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Abstract

Heteroclinic cycles are a natural source of nonasymptotically sta-
ble attractors in systems with symmetry. In this paper, stability
properties are completely classified for a large class of heteroclinic
cycles. In particular, we establish the existence of several nonasymp-
totically stable attractors in codimension two mode interactions with
O(2) symmetry, in the process explaining the results of some numeri-
cal experiments. In the Hopf/Hopf mode interaction we show that two
heteroclinic cycles can coexist as nonasymptotically stable attractors.

1 Introduction

It is now well-known following the work of Field [4] and in particular Guck-
enheimer and Holmes [5] that structurally stable heteroclinic cycles occur
naturally in low-codimension bifurcation theory when there is a group of
symmetries present. The majority of these heteroclinic cycles may be asymp-
totically stable. For example, codimension two mode interactions with O(2)
symmetry provide a rich supply of asymptotically stable heteroclinic cycles
between equilibria and/or periodic solutions, see Armbruster et al [2], Proc-
tor and Jones [12] and Melbourne et al [10].
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Unpublished numerical experiments by the authors of [10] indicated that
certain heteroclinic cycles are numerically observable even when they are not
asymptotically stable. Motivated by these observations, Melbourne [9] gave
an example of a heteroclinic cycle in three dimensions that is not asymp-
totically stable but is an attractor. This example is somewhat idealized,
though it occurs naturally in work of Lauterbach and Roberts [8]. The exam-
ples of [10] have complicating factors such as high dimension and continuous
group actions which serve to disguise the underlying ideas in [9]. However the
framework introduced in Krupa and Melbourne [7] for analyzing asymptotic
stability of heteroclinic cycles is designed to circumvent such difficulties. In
this paper, we show that the combination of the ideas in [9] and the frame-
work in [7] leads to a proof that the numerics described above are indeed
explained by the existence of a nonasymptotically stable attractor (at the
same time improving upon the results in [9]).

These nonasymptotically stable heteroclinic cycles have very strong at-
tractivity properties which we now describe. Although there is not an open
basin of attraction, the cycles satisfy a measure-theoretic notion of attractor
(see Milnor [11]) where nearby trajectories remain close and are asymptotic
to the attractor provided that they lie in sets of positive measure. In fact, we
claim much more — the measure of these sets of initial conditions becomes
arbitrarily close to full measure in small enough neighborhoods of the cycle.
This property is called essential asymptotic stability in [9] and is formalized
in the following definition.

Definition 1.1 A flow-invariant set X is said to be essentially asymptotically
stable if there is a set D such that for any open neighborhood U of X and
any € > 0, there exists a (smaller) open neighborhood V' such that

(a) trajectories starting in V' — D remain in U for all forward time and are
asymptotic to X.

(b) M(V —D)/A(V) > 1 — ¢, where A is Lebesgue measure.

Note that if we choose D = () then we recover the notion of asymptotic
stability. In the examples in [9] and in this paper, the invariant set X is
a heteroclinic cycle and D is a cuspoidal region abutting one or more (but
not all) of the heteroclinic connections that make up the cycle. Recently,
it has been shown by Alexander et al [1] and Ashwin et al [3] that flow-
invariant subspaces (forced for example by symmetry) may contain essentially
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asymptotically stable (but not asymptotically stable) invariant sets. Here,
the set D is considerably more complicated than in our examples.

Usually, an invariant set is defined to be unstable if there are trajectories
that start arbitrarily close but do not remain close. In the light of our
examples this definition is very weak since unstable sets can be essentially
asymptotically stable. These considerations suggest the utility of a stronger
notion of instability. We propose a definition that demands instability on
the same scale that we demanded asymptotic stability in our definition of
essential asymptotic stability.

Definition 1.2 A flow-invariant set X is almost completely unstable if there
is a set D and an open neighborhood U of X such that for any € > 0 there
exists an open neighborhood V' of X such that

(a) no trajectory starting in V' — D remains in U for all forward time,
(b) A(V —=D)/A(V) >1—ce.

