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Phase dynamics in the real Ginzburg-Landau equation
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Abstract. Spatially periodic equilibria A(X,T) = /1 — q2e%4X+i¢0 are the locally preferred
planform for the Ginzburg-Landau equation 87 A = 8% A+ A — A|A|?. To describe the global spatial
behavior, an evolution equation for the local wave number g can be derived formally. The local wave
number ¢ satisfies approximately a so called phase diffusion equation 9,¢ = agh,(q). It is the purpose
of this paper to explain the extent to which the phase diffusion equation is valid by proving estimates
for this formal approximation.

1. Introduction

The (normalized) real Ginzburg-Landau equation
OrA=0%A+A— AlAP?

with X € R, T > 0, and A(X,T) € C, is a universal amplitude equation which
is derived by multiple scaling analysis in order to describe bifurcating solutions in
pattern forming systems close to the threshold of the first instability. The amplitude
A describes slow modulations in space and time of the underlying bifurcating spatially
periodic pattern. Examples of such pattern forming systems are reaction-diffusion
systems, systems in nonlinear optics, or hydrodynamic stability problems, for example
Rayleigh-Bénard convection or the Taylor-Couette problem. A mathematical theory of
this reduction to the real (and complex) Ginzburg-Landau equation has been developed
by several authors (cf. [CE90, vH91, Sch94, Me98, Me99]). It is nowadays a well
established mathematical tool which can be used to obtain new mathematical results
(cf. [Sch99]), such as global existence results and uppersemicontinuity of attractors.
The real Ginzburg-Landau equation possesses a family of stationary solutions

AX,T) = /1 - g2 %% = Ape[q, ¢o](X)
with ¢ € (—1,1), ¢g € R. For ¢*> < 1/3 the equilibria are spectrally stable, whereas
for ¢ > 1/3 they are Eckhaus or sideband unstable [Eck65]. Locally in space, these
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solutions are the preferred planform. In order to describe the global behavior in space,
an evolution equation for the local wave number g can be derived. Allowing ¢ to vary
slowly in time and space, we write

Aper[0(6X,8°T), o] (X) := /1 - (¥(3X, (52T))2exp(i /0 Y(6X',8°T)dX' +i¢0)

with 0 < 6 < 1 a small perturbation parameter, where 1 satisfies the phase diffusion
equation

(1.1) B¢ = BFh(y)

with 7 = 62T, ¢ = §X, and h : R = R a smooth function. It is the purpose of this
paper to explain to which extent this formal approximation is valid by proving esti-
mates between the formal approximation Ape[t)(0X, 62T, ¢o](X) and exact solutions
A = A(X,T) of the real Ginzburg-Landau equation.

It turns out that we cannot expect validity uniformly for all X € R, but validity
only uniformly for all X € I; with I5 an interval of length O(6~") for all r < 2.

Other amplitude equations for the evolution of the local wave number of stable
and unstable planforms close to the Eckhaus-stable threshold in the Ginzburg-Landau
equation have been considered in [Be88, vH95].

It is not obvious a priori that an approximation result for the phase diffusion equa-
tion (1.1) holds. There are a number of counterexamples of amplitude equations which
are derived formally in a correct way, but do not describe the dynamics in the original
system in a correct way. See for instance [Sch95].

The difficulty in justifying the phase-diffusion equation for the Ginzburg-Landau
equation is the time scale O(1/6%). Since the solutions in consideration are of order
O(1) a simple application of Gronwall’s inequality would only give a time scale O(1).
In order to gain estimates on the long time scale O(1/42) the proof is built similarly
to the derivation of the phase diffusion equation. In particular, in polar coordinates
the equations for the error turn out to be quasilinear.

Our approximation result allows us to find the dynamics of the phase diffusion equa-
tion in the real Ginzburg-Landau equation. Moreover, the Ginzburg-Landau equation
approximates more complicated pattern forming systems like the Taylor-Couette prob-
lem, close to the first instability, and so we can find the dynamics of the phase diffusion
equation in these more complicated systems.

The dynamics of nonlinear diffusion equations like the phase diffusion equation is
well studied. There are a number of self similar solutions [BKL94]. Moreover, in
contrast to the original systems, the maximum principle holds.

