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Abstract

Systems possessing symmetries often admit heteroclinic cycles that
persist under perturbations that respect the symmetry. The asymp-
totic stability of such cycles has previously been studied on an ad hoc
basis by many authors. Sufficient conditions, but usually not neces-
sary conditions, for stability of these cycles have been obtained via a
variety of different techniques.

We begin a systematic investigation into the asymptotic stability
of such cycles. A general sufficient condition for asymptotic stability
is obtained, together with algebraic criteria for deciding when this
condition is also necessary. These criteria are always satisfied in R3
and often satisfied in higher dimensions. We end by applying our
results to several higher dimensional examples that occur in mode
interactions with O(2) symmetry.

1 Introduction

Let &, ... , &y be equilibria of a vector field f : R" — R". If there are trajec-
tories {y1(¢),... ,ym(t)} with the property that y,(¢) is backward asymptotic
to &; and forward to &;; then it is usual to call the collection of trajectories
{&;,y,(t)} a heteroclinic cycle. (Here we use the convention that &,,+1 = &;.)
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Typically one does not expect heteroclinic cycles to exist for general vector
fields. However, Field [7] has shown that heteroclinic cycles can occur ro-
bustly in symmetric systems. More recently, Guckenheimer and Holmes [12]
showed that robust heteroclinic cycles occur naturally in low codimension
bifurcation theory. Since this paper of [12], several authors have exploited
symmetry to compute examples of robust heteroclinic cycles, see [1], [2],
13], [8], [9], [17], [20], [21], [23], [24], [25], [26]. Robust heteroclinic cycles are
prevalent also in population dynamics. References may be found in Hofbauer
and Sigmund [15].

Many of the heteroclinic cycles in the above references can be asymptoti-
cally stable. Then the cycles lead to interesting phenomena such as intermit-
tency and bursting in the dynamics. Early investigations of the asymptotic
stability of robust heteroclinic cycles forced by symmetry yielded sufficient
conditions based on the relative magnitudes of the real parts of certain eigen-
values at each equilibrium along the cycle. Usually, these conditions were not
optimal.

Melbourne, Chossat and Golubitsky [23] required a fairly general setting
for a stability theorem and proved a sufficient condition for stability that
applies to all their examples. In particular, they included cycles connecting
relative equilibria (flow-invariant group orbits). However, their condition for
stability fails to be optimal for two reasons. First, the condition involves the
so-called ‘radial’ or ‘branching’ eigenvalue at each relative equilibrium. We
will show that the radial eigenvalues are irrelevant for questions of stability
(thus generalizing a result of Melbourne [21] and answering a conjecture of
Armbruster [1]). Second, there is an example of Field and Swift [9] (see
also Hofbauer and Sigmund [9]) for which the optimal conditions for asymp-
totic stability are quite different from those in [23] (even neglecting radial
eigenvalues).

The example of [9] indicates that the theory of asymptotic stability of a
heteroclinic cycle forced by symmetry is unexpectedly rich. A further com-
plicating issue is as follows. It is clear that for asymptotic stability it is
necessary that the whole unstable manifold of §; is asymptotic to ;11 (or at
least the group orbit through &;,,. However Melbourne [22] has shown that
there are physically meaningful notions of stability even when this require-
ment is relaxed. (See also recent work of [4], [16] and [19].) It is evident that
the theory of asymptotic stability of heteroclinic cycles is only part of a more
general stability theory.

This paper represents a first step in a systematic investigation of the



stability of heteroclinic cycles. We shall only consider asymptotic stability,
and so in our definition of heteroclinic cycle, Definition 2.1, we require that
the entire unstable manifold of §; is asymptotic to the group orbit through
§j+1- Then we say that the heteroclinic cycle consists of the collection of
unstable manifolds. Our definitions in the present paper are formulated in
such a way as to facilitate a return to the issues raised above in a subsequent
paper.

Our results yield necessary and sufficient conditions for asymptotic sta-
bility of many of the cycles in the above references. Theorem 2.7 gives a
sufficient condition (2.3) for asymptotic stability of heteroclinic cycles forced
by symmetry. Our condition is similar to that of [23] but is independent of
the radial eigenvalues.

Theorems 2.9 and 3.1 are concerned with necessity of the sufficient con-
dition (2.3). Indeed, we give algebraic criteria under which condition (2.3) is
necessary and sufficient. These criteria are automatically satisfied in R* and
we recover a result of [21].

The remainder of this paper is structured as follows. In §2 we define
precisely what we mean by a heteroclinic cycle forced by symmetry, and
state our main theorems when the group of symmetries is finite. Then in §3
we generalize the setting to incorporate continuous groups of symmetries.

The fundamentals of asymptotic stability theory are covered in §4 Al-
though the results of this section fall into the folklore variety, it is hard to
find rigorous proofs in the literature. Stability properties of the heteroclinic
cycle can be understood in terms of stability of an invariant set under a
Poincaré map associated with the cycle. Some of the technical details in this
section are deferred to the appendix. We prove our main results in §5.

Finally, §6 consists of examples. We compute sufficient conditions for
the asymptotic stability of heteroclinic cycles in codimension two mode-
interactions with O(2) symmetry and show that this condition fails to be
optimal in only one case. In doing so, we regain, and in many cases substan-
tially improve upon, the conditions of [24], [3] and [23]. This section can be
read independently of §§4 and 5.



2 Heteroclinic cycles forced by symmetry, and
their geometry

Throughout this section we restrict to the case when the group of symmetries
is finite. There are four subsections. In subsection 2.1 we define precisely
what we mean by a heteroclinic cycles and its asymptotic stability. Then in
subsection 2.2 we introduce the idea that these heteroclinic cycles are robust
under certain perturbations. This is formalized in the hypothesis (H1) which
is assumed to hold throughout the paper. Symmetry provides a natural
setting for hypothesis (H1) to hold, and we review some basic facts about
the lattice of isotropy subgroups.

In subsection 2.3 we use the geometry of the heteroclinic cycle to pick out
certain eigenvalues along the cycle. It is the relative magnitudes of the real
parts of these eigenvalues that drive the stability of the heteroclinic cycle. In
subsection 2.4 we state our main results in terms of these eigenvalues.

2.1 The main definitions

Suppose that I is a finite Lie group acting linearly on R". Let f : R" — R"
be a I'-equivariant vector field. That is

f(yz) = vf(x), for all y € T.

Definition 2.1 Suppose that §;, j = 1,...,m are hyperbolic equilibria with
stable and unstable manifolds W*(&;) and W*(§;). The set of group orbits
of the unstable manifolds

forms a heteroclinic cycle provided dim W*(;) > 1 and
WH(&) —{&} < W (rg40)-
vyl

Remark 2.2 (a) The case m =1 is sometimes distinguished, and the cycle
called a homoclinic cycle. Our methods for determining asymptotic stability
are independent of m.

(b) Define the principal unstable manifold WP*(¢;) to be the invariant man-
ifold tangent to the generalized eigenspace of the unstable eigenvalues with
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maximal real part. Then we may speak more generally of a heteroclinic cy-
cle replacing W*(&;) in Definition 2.1 throughout by W?%(¢;). These more
general cycles cannot be asymptotically stable. Nevertheless, they may have
strong stability properties, see [22], [20].

Definition 2.3 A heteroclinic cycle X is said to be stable if for any neigh-
borhood U of X, there exists a smaller neighborhood V' such that trajectories
starting in V' remain in U for all forward time.

The cycle is asymptotically stable if V' can be chosen so that in addition
trajectories starting in V' are asymptotic to X.

The cycle is unstable if it is not stable.

2.2 Robust heteroclinic cycles and symmetry

For a general vector field without symmetry, a heteroclinic cycle is necessarily
structurally unstable. However, symmetry may force the flow-invariance of
certain subspaces and this may permit structural stability to occur. We shall
make the following standing hypothesis:

(H1) For each j, there is a flow-invariant subspace P; such that W*(¢;) C P;
and ;1 is a sink in P;.

