reduction leads to an ODE for steady-state
solutions that are small and bounded in space. In particular, equilibrium solutions
that are not spatially periodic can be obtained in a very elegant manner [10, 11].

In the context of hydrodynamic instabilities, Iooss, Mielke and Demay [11] by
similar means derive a four dimensional ODE that captures time-independent, yet
spatially complex, solutions near criticality. A change of coordinates leads to the
complex pseudodifferential equation

0 = coAA +iesADA + e;D* A +ie3D* A (1.2)
+ do|AI?A +id,|A|?DA + idy A’DA + - - -

The ‘lowest order’ terms in this expansion have the form of the steady Ginzburg-
Landau equation. We note that the Ginzburg-Landau equation is a PDE only
when truncated at some specified order. The full asymptotic expansion is a pseu-
dodifferential equation, see [11, 19] and Section 3 of this paper. From now on,
we use the term ‘Ginzburg-Landau equation’ quite generally for equations of the
form (1.2) (with or without time-dependencies) and refer to equation (1.1) as the
standard truncation of the Ginzburg-Landau equation.

In this paper, we give a rigorous derivation of the full time-dependent
Ginzburg-Landau equation. Our philosophy is similar to that of [11] in that
we are interested in the nontruncated equation. The new contribution is that we



do not restrict to the steady equation. To circumvent the continuous spectrum,
our function space is chosen so as to allow spectral splittings in the absence of
a spectral gap, enabling a (generalized) Liapunov-Schmidt reduction. In addi-
tion, our methods cast light on the significance of terms that are neglected in
equations (1.1) and (1.2). In particular, equation (1.2) is odd with constant coef-
ficients. We show that this normal form symmetry is present to arbitrarily high
but finite orders. On the other hand, it is not clear how to use our results to prove
rigorously the existence of new solutions.

Much attention has focused on an approximate justification of the truncated
time-dependent Ginzburg-Landau equation (1.1) near criticality over arbitrarily
long timescales, see [2, 8, 14, 24, 25]. This is an important and surprising de-
terminacy result. Our results on the normal form structure indicate that certain
aspects may be lost in the approximation. We elaborate on this point in Section 5.

In Section 2, we recall the standard multiple scaling reduction to the truncated
Ginzburg-Landau equation (1.1) and we sketch the main ideas behind our rigorous
derivation of the full time-dependent equation. This derivation is carried out in
Section 3 for the Swift-Hohenberg equation (including a quadratic term) on the
line. In Section 4, we indicate the general applicability of our methods to systems
of PDEs on larger domains with one unbounded spatial direction. Finally, in
Section 5 we discuss the normal form structure of the Ginzburg-Landau equation.

Throughout this paper, we work with the one-dimensional Ginzburg-Landau
equation. However, the only part of our work that does not generalize to higher
dimensions is the step contained in Subsection 3.3. The consequences of our
methods for higher-dimensional problems will be considered in [15].

2 Sketch of a rigorous derivation

In this section, we sketch the main ideas behind our rigorous derivation of the
Ginzburg-Landau equation. We begin by recalling the formal derivation from the
Swift-Hohenberg equation.

Formal derivation Consider the Swift-Hohenberg equation on the line
uy = Lyu + Bu® + yu?®, Ly=\—(D*+1)? (2.1)

where u : R — R, A is a real bifurcation parameter, § and y are real constants,
and D = d/dxz. The trivial solution v = 0 undergoes a steady-state bifurcation at
A = 0. Indeed, the wave function ansatz e**?  k € R, has eigenvalue A — (k% — 1),
and the spectrum of L, is the real interval (—oo, A|.



The kernel of the linearized equations at (u, A\) = (0, 0) is thus two-dimensional,
spanned by the critical eigenfunctions e + e~ and i(e"® — e *®). However, it is
desirable (and necessary) to incorporate eigenfunctions with eigenvalues close to
zero. The standard approach by physicists is to consider slowly varying modula-
tions of the critical eigenfunctions, making the ‘multiple scaling’

T=¢t X=e, A=¢, u(z)=ceAX)e”+A(X)e ™),

where A : R — C is a complex amplitude. This ansatz is substituted into the
Swift-Hohenberg equation. Equating coefficients of €3’ we obtain a modulation
equation or Ginzburg-Landau equation Ar = A + 4D?*A + c|A|*A for the slowly-
varying complex amplitude A, where D = d/dX and ¢ € R is a constant. (In fact,
c=3y+ %ﬂg, see Subsection 3.3.)

