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Abstract

We present new results on the validity, universality and structure of the
Ginzburg-Landau equation on the line.

1 Introduction

Ginzburg-Landau equations [10, 21] are universal modulation equations (also known

as amplitude or envelope equations) that govern the local dynamics of spatially-

extended systems of partial differential equations (PDEs) undergoing certain bifur-

cations (see for example [3, 15, 16]). The equations play the same role for spatially-

extended systems that Landau equations [9] play for problems with bounded domains.
The simplest form of the Ginzburg-Landau equation is

OrA = c)0% A+ c1A + ¢z AP A, (1.1)

where A = A(X) : R — C is a complex amplitude function and cg,ci,c0 € R
We also consider the complex Ginzburg-Landau equation which has the same form
with ¢g,co € C, ¢; € R. In the physics literature, such equations are derived either
phenomenologically or via asymptotic expansion from underlying PDEs.

There are two distinct and complementary rigorous approaches to justifying the
Ginzburg-Landau equation (1.1). The first approach is to show that solutions to
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the Ginzburg-Landau equation approximate solutions to the underlying system of
PDEs. See Schneider [19], and also [2, 6]. (The analogous results for the complex
Ginzburg-Landau equation can be found in Schneider [20].) The second approach due
to Melbourne [11, 12] is to derive a universal reduced equation that is a nontruncated
version of the Ginzburg-Landau equation, so that

(i) Formally, the reduced equation agrees with the Ginzburg-Landau equation when
truncated at leading order.

(ii) There is locally a one-to-one correspondence between essential solutions of the
nontruncated Ginzburg-Landau equation and the underlying system of PDEs.

Essential solutions were defined in [1] (see also [14]) and roughly speaking are solutions
that are small in space and time. Our approach generalizes the results of Iooss et
al. [8, 7] who studied equilibrium and time-periodic solutions.

We note that the approach in [11, 12] is more in keeping with the well-known ap-
proach of equivariant bifurcation theory [5], where center manifold reduction leads to
equations that, when truncated at leading order, generically coincide with the Landau
equations. This point of view is discussed at length in [13]. The main difference from
equivariant bifurcation theory is that the group of symmetries is not compact leading
to problems with continuous spectra. In particular, the center manifold theorem does
not apply and the reduced equations are not finite-dimensional.

In this article, we explore further the formal agreement (i) between the reduced
equation truncated at lowest order and equation (1.1), and we prove two rigorous
results in this direction. Consider spatially-extended systems of PDEs governing
functions u = u(z,z) : R x Q@ — R® where z € Q denotes the bounded spatial
variables. Let A € R denote a bifurcation parameter, and suppose that at A = 0 there
is a steady-state bifurcation with nonzero critical wavenumber k. > 0. (See [12] or
Section 3 for precise definitions of these terms.) Under certain technical assumptions,
it is shown in [11, 12] that generically there is a reduction to a nontruncated Ginzburg-
Landau equation (see equation (3.2) below). The two new results in this paper are
as follows:

Theorem 1.1 Let v € (0, %) Generically, there is a semilinear equation of the form

O A = cg02A + e AA + | AP A4 0(92A, MA, A?), (1.2)
such that essential solutions satisfying ||A|| < |A\[* are locally in one-to-one corre-
spondence with such solutions for the underlying system of PDFEs.

Since we expect branches of solutions to have amplitude A'/2, we obtain effective
results by choosing ¥ < 1/4 in Theorem 1.1.
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Theorem 1.2 Nondegenerate essential solutions Ay to the (truncated) Ginzburg-
Landau equation (1.1) correspond to (discontinuous) branches of solutions to the un-
derlying system of PDEs of the form

u(z, z,t) = \/X(Ao(\/Xx, At)vg(z)e*e® + Ag(V Az, /\t)ﬁo(z)e_““”m) +o(VA). (1.3)

for some function vy : Q@ — C°.

The terms o(---) in equation (1.2) are nonlocal, incorporating derivatives of all
orders. Nevertheless, the nonlinear terms are analytic. Our approach is flexible
enough to incorporate additional nonlinear terms. For example, Theorem 1.1 remains
valid with equation (1.2) replaced by a semilinear equation of the form

A = o0 A+ cIANA + co| AP A +ic| AP0, A +icg A20, A + c5| A|* A + 0(02A, MA, 0, A®, A®).