Remark 2.4 (a) Hypothesis (H1) guarantees robustness of the heteroclinic
cycle within the class of vector fields that leave the subspaces P; invariant.
That is, a heteroclinic cycle satisfying hypothesis (H1) persists under small
perturbations that preserve the invariance of these subspaces, see Proposi-
tion 2.5 below.

(b) For optimal results we shall take P; to be the smallest possible subspace
such that hypothesis (H1) is satisfied.

(c) Set Lj = P;N Pj_;. In many examples, the problem reduces to one where
dim L; = 1 and dim P; = 2, hence our notation. However this restriction is
not necessary for our results to be valid.

(d) Robust heteroclinic cycles occur naturally in systems with symmetry,
the flow-invariant subspaces arising as fixed-point spaces for the action of
the symmetry group. A second context in which robust heteroclinic cycles
occur naturally is in population dynamics, see Hofbauer and Sigmund [15].
Here the invariant subspaces P; arise in the boundary of inadmissible regions
of phase space. See also Brannath [4] and Gaunersdorfer [10].



We conclude this subsection by reviewing some basic group representation
theory, (see Golubitsky, Stewart and Schaeffer [11] for more details). Let '
be a compact Lie group acting on R". The isotropy subgroup of a point
x € R" is defined to be the subgroup of T,

Y. ={y eTl|yz =x}.

If ¥ C I' is an isotropy subgroup, then there is a corresponding subspace of
R" called the fized-point subspace of %,

Fix(¥) = {z e R"|ox =z for all 0 € ¥}.
If f is a [-equivariant vector field, and Y is an isotropy subgroup, we have
f(Fix(X)) C Fix(%).

In particular, fixed-point subspaces of isotropy subgroups are invariant under
the flow of an equivariant vector field. Thus we have the following basic
result.

Proposition 2.5 Suppose that f : R" — R" is I'-equivariant, and that there
is a heteroclinic cycle satisfying hypothesis (H1). If each P; is the fized-point
subspace of an isotropy subgroup of I', then the heteroclinic cycle persists
under small T'-equivariant perturbations of f.

There is a partial ordering on conjugacy classes of isotropy subgroups
of T", defined as follows:

Y <X if ¥, C 771227 for some vy € T,

that is, X; is contained in some conjugate of 3. By abuse of terminology, we
refer to the partially ordered set of conjugacy classes of isotropy subgroups
as the lattice of isotropy subgroups.

Let 3 be an isotropy subgroup. Recall that R" can be written as a direct
sum of Y-irreducible subspaces

R'=V® -V, (2.1)

Some of the V; may be Y-isomorphic, that is they carry isomorphic represen-
tations of ¥. Group together the isomorphic representations to obtain

R =W, & & W, (2.2)



where each W; is a direct sum of irreducible subspaces, and two irreducible
subspaces are contained in the same W; if and only if they are isomorphic.
The decomposition in (2.2) is called the isotypic decomposition, and the W;
are called the isotypic components. We may choose Wy = Fix(X). Unlike
the decomposition in (2.1), the isotypic decomposition is unique. Since the
isotypic components carry nonisomorphic representations of ¥, any linear
map L commuting with the action of ¥ satisfies L(W;) ¢ W;. If & €
Fix(¥) then the linearization (df)¢, commutes with 3. Tt follows that each
eigenvector of the linearization lies in an isotypic component of ¥. Moreover,
generically each generalized eigenspace lies in a single isotypic component.

2.3 Geometry of heteroclinic cycles

Our conditions for asymptotic stability will depend on the magnitudes of the
real parts of certain eigenvalues of the linearization of the vector field f at
each equilibrium. The geometry of a heteroclinic cycle satisfying hypothesis
(H1) allows us to divide the eigenvalues into four classes, as shown schemat-
ically in Figure 1. Let —r; be the maximum real part of eigenvalues of (df);
restricted to L; = P; N Pj_;, and let —¢; be the maximum real part of the
remaining eigenvalues in P;_;. Thus 7}, ¢; are positive and correspond to the
weakest radial and contracting eigenvalues at &;.

We define e; > 0 to be the maximum real part of an eigenvalue of (df)e;,
the strongest erpanding eigenvalue. We refer to all the nonradial eigenvalues
in P; as the expanding eigenvalues even though some of these may have
negative real part. (Note that at least one of the eigenvalues has to have
positive real part.) Finally, let ¢; be the maximum real part of eigenvalues
whose eigenvectors are normal to P;_;+ P;, the weakest transverse eigenvalue.
If R" = P, 1 + Pj, then set t; = —o00. Since all the eigenvalues with positive
real part have eigenvectors in P}, it follows that ¢; < 0.

Figure 1: Assignment of radial, contracting, expanding and transverse eigen-
values at the relative equilibrium §;.

Remark 2.6 We have defined 7;, ¢; and e; so that they are positive, but ¢;
is negative. The more general notion of stability in [22], [19] occurs when
certain of the transverse eigenvalues have positive real part, and we have
made our choice to avoid the use of double negatives in that work.



2.4 Statement of the main results

We begin by stating a sufficient condition for asymptotic stability of hetero-
clinic cycles. The result depends only implicitly on the presence of symmetry.
The explicit dependence is on the flow-invariant subspaces in (H1).

Theorem 2.7 Suppose that X is a heteroclinic cycle satisfying hypothesis
(H1). Then X is asymptotically stable provided the condition

Hmin(cj, €; — tj) > H@j, (23)
j=1 j=1

15 satisfied.

Remark 2.8 (a) The e; — t; terms in condition (2.3) are due to the flow-
invariance of the subspaces P;. In systems without symmetry, there is no dis-
tinction between contracting and transverse eigenvalues and condition (2.3)
reduces to the standard (and intuitive) condition that [T;%, ¢; > [T}, e;.
(b) Condition (2.3) does not involve the magnitudes of the radial eigenval-
ues —r; and is thus a refinement of the condition in [23, Theorem 5.1]. In
particular, we have verified the conjecture of [1]. The proof of Theorem 2.7
shows that this is again a result of the flow-invariance of the subspaces P;.

In order to discuss necessity of condition (2.3) for asymptotic stability
we need to take account of how symmetry enters into the problem. Suppose
that in hypothesis (H1), P; = Fix(X,) for some isotropy subgroup ¥;. We
introduce two further hypotheses.

(H2) the eigenspaces corresponding to c¢;, t;, €j41 and t;4; lie in the same
3} j-isotypic component.

(H3) dimWu(¢;) = 1.

Theorem 2.9 Let I be a finite group acting on R" and f : R" — R" be a I'-
equivariant vector field. Suppose that X is a heteroclinic cycle for f satisfying
hypotheses (H1)-(H3). Then generically, condition (2.3) is necessary and
sufficient for asymptotic stability of X.



Remark 2.10 (a) In §3 we show that Theorem 2.9 holds when I' is a com-
pact Lie group. Within this context, hypothesis (H3) can be weakened con-
siderably.

(b) Hypotheses (H2) and (H3) are automatic when n = 3, so Theorem 2.9
generalizes a result of [21].

(c) The eigenvalues corresponding to cj, t;, e;+1 and t;4q lie in P]-L. Now
P; = Fix(X;) is always an isotypic component for ;. It follows that if each
isotypic decomposition of R" under ¥; is into two isotypic components, then
hypothesis (H2) is valid. This is the case in many of the examples in §6.

3 Continuous groups of symmetries

In this section we modify the definitions in §2 to include the case when I’
is any compact group of symmetries. We shall be interested in heteroclinic
cycles that connect normally hyperbolic group orbits of equilibria, or more
generally, normally hyperbolic relative equilibria.