An important aspect of this formal reduction is that certain terms are con-
sidered to be ‘damped’ or ‘slaved’. For example the cubic term in the Swift-
Hohenberg equation contributes e¢%? terms (and complex conjugates). However,
modes e**® are damped for |k| far from £1 and can be solved for, at least formally.
This observation is even more crucial for the quadratic terms which contribute
terms of order €2 but with k near +2 and 0.

The main ideas We now sketch the main ideas that make rigorous the formal
derivation described above. Two immediate consequences of our approach are

(i) The identification of ‘slave modes’ such as the quadratic terms and certain
cubic terms which can be solved for using the implicit function theorem.

(ii) A precise definition of the amplitude function A (which was not well-defined
in the formal argument above).

For simplicity, we consider first the steady Swift-Hohenberg equation
0=®(u,)\) = Lyu + Bu® + yu?®, Ly=)X—(D*+1)%.

As before, the spectrum of L = L is the half-line (—oo, 0] and the critical modes
are of the form e*'.

Step 1 Since the spectrum is continuous, we cannot solve for all of the noncritical
modes. However, using the implicit function theorem, we can in principle solve for
modes e** with |k| bounded away from 1 (and hence eigenvalues bounded away
from zero). More precisely, under certain technical hypotheses, for any § > 0 we
can solve for the modes e** with ||k| — 1| > 6.



For ease of notation, we let X denote both the domain and range of the
nonlinear operator ® (eventually the domain will be a dense subspace of the range
as usual). We require that there is a closed splitting of X" into a subspace X?(1)
spanned by modes e** with |[k| — 1| < § and a complementary space X¢ where
Hk\ — 1‘ > §. The existence of such a closed splitting may seem nonintuitive, but
it is just a matter of choosing the right function space, see Subsection 3.1.

Let E denote projection onto X'¢ and I — E the complementary projection onto
X9(1). The restricted linear map EL is an isomorphism on X¢ and Liapunov-
Schmidt reduction leads to a reduced equation ¢(v,\) = 0 on X°(1). The reduced
equation is easily written down to quadratic order in v:

¢(v,\) = (I—E){Lyv+ pv* +---}.

Now v consists of Fourier modes near +1 and hence v? consists of modes near +2
and 0. Provided § is chosen small enough (6 < 1/3), such modes are projected
away by I—FE. Hence, there are no quadratic terms in ¢ as promised in point (i)
above. (However, the quadratic terms in ® contribute complicated cubic terms to
9.)

Again for simplicity, we set 3 = 0 and v = —1 in the Swift-Hohenberg equation
for the remainder of this section. Up to cubic order we have

¢(v,\) = (I—E){Lyv —v®+---}.

Step 2 The operator ¢ is posed on X°(1) and involves Fourier modes k lying in
small intervals around =£1. It is therefore natural to write v in the form

v(z) = B(x)e™ + B(x)e ™™,

where B : R — C is a complex amplitude function involving Fourier modes k£ with
|k| < 6. Note that B is well-defined (point (ii) above) and that this transformation
is now simply a change of coordinates. (This is the only place where we use the
fact that there is a single unbounded spatial variable.) We write B € X°(0).

The change of coordinates leads to an equation in B, B and A. The domain
and range of this equation involves modes e*** with k within distance 6 of 1 and —1
and hence splits into two equations supported near 1 and —1. The two equations
are related by complex conjugation and are equivalent to the equation supported
near k = 1. Dividing by e leads to a complex amplitude equation ¥ (B,\) = 0
defined on X°(0), Choosing § small enough (§ < 1/2), we ensure that the ‘slaved’
cubic terms are projected away by I—FE and obtain the operator equation

Y(B,)\) = P{4D?’B — 4iD*B — D*B+ AB - 3|B]*B +---}, (2.2)

where P is the projection onto X?(0).



Step 3 The operator 1) has the desired form at low order except for the presence
of the projection operator P. Also, 1 is defined on X?(0) whereas X would be
more natural. To overcome these problems, we apply a ‘reverse’ Liapunov-Schmidt
reduction. Consider an operator ¥ on X of the form

U(A,\) = 4D?A — 4iD3A — D*A+ \A — 3|APA + - --

Liapunov-Schmidt reduction leads to an operator of the form (2.2). In fact, the
high order terms in W can be chosen so that the ‘reverse’ reduction produces
precisely the operator (2.2).