The remainder of this paper is organized as follows. In Section 2, we present our
results starting from the (generalized) Swift-Hohenberg equation. The extension to a
universal theory for systems of PDEs is given in Section 3. The corresponding results
for the complex Ginzburg-Landau equation are stated in Section 4.

2 Derivation of the Ginzburg-Landau equation

In this section, we recall the derivation in [11] of the one-dimensional Ginzburg-
Landau equation. In addition, we clarify and extend certain aspects of this derivation.

To fix ideas, we begin with a simple example. (The extension to general systems of
PDE:s is given in Section 3.) Consider the one-dimensional Swift-Hohenberg equation

Ou = —(D* 4+ 1)%u + du — u?. (2.1)

where u is a real-valued function, and D = 0,.
Viewing u : R2 — R as a function of z and ¢, we rewrite the equation in the form

0=®u,\) = —0u— (D*+1)%u+ Iu —u’. (2.2)

The linearization around the trivial solution is given by Ly = —9;— (D?*+1)?+\. The
kernel of L = L consists of Fourier modes e#*%e? with (k,£) = (£1,0). Modes with
(k,£) ~ (£1,0) are also considered to be critical since they contribute eigenvalues
—(k? — 1) — i that are arbitrarily close to 0.

The primary aim is to reduce equation (2.2) to an equation of the form

0=U(A,\) = —0,A+4D*A+ \A - 3|APA+--- (2.3)



We use the implicit function to establish a one-to-one correspondence locally (near
(u,A) = (0,0) and (A, A) = (0,0)) between solutions of 0 = ® and 0 = V.

As shown in [11, 12], there is a Banach space X’ of bounded continuous functions
u: R? — R that has certain convenient properties. We will describe these properties
as they are needed. For the moment, we note that e?**e#t ¢ X for all k, ¢ and that
the spectrum of a linear operator on X is the closure of the set of eigenvalues arising
from etkeeitt.

As usual, we define the graph norm ||u||, = ||u|| + ||Lu|| and denote by X7 the
subspace of X’ with ||u||; < co. Then X7, is a dense subspace of X and ® : AL, xR — X
is an analytic nonlinear operator.

Fix § > 0, and let X? consist of functions comprising ‘critical’ Fourier modes with
l|k| —1| < é and |[¢| < §. Let X be the complementary space (so either ||k| — 1| >
or || > 6%). An important property of the space X is that X° and X° are closed
subspaces and we have the closed splitting X = X° @ X°. Similarly, we have the
closed splitting &7, = X% @ X¢ (noting that X} = X°). The linear operators Ly
preserve the splittings:

Ly: X% = X°,  Ly:Xf— X-

Since the eigenvalues of L restricted to X} are bounded away from 0, the linear
operator L : Xf — X° is an isomorphism with bounded inverse L~'. Hence, we
can use the implicit function theorem to solve locally for noncritical Fourier modes
in terms of critical Fourier modes. More precisely, we use the method of Liapunov-
Schmidt reduction (see for example [4]). Define complementary projections

E:X — X I—-E:X— X°.
Equation (2.2) is equivalent to the equations
0=Ed(v+w,A), 0=(1—-E)®(v+w,A),

where v € X, w € Xf. By the implicit function theorem, there is a unique analytic
function W : X° x R — X¢ defined locally (for (u, \) near (0,0)) such that

E@w+W(wA),\) =0,  W(0,0)=0.

Hence, there is locally a one-to-one correspondence between solutions of equation (2.2)
and the reduced equation

0=0¢(,\) = —E)®(v+W(v,A),N),



where ¢ : X% x R — X is an analytic nonlinear operator. A computation (see
Appendix B) shows that the reduced equation is

0=¢(v,A) = — E){Lyw—v* = 3v’Ly'Ev® + O(v") }.
The next step is to make the substitution
v(z,t) = B(z,t)e" + B(z,t)e™™, (2.4)

where B is a complex amplitude function. This is a well-defined substitution: since
v incorporates Fourier modes with (k,¢) ~ (£1,0), we require that B incorporates
Fourier modes with (k,¢) ~ (0,0). Accordingly, we define J (in the same manner as
X) to a function space of complex valued continuous functions B : R? — C, and ) is
the subspace of functions that incorporate only those Fourier modes with |k| < ¢ and
|¢| < §2. For any fixed § € (0,1), equation (2.4) defines a one-to-one correspondence
between v € X% and B € )?°.