Recall that a flow-invariant set §; is a relative equilibrium if §; is a group
orbit under the action of I'. Krupa [18] shows that if &; is a relative equilib-
rium, then in a neighborhood of §; the vector field f can be decomposed as
fn + fr, where both the normal vector field fn and the tangent vector field
fr are equivariant, fr is tangential to group orbits. Moreover, the dynam-
ics of f may be understood as the dynamics of fy coupled with drift along
group orbits. It follows from results of Field [7] that the real parts of the
eigenvalues of the linearization of fy at a point z; € §; are independent of
the choice of the point z; and independent of the decomposition into normal
and tangent vector fields. In particular it makes sense to say that a relative
equilibrium &; is hyperbolic if z; € &; is a hyperbolic equilibrium of fx.

We generalize Definition 2.1 and speak of heteroclinic cycles connecting
hyperbolic relative equilibria ;. The heteroclinic cycle X is defined to be the
set of group orbits of the unstable manifolds W*(&;) of the relative equilibria.
The definition of asymptotic stability of X is unchanged.

As before, we use the geometry of the heteroclinic cycle to define the
radial, contracting, expanding and transverse directions. The only difference
is that we work with the linearization of the normal vector field fy at each
relative equilibrium &;. More precisely, for each j we choose an z; € §; and
consider the linearization (dfy)s;. Associate with each relative equilibrium §;
the eigenvalue data r;, ¢;, e; > 0 and ¢; < 0 defined in terms of the real parts



of the eigenvalues of (dfy),,;. This is independent of the choice of z; € §; by
the aforementioned results of [7].

Suppose that X is a heteroclinic cycle between relative equilibria and
satisfying hypothesis (H1) with P; = Fix(X;) for some isotropy subgroup
Y;. Then the statement and proof of Theorem 2.7 go through without any
changes and X is asymptotically stable provided condition (2.3) holds. In
addition, Theorem 2.9 is still valid, that is if hypotheses (H1)-(H3) are sat-
isfied, then generically condition (2.3) is both necessary and sufficient for
asymptotic stability. In fact we can weaken hypothesis (H3) as follows. Let
N(3;) denote the normalizer of ¥; in I'.

(H3)" dim W*(&;) = dim (N(3;)/3;) + 1.
Of course (H3)' reduces to (H3) when I is finite.

Theorem 3.1 Suppose that I is a compact Lie group acting on R" and that
X is a heteroclinic cycle satisfying hypothesis (H1), (H2) and (H3). Then
generically X is asymptotically stable if and only if condition (2.3) is satisfied.

Remark 3.2 (a) In many examples,
dim P; = dim (N(%;)/%;) + 2, (3.1)

this being required in order to establish existence of a heteroclinic connec-
tion in P; by the Poincaré-Bendixson theorem (see for example [23]). When
equation (3.1) holds hypothesis (H3)' is automatically satisfied.

(b) Examples of heteroclinic cycles where equation (3.1) fails are given by
Armbruster and Chossat [2] and Swift and Barany [26]. The existence of cer-
tain connections in these cases is established by construction of a Liapunov
function and numerical simulation respectively. We note that hypothesis
(H3)" is valid in the examples of [2] but fails for some of the examples in [26].
(c) The standing hypothesis (H1) is sufficient to incorporate all examples of
robust heteroclinic cycles that we know of. However, it is possible to gener-
alize hypothesis (H1) to take account of the continuous symmetries. Let z;
be a point in &; and let A; be the isotropy subgroup of z;. Let A? be the
connected component of the identity in A;.

(I—fl) For each j there is an isotropy subgroup ¥, with
P = | oFix(%)),
deA?

such that W*(&;) C P; and €44 is a sink in P;.
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As in Proposition 2.5, heteroclinic cycles satisfying (I—fl) persist under I'-
equivariant perturbations. In addition, Theorem 2.7 holds for heteroclinic
cycles satisfying hypothesis (H1). Moreover, Theorem 3.1 is valid under a
similar modification to hypothesis (H3)":

(H3)' dim (W*(&;) NFix(s;)) = dim (N(%;)/%;) + 1.

4 Poincaré maps and asymptotic stability

In this section, we set up the foundations for our analysis of the stability
of heteroclinic cycles satisfying hypothesis (H1). Our main results are not
surprizing, and probably fall into the ‘folklore’ category. However, it is hard
to find proofs elsewhere. Moreover, many of the results in this paper are
proved using the methods developed in this section.

The main tool in our analysis is the Poincaré map. In subsection 4.1
we construct the Poincaré map as a composition of ‘first hit maps’ defined
in a neighborhood of each relative equilibrium &; and ‘connecting diffeomor-
phisms’. In subsection 4.2 we obtain standard estimates on the first hit maps
and show that the Poincaré map is well-defined. Then in subsection 4.3 we
relate asymptotic stability of the cycle with the stability of a certain invariant
set, for the Poincaré map. In subsection 4.4 we consider the issue of genericity
of the connecting diffeomorphisms.

4.1 Construction of the Poincaré map

We begin by linearizing the normal vector field fx in a neighborhood of each
relative equilibrium. In §2(c) we used the geometry of the heteroclinic cycle
to partition the eigenvalues of the linearization at each relative equilibrium
into four groups: radial, contracting, expanding and transverse. Now, in the
region of linearized flow, we introduce local coordinates (u, v, w, z) around &;
corresponding to the radial, contracting, expanding and transverse directions.
Recall that at least one of the expanding eigenvalues has positive real part,
but there might in addition be expanding eigenvalues with negative real
part. Write w = (w™,w™) corresponding to the partition of the expanding
eigenvalues into those with positive and negative real part.

Let || denote the euclidean norm in the local coordinates. Scaling
the local coordinates if necessary, we may assume that the unit ‘cube’
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H:

/users/krupa/pictures/cycles2.eps
Hj(out

Figure 2: The cross-sections H ](i") and H J(om)

{lul, |v], |w™|, |[w™|,|2] <1} lies within the region of linearized flow. We
shall define various cross-sections to the flow near the heteroclinic cycle.
In the linearized flow, the connection leaving &; must lie in the subspace
{u=v=w" =2z =0} and so we define the cross-section

H™ = {(u,0,w,2) [Ju <1, o] <1, Jw*| =1, w7 <1, 2] <1},

Define the generalized origin
O =w"¢&)n HJ(-OM) ={u=v=w"=2=0, |w'|=1}.

The connection approaching &; lies in the subspace P;_; which is coordina-
tized locally by u and v. We define the cross-section

H™ = {(u,v,w,2) [ [ul2+ ] = 1, [w| <1, 2] < 1}.

Again we define the generalized origin O = W*(§;_4) ﬂHj(m) C {w=z=0}.
See Figure 2 for a diagram of the cross-sections H J(m) and H ;Om).
We now define the first hit maps

. (in) (out)

and the connecting diffeomorphisms

J+1-

Then define g; : HJU") — H](ffl) to be the composition g; = 1);0¢;. Finally set

g = gyo---ogs. This is our Poincaré map g : H'™ — H'™,
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Remark 4.1 (a) At present g is not well-defined. In particular, the first hit
maps ¢; are not defined when w™ = 0 so g is not defined at O. However,
Corollary 4.4 below shows that g is well-defined and continuous on a certain
subset of H™.

(b) The connecting diffeomorphism ; maps neighborhoods of O C H](Wt)

homeomorphically onto neighborhoods of O C H J(Tl)

(c) We began this section by linearizing the vector field in a neighborhood
of each relative equilibrium. In general, this change of coordinates is not C.
Nevertheless we refer to the maps 1; as connecting diffeomorphisms, and
indeed our techniques in subsequent sections proceed as if they are C'. One
way around this is to assume finitely many nondegeneracy conditions on
the linearization of (df)e, for each j, so that there is indeed a C' change of
coordinates. Even if these conditions fail the results on stability remain valid
and can be proved by combining our methods with the results of Deng [6].

4.2 Estimates on the first hit maps

The first hit map ¢; may be computed explicitly, where defined, using the lin-
ear flow near §;. Recall that we have the eigenvalue data —r;, —c;, e;,t; cor-
responding to the (u,v,w, z) directions. In addition we have w = (w™, w™).
The eigenvalues in the w* directions have positive real part and e; is the
largest real part. Let —é; denote the smallest real part of the eigenvalues in
the w™ directions, so &; > 0.

tw™,z) € H™ oyt # 0, and let € > 0.

