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Abstract

We show that among Cr extensions (r > 0) of a uniformly hyperbolic dy-
namical system with fiber the standard real Heisenberg group Hn of dimension
2n + 1, those that avoid an obvious obstruction to topological transitivity are
generically topological transitive. Moreover, if one considers extensions with
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fiber a connected nilpotent Lie group with compact commutator subgroup (for
example, Hn/Z), among those that avoid the obvious obstruction, topological
transitivity is open and dense.

1 Introduction

This paper is part of a sequence aiming to study topological transitivity in various
classes of noncompact group-extensions of hyperbolic systems. Consider a continuous
transformation f : X → X, a Lie group Γ, and a continuous map β : X → Γ called a
cocycle. These determine a skew product, or Γ-extension,

fβ : X × Γ→ X × Γ, fβ(x, γ) = (fx, γβ(x)).

The Γ-extension fβ is called topologically transitive, or simply transitive, if it has a
dense orbit. The problem of interest to us is whether noncompact Lie group extensions
of a hyperbolic basic set are typically topologically transitive.

Let (M,dM) be a smooth manifold endowed with a Riemannian metric. Let
f : M → M be a smooth diffeomorphism and X ⊂ M a compact and f -invariant
subset of M . Let Df be the derivative of f . We recall that X is said to be hyperbolic
if there exists a continuous Df -invariant splitting Es ⊕ Eu of the tangent bundle
TXM and constants C1 > 0, 0 < λ < 1, such that for all n ≥ 0 and x ∈ X we have:

‖(Dfn)xv‖ ≤ C1λ
n‖v‖, v ∈ Es

x

‖(Df−n)xv‖ ≤ C1λ
n‖v‖, v ∈ Eu

x .

We say that X is locally maximal if there exists an open neighborhood U of X
such that every compact f -invariant set of U is contained in X. A locally maximal
hyperbolic set X is a hyperbolic basic set if f : X → X is transitive and X does not
consist of a single periodic orbit.

Given a connected Lie group Γ and a Cr cocycle β : X → Γ, r > 0, we consider the
Γ-extension fβ : X ×Γ→ X ×Γ given by fβ(x, γ) = (fx, γβ(x)). For brevity, we say
that the cocycle β is transitive if the Γ-extension fβ is transitive. In [6] we proposed
a general conjecture about transitivity: namely that modulo obstructions appearing
from the fact that the range of the cocycle is included in a maximal semigroup with
non-empty interior, the set of Cr transitive cocycles contains an open and dense
subset. The conjecture is proved for various classes of Lie groups, mostly semidirect
products of compact and Euclidean, in [2, 5, 6, 7, 10]. An important test case is
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presented by the special Euclidean group Γ = SE(n) = SO(n) n Rn. It is shown in
[5, 6, 7] that when n is even the set of cocycles that are transitive is open and dense.

In [8] we showed that for SE(n), n ≥ 3 odd, the transitive Cr cocycles form a
residual subset of the space of all Cr cocycles for all r > 0. In other words, transitivity
is generic for such extensions. More generally, we considered Euclidean-type groups
of the form Γ = Gn Rn where G is a compact connected Lie group. The general case
of the conjecture remains unsolved for SE(n) if n ≥ 3 odd.

Recently, [9] obtained examples of groups that are compact extensions of nilpotent
(not abelian) Lie groups for which transitivity is open and dense. Recall that a
compact element g in a Lie group is one for which the closure of the cyclic group
generated by g is compact. The method used in [9] borrows from [6] as it relies on
the existence of an open and dense set of compact elements in Γ. This approach
cannot be applied to the case of a nilpotent Lie group due to the lack of compact
elements.

In this paper we study the conjecture for certain 2-step nilpotent Lie groups.

Definition 1.1 For n ≥ 1, letHn denote the Heisenberg group, consisting of matrices
of the form

(a, b, c) :=

 1 aT c
0 In b
0 0 1

 ∈ Matn+2(R).

where a, b ∈ Rn, c ∈ R and In is the n-dimensional identity matrix.

Remark 1.2 (a) We can identify Hn with the space Rn⊕Rn⊕R endowed with the
multiplication

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + aT b′). (1.1)

(b) H1 is the standard 3-dimensional Heisenberg group.

The center of Hn is [Hn,Hn] = {(0, 0, c)} = R. Denote Ĥn = Hn/R ∼= R2n.

If β : X → Hn is a cocycle, denote by β̂ : X → R2n the corresponding quotient
cocycle. There is an obvious obstruction to transitivity, namely that β̂ : X → R2n

takes values in a half-space bounded by a hyperplane passing through the origin.
To avoid repetition, we assume from now on that a half-space in a linear space is
always bounded by a hyperplane passing through the origin. More generally, if β̂ is
cohomologous to a cocycle with values in a half-space, then fβ is not transitive.1

1 We recall that β, β′ : X → Rd are cohomologous if there exists a map P : X → Rd such that
for all x ∈ X, β′(x) = P (fx) + β(x)− P (x).
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Remark 1.3 By [1], a Hölder Rd-valued cocycle is cohomologous to one that takes
values in a half-space if and only if its periodic data is in a half-space.