Away from the threshold of the first instability, phase-diffusion equations for the
evolution of the local wave number can be derived in order to describe spatial and
temporal modulations of the fully developed spatially periodic pattern. Formally, they
have been derived and discussed by several authors in a number of papers (cf. [CN84,
CH93, EINP00, MP79, Ma90, NPL93, PN94, KP96]). There are also mathematically
rigorous stability and diffusive mixing results which show that at least some of the
dynamics predicted by the phase-diffusion equations can be found in the Ginzburg-
Landau equation (cf. [CEE92, BK92, GM98]) or in the associated pattern forming
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systems (cf. [Sch98]). It is the purpose of further research to justify the phase-diffusion
equations themselves away from the threshold of the first instability.

The plan of the paper is as follows. In Section 2 we derive the phase-diffusion
equation by introducing polar coordinates A = re® and introducing ¢ = dx¢. In
Section 3 we prove estimates which hold uniformly in space for the variables (r, ). In
Section 4 we go back to the original A-variable which leads to the result that estimates
which hold uniformly in space cannot be expected for the approximation of A. We
also explain that the uniformity of the approximation can be improved by solving
the equations for the higher order corrections. See Remark 4.2. We note that the
alternative approach of [Me98, Me99], discussed briefly in Remark 3.5, shows that the
derivation of the phase-diffusion equation can be made exact for a certain class of
solutions if derivative terms of all orders are included (so that equation (1.1) becomes
a pseudodifferential equation).

Notation. Throughout this paper many different constants are denoted with the
same symbol C'. We denote the space of n-times weakly differentiable local uniformly
Sobolev functions with Hj",. This Banach space is equipped with the norm

lullep, = sup [[u()||mn (2,041)-
’ z€R

For details we refer to [Sch99).

2. Derivation of the phase-diffusion equation for the real Ginz-
burg-Landau equation

As already said, the purpose of this paper is to justify a phase-diffusion equation de-
scribing the evolution of the wave number g of the spatially locally preferred planform
for the real Ginzburg-Landau equation

(2.1) OrA=0%A+A— AlA]?

with X € R, T' > 0, and A(X,T) € C. This equation possesses a family of stationary
solutions

22) A = Aperlg, do](X) = V1 = el Hioe

with ¢g,q € R as spatially locally preferred planform. To derive the phase diffusion
equation we introduce polar coordinates

A(X,T) = r(X,T)eiXT)
in the real Ginzburg-Landau equation and obtain

orr = 0%r+r— (0x¢)’r—r3,
ord = %o+ 2(0xr)(9x $)

T .

(2.3)

Besides the interpretation in the introduction, another interpretation will be that
the phase-diffusion equation is derived to describe the dynamics close to a stationary
pattern Aper[g, $o]. We choose (r,¢) = (1,0) as the starting stationary pattern. For
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the general case see Remark 2.1 below. We introduce the deviations (s, @) by setting
r =1+ s to obtain

Ors = 0%s—2s— (0x9)? — (Ox9)*s — 3s% — 83,

6T¢ — 6§(¢+ 2(6)33_)}_((2X¢)‘

We can replace the equation for the phase ¢ by an equation for the local wave number
1 = Ox ¢ to obtain

Ors = 0%s—2s—9¢? —9p?s— 35> — &3,

(2.4) ot = O+ 20x (%)

The linearized system
ors = ag(s — 2s,
6T¢ = a§(¢7

possesses solutions (s,1) = (sg, Y )+ (B with py (k) = —k2, and po (k) = —k2—2.
Hence, the component s which corresponds to us is exponentially damped and so we
expect s to be slaved by 1 which will behave diffusively. To derive the phase-diffusion
equation we make a long wave ansatz

(X, T) =9(6X,6°T) and  s(X,T) = 3(0X,6%T)
with 0 < § <€ 1 a small perturbation parameter. This yields
§20,5 = 6%0%5—28— ¢ — 1?5 — 357 — &,
(2.5) . . D03
o = opp+20 Y92,

with 7 = 2T and ¢ = 6 X. Neglecting terms of order O(6?) for small ) by the implicit
function theorem, the first equation
(2.6) 0=—-25—1> —1?5-352 -5

possesses a unique solution 5 = s*(¢)) with s*(¢)) = —¢?/2 + O(¢)?). (Due to the
formula for the equilibria, we have in fact that 1+ s* = /1 — ¥2.) Inserting this into
the equation for v leads finally to the phase diffusion equation

; ; D0 (s* (1)) 2, (7
2.7 0 = 8% + 20 <7V =9;h
@7) 0=+ 20 (T ) =)
where h : R — R is smooth. Indeed, h is the solution to the equation
2q ' 1-3¢°
hg =14+ ————s* =—.
(9) s’ (9) =

Remark 2.1. Suppose that instead we start with a general choice of basic equi-
librium r = ry, ¢ = ¢X + ¢o, ¢ € (—1,1). Then the corresponding phase diffusion
equation is given by

(2.8) 0,9 = (1, q)
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where h(), ) = h(i) + q). V

To verify this, note that the deviations ¢, for (2.8) are related to the deviations
Yo for (2.7) by 1 + ¢ = tho. Hence 0:1pg = 0;¢p0 = h(vho) = h(¢) + q) = h(¢,q) as
required.