After the substitution, we obtain a complex amplitude equation 0 = (B, )
where B : )’ x R — )? is analytic. To be more explicit, we introduce the following
notation. Let P : Y — ) be projection, and define @ = I — P. Define L,[j](B) =
e e[, (BeY®). Then we have the equation

0= (B, \) = P{L\[1]B — 3|B’B — 3B"L,[3] "' B* — 18| B[’ Z — 9B*Z + O(B")},

where Z = L,[1]7'Q(|B|?B). Moreover, Ly[1] = —0,+4D?*(1—(i/2)D)*+ \. (Strictly
speaking, we should speak of an operator 1 : J° x J° x R — Y° that is analytic in
B, B and ), but our abuse of notation should not lead to any confusion.)

Now we work backwards from an equation of the form (2.3). Keeping in mind the
desired unbounded linear terms in the Ginzburg-Landau equation, we define Y, C Y
using the graph norm ||Al|s = ||A4|| + ||(=8; + D?)A)||. In the obvious notation, we
have the closed splittings Y = VoY, V=) Ys$. Consider an equation of the
form

0=U(A,\) = MyA—3|APA — 3A° N, A3 + H(A, \), (2.5)
where ¥ : ), X R — ) is an analytic nonlinear operator, and

(i) My : Yo — Y is a bounded linear operator and M = M, : Y5 — Y€ is an
isomorphism (so the graph norms corresponding to M and —d; + D? are equiv-
alent.)

(ii) Ny:Y — Y is a bounded linear operator.

(ili) H:Y x R — Y is analytic and satisfies H = O(A").
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Condition (i) ensures that the critical Fourier modes at A = 0 lie in )°. By the
Liapunov-Schmidt method described above, we can locally reduce the equation 0 =
U(A,)) to an equation 0 = (B, )\) where ¢ : )’ x R — )°. A calculation shows
that

%(B,\) = P{M\B — 3|B|’B — 3B°N,B* — 18| B*Z' — 9B°Z + O(B")},

where Z' = M; ' Q(|B|*B).

Next, we match up the terms in 1; and 1. The operators 1; and v agree at
linear order if and only if PM, = PLy[1] = =8, + 4D*(1 — (i/2)D)* + \. Tt is
sufficient to choose M, = —9, + 4D?M’' + X where M’ is a linear isomorphism such
that PM' = P(1 — (i/2)D)?. (That is, we choose M’ to have symbol 7, where 7 is a
C® function, bounded away from zero and infinity, satisfying n(k) = (1 + k/2)? for
|k| < 6.) This can be accomplished if 6 < 1/2 say.

The cubic terms in 1; and 1 already coincide, so we turn to the fifth order terms.
First, we modify the definition of M, so that M, and L,[1] coincide for all Fourier
modes with |k| < 3. To maintain the requirements in (i) it may be necessary to
shrink § (§ < 1/6 suffices). We then have that Z’' = Z. In addition, we choose N, to
be a bounded linear operator coinciding with Ly[3] ! for |k| < 34, |¢] < 36%. Again,
we can choose N, to have a C* symbol.

Finally, it follows by [11, Proof of Theorem 3.6] that there is an analytic choice
of higher order terms H such that the reduced operators QZ and v are identical. In
particular, we have proved that there is locally a one-to-one correspondence between
solutions of equations (2.2) and (2.5). In other words, there is a one-to-one corre-
spondence between essential solutions of the Swift-Hohenberg equation (2.1) and the
(nontruncated) Ginzburg-Landau type equation

O = 4M'D*A + \A — 3|APA + O(A®) (2.6)

We now describe in more detail the structure of equations (2.5) and (2.6).

Normal form symmetry Equations (2.5) and (2.6) have a normal form symmetry
A+ Ae? for all §. By choosing 6 small enough, we can arrange that this normal
form symmetry occurs to arbitrarily high order in the Taylor expansion of ¥. More
precisely, to arbitrarily high order, the general term in ¥ (neglecting derivatives and
multiplication by ) is of the form |A|?* A. In particular, such terms are odd.

We refer to [11] for a proof that this symmetry occurs to arbitrarily high orders.
In the tail, there are terms of the form APA’¢'®=4=1)2_ For a proof that such terms
are unavoidable, and a discussion of the repercussions of this fact, we again to refer
to [11].