The set X is completely unstable if D is a set of measure zero (in which case
condition (b) is automatic).

Standard examples of completely unstable invariant sets are provided
by saddle points and sources. (We do not distinguish between saddles and
sources; for a source D = (), for a saddle D is nonempty but of measure
zero.) More generally, any invariant set that has a hyperbolic structure is
either asymptotically stable or completely unstable.

Our main result in this paper is to show for a large class of heteroclinic
cycles that essential asymptotic stability and almost complete instability are
typically the only possibilities. It is of interest to isolate the asymptotically
stable cycles (rather less to isolate the completely unstable cycles) so the
cycles fall into one of the following three mutually exclusive categories

e asymptotically stable,
e unstable but essentially asymptotically stable,
e almost completely unstable.

We note that our conditions for a heteroclinic cycle to be a nonasymp-
totically stable attractor are an improvement on these in [9]. (Conditions (i)



and (ii) in [9, Theorem 1.2] are necessary and sufficient, condition (iii) is
superfluous.) In addition, the fact that there is no middle ground between
essential asymptotic stability and almost complete instability for the hetero-
clinic cycles under consideration was not at all apparent from the treatment
in [9]. Kirk and Silber [6] consider examples, some of which do not fall into
the class of heteroclinic cycles described in this paper (specifically, hypoth-
esis (S2) below is invalid) and show that such examples may lead to hete-
roclinic cycles that are neither essentially asymptotically stable nor almost
completely unstable.

In [7], necessary and sufficient conditions for asymptotic stability were de-
rived for heteroclinic cycles satisfying certain hypotheses ((H1)—(H3) in [7]).
If the conditions for asymptotic stability fail the cycle is unstable. The con-
ditions are stated in terms of the real parts of eigenvalues of the linearized
vector field at the equilibria (or relative equilibria) on the heteroclinic cycle.
In this paper, we consider the unstable case in more detail and demonstrate
that the cycle is either essentially asymptotically stable or almost completely
unstable. Again, conditions are given in terms of the real parts of eigenvalues.

In Section 2 we state our main results. The conditions for asymptotic
stability in [7] are obtained by considering the significant components of a
Poincaré map defined around the heteroclinic cycle. Essentially this reduces
to the analysis of the stability properties of the origin for a class of map-
pings of R%. In Section 3 we concentrate on these stability issues when the
origin is unstable. Then in Section 4 we apply our results to the examples
that arise in O(2) mode interactions. Finally, in Section 5 we show that two
of the cycles discussed in Section 4 can simultaneously exist and be essen-
tially asymptotically stable. Moreover, for this to happen each cycle must
be unstable.

2 Eigenvalue data for heteroclinic cycles

For a general vector field without symmetry, a heteroclinic cycle is necessarily
structurally unstable. However, symmetry may force the flow-invariance of
certain subspaces and this may permit structural stability to occur. In this
section, we describe the setup surrounding such heteroclinic cycles, and define
the eigenvalue data associated with these cycles. Once we have done this we
are able to state our main results.

This section is similar to [7, Sections 2 and 3|. (All numbered references



to [7] are to the revised version.) However there are several differences due
to the fact that the interest in [7] centered exclusively around asymptotic
stability. We shall emphasize these differences and refer to [7] and references
therein for details on such objects as isotropy subgroups and their fixed-point
spaces, isotypic decompositions, relative equilibria, normal vector fields and
SO on.

Let I' be a compact Lie group acting on R" and suppose that f : R* — R"
is a I'-equivariant vector field. Suppose that §;, j = 1,... ,m are hyperbolic
relative equilibria with stable and unstable manifolds W*(§;) and W*(&;).
The set of group orbits of heteroclinic connections

X = {Wu(/yg]) N Ws(5§j+1)’ .7 = 1a <, m, 5)7 € F}a
forms a heteroclinic cycle provided

(W*(&) — {&}) N W?2(v€41) # 0 for some y € T

This is more general than the corresponding definition in [7] where we de-
manded that W*(§;) — {¢;} be completely contained in [J o W*(7§;+1).
Clearly, the two definitions coincide when X is asymptotically stable.