Remark 2.2. For each g, let k — p4 2(k, q) denote the smooth curves of eigenvalues
corresponding to the Fourier wave numbers k for the linearization of (2.3) around
(r,9) = (/1 —¢%,¢X). In particular, let u;(k, ¢) denote the critical curve for which
11(0,¢) = 0. Then we claim that the phase-diffusion equation (2.7) must give at lowest
order a linear diffusion equation with diffusion coefficient

W' (q) = =83 (0,q)/2.

This is easily verified by direct calculation, since we have already seen that h'(q) =
(1 —3¢%)/(1 — ¢?) while pi(k,q) = —k* — (1 — ¢®) + /(1 — ¢*)2 + 4¢%k2. A more
conceptual proof is as follows. ~

First note that the linearization L(g) of the right-hand-side % h(v,q) of (2.8) at
(0, q) must also have the eigenvalues u; (k, ¢) — after taking into account the fact that
higher order derivatives have been neglected in the derivation of (2.8). But

8% h(¥,q) = 0% h(g +¥) = K (9)0%¥ + O(|y[*)

and so L(q) = h'(q)0%. Equating L(q)e*** = u; (k, ¢)e?*® modulo higher order deriva-
tives yields h'(q) = —0211(0,¢)/2 as required.

Note that 92u1(0,q) > 0 if and only if ¢*> > 1/3 which is the famous Eckhaus
instability criterion [Eck65].

Remark 2.3. If the solutions of the phase-diffusion equation (2.7) start in between
the Eckhaus stable range, i.e. having values |¢|> < 1/3, they stay in this Eckhaus
stable range for all times due to the maximum principle. For sufficiently smooth initial
conditions satisfying sup ycg [¥(X)|> < 1/3 there is the local and global existence of
solutions (cf. [Kn68, LSU6S, Va92]).

Remark 2.4. Tt is common in the literature to consider generalized versions of the
real Ginzburg-Landau equation with more complicated nonlinearities. For example,
terms such as idx A|A|? and |A|*A are often included. More generally, terms of the
form APt Ab2(j9x A)b3 (i0x A)%+ are permitted provided by — by + bs — by = 1. In this
case, writing A = rei®, r = 1+ s, 1) = Ox ¢, leads to a system of the following form in
place of (2.4):

Ors = 6§S+f(57(6X5)27¢)7

29 orv = Ow+0x((Ox9)g(s, (0x),v))

where f and g are smooth functions of s,, (0xs)2.

This structure can be verified as follows. The symmetries (4 — A, X — —X)
and A — e°A of the real Ginzburg-Landau equation lead to the symmetries (¢ —
—¢,X = —X) and ¢ — ¢ + ¢ for the (s,¢) equations. Hence, we obtain drs =
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0%s + f(s,(0xs)*,0x9), Ord = 0% d + (0x3)g(s,(9xs)*,0x$). Writing ¢ = Ix¢
yields (2.9).

Now we can write 7 = 62T and £ = §X and neglecting small terms we reduce as
before to the phase-diffusion equation

Ot = O3 + 0 (O™ (9))g(* (9),0,9) ) = OZh(D),

where h satisfies h'(q) = 1+ s*'(q)g(s*(q),0,q). Again, h'(g) = —0211(0,q)/2 where
k + p1(k,q) is the smooth critical curve of eigenvalues corresponding to Fourier wave
numbers k. The estimates of this paper can be proved in a similar manner for this
more general system, too.

3. The approximation theorem for the (3,1))-system

In this section we prove that solutions of the (,1))-system (2.5) can be approximated
via solutions of the phase diffusion equation (2.7).
Theorem 3.1. Let 2 < m < n—2. Then there exists a Cy, > 0 such that the

following is true. Let ¢* be a solution of the phase diffusion equation (2.7) with

sup ||9* (1), < Cy
' €[0,70] ’

and let s* be defined by the solution s* = s*(1)*) of (2.6). Then there exist 6o > 0 and

Cy > 0 such that for all § € (0,8y) we have solutions (3,v) of the (3,v)-system (2.5)
such that

(3.1) sup |(3,9)(1) = (s*(@* (1), ¥" (D), xarn, < C26%.