There is one obstruction to immediately applying the reverse Liapunov-
Schmidt reduction step: the critical modes for ¥ at A = 0 include modes e**
with £ = 0 as required but also include modes with & = —2. For this time-
independent equation, there is a simple resolution of this difficulty whereby we
transform to higher order the third and fourth order derivatives in the linear terms.
An approach which applies to the time-dependent case is given in Subsection 3.4.

Steps 1 to 3 are detailed in Section 3 and establish that equilibria of the Swift-
Hohenberg equation are locally (near (u, A) = (0,0)) in one-to-one correspondence
with equilibria of the steady Ginzburg-Landau equation ¥(A, ) = 0. Our meth-
ods generalize to the time-dependent Ginzburg-Landau equation thanks to the
notion of essential solution [1, 19, 9]. We incorporate the term u; in the right-
hand-side of the PDE so that Ly = —3/0t + A — (D? + 1)? and again solve for
zeros using Liapunov-Schmidt reduction. The zeros now correspond not only to
equilibria that are small over space but also time-dependent solutions that are
small over time and space.

3 Reduction of the Swift-Hohenberg equation

In this section, we carry out the procedure outlined in Section 2 and rigorously de-
rive the full (nontruncated) Ginzburg-Landau equation from the Swift-Hohenberg
equation (2.1). Although the underlying PDE is highly idealized, out results apply
quite generally as shown in Section 4.

In Subsection 3.1, we describe a function space that is suitable for our analysis.
Steps 1, 2 and 3 from Section 2 are carried out in Subsections 3.2, 3.3 and 3.4.

3.1 The functional-analytic setting

In this subsection, we introduce suitable function spaces and recall the basic prop-
erties that we will require. To avoid measure-theoretic technicalities, we work
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initially with a space of spatially and temporally quasiperiodic functions.
Let J C R?. We consider real-valued functions u : R* — R of the form

u(z,t) = Z uy, geF et

(k,0)eJ

where the coefficients u, € C satisfy the reality condition u_j_, = Uy, and
uk,¢ = 0 for all but finitely many (k, £). We denote the vector space of all such sums
by X(J) and define the ‘one-norm’ |lu|| = >, ,|uke|. The completion of X (J)
with respect to this norm is then, by deﬁnition: a Banach space of spatially and
temporally quasiperiodic functions containing X (J) as a dense subset. We denote
this completion by X'(J). The two most important properties of X = X (R?) are
listed in the following proposition.

Proposition 3.1 (a) The space X is a Banach algebra under pointwise multipli-
cation, that is

llwo|| < ||ulll|v]| for all u,v € X. (3.1)
(b) If J is any subset of R? then there is a closed splitting

X =XR) o X[R - J).

Proof The map h : X — (A(R?), h(u) = {uk,e}(k,)cr2, is an isomorphism
converting pointwise multiplication of functions into convolution of sequences. It
is well-known that ¢'(R?) is a convolution algebra and that ¢'(R?) = ¢'(J) &
(' (R? — J). Alternatively, it is a simple calculation to verify (3.1) for u,v €
X (R?) and hence the result holds in X. The second part of the proposition is
immediate except perhaps for the fact that the sum is direct. But suppose that
u € X(J)NX(R?—J). Then there are sequences v, € X(J) and w,, € X (R*—J)
that converge to u. It follows that ||v,|| + ||w,|| = ||vn — wn|| — 0. In particular,
v, — 0 and so u = 0 as required. |

Uniformly continuous solutions The function space X considered so far con-
sists only of quasiperiodic functions. We now show how to incorporate solutions
with more complicated spatial and temporal dependence. Indeed, we obtain a
large subspace of Cyuir(R?), the space of uniformly continuous functions on R”.
By taking the norm in Fourier transform space, we preserve the crucial properties
in Proposition 3.1.

Let B denote the o-algebra of Borel subsets in R?. For any J € B, the space
M(J) of complex Borel measures on J is a Banach space with total variation
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norm ||z||. We note that M(RR?) has properties analogous to those of the space
/*(R?) introduced in the proof of Proposition 3.1: M(R?) is a convolution algebra
and M(R?) = M(J) ® M(R? — J) for all J € B.

If u € M(R?), the Fourier-Stieltjes transform Fy [12] is defined to be

(Fu)(z,t) = / e Fe (k. 0).