We shall make several hypotheses which we label (S1)—(S4) to distinguish
them from (H1)-(H3) and (H3)" in [7]. The first hypothesis guarantees that
the heteroclinic cycle is robust (cf. [7, Proposition 2.5]).

(S1) There is an isotropy subgroup X; with fixed-point subspace P; = Fix(%;)
such that W“(fj) N Pj - WS({;']-H) and £j+1 is a sink in PJ

Remark 2.1 In our definition of heteroclinic cycle and in hypothesis (S1)
we have relaxed the assumptions on W*(&;) in [7]. It should be noted that
any heteroclinic cycle that is asymptotically stable satisfies the definition
of heteroclinic cycle in [7]. Also, (S1) together with asymptotic stability
implies (H1) in [7]. (Kirk and Silber [6] have studied an example where (S1)
fails. In their example, W*(§;) N P; is a one-dimensional manifold and they
demand only that one branch of this manifold is contained in W*(&;41).)

It is possible also to relax the assumption in hypothesis (S1) that & is
a sink in P;. Then the cycle could still be robust provided the intersection of
Wu(&;)NP; with W*(€;41) N P; is a transverse intersection of manifolds in P;.
However, if ;1 is not a sink, it is clear that the cycle is almost completely
unstable.



Let fy denote the normal vector field of f defined in a neighborhood
of the relative equilibria ;. Choose z; € §; and consider the linearization
(dfn)e;- The results in this paper and in [7] are stated in terms of the real
parts of the eigenvalues of (dfy)s;, j = 1,...,m. Recall that the real parts
are independent of the choice of z; € §; (Field [4]).

As in [7] the geometry of a heteroclinic cycle satisfying hypothesis (S1)
allows us to divide the eigenvalues into four classes, radial, contracting, ex-
panding and transverse. Let L; = P;_; N P;. We divide up the eigenvalues
as follows.

Eigenvalues | Description

radial eigenvalues in L;

contracting | nonradial eigenvalues in P;_;
expanding | nonradial eigenvalues in P;
transverse | remaining eigenvalues

Note that the collections of radial, contracting and expanding eigenvalues
are always nonempty, that the radial and contracting eigenvalues have nega-
tive real part and that there is at least one expanding eigenvalue with positive
real part. Set —c;, e; and ¢; to be the maximum real parts of the contracting,
expanding and transverse eigenvalues respectively. Hence we have selected
the weakest contracting, strongest expanding and most unstable transverse
eigenvalues. If there are no transverse eigenvalues, set t; = —oo. Observe
that cj > 0, e; > 0, t; # 0.

Remark 2.2 In [7], the transverse eigenvalues are assumed to have negative
real part, this being a necessary condition for asymptotic stability of the cy-
cle. This assumption is relaxed here and the transverse eigenvalues may have
positive real part. It is this greater generality that leads to the occurrence of
nonasymptotically stable attractors.

Corresponding to each isotropy subgroup 3, in (S1) is the isotypic de-
composition R" = Wy @ - - - & W, of R” into isotypic components. We may
choose Wy = P;. Let N(X;) denote the normalizer of ¥, in I'.

(S2) the eigenspaces corresponding to c¢;, t;, €41 and tj4; lie in the same
;-isotypic component.

(S3) dimW*(&;) N P; = dim (N(%;)/%;) + 1.



(S4) All transverse eigenvalues of ¢; with positive real part lie in the same
;-isotypic component.

Hypotheses (S2) is identical to hypotheses (H2) in [7]. In addition, (S3)
reduces to (H3)' in [7] when there are no transverse eigenvalues with positive
real part. Of course (S4) is vacuous in the context of [7].