Pseudodifferential structure Equations (2.5) and (2.6) are pseudodifferential
equations, incorporating terms and derivatives of all orders. Note that the fifth or-
der term —3Z2N,\A3 involves the linear operator Ny which coincides with Ly[3]! for
small wavenumbers. But Ly[3] = —9;, — ((D + 3)? + 1)® + A, so inversion leads to
derivatives of all orders in x and t.

Even at linear order, there are z-derivatives of all orders thanks to the linear
isomorphism M'. The symbol of M’ is C* but not analytic.

The cubic terms in (2.6) happen to have a polynomial symbol, but this is an arti-
fact of the simplicity of the Swift-Hohenberg equation. If there are quadratic terms,
or if there are derivatives in the cubic terms, in equation (2.2), then the situation is
more complicated. However, as shown in [11], the cubic term in equation (2.6) can
always be chosen to have a C'™ symbol (see also Appendix B).

In Melbourne [11], it was suggested that the fifth order terms in (2.6) might have
discontinuous symbols due to the presence of the projection operator Q in 1. This fear
turns out not to be realized, since exactly the same terms occur in ¢. In Appendix B,
we prove that this ‘coincidence’ at fifth order occurs for all operators ® regardless of
the nature of the quadratic, cubic and quartic terms.

Proposition 2.1 Consider the generalized Swift-Hohenberg equation
0= -0 — (D*+1)%u+ Au+ N(u, A, (2.7)

where N : X, x R — X is any constant coefficient analytic nonlinear differential
operator satisfying N(0,A) = 0, (dN)or = 0. Then locally, solutions of (2.7) are in
one-to-one correspondence with solutions of an equation of the form

0=U(A,\) = —0,A+AM'D*A+ A + R(A, \), (2.8)

where U : Yo x R — Y is analytic, M' : Y — Y is a linear isomorphism (on the whole
of Y), R: Y xR — Y is analytic, and (dR)o = 0. Moreover,

R(A: /\) = 03(A: Z; Aa )‘) + 05(Aa Z; Aa Z; A: /\) + O(A7)a
where Cs(-, A) and C5(-, \) are bounded multilinear operators with C*° symbols.

Conjecture 2.2 In Proposition 2.1, we can arrange that the nonlinear terms through
arbitrarily high order have smooth symbols.

Relation to the Ginzburg-Landau equation. I As described in [13], a lesson
to be learnt from Landau theory is that reduced equations cannot necessarily be



truncated at lowest order. A two-step approach is preferable: 1. Reduce to a nontrun-
cated version of the desired equation, and II. Determine to what extent truncation is
legitimate.

Consider the Swift-Hohenberg equation (2.1). Comparing the reduced equa-
tion (2.6) with the Ginzburg-Landau equation (1.1), we see that step I has been
accomplished except for the factor M’ in the linear terms. In fact, the linear isomor-
phism M’ can be chosen arbitrarily close to the identity in the following sense. As
far as the linear terms are concerned, it suffices that M’ coincides with (1 — (i/2)D)?
on X°. But the latter operator has norm (1 + §/2)% < 1+ 2§ for 6 small. Hence we
can choose M’ such that ||M' — I|| < 24.

(If we require also that the fifth order terms have a smooth symbol, then we
require that M’ coincides with (1 — (i/2)D)? on X*. For § small enough we can
arrange that ||[M' — I|| < 40.)

For the generalized Swift-Hohenberg equation (2.7), we similarly choose Cj5 in
equation (2.8) in such a way that C3(A, A; A, \) = co|A|?A + O(6 43, \A?) for some
co € R. In this way, we obtain the following result.

Proposition 2.3 There ezists a g > 0 such that for any § € (0,8), there is locally a
one-to-one correspondence between solutions of the generalized Swift-Hohenberg equa-
tion (2.7) and solutions of an equation of the form

0=Us(A,\) = —0, A+ 4D’ A + AA + co| AP A + Hj(A, ), (2.9)

where Us: Yo Xx R — Y and Hs : Y x R — Y are analytic for each 6, and Hs(A,\) =
O(6D?A, 543 NA3, A®).