(k,£)ER2

Define X = X (R?) to consist of the set of functions u : R> — R obtained in this
way. Then X is a proper subspace of Cyye(R?). Instead of the uniform norm,
we use the norm inherited from M(R?). That is, we define ||u| = ||u| where
p € M(R?) is the unique measure such that Fu = u. With this norm, X is
a Banach space. Since M(R?) is a convolution algebra and Fourier transform
converts convolution of measures into pointwise multiplication of functions, X’
satisfies the conclusions of Proposition 3.1.

Remark 3.2 Note that ¢'(R?) is the closed subspace of M(R?) spanned by the
Dirac measures. Hence, the quasiperiodic functions form a closed subspace of the
enlarged version of X'. Similarly, the absolutely continuous measures in M (R?)
can be identified with their Radon-Nikodym derivatives in L'(R?) and it follows
that L'(R?) is a closed subspace of M(R?). According to the Riemann-Lebesgue
lemma, the corresponding space of Fourier transforms is a subalgebra of Cy(R?)
(the continuous functions that decay at infinity). In fact, this space is a dense
proper subalgebra of Cy(R?).

Next we consider the Swift-Hohenberg equation as a nonlinear operator on the
function space X'. Define

®(u, \) = Lyu + Bu® + yu?, Ly=—-0/0t+\— (D*+ 1) (3.2)

Observe that zeroes of ® correspond to solutions of the Swift-Hohenberg equa-
tion (2.1). We are interested in the small-norm zeroes of ® which correspond to
the essential solutions [1, 19] of (2.1).

Let L = Ly = —0/0t — (D? + 1)%. The linear operator L : X — X is
unbounded. Let X* denote the completion of X with respect to the graph norm
llull* = ||ul| + ||Lu|. Then L : X* — X is a bounded operator. The remaining
terms in ® are analytic even on X (since by Proposition 3.1(a) X is a Banach
algebra). Hence we obtain an analytic nonlinear operator ® : XX x R — X.



3.2 Liapunov-Schmidt reduction

In this subsection we show how to apply Liapunov-Schmidt reduction to the op-
erator @ in (3.2). Observe that ker L = X*(1,0). Since 0 is not isolated in the
spectrum of L, it is not possible to apply the implicit function theorem on any
complement of ker L. However, we may apply the implicit function theorem on
the complement of the sum of the eigenspaces of eigenvalues close to and including
zero. Fix § > 0 and let J; = Bs(1,0) U B5(—1,0) where Bs(£1,0) C R? is the
open ball of radius §, center (£1,0). Define the subspaces

XL’J(]., 0) — XL(J(j), XL’C — XL(R2 o J5)a
X°(1,0) = X(J5),  X°=X(R*—J;).

By Proposition 3.1(b), we have the closed splittings
Xt =x51,00@ x5, X =X°01,0)® -
Define the complementary projections E:X — X¢, I—-E:X — X°(1,0).
Theorem 3.3 For any 6 > 0, there is a reduced analytic nonlinear operator
¢: X0(1,0) x R — X°(1,0),

such that locally (near (0,0)) zeros of ¢ are in one-to-one correspondence with
zeros of ®. The reduced operator ¢ is given by

¢(U: /\) = (I—E)(b(’() + W(’U, )‘)7 /\)7
where W : X19(1,0) x R — X is defined locally and implicitly by

E®(w+W(v,A),A) =0,  W(0,0)=0.

Proof Observe that L is bounded below when restricted to X¢. It follows
that L is an isomorphism from X% onto its range and that the range is closed.
Moreover, the dense subspace X NAX¢ C X¢is clearly contained in the range and so
L : X¢ — X¢is an isomorphism. Now the standard proof of the Liapunov-Schmidt
reduction proceeds as usual, see for example [6, steps 2-4, p.293]. |

Remark 3.4 The Banach spaces X%9(1,0) and X°(1,0) are equal as vector
spaces and the norms are equivalent. Hence, we can consider the reduced op-
erator ¢ to be an analytic operator ¢ : X°(1,0) x R — X?(1,0).



The reduced nonlinear operator ¢ is only defined implicitly, but derivatives
may be computed in the same way as in [6] to obtain the following.

Proposition 3.5 Locally,

P(0,X) =0, (dp)opv=(I—E)Lyv, (d*P)ox(v,v) = ([I—E)(d*®)o(v,v),
(d*$)op(v,0,v) = (I—E){(d*®)o(v,v,v) — 3(d*®)ox (v, Ly "E(d*@)o (v, 0))}.