Set p; = min(c;/e;,1 —t;/e;) and define p = py---p,. We make the
nondegeneracy assumptions ¢; # e; —t;, t; # e; and p # 1. Then [7,
Theorem 3.3] states that, provided ¢; < 0 for each j, generically a heteroclinic
cycle satisfying hypotheses (S1)—(S4) is asymptotically stable if and only if
p > 1. In fact it follows easily from the proof in [7] that the cycle is completely
unstable when p < 1. (Complete instability is established on cones that can
be made arbitrarily wide).

In this paper, we prove the following result.

Lemma 2.3 Suppose that X is a heteroclinic cycle satisfying hypotheses
(S1)-(S4). Generically X is essentially asymptotically stable if and only if
p>landt; <e;, j=1,...,m. Otherwise X is almost completely unstable.

Combining Lemma 2.3 with [7, Theorem 3.3] yields the following.

Theorem 2.4 Suppose that X is a heteroclinic cycle satisfying hypothe-
ses (S1)-(S4). Then generically the stability of X is described by precisely
one of the following possibilities.

(a) asymptotically stable (p > 1 and t; < 0 for each j),

(b) unstable but essentially asymptotically stable (p > 1, t; < e; for each j
and t; > 0 for some j),

(c) almost completely unstable (p <1 ort; > e; for some j).

Moreover, if p < 1 the cycle is completely unstable.

Remark 2.5 It follows from Theorem 2.4 that if ¢; > 0 for each j then X
is completely unstable. For then p; < 1 for each j, and hence p < 1.



3 Stability of a class of planar maps

In [7], stability of structurally stable heteroclinic cycles under an equivariant
vector field is related to the stability of certain dynamically invariant regions
under a Poincaré map g. Moreover, it is shown that certain components of
this Poincaré map govern the stability. Ultimately, this leads to the analysis
of a rather unusual class of planar maps and an investigation of the stability
of the origin under these maps. The mappings are not necessarily defined
in an open neighborhood of the origin, but are defined at least on an open
dense full measure subset of a neighborhood of the origin.

Suppose that X is a heteroclinic cycle satisfying hypotheses (S1)—(S4)
with eigenvalue data ¢; > 0, ¢; > 0, and ¢; # 0 for j = 1,... ,m. To prove
Lemma 2.3 we may reduce as in [7] to proving a similar result about the
stability of the origin under the mapping g = gpo---0g; where g; has to
lowest order the form

gi(w, z) = (Ajw/% + Bjw™/% z, Cjw</% 4 Djw™4/% 2).

For completeness, we describe quickly how this is arrived at, the details can
be found in [7].

The map g; represents the significant components of the part of the
Poincaré map that begins and ends in neighborhoods of §; and §; ;. In the
notation of [7], g; = v¥jo¢,; where ¢; is a first hit map defined in a small neigh-
borhood of §; and %); is a diffeomorphism connecting the neighborhoods of
& and &;41. The coordinates w and z correspond to the most expanding and
largest transverse directions. Finally, the constants A;, B;, C;, D; are drawn
from the linearization of 1; (taking only the significant components into ac-
count) and are generically nonzero by hypothesis (S2), see [7, Remark 4.11]).
Hypothesis (S4) implies that we can neglect transverse directions correspond-
ing to the other unstable transverse eigenvalues (if any).

As before we set p; = min(c;/ej,1 —t;/e;) and p = p1- -+ pp. Also we
assume the nondegeneracy conditions ¢; # e; — t;, t; # e; and p # 1. We
must prove the following result.

Lemma 3.1 Generically, 0 is essentially asymptotically stable under g if
and only if p > 1 and t; < e; for each j. Otherwise 0 is almost completely
unstable under g.



To simplify the notation it is convenient to generalize the class of map-
pings and allow g; to have to lowest order the form

gi(w, 2) = (Aw% 2% + Bjw® 2%, Cjw 2% + Djw% 2%),

where A;, B;,C;, D; are nonzero constants and a; + b; # ¢; +d;. Lemma 3.1
is then a special case of Corollary 3.3 below.