For each fixed § in Proposition 2.3, the correspondence holds locally on a full
neighborhood of (0,0) € Y x R. We note however that the neighborhood shrinks to
zero as § — 0. To overcome this difficulty, we set § = \*" where 0 < v/ < 1/2. For
A fixed, the implicit function theorem holds on neighborhoods of order ||(L[xe)™" |7
and this is of order 62 = A\*'. (The estimate in ) is identical.) Choosing v € (0, /),
we obtain the following version of Theorem 1.1.

Theorem 2.4 There is a Ao > 0 such that for each A\, v with |A| < A, 0 < v < 1/2,
there is locally a one-to-one correspondence between solutions of the generalized Swift-
Hohenberg equation (2.7) and solutions of an equation of the form

0=Uy,(A) = -0, A +4D*A + MA + 3| A|?A + Hy, ,(A), (2.10)

where Uy, : Yo — Y and Hy, : Y — Y are analytic for each A, and H),(A) =
O(N’D?A, N\ A3, A®). Moreover, the neighborhood of validity includes solutions satis-
fying |lullz, |Allz < [A[.



Relation to the Ginzburg-Landau equation. IT A standard method for passing
from nontruncated reduced equations to truncated (Landau) equations is to scale
and apply the implicit function theorem; see for example Sattinger [18]. Then all
nondegenerate solutions of the truncated equation correspond to smooth branches of
solutions to the reduced equations and hence to smooth branches of solutions to the
underlying equations.

The same method applies here, except that the scaling yields an equation that
is everywhere discontinuous in A except at A = 0. Fortunately, this is sufficient
regularity to apply the implicit function theorem (though the resulting branches of
solutions are again everywhere discontinuous in A except at A = 0).

Here are the details. Starting from equation (2.8), we make the standard scaling

Az, t) = eAg(X,T), X=ex, T=¢€t I=¢.
Since M’ is bounded with smooth symbol n(k) =1+ O(k), we can write
M' = n(—id,;) = n(—iedx) =1+ O(e).

Similarly, C(A, A; A, \) = cy|A|?A + O(eA3). Substituting into (2.6) and dividing
throughout by €3, we obtain the equation 0 = G(Ay,€) where G : Y x R — ) is
analytic in Ay and is given by

G(A(), 6) = —aTA() —+ 46%140 + A() + CQ‘A0|2A() -+ 0(6)

We caution that this equation has no regularity in € (scaling = and t in terms that
involve the projection Q is a discontinuous operation). However, G is analytic in
Ay for each fixed e and is jointly continuous at (Ag,0) for each A;. As shown in
Appendix A, the implicit function theorem is valid, and we conclude the following
special case of Theorem 1.2.

Theorem 2.5 Suppose that Ag is a nondegenerate solution to the equation 0 =
G(Ao,0) (by nondegenerate, we mean that (dG)ay0 : Yo — Y has a bounded inverse).
Then locally, there is a unique family of solutions Ag(€) to the equation G(Ay,€) = 0.
This family of solutions corresponds to a (discontinuous) branch of solutions to the
generalized Swift-Hohenberg equation (2.7) of the form (1.3) (with k. =1, vo =1).

3 Systems of PDEs and Universality

So far, we have stated our results for the (generalized) Swift-Hohenberg equation (2.7).
We now show that these results hold universally for systems of PDEs.



The general setting is systems of PDEs involving functions u = u(z, 2,t) : R x
2 xR — R*® where there is a single unbounded domain variable x € R and arbitrarily
many bounded domain variables z € Q. (So the spatial domain R x € is cylindrical.)
For ease of exposition, we shall restrict to the case when there are no bounded domain
variables (€2 = {0}) and refer to Melbourne [12] for the general case.

We also assume Euclidean E(1) symmetry, where E(1) consists of translations
x +— z + b and reflections  — —z. We suppose that E(1) acts on functions u :
RxR— R as

u(z,t) — u(x — b,t), u(—z,t) — Au(z,t), (3.1)

where A is an s x s orthogonal matrix with A? = I. Such actions are called physical
in [12].

A suitable function space is given by X* = (X)*. We consider nonlinear partial
differential operators ®° : X* x R — A’® satisfying the following properties:

(H1) @° is E(1)-equivariant: ®°(yu, ) = y®*(u, A) for all v € E(1), A € R, and » in
the domain of ®°.

We note that the (generalized) Swift-Hohenberg equation is equivariant under the
scalar action of E(1), where s = 1 and A = 1. Equivariance with respect to transla-
tions u(z,t) — u(x — b,t) implies that the partial differential operators are constant
coefficient.