We now apply the reduction to the Swift-Hohenberg equation. By Proposi-
tion 3.5, the reduced operator is

d(v,\) = I—E){Ly + ﬂvQ + ’yv?’ — QQQULxlEUQ + -}

where - - - consists of terms of order at least five in v. Since the inverse of L appears
in the cubic term (and at fifth order even when 3 = 0), ¢ contains nonlocal terms.

Observe that (I—FE)v? = 0 for § small enough (6 < 1/3). (The heuristic
argument in Section 2, Step 1, is now made completely rigorous.) In fact, by
choosing ¢ small enough, it is possible to guarantee that ¢ involves only terms of
odd degree up to any prescribed order. Note also that the projection E disappears
in the @ part of the cubic term. Assign v weight one and A weight two. Then the
reduced operator has the form

¢(v,\) = (I—E){Lyv +vv® — 26%°vL 0?4+ -- -}, (3.3)

where - - - consists of terms of (weighted) order at least five.

3.3 Equation for complex amplitudes

Recall that X°(1,0) consists of real sums of Fourier modes with wave numbers
(k,£) close to (+1,0). Hence we can split these sums into two components centered
around e and e~™. If v € X%(1,0), we write

v(z,t) = B(z,t)e" + B(z,t)e”™, (3.4)

where B: R — C h@s thg form B(z,t) = >4 0)/<s By, petFett (or more generally,
B(z,t) = fl(k,€)|<6 e ke~ d(k, £) where p is a complex Borel measure). We sup-
press the fact that B takes values in C and write B € X 9(0,0). The components
B and B are clearly unique provided we choose § < 1.

The linear change of coordinates (3.4) leads, as in Section 2, to the analytic
operator v : X2(0,0) x R — Xx°(0,0),

Y(B,\) = P{—B; +4D?’B — 4iD?*B — D*B+ AB+ C(B) + ---}, (3.5)

10



where
C(B) = 3v|B|’B — 24? (2BL™'|B|> + Be "L~ (B%*")),

and P : X — X°(0,0) is projection.
At this point, we can easily read off the constant ¢ in Section 2. Ignoring the
terms with derivatives (replace L™ by —T), we have ¢ = 3y+43°+2? = 3y+3 2.

3.4 Reverse Liapunov-Schmidt reduction

Suppose that L is a constant coefficient linear partial differential operator. Then
we can write Leth®e? = Q(k, £)e e’ where the symbol Q is a polynomial function
of £k and /. We may also consider nonpolynomial functions ) in which case
L is called a pseudodifferential operator. We note that the regularity of L is
independent of the regularity of (); for example the projections E and P considered
in this paper have discontinuous symbols.

Similar considerations apply to nonlinear operators. It is desirable to obtain a
Ginzburg-Landau equation defined on the whole of A rather than X'(0, 0) and such
that the linear and nonlinear operators have analytic symbols. (It is unrealistic
to expect polynomial symbols since any reduction must involve the inversion of
linear operators.)

In this subsection, we realize the first aim obtaining an equation defined on
X. The second aim is partially realized: we remove the projection P through at
least cubic order and obtain smooth (C'*°) symbols for the linear and cubic terms.

Theorem 3.6 There is a nonlinear operator ¥ : X x R — X of the form
U(A,\) = —Ay+ D’ LA+ AA+C(A) + V(A N, (3.6)

where L is a linear isomorphism with smooth symbol, C is an analytic cubic non-
linearity with smooth symbol, and ¥ denotes analytic terms of higher weight, such
that zeroes for W are locally in one-to-one correspondence with essential solutions
of the Swift-Hohenberg equation (2.1).

Proof The operator 4D?B —4iD3B — D*B has symbol Q(k) = —4k? — 4k — k*.
Let Q be a smooth function of k agreeing with @ for k| < 0, equal to one
for |k| > 26, and with no zeroes. The linear operator L with symbol Q is a
linear isomorphism with smooth symbol. Moreover P{4D’B — 4iD*B — D*B} =
PD2LB. Similarly, we can construct C analytic with smooth symbol (dependent
on k and /) such that PC' = PC. Operator (3.5) becomes

Y(B,\) = P{—B, + D’LB+ A\B+C(B)+---}. (3.7)
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Liapunov-Schmidt reduction applied to an operator ¥ of the form (3.6) leads
to an operator 1 of the form (3.7). The only problem is to ensure that the higher
order terms are correct. First, let us consider what happens if we take \If(A, A) =0.
The reduced equation has the form