Proposition 4.2 Let y = (u,v,w ;

There s a constant K such that

8(y)| < Klw[rala,
6°(y)| < Klwt|o/ese,
687 (y)| < Klwt|alae,
65 (y)| < Klw* |79z,

Proof The linear flow ¢, : H J@) — H J(-m) takes the form

, _c: + e
¢i(u,v,whw™, 2) = (e itu, e %y, i twt, e Fi tw, eTitz),
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where ¢ is time and —R;, —Cj, E;’, —FE7, T; are matrices. A trajectory hits

HJ(OW) when |6E;r fap*| = 1 and we may estimate the time of flight ¢ using this
equation. Suppose that § > 0. It follows from the proof of [13, Theorem 1,

page 145], that there is a positive constant & such that
‘eE]'."tw—I—‘ < ke(6j+(5)t‘w+|.
From this inequality follows the estimate

-1t <

1
In(k|lw™|).
< g k)

We can now estimate e~ %i'y say. Again, there is a positive constant ¢ such
that

le Bity| < fe ity
Substituting in the estimate for —t yields
‘eijtu‘ < K‘w+|(rj76)/(ej+6)|u|’
where K > 0. In HJ(-m), lu| < 1 and so we obtain
|95 (y)| < Klw*|ri=o/eto),

Now choose ¢ so that (r; — J)/(e; + ) > r;/e; — € in order to obtain the
required estimate for [¢%|. The estimates for the remaining components are
similar. Note that in the case of ¢7 we can remove the factor of |z| but choose
not to. |

Remark 4.3 The occurrence of an ¢ > 0 in the proposition is due to the
fact that linearization at & may be nonsemisimple. If the linearization is
semisimple, then we may take e = 0 (again see [13]).

Corollary 4.4 Let U be a neighborhood of O C H](-Om). There is a neighbor-

hood V of O C H](-i") such that ¢; : V — {wt = 0} = U is well-defined and
continuous.
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Proof The estimates in Proposition 4.2 show that provided y € V has w™-
component small enough but nonzero, the u,v,w™, 2z components of ¢;(y)
are small so that ¢,(y) is close to O. (We have used the fact that r;,c;, é;
and e; are positive, and ¢; is negative. Also |z| < 1.) [

Let W denote the union of the stable manifolds of the relative equilibria
in the cycle

w=JUmog). (41)

j=1~€l
Corollary 4.5 There is a neighborhood S of O € Hl(i") such that
g:S—W > H™ _w

1s well-defined and continuous.

Proof Observe that the subspace {w™ = 0} in HJ(-m) is a subset of W.
Now W is forward and backward invariant under the flow and hence the
complement of W is forward and backward invariant under the maps ¢;
and ;. It follows from Remark 4.1(b) and Corollary 4.4 that we may choose
a neighborhood S of O in H™, so that g : S — W — H'™ is well-defined
and continuous. [ ]

4.3 Asymptotic stability

Our main result in this subsection is to show that asymptotic stability of
the heteroclinic cycle is determined by the w'-component of the Poincaré
map g. This is to be expected intuitively since all the other components lie
in the stable manifold of &;. To make this precise, we introduce the notion of
transverse stability. Let E denote the stable manifold /subspace of £; within
the region of linearized flow intersected with H'"™. Recall that the sets W
and S were defined in equation (4.1) and Corollary 4.5.

Definition 4.6 The origin O in Hl(m) is transversely stable under the map g

if for any neighbourhood U of E there is a neighborhood V of O satisfying
the condition

15



(a) f y € V—W and ¢'(y) € S fori = 0,...,7 — 1 then ¢'(y) € U for
1=0,...,7.

The origin O is transversely asymptotically stable if in addition V can be
chosen so that

(b) If y e V — W and ¢*(y) C S for all i > 0 then dist(¢"(y), E) — 0.

The origin O is transversely unstable if it is not transversely stable.

The interrelation of the various sets (apart from W) in Definition 4.6 are
shown in Figure 3.

16



Figure 3: The sets Hl(m), S, U, V and E in the definition of transverse
stability

Theorem 4.7 Let X be a heteroclinic cycle satisfying hypothesis (H1).

(a) X is (asymptotically) stable if and only if the origin O C H£i")
is transversely (asymptotically) stable under the Poincaré map g.

(b) X is unstable if and only if O is transversely unstable under g.

Proof The proof is given in the appendix. |

A consequence of Theorem 4.7 is the intuitively obvious statement that if
a heteroclinic cycle is contained entirely in a proper flow-invariant subspace,
then stability of the cycle is governed by stability within that subspace.

Corollary 4.8 Suppose that X is a heteroclinic cycle in R"™ satisfying hy-
pothesis (H1), and that Q@ C R™ is a flow-invariant subspace containing X .
Then

(a) X is (asymptotically) stable in R™ if and only if X is (asymp-
totically) stable in Q.

(b) X is unstable in R"™ if and only if X is unstable in Q.

4.4 Genericity of connecting diffeomorphisms

Many of the forthcoming stability theorems will require hypotheses stating
that certain nondegeneracy conditions on the linear coefficients of the con-
necting diffeomorphisms 1); are valid. It seems plausible that such conditions
are valid for an open dense set of I'-equivariant vector fields f. The results
of this subsection ensure that this is indeed the case.

The connecting diffeomorphism 1; : Hj(m) — H](-wt) is Y ;-equivariant
with respect to the (isomorphic) actions of ¥; induced on H J(m) and H J(-Om).
Identifying these cross-sections with R* (where k& = n —dim P;) we can write
Pt RF = RE.

Since the heteroclinic cycle is robust, it makes sense to talk about the
connecting diffeomorphism t; corresponding to each vector field close to
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the original vector field f : R® — R". With this in mind, the following
proposition can be stated at least roughly. The technicalities related to
making the statement completely precise are deferred to the appendix.

Proposition 4.9 Suppose that there is a property P that holds for an open
and dense set of Xj-equivariant diffeomorphisms ) : R* — R*. Then for
an open and dense set of vector fields on R"™ near to the vector field f, the
corresponding connecting diffeomorphism 1; satisfies property P.

Remark 4.10 The open and dense sets in Proposition 4.9 will be inter-
preted as subsets of spaces of C" vector fields/diffeomorphisms (with the
C" topology) defined by finitely many transversality conditions, see the ap-
pendix. In our examples, the heteroclinic cycles arise in the context of local
bifurcation theory. By standard arguments, there is a residual set in the
space of families of C" vector fields for which the corresponding connecting
diffeomorphisms satisfy property P. This residual set is defined by countably
many transversality conditions.

It follows from Proposition 4.9 that generically the only restrictions on
the connecting diffeomorphisms are the symmetry restrictions on mappings
from H;ow) to H](-m). In particular, such mappings are forced to vanish at
linear order in directions tangent to the group orbit. The next result which is
proved in the appendix shows that some directions are automatically exempt
from such restrictions.

Lemma 4.11 Let O and O’ denote the generalized origins in H;out) and

HJ(TI) respectively. Then
(a) the eigenspaces of c; and t; have trivial intersection with T,I'y for all

y € 0.

(b) the eigenspaces of ejy1 and tj1 have trivial intersection with T,I'y for
ally € O,

5 Proof of the main results

In this section we prove our main results, Theorems 2.7 and Theorems 3.1.
Both rely on a basic result about stability of the origin for mappings of the
plane. This stability result is proved in subsection 5.1. Then subsections 5.2
and 5.3 contain the proofs of the theorems.
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5.1 A basic stability result

Lemma 5.1 Suppose that g = gmo---0g1 where g; : R? — R? has at lowest
order the form

gi(w, z) = (A;w* 2% + Bjw< 2%, Cjw® 2% + Djw< 2% )
with a;, b;,cj,d; > 0 and a;+b;, ¢;+d; > 0. Let p; = min(a;+0b;,c;+d;) and
p = p1-Pm. Then 0 is an asymptotically stable fixed point of g if p > 1.