T€[0,70]

Proof . Let ¢* be a solution of the phase-diffusion equation (2.7) and let s* = s*(¢)*)
be defined by (2.6) as above. We write a solution as approximation plus some error,
i.e.

P=¢*+6°Ry, , 5=s"+6R,.

We obtain
O;Ry = 0iRy+ Ly(Ry,Rs) + 6°Ny(Ry,Rs),
6TRS = 6§2Rs - 2672R5 + 672L5(R¢, Rs) + Ns(Rzp; Rs) + 572RGSS s
where
_ (Ogs*)Ry | (OgRs)p™  (Ogs™ )Y
Ly(Ry, Be) = 28&( 1+ s* 1+ s* (1+s*)2R3 ’
9 _ (Oe(s* + 2R,))(W* + 52R¢) B
4 Nw(Rw,Rs) = 286 ( 1+ (s* +52Rs) Lw(Rw,Rs) )

Ly(Ry,Rs) = —2¢*Ry —2¢*s*Ry — (¥*)*R,
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—6s*R, — 3(s*)R, ,

N,(Ry,Rs) = —Rj)—Rj}s*—2R,R* —6’R}R,
—3R? - 35*R2 - 0°R? ,
Res, = —0,8"+ 6523*

To be more precise, let
¢* € ([0, 7o), H?,)

be a solution of the phase-diffusion equation (2.7) for a 79 > 0. Since 9,;9%* can be
estimated by the right hand side of the phase-diffusion equation we have

o,Y* € C([O,Tg],Hﬁ;2) .
From the definition of s*, we have
s* € C([077—0]7le,bu)

and 9,5*,8;s" € C([0,70], H;",; ) . Hence, for the residual term Res there exists a
constant CRres independent of § € (0, 1] such that

(3.2) sup (||RQSS(T)||HZ;2) < CRes -

T€[0,70

A natural choice to solve the equations for the error (Ry, R,) would be the space
H" < H, l%ﬂ- This choice would allow us to solve the equations as a semilinear system.
However, it turns out that we have to build our proof similar to the derivation of the
phase-diffusion equation (2.7) in order to gain enough powers of §. Due to the formula
for s* = s*(¢*) we will consider (Ry, Rs) € HJ", x HJ"; which leads to a quasilinear
system. The semilinear approach fails due to the second estimate in Lemma, 3.4, for
the damped part, which is sharp with respect to powers of 4.

Therefore, let us fix m for the rest of this section satisfying 2 < m < n — 2 and
assume 7 € [0, 79].

Lemma 3.2. There exists a Cy > 0 such that for all Ry, and R, and all 6 € (0,1]:
1Ly By, Bs)ll -2 < Cu(l|Byllmg, + 1 Rsllsyr,)

,u

ILs(Ry, Bs)||l e, < Cill|Ryllap, + || Rsllap,) -

;U

The constant Cy > 0 can be chosen to satisfy C1 — 0 if sup ||v*(7)||mp, — 0.

T€[0,70]
For all M > 0 there exist 61,C > 0 such that for all 6 € (0,01) and Ry and R with
IRy, + |1Rs||pm, < M we have

162 Ny(Ry, Bo)ll g2 < CE (1R g, + |1 Rallip)
Ny (R, B, < CCIR i, + [ Rallip) -

Proof . Follows by elementary estimates as |[uv||apm, < [lullap, [[0||ap, for m > 1.
O
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Lemma 3.3. The solution R(T) = ePE-IT Ry of
R=0;R—aR , R|.—o=Ry
with a € R satisfies for r > 0,

IR(7) | < Ce™ (14 7) "2 | Rollarr, -

2
Proof. 02 is a sectorial operator in HJ", generating the analytic semigroup e,

The estimates are standard in the theory of analytic semigroups (cf. [He81]) using
multiplier theory in H", -spaces as in [Sch99]. O

Since the nonlinear terms contain as many derivatives as the linear ones we need an
optimal regularity result. We choose functions which are Hélder-continuous in time
with values in H;",. We use the notation uy = 8, pa = 8 — 267", ¢1 = Ry, and
¢2 = R and consider for j = 1,2

(33) Orcj = pici + gj
with

g9; € C°([0,70], H])
and define

Cm,i(T) = 1(ci (7)) efo,rillco o, 71,17,
and similarly Cy, 4, (7) for a 6 € (0,1).
Lemma 3.4. For r € [0,2] consider (3.3), where we additionally assume g;(0) =0
for 20 +r > 2. Then the solutions c; of (3.3) satisfy
Conr1 (1) L CCgy (1) and  Crpgra(T) < C*7"Clygo (7).