PU(B + W (B, \), ) = (B, \) + (B, \) (3.8)

where ¢ takes values in X°(0,0) and consists of terms of weight greater than three.
In particular, ’Pw w As usual, W : X%(0,0) x R — X¢ is defined implicitly by

(I-P)¥(B+W(B,)\)=0, W(0,0)=0. (3.9)

Set \II(A )\) = —)(PA, ). Then, equation (3.9) and hence W are unaltered (since
(I-P)y = 0) so that equation (3.8) becomes

PU(B + W (B,A),\) = (B, \) +9%(B,\) — Pp(P(B + W(B,\),\) = ¢(B, \),

as required. |

4 Reduction of systems of PDEs

The Ginzburg-Landau equation is supposed to be universal and hence should
be applicable in some generality. In Sections 3, we derived the Ginzburg-Landau
equation from a particularly simple example: the Swift-Hohenberg equation on the
line. (However, we include quadratic terms — these terms provide no additional
difficulties, cf [8, 14].) Having illustrated the main ideas, we now consider a system
of PDEs on R x [0, 1] with Dirichlet boundary conditions. In particular, we show
that our method deals successfully both with systems (cf [25]) and with bounded
spatial variables — there is no need in general to remove the bounded variables
in a preliminary step as suggested in [19]. Indeed, we show that it is possible to
reduce in a single step to a (scalar) equation ¢ = 0 on X°(0,0). From then on,
we can proceed as before to obtain a complex amplitude equation ¥ =0 on X.

A precise discussion of universality of the Ginzburg-Landau equation requires
serious consideration of the presence of Euclidean symmetry (which is suppressed
in this paper) as well as a notion of genericity for unbounded partial differential
operators. This is the subject of work in progress [15].

Brusselator on R x [0,7] Consider the system of reaction-diffusion equations

up = Au~+ (8 4+ Nu+ 16v + N(u, v, A), (4.1)
vy = 4Av — (9 + N)u — 16v — N(u,v, ),
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where the nonlinearity is given by N(u,v,\) = i(Q—i-/\)u2 +8uv+u?v, and z € R,
z € [0,2n], A = 9?/0x* + 0*/02z*. We impose Dirichlet boundary conditions
u = v = 0 when z = 0,7. These equations may be obtained from those for
the Brusselator [23] by choosing D; = 1, Dy = 4, A = 4 and B = 9+ A and
subtracting the trivial solution.

Let X (L?) denote the Banach space of functions u : R* — R of the form
w(T,2) = 34 pere ugo(2)e*e where uy, € L2[0,7] say, and ||u|| = 3 [Juk|-
Now let X?(L?) consist of functions (u,v) : R*> — R? where u,v € X(L?) and
[[(w, )| = llull + [o]l-

We now turn to the linear stability analysis of the trivial solution v = v = 0.
Let u(k,£,m) denote the coefficient of e*%e* sinmz in u and define v(k, £, m)
similarly. The (k, ¢, m) component of the linearized equations leads to the matrix

—il—K+8+ A 16
—(94 ) —il — 4K — 16

where K = k? + m?. The real parts of the eigenvalues are independent of the
value of £ and are given by the trace tr = A — (8 + 5K) and determinant det =
4((K — 2)? — AK). Tt follows that the trivial solution is stable provided that
A< 8+5K and A < (K — 2)?/K for all K > 0. Hence there is a steady-state
bifurcation at A = 0 corresponding to K = k* + m? = 2. Since m is a positive
integer, the critical modes have m = 1 and (|k|, £) close to (1,0). The eigenvalues
corresponding to e**%e* sin z are

ek, €) = =it + 5 {—5K* = 13 £ 3 /a(k) }
where a(k) = (k? + 1)(k®> + 17). The corresponding eigenfunctions are

wy(k, L) = ( k2 — 7i6ﬂi(k’£) ) ’

The critical eigenfunctions are given by w, (k, £) for (k, £) close to (£1,0), and may
be identified with elements of X?(1,0) (consisting of functions w(z,t) : R* — R
with restricted Fourier modes just as in Section 3). Hence we can perform a
Liapunov-Schmidt reduction to a (time-dependent) operator ¢ : X°(1,0) x R —
X°(1,0). We then proceed as in Section 3 to obtain a complex amplitude equation
U(A,A)=0on X.

kT it gin 2.