Suppose further that A;, B;,C;, D; # 0 and that a; +b; # ¢; +d;. Then 0 is
unstable if p < 1.

Proof The statement about asymptotic stability is easily verified by work-
ing in polar coordinates. We prove instability when p < 1. First choose
constants # > « > 0 such that

1 1
dalA;| < |Cy] < Zﬂ\Aﬂa da|B;| < |Dj| < Zﬂ\Bj\a

for j =1,...,m. We may define a cone in R?
C = {ajw| < |z < Blwl}.
Then, set M = 3 min(a®|A;|, a%|B;).
We claim that if (w,z) € C is close enough to zero then g;(w,z) € C
and |g¥(w,z)| > M|wl|?. It follows that |¢*(w,2)| > M™|w|” and the w
coordinate is expanding since p < 1.

It remains to verify the claim. Let (w,z) € C and suppose that
a; +b; < ¢j+d;. Then |w%z%| > ab|w|%+%. But

w24 < Bl = ofwii]).
It follows that at lowest order
95 (w, z) = Ajw®i 2% 9; (w,z) = Cjw® 2% .
Hence if (w, 2) is close enough to 0 we have the estimates,
slAwe 2t < |gi(w, 2)| < 2| 4w 2%,
%\Cjwaﬂ‘z”f\ < \gj-(w,z)\ < 2|Cjw% 2.
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We compute that

algy(w,z)] < 2a]A;u2"|
1
< §|Cjw“fzbj|
< gj(w, 2)].

Similarly, [g7(w, 2)| < Blg}(w, 2)|, and so g;(w, 2) € C as required. In addi-
tion,

w 1
gpw )| > Sl

1
> 50/” | Ajwti |
> Mwl®.
The argument in the case a; + b; > ¢; + d; is almost identical. [ |

5.2 Sufficiency

Proof of Theorem 2.7 Since condition (2.3) is assumed to be valid, we
may find an € > 0 small enough such that

e Cj t;
Ilmin{—]—e,l——]—e}>1.
€j €j

j=1

Recall that the Poincaré map g : S — W — Hl(m) is the composition of the
first hit maps g1,...,gm. Write g; in components g; = (g7, 97, g, 95). Let
y = (u,v,w,z) € H](i") lie in the domain of g;. We claim that there is a
constant M such that at lowest order

9P W)l < M(lw]9/5 7 |74 2],
i) < M(Jw|975 ¢ fw| 54 z]).

It then follows from Lemma 5.1 that the origin O C Hl(m) is transversely
asymptotically stable under g. By Theorem 4.7 the heteroclinic cycle is
asymptotically stable.
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It remains to verify the claim. We have the estimates
@5y < Klwl9/5, (5.1)
5] < Kl|w|™/7 ],

from Proposition 4.2. We shall show that in a neighborhood U of O in H ](-o”t) )

there is a positive constant L such that

[¥7 (P)1, |45 (p)| < L(|v| + |2]) + o([v], [2]), (5.2)

for p = (u,v,w, z) € U. Inequalities (5.1) and (5.2) combine to produce the
required estimates with M = KL.
It is convenient to momentarily introduce global coordinates

(s,t) €eR" = P; @& P;-.

Near HJ(OM), s and t represent (u,w) and (v,z). However near HJ(TI) they
represent (u,v) and (w, z). The important observation is that

¥(5,0) =0,

this following from flow-invariance of P;. Transferring back to the local
coordinates, we have that

¥i(y) = ¥i(y) = 0, whenever v =z = 0.
This implies that
¥ (p) = A(p)v + B(p)z + 0(v, 2),

and a similar expression for ;. Thus we have obtained the estimates in (5.2)
with

L= max max{|A(p)|, [B(p)|}-
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5.3 Necessity

In this subsection, we prove Theorem 3.1. Then Theorem 2.9 is a special
case. First, refine the local coordinates (u, v, w, z) of §2(d) as follows. Write
v = (v1,v2), w = (w1, ws), 2= (21, 22) where vy, wy and z; are coordinates on
the eigenspaces of the eigenvalues with real part —c;, e; and t; respectively.
Note that the subspace corresponding to wy is a sum of eigenspaces with
negative real part. Moreover, by (H3) (w;,ws) correspond to (w™,w™) in
84(a).

Now we shall make some genericity assumptions. (Some of these assump-
tions can be removed but we shall not distinguish between the essential and
inessential assumptions.) Recall that p; = min(c;/e;,1 —t;/e;).

(GL) cj/e; #1—1t;/e;.
(G2) The linearization (dfy)s;, ©; € §;, is semisimple. Moreover each

eigenspace lies inside one X ;-isotypic component.

By hypothesis (H3), W*(&;_;) intersects Hj(m) in finitely many group
orbits lying in {w = z = 0} (the intersection consists of two points if T is
finite). If one point on such a group orbit has nonzero v; and ve coordinates,
then so do all points on that group orbit and the norm of these coordinates
is constant.

(G3) The v; and v, coordinates of the points in W*(&;_) ﬂHJ(m) are nonzero.

Proposition 5.2 Suppose that (G2) and (G3) hold. Let C € H](-m) be the
cone

C={y=(u,0,0,2) € H", |z <7z},
where 7y is a positive constant. If y € C is close to W*(§;), then

¢7 (y) = [wn|9 90y, @3 (y) = |un| /42, (5.3
165 ()| = o(l65" (W)]), 165 (W)] = 0|65 (W)]). (5.4)

Proof The expressions for ¢7' and ¢7' are obtained by following the proof
of Proposition 4.2 but exploiting hypothesis (H3) and genericity assumption
(G2). Hypothesis (H3) implies that all the eigenvalues with positive real part
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are real and equal. Hence the expression P tw that appears in the proof of
Proposition 4.2 is replaced by e%‘w;. It follows from assumption (G2) that
no € is required and we can solve for the time of flight exactly: ¢ = —eij In |wq].
The equations in (5.3) easily follow.

Now let —c; denote the real part of the weakest contracting eigenvalues
other than those with real part —c;. Then ¢; > ¢;. Similarly define ¢; < ;.
Arguing as in Proposition 4.2 there is a constant K such that

67 (0)] < Kluwal9/9 v, (63 (9)] < Klun] 5/ |z

Now |v;| and |vs| are nonzero by (G3) and we have the first estimate in (5.4).
The second estimate follows from the fact that y lies in the cone C. |

In order to compute the lowest order terms of the Poincaré map ¢ we must
expand each connecting diffeomorphism v; about each of the group orbits in
(G3). The fact that there are finitely many such orbits rather than one does
not complicate the analysis in any way other than leading to cumbersome
notation. In addition, the fact that these group orbits may be continuous is
not a complication since the connecting diffeomorphisms based at each point
on the group orbit are conjugated by the group elements. Hence, we shall
proceed as if there were only one point in the intersection of W*(§;_1)NH ](m)
Let p; denote the v;-coordinate of this point.

It follows from Proposition 5.2 that at lowest order the wi,2; and 2z
components of g; have the form

9" (y) = |wi|9% Aguy + Jwn |79 By 2,
g (y) = |wi|99Cion + |wi| 4 Djz,
92 (y) = |wi|9% Ejuy + |wi| 4% Fyz,

where A;—Fj are constant matrices. We note that if there are no transverse
eigenvalues at & or &1, or all of the transverse eigenvalues have the same
real part, then not all of the matrices will be present.

At this point it is convenient to make two additional assumptions for ease
of exposition. Having proved the theorem under these assumptions, we shall
then sketch the proof when these assumptions are relaxed. Our additional
assumptions are

(A1) There is at most one transverse eigenvalue with real part ¢; at each &;.
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(A2) ¢; corresponds to real eigenvalues (possibly with multiplicity).