Without loss of generality we may assume that a; +b; < ¢; +d;. Accord-
ingly, we set p; = a; +b; and p = p;--- pp,. Choose constants 3 > o > 0
such that

1 1
dal4;| < |Cj| = 81451, 4alBy| < |Ds] < 7 BIB;|.
For 4> 1 and 0 < v < 1 define the cuspoidal cone
Cup = {afw|* <|z| < Blw]"}.

The portion of the cuspoidal cone that lies in the first quadrant is illustrated
in Figure 1.

Figure 1: The cuspoidal cone in the first quadrant

Observe that if B, is the open ball of radius € and center 0 in R? and ) is
Lebesgue measure, then A(B. N C,,)/A(Be) — 1 as € = 0. (The easiest way
to check this is to use square neighborhoods and explicitly integrate.) We
shall take D to be the complement of such a cuspoidal cone in Definitions 1.1
and 1.2.

Lemma 3.2 There are numbers g > 1, vy € (0,1), an open neighborhood
V' of 0 and positive constants k, K such that for 1 < pu < pg, o <v <1,

(a) g;(Cup NV) C Cyp.
(b) If b; > 0
k‘w‘aﬁbju < |gj(w,z)\ < K‘w|aj+bju for (w, 2) € Co V.

A similar inequality holds for by < 0 with p and v interchanged.



Proof For ease of notation we suppress the index j throughout the proof.
(a) For (w, z) € C,,, we have

b a+bu. b>0
a b > (&7 |w| b -
|’U) < | - { ﬂb|w‘a+bu; b<0

Similarly, we have

d c+dv. d>0
C d < /6 ‘w| ) -
lwez"| < { ad|w‘c+du; d<0

Hence for 1 and v close enough to 1, we have |wz¢| = o(|w®z°|). To lowest
order, g(w, z) = (Aw®2?, Cwz?).

Write g in components, g = (¢, g%). For (w,z) close enough to 0 we
compute that

1
alg”(w, 2)|* < 2a|Aw*2’| < E\C’w“zb| < g% (w, 2)|.

A similar computation shows that |¢*(w, z)| < B|¢*(w, 2)|* so that g(w, z) €
C,, as required.

(b) Proceeding as in (a) we have g(w, z) = (Aw?2°, Cw®z®) at lowest order.
Using the estimates in (a) for |wz’| we take k = 3 min(|A|, |C|) min(a?, 3°).
This yields the required lower bound. A similar argument gives the upper
bound. |

Corollary 3.3 Suppose that p # 1 and that p; # 0 for each j. Then 0 is
essentially asymptotically stable if and only p > 1 and p; > 0 for each j.
Otherwise 0 is almost completely unstable.

Proof Choose p and v close enough to 1 so that parts (a) and (b) of
Lemma 3.2 are valid. Part (a) of the lemma implies that points in C,,
remain in C, , under iteration by g for as long as they are close to 0. Hence
we may consider the stability of 0 under the mapping g restricted to C,,.
Note that asymptotic stability in C,, implies essential asymptotic stability
in R?. Similarly, complete instability in C,,, corresponds to almost complete
instability in R?.

Suppose first that p; < 0 for some j. Then a; +b; < 0 and we can choose
i and v close enough to 1 so that a; + bju < 0 and a; + b;v < 0. Then it
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follows from the lower estimates in Lemma 3.2(b) that for V' a small enough
neighborhood of 0, g;(V NC,,) NV = . Hence 0 is completely unstable in
Cop-

Now suppose that p; > 0 for each j. This time the upper estimates imply
(for v close enough to 1) that each g; extends to a continuous map on C,,
with 0 a fixed point. Combining the estimates in Lemma 3.2(b) for each of
the g; we obtain an estimate for g

K™ lw|P* < [g(w, 2)] < K™ |w|”™,

for (w, z) € C,,, where € > 0 can be made as small as we wish by choosing
p and v close enough to 1. It follows that g is uniformly contracting in C,, ,,
if p > 1 and uniformly expanding in C,, if p < 1. Hence 0 is asymptotically
stable in C,, or completely unstable in C,, respectively as required. |