General systems [t is worth considering which systems of PDEs are amenable
to the reduction described in this paper. Observe that the projection operator
I — F simultaneously wipes out all but one component of the system of PDEs, all
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but one eigenfunction in the bounded direction z, and all but a small band of
eigenfunctions in the unbounded direction z. In [15], we argue that these features
should hold generically for systems of PDEs with Euclidean symmetry.

Roughly speaking, the argument goes as follows. Consider a system of s PDEs
with Euclidean symmetry posed on R (so there are no bounded directions). In gen-
eral, the stability analysis leads to a family of s x s matrices L(k, ) parameterized
by k and £. At a steady-state bifurcation, for some value of the bifurcation param-
eter A, there is a critical wave number ky > 0 such that the corresponding matrix
L(kg,0) has a zero eigenvalue. Generically the value kg is unique and L(kg, 0) has
rank s — 1. Moreover, for each (k,¢) close to (ko,0), L(k,¢) has a unique eigen-
value close to 0 with eigenvector wy,. We now use the implicit function theorem
to reduce to the space spanned by the eigenfunctions wy, e=*%e? for (k, ) close
to (ko,0). This space can be identified with A(ko,0). Thus, Liapunov-Schmidt
reduction leads to an equation ¢(v, ) = 0 where ¢ : X°(kq,0) x R — X?(ky,0).
Provided that ky > 0, we can now proceed as in Section 3. (The case ky = 0 is
different and does not lead to equation (1.1).)

This methodology is illustrated in our analysis of the Brusselator example
above. The bounded direction adds no complications since we solve for all but
one of the corresponding eigenfunctions.

5 Normal form symmetry

The truncated one-dimensional Ginzburg-Landau equation (1.1) is odd with con-
stant coefficients. These are symmetry properties — constant coefficients corre-
sponding to the translation A(x) — A(x + v). At first sight it is no surprise that
the equation is constant coefficient. However it is the underlying function u (in the
Swift-Hohenberg equation, say) that transforms under translations in the usual
way: u(z) — u(r + v), whereas A (via the ansatz u(z) = A(x)e® + A(x)e )
transforms as A(z) — A(z+v)e™. Hence, there is extra structure in the truncated
equation that needs explanation. This extra structure can be described in terms
of a ‘normal form’ SO(2) symmetry generated by the transformations

A4, 0e€S0(2).

We show that the nontruncated Ginzburg-Landau equation (3.6) possesses this
normal form symmetry up to arbitrary high order. Recall that our reduction
depended on the number § > 0 chosen sufficiently small, see Subsection 3.2.

Proposition 5.1 Let m be an odd integer and choose 6 € (0,1/m). Then the
Ginzburg-Landau equation (3.6) has the normal form SO(2) symmetry through
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order m. In particular, the equation truncated at order m is odd with constant
coefficients. Ignoring the \-dependence and terms with derivatives, the general
term through order m has the form |A|?*A.

Proof In Subsection 3.2, we chose § < 1/3 to ensure that there are no quadratic
terms in the Ginzburg-Landau equation. Moreover, the cubic terms take the form
C(A, A) = Cy(A, A, A) where Cj is a trilinear constant coefficient (except for the
dependence on \) pseudodifferential operator. Similarly, a computation shows
that choosing § < 1/m ensures that there are no even terms through order m
and that the general odd term has the form H(A, A) = Hy(4,... ,4;A, ... A)
where Hy is a (2k+1)-linear constant coefficient pseudodifferential operator. (The
argument A occurs k + 1 times, and A occurs k times.) |

Normal form symmetry in the Ginzburg-Landau equation appears to have
been overlooked in the mathematics and physics literature with the exception of
Pomeau [22] who worked formally and investigated some of the implications.

The normal form symmetry is an artifact of the analysis and is not present
for the full nontruncated equation (in contrast to the physical translations and
reflections which are present to all orders but in a disguised form). Eventually,
for any fixed value of § > 0, terms of the form |A|*™e~® are unavoidable. More
generally, we expect terms such as

AP Atgip—a-1)z (5.1)
for p + ¢ large (as well as more complicated terms involving derivatives of A).

Remark 5.2 In our opinion, it is obvious in retrospect that the normal form
symmetry is not present to all orders. Examine the underlying ansatz u(z) =
A(z)e™ + A(x)e™* (or some infinite expansion of this form). The amplitude A
simply does not transform under translations in the same way that v does.