Finally we shall require some further genericity assumptions on the ma-
trices A;—D;. In fact, the matrices B; and D, if they occur, have one
column as a consequence of (Al). By Proposition A.2 and Lemma 4.11 we
may assume that the entries are all nonzero or equivalently

(G4) ker Bj = 0, ker Dj = 0.

The remaining matrices may have nontrivial kernels. However, generically
these kernels do not contain the points p;.

(G5) Ajpj 7& 0, ijj 7& 0.

We can use these genericity assumptions to define cones in analogy with
the proof of lemma 5.1. There are constants § > a > 0 such that

1 1
dal4pj| < [Cjpjl < 78145p5l,  4alBjz| < [Dja| < 26]Bjzl,
for each 7 and all z;. In addition, there is a constant v > 0 such that

|Ejpj| < ivlcjpﬂ, | Fjps| < iv\Djpj\-
Define a cone C; inside H ](m)’
¢; = {ohun| < [21] < Blunl, || <7lal} € H™.
Finally, let M = 1 min(|A;p;|, | B;]).
Lemma 5.3 Suppose that the genericity assumptions (G1-5) and the addi-

tional assumptions (A1,2) are valid. Let y = (u,v,w,z) € C;. Ify is close
enough to W*(&;), then g;(y) € Cj11 and |gi* (y)| > M|w,|%.

Proof In the case when there is no z, component,the proof is completely
analogous to the proof of Lemma 5.1. If there is a zy component, then the
definition of v and the corresponding adaptation of the cone guarantees that
C; is still mapped into Cj;;. Then Proposition 5.2 ensures that the vy and 2,
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components of ¢;(y) remain higher order terms throughout. The proof now
proceeds as in Lemma 5.1. [ |

It is clear that Theorem 2.9 follows from the lemma. It remains to relax
assumptions (A1) and (A2). First consider the possibility that the eigen-
values corresponding to ¢; are not simple though still real. Observe that if
1 —t;/e; < cj/e; for each j, then the heteroclinic cycle is asymptotically
stable by Theorem 2.7. Hence we may assume without loss of generality
that ¢;/e; <1 —t;/e;. Then the conclusion of Lemma 5.3 still holds for g;.
Moreover g¢;*(y) = wfj/ejC’lvl. Suppose that 1 — t3/es < ca/ey. In order to
obtain the required estimate for g, we need the genericity assumptions

ByCipy 74 0, DyCip 7é 0.

Also we must modify the definition of o, 3 and ~ in the obvious way.

Finally we must address the possibility that the eigenvalues corresponding
to ¢; and ?; may be complex. We shall sketch the argument in the case
that c¢j/e; < 1 —t;/e; and the c¢; eigenvalues are a complex conjugate pair
—(¢j + iw;) (with multiplicity). Suppose for simplicity that there is no z
component. Then at lowest order

97" (y) = w1 |74 A Ry, unyvr, g5 (y) = [wn] 4% Cj Ry,
where Ry is a rotation matrix and

w.
Hj(wl) = e—J In w1.
J

As w; varies close to 0, ARy, (w,)p; vanishes arbitrarily often. Neverthe-
less we may use this oscillation to argue that often this quantity is large in
magnitude. The idea is to demonstrate expansion of intervals rather than
individual points. Formally, fix @, > 0 and define a slice

(i) = {y € H'™w, € [0,101]}.

Lemma 5.4 There is a § > 0 such that for any y' € [0, 5wfj/ej] there exists
y € I(wy) with |g5" (y)| =y'. Moreover, if y € C; then g;(y) € Cjy1.

Proof Choose §y < 1 so that 0;(w) — 6,;(dow1) > 2m. Then there is a
wy € [dothy, 1] such that

1 1
§|Ajpj\ < [Aj Ry, wn)pj| < [4;p51, §|ijj| < |CjRo;w)pi| < |Cjpjl-
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It follows that there is an y = (u,v,w, z) € I(i1) such that [¢" (y)| = S/
where § > %\Ajpngj/ej. There is also an y = (u, v, w, z) € I(w;) with w, €
[6ot1, 1] such that gi*(y) = 0. The first statement of the lemma follows by
continuity. The proof of the statement about the cones is straightforward. B

6 Examples in mode interactions with O(2)
symmetry

In two-parameter families of vector fields, one may expect to find points
where a steady-state loses stability by having eigenvalues of the linearized
equation simultaneously at

(a) 0, 0, steady-state/steady-state,
(b) 0, +wi, steady-state/Hopf,
(¢) *wii, twsi, wi/wy irrational, Hopf/Hopf.

Generically in a two-parameter family, these are the only eigenvalues on the
imaginary axis and one may reduce to center manifolds of dimension two,
three and four respectively.

When there is a symmetry group present, eigenvalues may be forced to
be multiple, the multiplicities corresponding (roughly speaking) to the di-
mensions of irreducible representations of the group. In the case of O(2)-
symmetry, the situation can be described as follows. Irreducible representa-
tions of O(2) are either one or two-dimensional, and the eigenvalues of the
linearized equation may generically have multiplicity one or two.

It follows, that, when there is O(2)-symmetry present, case (a) may lead
to a center-manifold of dimension two, three or four. The corresponding
dimensions for case (b) are 3, 4, 5 and 6, and for case (c) are 4, 6 and 8.
It turns out that structurally stable heteroclinic cycles only occur when all
eigenvalues are double, and the center manifold has the highest dimension
available.

The steady-state/steady-state mode interaction has been analyzed by [3]
and [24], and the steady-state/Hopf and Hopf/Hopf interactions by [23]. In
this section, we shall assume that coefficients in the Taylor expansions of
the various vector fields are in the regimes of existence of the heteroclinic
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cycles. In particular hypothesis (H1) is assumed to hold. For these hetero-
clinic cycles, each heteroclinic connection is shown to exist via application
of the Poincaré-Bendixson theorem after phase-amplitude reduction. By Re-
mark 3.2(a) hypothesis (H3)' is valid for all the cycles in this section. It turns
out that hypothesis (H2) fails only in one case of the Hopf/Hopf interaction.

6.1 Steady-state/steady-state

Coordinates z = (z1, 22) can be chosen on the four-dimensional center mani-
fold C? so that the action of O(2) is given by
., = (e“azl,emwzg),

K2 = (21,22),

where [ and m are coprime positive integers 1 <1 < m.

It turns out that structurally stable heteroclinic cycles occur only in the
case [ = 1, m = 2. (According to conventions other than that adopted in this
paper, the cycles are homoclinic cycles.) There is a single equilibrium on the
cycle with isotropy Dy generated by rotation through 7 and the reflection
k. The heteroclinic connections lie in Fix(k) or conjugate copies of this
fixed-point subspace.

Even though the cycle lies in a four-dimensional space, one of the eigen-
values is forced to be zero since the equilibria lie on a continuous group orbit.
Hence the normal vector field at each equilibrium has only three eigenvalues.
We label these (real) eigenvalues —r, —c and e. In particular, hypothesis (H2)
(and (H3)") is trivially valid, and by Theorem 3.1 we have that generically
the heteroclinic cycle is asymptotically stable if and only if ¢ > e.

This result is the same is that obtained in [24] and is an improvement
on [3, Proposition 5.1]. In the latter reference it is shown that (in our nota-
tion) the condition min{r, ¢} > e is sufficient for asymptotic stability.

6.2 Steady-state/Hopf

In this case we have a six-dimensional center manifold C3. We can choose
coordinates z = (2, 21, 22) so that the O(2)-action has the form

¢ (20,21,22) = (¥92,e™2,e792) ¢ € SO(2),

K- (Z();ZleZ) = (20722721)7
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where £ and [ are positive coprime integers.