4 Cycles in O(2) mode interactions

Codimension two mode interactions with O(2) symmetry have provided a
rich source of examples of structurally stable heteroclinic cycles, see [2], [12]
and [10]. Necessary and sufficient conditions for asymptotic stability of many
of these heteroclinic cycles were obtained in [7, Section 6]

For convenience we give a quick (but incomplete) description of the het-
eroclinic cycles that occur in O(2) mode interactions. There are three codi-
mension two mode interactions.

e steady state/steady state ([2], [12])
e steady state/Hopf ([10])
e Hopf/Hopf ([10])

The cycles occur on center manifolds whose dimension is determined by the
multiplicity of the eigenvalues passing through the imaginary axis. Generi-
cally these eigenvalues are simple or have multiplicity two corresponding to
the absolutely irreducible representations of O(2). The existence of struc-
turally stable heteroclinic cycles requires all eigenvalues to have multiplicity
two and the center manifolds for the three mode interactions have dimen-
sion 4, 6 and 8 respectively.
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4.1 Steady state/steady state interaction

In the steady state/steady state interaction the center manifold is four-
dimensional and coordinates can be chosen on C? so that the action of O(2)
is given by

£:6

-z = (b2, ef2,),

K-2Z = (21,22),

where k£ and ¢ are positive coprime integers and k£ < /.

Structurally stable heteroclinic cycles occur only when £ =1, £ = 2, and
consist of two equilibria and two heteroclinic connections between these equi-
libria. The pair of equilibria are related by elements of the group, as are the
heteroclinic connections. The equilibria have isotropy subgroup D, generated
by rotation through 7 and the reflection k. The heteroclinic connections lie
in the two-dimensional flow-invariant subspaces Fix(x) and Fix(7k). In fact,
there is a continuous group orbit of such heteroclinic cycles.

Since the equilibria on the cycle are related by the group of symmetries
we may view this as a cycle with m = 1. There are no transverse eigenvalues
and the eigenvalue data consists of ¢ > 0 and e > 0. It was shown in [7] and
in [12] that generically the heteroclinic cycle is asymptotically stable if ¢ > e
and unstable if ¢ < e. It follows from Theorem 2.4 that when ¢ < e the cycle
is completely unstable. In particular the cycle is never a nonasymptotically
stable attractor.

4.2 Steady state/Hopf interaction

We can choose coordinates on the six-dimensional center manifold C? so that
the O(2) action is given by

¢ ) (205 21, 22) = (eki¢ZO, eeiqula 6_ei¢22)1

K. - (20,21,22) = (20,22,21),

where £ and ¢ are positive coprime integers and £ < ¢. There is also an
SO(2) phase shift symmetry

0

0 - (20,21, 22) = (20,€%21, €% 2).
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Structurally stable heteroclinic cycles occur when k£ =/ = 1.

A schematic diagram of the heteroclinic cycle is given in Figure 2. There
is an equilibrium (1) lying in an invariant line and a periodic solution (2) in
an invariant plane. These are joined by heteroclinic connections in the three-
dimensional invariant subspaces (3) and (4). The equilibrium has eigenvalue
data ¢; > 0, e; > 0 and t; = —oo (no transverse eigenvalues). The periodic
solution has a single transverse eigenvalue and hence data ¢y > 0, e5 > 0 and

ty # 0.

Theorem 4.1 Generically, the heteroclinic cycle in the steady state/Hopf
interaction is a nonasymptotically stable attractor if and only if the following
conditions are valid.

(a) 0 <ty <ey,
(b) c1min(cg, e5 — t9) > e1€5.

More precisely, the cycle is unstable yet essentially asymptotically stable if
these conditions are satisfied.

If the second inequality in (a) or the inequality in (b) is reversed, the cycle
18 almost completely unstable.

If the first inequality in (a) is reversed, but the others maintained, the
cycle s asymptotically stable.