Proof. The proof follows by direct calculation based on a classical optimal regularity
result (cf. [Am95]) using the estimates on the linear semigroup from above. In detail
we have: For notational simplicity we first assume g;(0) = 0 and estimate with Lemma
3.3

”/ elvbl(k)(‘l'f‘r )g(TI)dTI||Hlm+r
0 ,u

< ”/ em(k)(r—,-')(g(T/) —g(T))dT'||Hlm+r +||/ et (R)(T=7") gt 9(7')||Hlm+r
0 »u 0 ,u
T 1 — em(B)T
< C/ 204 Cr ol (T) + g1 (D)|| gy tr
<cf @)+ P O

= 81+ 8o.
The first term s; is estimated by

51 < Cr? Crn,g: (7).
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In order to estimate sy we proceed as follows

1 — er1(B)T
52 < 1=y N e lon (Ml -

Since g1 (0) = 0 we have
g1 (D) l#ze, < 7°Crgy (7).

From the multiplier lemma in H;", -spaces (cf. [Sch99]) we have

1-—- eu1(k)'r 1— e;u(k)r
m gt < Ik ——=— (1 + |kl
|| ,l,l/l(k) ||Hl,u_’Hz,u+ — ” Nl(k) ( | | )”Cb
which is estimated by
1 —em(k)7
su 14 |k|"
ke£| 1 (F) (1 + [k
< C(1+ sup ||kl2) <C
k>1 |kl

and similarly for the derivatives. In a similar way we obtain

||/ euz(k)(r_rl)g(Tl)dTl||Hlmu+"
0 ,

. . 1 — ekz(k)T
C’/ =207 1= /2,008 g Cim,go (1) + | ——5—92(7) || g+~
. pa (k) b

< C8F T Oy (1),

IN

where we introduced 27/ = 7 and estimated the integral by
o0 ~
c / e (§27) /P
0

For the second term we use

k" 1 k"
———| < e | < O8N
;‘fzpl 52 + el < @g | (672 4 k2)L-r/2 | @Epl | (6=2 + k2)r/2 <

These two estimates additionally show the Holder-continuity with exponent 8 for 7 = 0.
In a very similar fashion the Holder-continuity for 7 > 0 is obtained with the same
estimates in terms of § (cf. [Am95]). The estimates for g;(0) # 0 and 20 +r < 2 follow
from classical theory for semilinear equations [He81]. O

Since the residual is arbitrarily smooth compared to Ry and R,, it can be han-
dled with the semilinear estimate, i.e. r = 0, and since Ry|r—0 = Rs|lr=0 = 0
implies Ly|;=0 = Ls|r=0 = Ny|r=0 = Ns|r=0 = 0, Lemma 3.4 is applicable with
91 € {Ly,Ny,Resy} and g € {Ls, Ny, Ress, }.
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Hence it remains to sum up all estimates. Using (3.2), Lemma 3.2, and Lemma 3.4
gives finally the estimate

(3.4) Cmi < Ci(Cmy+ Cmpa) +C50°(Crt + Cr2)? + CRes,
(3.5) Cma < Cy(Cmi+Cma)+C50%(Crmt + Crn2)® + Cres

with Cy a constant satisfying Cy — 0 for sup,.¢(o -, [|¥*(7)ll mp, — 0, with C5 another

constant, both independent of §. From (3.4) and (3.5) for sup,¢jg ) [1¥*(7)|zp, >0
and §¢ > 0 both sufficiently small we have ’

Cm,l S 2C’Res and Cm,2 S 2CRes

for all 6 € (0,dp). Therefore, we are done. O

Remark 3.5. An alternative approach [Me98, Me99] is to consider spaces of func-
tions s(X,T), ¥(X,T) that lie in a space X of Fourier transforms of Borel measures
with bounded total variation norm. The space & is a Banach space with the total vari-
ation norm. We briefly describe the results of this approach, referring to [Me98, Me99]
for details.