In addition to the O(2)-symmetry, there is an approximate phase-shift
symmetry SO(2) arising from the Hopf bifurcation. We may assume that
the vector field is in Birkhoff normal form up to any required order in the
Taylor expansion. Then SO(2) acts by

g - (Zo, 21, 22) = (207 ewzl, GMZQ)-

It turns out that structurally stable heteroclinic cycles occur only when
k =1=1. We now run quickly through the structure of the lattice of isotropy
subgroups that is relevant to the existence of heteroclinic cycles. Define the
following subgroups:

Zo(k) = {1, &},
ZQ('Ii : (7T: ﬂ-)) = {1: K- (77-’71-)}7
Zs = {1,(m,m)}.

The relevant portion of the lattice of isotropy subgroups is shown in
Figure 4. The isotropy subgroups (1)—(4) are given together with their fixed-
point subspaces in Table 1.

(1 2
W

Figure 4: Lattice connections for the cycle between equilibria and periodic
solutions in the steady-state/Hopf interaction

Theorem 3.1 of [23] guarantees (under certain open conditions) the exis-
tence of a heteroclinic cycle between equilibria with isotropy (1) and periodic
solutions with isotropy (2). The heteroclinic connections lie in Fix(3) and
Fix(4). The equilibrium has one radial eigenvalue —ry, a zero eigenvalue and
contracting and expanding eigenvalues of multiplicity two with real parts —c;
and e; respectively. The periodic solution has a radial eigenvalue —ry, two
zero eigenvalues, and simple real contracting, expanding and transverse eigen-
values —cy, e and t, respectively. Each of the isotropy subgroups (3) and (4)
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Isotropy subgroup | Fixed-point subspace
(1) | Zy(k) x SO(2) |(z,0,0)
(2) Zs(k) © Zs (0, 21, 21)
(3) Zs (k) (z, 21, 21)
(4) Zy(k - (m,m)) (1y, 21, 21)

Table 1: Isotropy subgroups and fixed-point subspaces for the cycle between
equilibria and periodic solutions in the steady-state/Hopf interaction

is a two element group and hence has precisely two distinct irreducible rep-
resentations. The isotypic decomposition under each group consists of two
components and (H2) is valid by Remark 2.10(b).

In our notation, [23, Theorem 3.3] states that the heteroclinic cycle is
asymptotically stable provided

min(7, ¢1) min(rg, ¢a, €3 — to) > eres.

However it follows from Theorem 3.1 that generically the cycle is asymptot-
ically stable if and only if

c1 min(cg, €5 — t9) > e1€5.

6.3 Hopf/Hopf

This time we have an eight-dimensional center manifold C*. Effectively, the
symmetry group is O(2) x T2, the T?-symmetry being present in the normal
form and arising from the simultaneous Hopf bifurcations. We can choose
coordinates z = (21, 22, 23, 24) so that the action of O(2) x T? is as follows:

¢z = (€"2,6 2, e™2,e7™2), ¢ € SO(2),
(¢717 ,lp?) k= (ei¢121’ ei1/)lz2: €i¢2z37 €i¢2z4)’ (1/117 1[)2) € T27
K-2 = (22,21,24,253)
where [ and m are positive coprime integers and [ < m.

There are several possibilities for heteroclinic cycles and it turns out that
the cases [ =m =1 and | < m are quite different. In order to describe

these possibilities it is necessary to reproduce the group-theoretic information
in [23].
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Isotropy subgroup Fixed-point subspace

) 5(0,0,1) x 8(1,—1,0) | (21,0,0,0)

(2) | S(0,0,1) X Zy x Z(7/l,7,0) (z1,21,0 0)
(3) |5(0,1,0) x Zy x Z(w/m,0,7) | (0,0, 23, 23)
(4) 5(0,1,0) x S(1,0,m) (0,0,0, z4)

(5) 5(0,0,1) x Z(w/l,,0) (21, 22,0,0)
(6) S(0,1,0) x Z(7r/m,(),7r) (0,0, 23, 24)
(7) S(1,1,m) (0, 2,0, 24)
(8) (l,l, —m) (0, 29, 23, 0)
9) Ly, X L(m,lm, mm) (21, 21, 23, 23)
(10) |  Z4(0,7,0) X Z(m,lm, mm) (21, —21, 23, 23)
(11) |  Z«(0,0,7) x (7r,l7r,m7r) (21, 21, 23, —23)

Table 2: Isotropy subgroups in the Hopf-Hopf interaction

Define the following subgroups

Z(¢,1,12) = group generated by (¢, 1, 12) € SO(2) x T?,
Zn(¢a wla ¢2) = group generated by K- (¢, 7/11, 1/)2),
S(k,l,m) = {(k0,10,mf) € SO(2) x T2, 9 € S'}

The upper part of the lattice of isotropy subgroups is given in Figure 5.
The isotropy subgroups are listed together with their fixed-point subspaces
in Table 2

Figure 5: Upper part of lattice of isotropy subgroups in the Hopf/Hopf in-
teraction. Isotropy (x) is (10) if m is odd and (11) if m is even.

The isotropy subgroups (1) and (4) correspond to rotating waves, and
the isotropy subgroups (2) and (3) to standing waves. It turns out that for
[ = m = 1 there are three structurally stable heteroclinic cycles between
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these periodic solutions. One cycle connects the rotating waves and a second
cycle connects the standing waves. The third cycle connects all four periodic
solutions. When [ < m, only the cycle connecting the rotating waves can
occur. The portions of the lattice of isotropy subgroups corresponding to the
three heteroclinic cycles are illustrated in Figure 6.

1 4

(0) (1 1)
(v 8)

2 3

b) (2 )

Figure 6: Isotropy connections for the heteroclinic cycles in the Hopf/Hopf
interaction: (a) cycle of rotating waves, (b) cycle of standing waves, and (c)
cycle of rotating and standing waves.

The case [l =m =1

Each of the three heteroclinic cycles is realized in this case. We show that for
each cycle, the necessary and sufficient condition of Theorem 3.1 applies. Up
to multiplicity forced by the group action, there are precisely four nonzero
eigenvalues corresponding to the modes (j), 7 = 1,---,4 and we label their
real parts —r;, —c;, e; and ¢; in the usual way.

Generically the necessary and sufficient conditions for asymptotic stability
have the form

Hmin(cj, € — tj) > Hej, (61)
j=1 j=1
where m = 2 for the cycles (a) and (b) and m = 4 for the cycle (c).
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In order to establish condition (6.1) we verify hypothesis (H2). By Re-
mark 2.10, it is sufficient to show that the isotypic decompositions of the
isotropy subgroups (5)—(11) consist of two components. We give the details
for (9), (7) and (5). The arguments for the remaining isotropy subgroups are
similar. First, notice that Z(m, 7, 7) acts trivially on the whole of C* so that,
when [ = m = 1, the isotropy subgroup (9) reduces essentially to a group
generated by an element of order two, and we can apply Remark 2.10(b).

Isotropy subgroup (7) reduces to S(1,1,1) which acts as

2i0 2i0
z = (€21, 20, 23, 24).

Again there are two isotypic components (0, 22,0, z4) and (21,0, 23, 0) corre-
sponding to the 0 and 2 representations of S'. Finally isotropy subgroup (5)
reduces to S(0,0,1) x Z(m,m,0) which acts as

0

z— (21,22,eiaz3,ei 24)y, 2 — (21,29, —23, —24).

In particular, the action of Z(m,,0) is subsumed into the action of S(0,0,1)
and there are two isotypic components corresponding to the 0 and 1 repre-
sentations of S*.

The case | <m

In this case only the cycle (a) between rotating waves can exist. Although,
cycles (b) and (c) are still suggested by the lattice of isotropy subgroups their
existence as heteroclinic cycles is ruled out by the structure of the low order
equivariant mappings.

Theorem 2.7 guarantees that condition (6.1) remains sufficient for asymp-
totic stability of the cycle between rotating waves. However this condition is
not optimal and a necessary and sufficient condition is given by

01 + CQ + T1T2 > min(?, 1 + 0102), (62)

where C; = ¢;/e; and T; = t;/e;.