(H2) @°(0,\) = 0.

(H3) There is a linear operator L® : X* — X° such that ®° : X}, x R — X* is
analytic, and (d®®)o = L°.

(H4) The kernel of L* consists of Fourier modes voe*®e* with (k, ¢) = (+k., 0), where
k. > 0 and vy € C*.

Hypothesis (H2) states that there is a fully symmetric trivial solution v = 0. By
(H4), the trivial solution undergoes a bifurcation at A = 0 and this is a steady-state
bifurcation (since the critical modes have ¢ = 0) with nonzero critical wavenumber
k. > 0. Under certain technical assumptions, Melbourne [12] proves that generi-
cally dimker L* = 2 in (H4). When these technical assumptions hold and Hypothe-
ses (H1)—(H4) are valid, we say that the E(1)-equivariant system of PDEs 0 = ®*(u, A)
undergoes a steady-state bifurcation with nonzero critical wavenumber.

Lemma 3.1 ([12]) Suppose that an E(1)-equivariant system of PDEs 0 = ®°(u, \)
undergoes a steady-state bifurcation with nonzero critical wavenumber k.. Generically,
there erists a nonlinear (pseudodifferential) operator ® : X x R — X (with s = 1)
such that
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(1) ® is equivariant with respect to the scalar action of E(1) (s =1 and A = 1
in (3.1)).

(2) ®(0,)) = 0.

(8) There is a linear operator L : X — X such that ® : X, x R — X is analytic,
and (d(I))O,O = L.

(4) The kernel of L consists of Fourier modes e*®e®® with (k,¢) = (£k,0). More-
over, the symbol of L is C™ and has the form —il — a(k? — k2)? + O(k* — k?)3,
where o € R.

(5) Locally there is a one-to-one correspondence between solutions of 0 = ®° and
0=2.

Combining this lemma with the techniques in Section 2, we obtain (with ¢y = 4a):

Theorem 3.2 Suppose that an E(1)-equivariant system of PDEs 0 = ®°(u, \) un-
dergoes a steady-state bifurcation with nonzero critical wavenumber. Generically,

(a) There is locally a one-to-one correspondence between solutions of 0 = ®*(u, A)
and solutions of an equation of the form

0=U(A,\) = 0, A+ coM'D*A+ e M"ANA+C(A, A, A))) + H(A, N, (3.2)

where U : Yo x R — Y is an analytic operator, cg,c1,co € R, M', M" are linear
isomorphisms on Y, C(-,A) is a bounded trilinear operator on Y, and H = O(A®) is
analytic on ).

(b) For any q > 1, there exists 6y > 0 such that for any § € (0,68), equation (3.2)
can be written as

0=Us(A,N) = -0, A+ coD?*A + i A + (:2|A\2A + O(5D2A, OAA, (5A3, A5), (3.3)
where

(i) The Taylor expansion of Vs truncated at order A? is equivariant with respect
to the S* action A — € A. In particular U5 is odd and constant coefficient
through order q.

(i) The symbols of terms in W through fifth order (and conjecturally through or-
der q) are C™.
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(c) Let 0 <v < V' < 1/2 and set § = N in part (b). Then equation (3.3) becomes

0=Uy,(A) = =0 A + coD*A + c; \NA + | APA + O(ND*A, N1 A, NV A3 AP).
(3.4)

For each A\ > 0, there is locally a one-to-one correspondence between solutions u of
0 = ®*(, A) and solutions A of 0 = U, , and the neighborhood of validity includes
solutions satisfying ||ul|zs, ||All2 < [A[?.

(d) Nondegenerate solutions of
0= —8TAO + 0083(140 + Cle + CQ|A0|2A0

correspond to branches of solutions to the underlying system of PDEs 0 = ®°(u, \)
of the form (1.3) (with vo(z) = vy € C*).

4 Complex Ginzburg-Landau Equation

The methods for steady-state bifurcation with nonzero critical wavenumber apply
equally to Hopf bifurcation with zero critical wavenumber. (See [13] for a nontechnical
account of the results.) The set up is as in Section 3 with Hypothesis (H4) replaced
by

(H4") The kernel of L* consists of Fourier modes voe**e* with (k, £) = (0, +w), where
w >0 and vy € C°.