The starting point is the (s,1)) system (2.4) or more generally the system (2.9)
obtained by including higher order terms in the real Ginzburg-Landau equation. It
can be shown that locally there is a one-to-one correspondence between “essential
solutions” for (2.9) and essential solutions for a pseudodifferential (in time and space)
equation of the form 879 = d%h +h.o.t where h is the function that appears in (2.7)
and h.o.t are higher order terms in the same sense as in the rest of this paper — of
order O(4%) on writing 7 = 62T, £ = §X.

4. The approximation theorem for the real Ginzburg-Landau
equation

It is the purpose of this final section to transfer the approximation result of Theorem
3.1, i.e. that the (3,1))-system (2.5) can be approximated via solutions of the phase
diffusion equation (2.7) back to the real Ginzburg-Landau equation (2.1). It turns out
that we cannot expect validity uniformly for all X € R, but validity only uniformly
for all X € Is with I5 arbitrary intervals of length O(6~") for all r < 2.

Our starting point is the relation

X
AX,T) = (1+ 56X, 8°T)) exp (i / P(6X", 82T dX')
0

which defines the solution A of the real Ginzburg-Landau equation (2.1) in terms of
solutions (§,)) of (2.5). These solutions are approximated by

Aapp(X,T) = (1 + 5*(8X, 8°T)) exp (z / b (6X',82T) dX').
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Then we obtain

|AX,T) = Aapp(X, 7))

X
< |1+ 36X, 52T))exp(i/¢(6X',52T) dX')
0
X
—(14 5*(6X,6%T)) exp z/w* (6X',6°T) dX')
0
X
< (14 35(6X, (52T))exp<i / P(6X',6°T) dX')
0
X
—(1+4 3(0X,6%T)) exp ¢/zp* (6X',6°T) dX')
0
X
+|(1 4+ 3(6X,6%T)) exp z/¢* (6X',6°T) dX')
0
X
—(1+ s*(8X, 6°T)) exp z/¢* (6X',82T) dX')
0
X X
< 14 5(6X,6%T)) exp / D(6X', 62T dX’ —exp z/¢* (6X',6°T) dX')
0 0
+|s (6X,6°T)) - 5(6X,6°T))|
< ¢ / (X", 82T — * (6X", 82T)| dX| + 62
0
X
< ‘/C&ZdX’ 082 < C8(1+ X))
0

using the approximation result of Theorem 3.1. Thus, we have proved

Theorem 4.1. Under the assumptions of Theorem 3.1, there exists a solution A =
A(X,T) of the real Ginzburg-Landau equation (2.1) such that the following is true.
For all L > 0 and r € [0,2) there exist 69 > 0 and C> > 0 such that for all 6 € (0, o)
we have

A(X,T) — (1 + s*(*)(6X,6°T))

sup sup
Te[0,70/62] | X|<LS—"

X
x exp (i / V*(6X',6°T) dX')

0

< 02(52_T.
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Hence the approximation result holds uniformly on intervals larger than the natural
spatial scale (r = 1) of the phase diffusion equation. Due to the translation invariance
of the original system this holds for all intervals of length O(6~") using redefined
approximations.

By taking ¢) = 62 and ¢* = 0 we have to compare e X with 1 which shows that
estimates uniformly valid for all X € R cannot be expected. A uniform estimate can
only be expected for ¢ and ¢* spatially localized, for instance in spaces like H ™ (n)
with n > 2, equipped with [[u||gm ) = [lup™||g= with p(z) = V1 + 22. We claim the
validity of the approximation result for (¢, 3) € H™(2) x H™(2), too.

Remark 4.2. By adding higher order terms in (y*,s*), the approximation in
Theorem 4.1 can be improved to hold uniformly on space intervals with length of
order O(0~?) with p > 0 arbitrary. Indeed, it suffices to include all terms in (¢*, s*)
of order O(6?) for some fixed § > p. In order to do so we make the ansatz

o= T+ + 85 + ..+ 0Py,
= s* 4057 +0%s5 + ...+ 6P

¢

The governing equations for the ¢} and s} are obtained by equating the coefficients
of 07T? and &7 to zero. They are linear with respect to ¢5 and s} for fixed j. For
instance, we obtain for s} the equation

0= —2s] — 219" — 29p"s" — (¥*)s] — 675" — 3(s™)s].

Hence the solutions of these equations exist as long as the solutions of the phase
diffusion equation exist, again under the assumption that ¢* is sufficiently small.
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