Suppose that the Ginzburg-Landau equation has the normal form SO(2) sym-
metry to all orders. In particular, the transformation A +— —A is a symmetry; if
A is a solution then so is —A. Via the ansatz, we see that if v us a solution to the
underlying problem, then so is —u. But we have not assumed that the underlying
equation is odd, hence there is a contradiction. This proves that generally there
are even order terms of the form (5.1). Note that such terms automatically break
the constant coefficient structure as well.

(If the underlying equation is odd, then the corresponding Ginzburg-Landau
equation is odd. Hence, the subgroup Z, C SO(2) is maintained to all orders.
The remaining SO(2) symmetry (constant coefficient structure) is still broken in
the tail by terms (5.1) with p — g odd, p — ¢ # 1.)
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The content of Proposition 5.1 is that the SO(2)-symmetry, although not
present to all orders, is present to arbitrarily high order. This result, suggested
by Pomeau [22] on formal grounds, has not previously been rigorously proved.

Implications for solutions From the point of view of dynamical systems and
bifurcation theory, it is evident that the terms in the tail should have signif-
icant consequences for solutions of the Ginzburg-Landau equation. For exam-
ple, steady-state/Hopf mode-interaction in systems without symmetry leads to a
three-dimensional ODE with SO(2) normal form symmetry up to arbitrarily high
order. The equations in normal form can be solved fairly completely [7], but the
full equations have delicate chaotic dynamics.

Coullet et al [3] used these ideas from ODEs to obtain time-independent spa-
tially chaotic solutions in the Ginzburg-Landau equation. They did this by adding
an external ‘periodic forcing’ term to the standard truncation of the Ginzburg-
Landau equation, so as to break the translation invariance of the underlying prob-
lem. It follows from our results that such terms already occur internally and it is
not necessary to break the underlying translation invariance.

There is one class of solutions that is particularly sensitive to terms that break
the normal form SO(2) symmetry. Suppose that the operator ¥ in (3.6) has
the SO(2) symmetry to all orders and hence is constant coefficient. It follows
from standard implicit function theorem arguments that for each w > 0, there
is a branch of spatially periodic equilibria with period 27 /w bifurcating from the
trivial solution A = 0 at A = A\, > 0. Moreover, A\, — 0 as w — 0. Pro-
vided w is small, these spatially periodic solutions exist also for the operator .
However, if w is irrational, the corresponding solutions for ¢ and hence ® are
spatially quasiperiodic with independent frequencies 1 and w. The existence of
quasiperiodic solutions for the underlying PDE is independent of any Diophantine
conditions on w! Of course, this argument breaks down because of the nonsym-
metric terms in the tail. Iooss and Los [10] show that those quasiperiodic solutions
with w Diophantine exist for the underlying PDE and therefore survive the terms
in the tail. Presumably, the remaining quasiperiodic solutions do not survive.

We have made the comparison with low-codimension bifurcation theory. In
fact, the tail is likely to be of even more importance for the Ginzburg-Landau
equations than in bifurcation theory. (i) In the bifurcation theory, the exotic be-
havior often occurs in thin cuspoidal wedges in parameter space. In the Ginzburg-
Landau equation, there is only one parameter so the thin wedges are everything.
(ii) Normal form symmetry leads to group orbits of solutions. Often these group
orbits are normally hyperbolic so that breaking the symmetry in the tail picks
out some of these solutions. Now, solutions A on an SO(2)-group are essen-
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tially the same, but as pointed out in Pomeau [22] the corresponding solutions
u = Ae®® + Ae ™ need not be physically identical. (iii) In the formal derivation
reviewed in Section 2, the argument of A is the ‘slow’ variable X whereas the
exponentiated x is the ‘fast’ variable. Under the standard scaling, a term in the
tail of the form | A|?™e~** becomes proportional to |A|?™etX/¢,

These considerations put us in a position to appreciate both the achievements
and the limitations of the approach of [2, 8, 14, 24, 25] whose aim is the approx-
imate justification of solutions to the truncated Ginzburg-Landau equation over
long but finite intervals of time. Perhaps these results can be used to show that
the normal form equations are determined by the standard truncation, a truly
remarkable result. However, the information from the tail is lost in the approxi-
mation. To return to the analogy with low-codimension bifurcation theory, it is
desirable (though usually impossible) to show that the normal form equations are
determined at low order, but the tail effects should not be neglected completely.
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