The conclusions in Theorem 3.2 are unchanged except that now cg,co € C, and
in part (b)(i) ¥y is constant coefficient to all orders but autonomous only through
arbitrary finite order ¢ (see [13]).

A Implicit function theorem

The standard implicit function theorem is stated for C* functions, k¥ > 1, and leads to
implicit functions that are C*. If we require less regularity for the implicit function,
then the hypotheses may be weakened and the standard proof goes through with no
change. Renardy [17, Theorem 2.1]) pointed this out under hypotheses that guaran-
teed a continuous implicit function, and we generalize further to obtain an implicit
function that need not be continuous except at one point. In particular, our version
of the implicit function theorem is sufficiently general to prove Theorem 2.5. Our
exposition follows Renardy [17].

12



Theorem A.1 Let X,Y,Z be Banach spaces and F' : X XY — Z a mapping such
that

(i) F(z0,0) =0,

(1) F(-,y) is C' for each fizedy € Y,
(iii) F is continuous at (zo,0),

(iv) D.F is continuous at (xq,0),

(v) (DgF)go0: X — Z is an isomorphism.

Then in a small enough neighborhood of (x¢,0) in X X Y, there is a unique solution
x = f(y) to the equation F(x,y) = 0. The function f satisfies f(0) = xo and is
continuous at 0.

Proof Let L = (D,F);,0 and define G(z,y) = 2 — L™'F(z,y). Let H = LG. By
assumption (ii),

1
H(J?, y) - H("I‘Ja y) = / (de)w’—H(z_m’),y(JT - .’L‘I)dt
0

1
= /0 (D2 F )90 = (Do F) gt t(o—ary ydl (v — 7).

Choose € > 0 such that |[eL7!|| < 1/2. By (iv), we can choose 7’ such that the norm
of the integrand is smaller than € for ||z — x|, ||z — zol|, ||y|| < r'. Consequently,
|H(z,y) — H(z',y)|| < €||lx — 2'||, and hence

1G(z,y) = G, y)ll < 5llz — 2. (A1)

Now let B C X denote the closed ball of radius ' centered at 2. Then, for z € B,
we have ||G(z,y) — G(zo,)|| < 3llz — o]| < 7'/2. Hence

1G(x,y) = zoll < [G(0,y) — 2oll +7'/2.

By (i), G(zg,0)—zo = 0. Hence, by (iii), there is an " > 0 such that |G (z¢, y) —zo|| <
r' /2, for ||ly|]| < r". Let 7 = min(r’,7"). Then

G(z,y) € B for all z,y with € B and ||y|| <. (A.2)

Equations (A.1) and (A.2) show that G(-,y) is a contraction mapping on the
complete metric space B for each y with ||y|| < r. By the contraction mapping
theorem, G has a unique fixed point z = f(y) € B for each y with ||y|| < r. In
particular, F'(f(y),y) = 0. |

13



B Smoothness of symbols

In our derivation of the reduced equation 0 = W(A, \), it is generally the case that
the terms in ¥ have smooth symbols through order five (Proposition 2.1). The proof
below is a tedious and unenlightening calculation. We suspect that a more sensible
approach would prove smoothness of symbols through arbitrarily high order, but we
have not found this approach and Conjecture 2.2 remains a conjecture.

We can disregard A, so we consider a general analytic nonlinear operator @ : X —
X satisfying ®(0) = 0, (d®)o = L. We assume that the linear and nonlinear terms of
® through fifth order have smooth symbols.

Liapunov-Schmidt reduction leads to the analytic operator ¢ : X° — X given by
é(v) = (I—E)®(v+W (v)) where E®(v+W (v)) = 0. The Taylor expansion of ® can
be computed by implicit differentiation; see for example [4, Chapter I, Section 3(e)].
Extending the calculations in [4] through fifth order, we find that

(dp)v = Lv,  (d*¢)(v,v) = (I — E)(d’®)(v,v),

() (v,v,v) = (I E){(d3<I>)(v,v,v) + 3(d*®) (v, (dQW)(v,v))},

(d*¢)(v,v,v,v) = (I = E){(d*®)(v,v,v,v) + 6(d*®)(v, v, (*W)(v,v))
+4(d*®) (v, (°W) (v, v,v)) + 3(d*®) ((d*W)(v,), (°W) (v, v)) },