Figure 2: The cycle in the steady state/Hopf interaction

4.3 Hopf/Hopf interaction

Effectively, the symmetry group is O(2) x T2, the T?-symmetry arising from
the simultaneous Hopf bifurcations. We can choose coordinates so that the
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action of O(2) x T? is as follows:

-z = (%02, 2,2, e72), ¢ €SO(2),
(1, 92) -2 = (%21, 20, €%%23,"21), (11, 10) € T?,
K+z = (22,21,24,23)a

where k£ and ¢ are positive coprime integers and k£ < /.

Heteroclinic cycles occur for all values of £ and ¢, but the cycles for
£ > 1 violate hypothesis (52), see [7]. Hence we restrict attention to the case
k=¢=1.

M 2 B M
G) | 0o ®

Figure 3: The cycle of rotating and standing waves in the Hopf/Hopf inter-
action.

There are three heteroclinic cycles to consider, one that connects a pair
of rotating waves, another connecting a pair of standing waves and a third
connecting all four of these solutions. Schematically, the first two cycles look
like the one in the steady state/Hopf interaction, see Figure 2. The third
cycle is shown schematically in Figure 3. In the notation of [10] modes (1)
and (4) correspond to the rotating waves, and modes (2) and (3) to the
standing waves. Each of the modes (j), j = 1,---, 4 has a pair of transverse
eigenvalues and hence data c¢; > 0, e; > 0 and ¢; # 0.

Theorem 4.2 Generically, the cycles in the Hopf/Hopf interaction are un-
stable but essentially asymptotically stable if and only if

(a) t; < ej, for each j,

(b) t; > 0 for at least one j,

(c) Hmin(cj,ej —t) > Hej (m = 2 for the first two cycles and m = 4
j=1

j=1

f;r the third).
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If an inequality in (a) or (c) is reversed, then the cycle is almost completely
unstable. If (a) and (c) are valid but t; < 0 for each j then the cycle is
asymptotically stable.

5 Bistability in the Hopf/Hopf interaction

In Section 4 we saw that there are three distinct heteroclinic cycles that
may occur in the Hopf/Hopf mode interaction with O(2) symmetry when
k = ¢ = 1. These cycles connect the rotating waves (1) and (4), the standing
waves (2) and (3), and all four periodic solutions (1)—(4) respectively. It is
natural to ask whether these cycles can coexist and be asymptotically stable
or at least essentially asymptotically stable together.

In fact it is clear that if the cycle connecting all four modes is even
essentially asymptotically stable then the other two cycles are automatically
almost completely unstable. To see this observe that if two cycles have a
mode in common, then the expanding eigenvalues for one cycle are transverse
eigenvalues for the other cycle and vice versa. Hence one of the cycles must
have a transverse eigenvalue dominating the expanding eigenvalues so that
the cycle is almost completely unstable.

The only possibility for bistability lies with the cycle joining rotating
waves and the cycle joining standing waves. We show that this possibility is
realized but only with both cycles being unstable (but essentially asymptot-
ically stable).

The vector field on the eight-dimensional manifold C* can be written in

the form f = (f1, fo, f3, f1) where

(2) P21 + Rl2y237%,
fo(2) = fi(ee, 21,2, 23),
f3(2) = PPz + Rz %2,
fa(z) = fs(z2, 21, 24, 23).
Here, P!, P3, R' and R? are complex valued functions of parameters \, u € R

and the invariants

— > N [
pi=2z%z,t=1,...,4, Ra, Sa,

where o = 21Z27321. Let p* denote the real part of P?, and r* the real part of
R! for i = 1, 3. Existence results for the heteroclinic cycles are stated in [10].
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Following the treatment there we set p,(0) = p>(0) = 0. From now on we
shall take it as given that the various Taylor coefficients are to be evaluated
at 0. We write p, instead of p,(0) and so on. By scaling we may assume
that p} =p3 = 1.