The derivation of condition (6.2) relies on the transition matrix method
of [9] and will appear in future work. Here we show only that hypothesis
(H2) is violated at each of the rotating waves. Recall that (7) = S(1,1,m)
which acts as

9

2il0 2im
0-z=(e"2,29,e" ™ 23, 24).
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We claim that the isotypic decomposition under (7) is

C' = {2, 21} ® {21} & {23}

Indeed these subspaces correspond to the 0, [ and m representations of S*
which are nonisomorphic since 0 < [ < m. Similarly, the isotypic decompo-
sition under (8) is

Ct= {20, 23} ® {z1} & {24}

It follows that hypothesis (H2) fails at each relative equilibrium.

A Appendix

In this appendix, we give the technical details omitted in §§ 4.3 and 4.4. In
particular, we prove Theorem 4.7 and Lemma 4.11 and give a precise version
of Proposition 4.9.

We begin by showing that transverse (asymptotic) stability (resp. trans-
verse instability), defined in Definition 4.6, of O under g corresponds roughly
to (asymptotic) stability (resp. instability) of O under g. A more precise
statement is required since ¢ is not defined at O.

Lemma A.1 Suppose that O C Hl(in) 15 transversely stable under g. Then
for any neighborhood U of O there is a smaller neighborhood V so that
g'(V —W) CU foralli>0. If O is transversely asymptotically stable then
V' can be chosen so that in addition dist(¢'(y),0) = 0 fory e V —W.

Proof Let U be a neighborhood of O. It follows from the estimates in
Proposition 4.2 that for y = (u,v,wt,w™,2) € Hl(m), d1(y) = O as wt — 0.
Moreover ¢;(y) — O uniformly in u,v,w™ and z (recall that [z| < 1). By
continuity of ¢; and 1; where defined, we have that ¢g(y) — O uniformly in
u,v,w ,z as wT — 0. Hence there is a neighborhood U’ of E, U’ C Hfi")
such that g(U' — W) C SNU.

Now suppose that O is transversely stable under g. Let V' be a neigh-
borhood of O satisfying condition (a) of Definition 4.6 with respect to U’.
Shrink V if necessary so that V. .C SN U NU’. Observe that ¢'(V — W) C
SNUNU' for all ¢ > 0. (This is easily shown by induction on the integer 3.)
In particular ¢*(V — W) C U for all i > 0 as required.
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Finally suppose that O is transversely asymptotically stable under g.
Shrink V' if necessary so that V' also satisfies condition (b) of the definition
with respect to U’.

Let y € V — W and e > 0. Using Proposition 4.2 as before, there is a
neighborhood U" of E so that g(U"” — W) is contained in an e-neighborhood
of O. By condition (b) of Definition 4.6, eventually ¢*(y) € U". It follows
that eventually ¢‘*! is within distance € of O. [

Proof of Theorem 4.7 We shall prove part (a). Then part (b) follows
immediately from the definitions of instability. Suppose that O is transversely
stable under g and let U be a neighborhood of the heteroclinic cycle X.
Suppose that U C S is a neighborhood of O in Hl(m). Let Fi(z) denote the
trajectory of a point z under the flow. If z € U — W there is a 7(z) > 0, the
“first return time’, so that Fy(z) ¢ H'™ for 0 < t < 7(z) and Froy=g(z) €
H™.

We claim that U can be chosen so that Fy(z) € U for all zx € U — W
and ¢ < 7(z). Indeed, it follows from Remark 4.1(b) and Corollary 4.4 that
whenever Fy(z) € H](m) or H](-‘m) and 0 < t < 7(z), we have Fy(z) € U. Now
we can use compactness of the heteroclinic cycle between H ;om) and H J(Tl)
to show that between these cross-sections Fy(z) € U provided U is chosen
small enough. On the other hand, the linearity of the flow between H ](-m)

and H J(-‘mt) implies that between these cross-sections Fi(x) € U for U small
enough. Thus we have verified the claim.

Let V be a neighborhood as guaranteed by Lemma A.1. Fory e V — W
we have that ¢*(y) € U for all i > 0. It follows that for 7 > 0,

Fi(y) e Ufort € [0,7(y) + 7(g(y)) + -+ 7(g"(W))].

Observe that the time taken to flow from H™ to H{™ say is bounded
away from zero and so 7(y) > 70 > 0 for y € V — W. It follows that
S, 7(g%(y)) = oo as i — oo. Hence Fy(V — W) C U for all t > 0.

If O is transversely asymptotically stable, then we can choose V' to satisfy
the additional property described in Lemma A.1 Let U’ be a neighborhood
of X. Then as above there is a neighborhood V' of O in H{zn) such that
F,(V'—W)cU forallt>0. If y € V — W then g'(y) — O so eventually
g'(y) € V'. Tt follows that eventually Fy(y) € U’ and since U’ is arbitrary,
dist(F(y), X) — 0.
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Finally, using similar arguments to those used in the construction of U, we
can construct a neighborhood V of X so that the forward trajectory through
any point in V — W intersects V and does not leave U _during the time it
takes to reach V. It follows that trajectories starting in V — W remain in U
for all forward time (and are asymptotic to X ), and we have proved that the
heteroclinic cycle is (asymptotically) stable. [ |

Proof of Lemma 4.11 We prove (a) and omit the analogous proof of (b).
Choose z; € §; with isotropy subgroup A; and let €2 be a closed submanifold
of I' transverse to A; at the identity element 1 and such that A; N Q = {1}.
The eigenspaces must have trivial intersection with the tangent space T, Qx;
and, by continuity, also with 7,,Qy. To complete the proof of (a) we need to
show that their intersection with T, Ay is also trivial. Let L = (dfw).; and
suppose that 7 is an eigenvector of L with eigenvalue A. Let v : [0,1] = A;
be a smooth curve with (0) = 1.
Then we compute that

) d
M = Aﬁv(t)n\t:o = %7(15))\77|t:0
= 1O Lnli=o = Loy ()]0 = L.

Hence 77 is also an eigenvector of L with eigenvalue A. It now follows that
T, Ay is contained in the span of eigenspaces having nontrivial intersections
with P;. Generically the intersection of the eigenspaces corresponding to c;
and t; with P; is trivial and (a) follows. [ |

Finally, we consider the problem of making Proposition 4.9 completely
precise. Field [7] has studied the corresponding problem for equivariant
Poincaré maps around a periodic orbit. Here we follow closely the approach
in [7].

If U, V are T-invariant open sets in R¥, let C#(U, V) denote the space of
C" I'-equivariant maps of U into V. Let CT. denote the space of C" equivariant
vector fields on R". Consider f € CT having a heteroclinic cycle with relative
equilibria {&1, ..., &n}. Let ®4(x) denote the flow corresponding to the vector
field f.

For y € H](-om) let p(y) be the least positive time such that @, (y) €

H](Tl) Let O and O' denote the generalized origins in Hj(out) and H](Tl) re-
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spectively, and define

Ao = U {ét(y)’t € [0’ p(y)]}’ A =TA,.

yeo

Consider a normal bundle N(A) (for background on normal bundles see [5]),
and let D (resp. D') be the restriction of N(A) to T'O (resp. ['O’). For e > 0
let D, be the bundle with the same base space as D and whose fibers are
e-balls in the fibers of D. Define D! similarly. We choose N(A) in such a
way that

D, =TH™, D,=TH

j+1-
Let U be a I'-invariant neighborhood of A with the property that
Uc |J{@w).tel0,n)}
yED,
Given € > 0 let X! be the subset of C[.(D;, D}) consisting of maps equal to
1; outside of D,.

Proposition A.2 There exists € > 0, an open neighborhood Q of 1; in X
in the C™ topology and a continuous map x : Q@ — CL. with the following
properties:

(a) Forv € Q, x(¥) = f on R" — U.
(b) For € Q, x(¢) has connecting diffeomorphism 1.

(c) x(¥;) = f.

Proof Analogous to the proof of Lemma C, p. 198 in [7]. [ |
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