(d°¢) (v, v,v,v,v) = (I — E){(d5<1>)(v v,v,v,v) + 10(d*®) (v, v, v, (d*W) (v, v))
+ 15(d°®) (v, (d*W) (v, v), (W) (v, v)) + 10(d*®) (v, v, (I°W)(v,v,))
+10(d*®) ((d°W) (v, v), (d*W)(v,v,v)) + 5(d*®) (v, (d*W) (v, v,v,v)) },

where

(d*W)(v,v) = =L ' E(d*®)(v,v),
(d°W)(v,v,v) = =L E{(d*®) (v, v,v) + 3(d°®) (v, (d*W)(v,v))},
(d*'W)(v,v,v,v) = =L E{(d*®)(v,v,v,v) + 6(d’®) (v, v, (d°W)(v,v))

+ 4(d*®) (v, (d°W) (v, v,v)) + 3(d*®) ((d*W) (v, v), (d°W) (v, v)) }.

Now, quadratic interactions involving v € X' leads to wavenumbers (k, £) where k
is within distance 26 of 0 or +2. Choosing ¢ < 1/3 ensures that such terms lie in the
kernel of I — F so that ¢ contains no quadratic terms. Similarly, choosing § < 1/5
ensures that there are no quartic terms. Thus, for § < 1/5, we have simplified expres-
sions where (d?¢) = 0, (d*¢) = 0. Moreover, (d*W) and (d*W) no longer explicitly
include the projection E Note that the projection E occurs explicitly only in (d*W)
and hence occurs implicitly in the third term in the expression for (d*W). It follows
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that only the final three terms in (d°¢) contain the projection E and that the remain-
ing terms through fifth order have the form (I —F){expression with smooth symbols}.
Writing F (v, v,v) = (d*®) (v, v,v) — 3(d?*®) (v, L (d?*®)(v,v)), we have

(dp)v = Lv,  (d°¢)(v,v,v) = (] — E)F(U,U,U),
(d%)(v v,v,v,v) = 5(I — E){2(d*®) (v, v, (d*W)(v,v,v))
2(d*@)(L™(d*®)(v, ),(d?’W)(UaU,U))+(d2¢)(va(d4W)(U,U,U,v))+'--},

where

(W) (v,v,v) = —L'EF(v,v,v),
(dW)(v,v,v,v) = 4L™(d*®) (v, L' EF (v,v,v)) + - - -

(Here, - - - denotes terms with smooth symbols.)
Observe that

F(v,v,w) = (d°@)(v,v,w) — ("®)(L 'd*@(v,v), w) — 2(d*®) (v, L "d*T(v, w)).
It follows that
(d°¢)(v,v,v,v,v) = =101 — E)F(v,v,L 'EF (v,v,v)) + - - -

Next we make the substitution v — Be'® 4+ Be~*, If N is an s-linear operator, we
define

N[j1,--.,ds|(B1,...,Bs) = N(Bje"'® ... Bels®)e tUtlt iz,
In this notation, we have
(dp)v +— € L[1]B +c.c., (@) (v,v,v) — 3¢“PF[1,1,-1](B, B, B) + c.c.

The fifth order terms are more complicated, but we are only concerned with the terms
that involve E. Hence we can write

L 'EF(v,v,v) — 3¢ L[1]7'QF[1,1,-1|(B, B, B) + c.c. + - - -
so that
(d3¢) (v, v,v,v,v) = — 30e*P{F[1,1,-1](B,B,Y) + 2F[1,-1,1](B,B,Y) + -- - } + c.c.

where Y = L[1] 'QF|1,1,-1|(B, B, B).
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From the other direction, ¥(A) reduces to ¥ (B) with

(dy)B = (d¥)B, (d*)(B, B, B) = P(d*¥)(B, B, B),
(d®p) = P{(d¥) — 10(d®¥)(-, -, (d¥) ' Q(d*¥))}.

Formally, we choose (d¥) = L[1] and (d*¥) = 3F[1, 1, —1] ensuring that the linear
and cubic terms match. Then the second term in (d°%) is

—30P{F[1,1,-1](-,-, ¥) + 2F[1, -1, 1](-, Y;7)}

where Y = L[1]7'QF]|1, 1, —1]. Fortunately(?), this matches up with the fifth order
terms that we wrote down starting from ®. Now we simply choose (d°¥) to match
up with the fifth order terms that we did not write down (the ones with smooth
symbols).
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