Each of the modes (1)—(4) has four eigenvalues up to multiplicities forced
by the group action. We are interested in the lowest order coefficient in the
real part of each eigenvalue. These are determined by the Taylor coefficients
of the real parts p', p® up to cubic order. Following [10] we list these lowest

order coefficients corresponding to the mode (j) as ¢;,1=1,...,4.
€11 = 2p,, €12 = 2(p,, +Dp,) e13 = 2(p}, +15,) €14 = 2P,
€21 = p; - p};1 €22 = 2(1’;1 - p;) €23 = 2(1’23 - P?M) €24 = pi - P?,:.;

_ .3 1 _ .3 3 3 1 1 1 1 3
€31 =Py, — Py, €32 =Dy 'il‘sz ‘|1‘ T €33 = Py, —gpp4 ‘g T €34 =D, — Dp,
_ppl _pp2 _pp3 _pp4

_ 3 1 _ 3 3 3 _ .1 1 1 _ .1 3
€41 = Pp, — Pp, €42 = Py, +Pp2 —1 r €43 = Pp, +pp4 —3 r €44 = Pp; — Py,
—Pp, — Pp, —Pps — Py

We also define numbers €5, €, €7 and €g as follows.

1 3 3 3 3 1 1 1
65:%+& 67:pp1+pp2+r +pp3+pp4+r
Py, Pp Py, + P, Py, +Pj,
1 3 3 3 3 1 1 1
:pﬁ_i_% Eszpm—i_pm_r +pp3+pp4—7“
Py, Pp Py, + Py, Pps T 1},

€6
According to [10, Theorem 4.1] the cycle between rotating waves exists
provided
(i) €1 <0, €14 <0,
(i) €31 >0, €34 > 0, €47 <0, €44 < 0,
(iii) €5 > —2, €g > —2.

In our terminology, the data in (i) corresponds to the radial eigenvalues, the
data in (ii) to the contracting and expanding eigenvalues. The cycle exists
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also if the signs in (ii) are reversed, interchanging the contracting and ex-
panding eigenvalues. The conditions (iii) ensure boundedness of trajectories
in the invariant subspaces so that the required connections are made.

We shall let cff, el and tff, j = 1,2 denote the eigenvalue data for the

j
cycle connecting rotating waves. Then

R _ R _ R _ R _ R _ R _
€l = —€41, €] = €31, l] = €21, Cy = —€44, €y = €34, L5 = €g4.

Similarly, by [10, Theorem 4.4] the cycle between standing waves exists
provided

(1) €19 < 0, €13 < O,
(ii) €30 > 0, €43 > 0, €33 < 0, €40 <0,
(111) €7 > —2, €g > —2.

If ¢5, ef and t§, j = 1,2 denotes the eigenvalue data for the cycle connecting
standing waves, we have

s _ s _ 5 _ s _ S _ S _
C] = —€42, €] = €39, 1] = €92, C; = —€33, €5 = €43, t; = €a3.

Observe that the transverse eigenvalues of the two cycles are related:
tf = —Qtf. It follows that if one of the cycles is asymptotically stable with
negative transverse eigenvalues, then the other cycle has both transverse
eigenvalues positive. That cycle is then almost completely unstable by Re-
mark 2.5.

We show that the two cycles exist and are simultaneously unstable but
essentially asymptotically stable for a nonempty open set of codimension
two bifurcation problems with O(2) symmetry. Since the conditions for ex-
istence and stability are given by finitely many inequalities, it is sufficient
to find one set of Taylor coefficients for which the inequalities are satisfied
simultaneously. Consider the following values for the Taylor coefficients:

pzl =-1.0 sz =0.0 pzs =—4.0 pz‘l =00 rt=-50

3 _ 3 _ 3 _ 3 _ 3 _
p,, =51 p,=-70 p,=-10 p, =-20 =20
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We compute that

€11 = —2.0 €10 = —2.0 €13 = —6.0 €14 = —2.0

es=—11 € =7.0 €7 =29 es = 107/30

th=10 th=-10 tf=-20 ¢ =20

Note that conditions (i)—(iii) for existence of each cycle are satisfied. More-
over, each cycle has an unstable transverse eigenvalue (£ and ¢5) and hence
is unstable. Finally it is easily checked that the condition p > 1 for essential
asymptotic stability in Theorem 2.4 is satisfied for the two cycles.
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