If r > 0, let Sr(X,Hn) be the set of Cr cocycles β : X → Hn for which β̂ is not
cohomologous to a cocycle with values in a half-space. Our first main result is

Theorem 1.4 Assume that X is a hyperbolic basic set for f : X → X. Let n ≥ 1,
r > 0. Among cocycles β ∈ Sr(X,Hn), those that are transitive are generic.

There is a class of nilpotent groups for which we obtain stronger results, and for
which the proofs are much simpler.

Let Γ be a nilpotent Lie group, with compact commutator subgroup [Γ,Γ]. Note
that, by [13, Lemma 4], in this case [Γ,Γ] is central, hence Γ is two-step nilpotent.

For a cocycle β : X → Γ, denote its image in the abelianization of Γ by β̂ : X →
Γ/[Γ,Γ]. Since Γ/[Γ,Γ] is an abelian Lie group, it is isomorphic to Ra × Tb. Denote

by β̃ : X → Ra the image of β̂ in Ra.
For r > 0, let Sr(X,Γ) be the set of Cr cocycles β : X → Γ for which β̃ is not

cohomologous to a cocycle with values in a half-space.

Theorem 1.5 Let Γ be a nilpotent Lie group with [Γ,Γ] compact, and r > 0. Assume
that X is a hyperbolic basic set for f : X → X. Among cocycles β ∈ Sr(X,Γ), those
that are transitive contain an open and dense set.

One group Γ for which the above Theorem applies is the quotient Hn/Z, where
the central subgroup Z is generated by (0, 0, 1). In this case the abelianization is R2n.
Other examples are products of such groups, and (Hn/Z)× Rd.

Remarks 1.6 1. The set S of cocycles considered in Theorems 1.4 and 1.5 is ex-
actly the one to which our conjecture [6] refers: those that are not cohomologous
to a cocycle with values in a maximal semigroup with non-empty interior.

2. In order to prove Theorem 1.4, it is enough to show that Sr(X,Hn) contains a
dense set of cocycle that are transitive (see for example the introduction in [8]).

3. As was the case in [8] for certain Euclidean-type groups (e.g. SE(3)), replacing
generic by open and dense in Theorem 1.4 remains an unsolved problem.

4. The proof of Theorem 1.4 develops further the techniques in [8]. In addition,
results from the classical theory of Diophantine approximation come into play.
It is not hard to extend Theorem 1.4 to products of Heisenberg groups. We
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believe that this method works for general two-step nilpotent Lie groups (and
perhaps also for nilpotent Lie groups of step higher than two) but there are
several technical details that have to be clarified.

The remainder of the paper is organized as follows. In Section 2 we recall some
general results from [6], in particular a general criterion for transitivity of extensions
of hyperbolic systems. In Section 3 we review and extend results for Rd-extensions
and their periodic data. In Section 4 we prove Theorem 1.5. In Section 5 we recall
a technical result from [8]. In Section 6 we specialize to the setting of nilpotent Lie
groups and prove Theorem 1.4.

2 Criterion for transitivity

Let Γ be a connected Lie group with Lie algebra LΓ. We denote by eΓ the identity
element of Γ. Let Ad denote the adjoint representation of Γ on LΓ. Let ‖ · ‖ be a
norm on LΓ. It is known that there is a metric d on Γ with the following properties:

1. d(γγ1, γγ2) = d(γ1, γ2);

2. d(γ1γ, γ2γ) ≤ ‖Ad(γ)‖d(γ1, γ2);

for any γ, γ1, γ2 ∈ Γ.

Definition 2.1 Let f : X → X be a map and β : X → Γ a cocycle. We write
fkβ (x, γ) = (fkx, γβ(k, x)) where, for k ≥ 1,

β(k, x) = β(x)β(fx) · · · β(fk−1x) =
k−1∏
j=0

β(f jx).

The meaning of the product notation in the last term above is the middle expression.
If Q is a trajectory of f of length k (i.e. Q = {x, f(x), . . . , fk−1(x)} for some x),

then we define the height of β over Q to be β(Q) = β(k, x). In particular, if x is a
periodic point of period `, then the height of the corresponding periodic orbit P is
β(P ) = β(`, x). The set of heights of β over all periodic orbits of f is referred to as
the periodic data of β.

Definition 2.2 Given a cocycle β : X → Γ over f : X → X, define µ ≥ 1 to be

µ = max
{

lim
n→∞

sup
x∈X
‖Ad(β(n, x))‖1/n, lim

n→∞
sup
x∈X
‖Ad(β(n, x))−1‖1/n

}
.
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We say that the cocycle β has subexponential growth if µ = 1.

Remark 2.3 The subexponential growth condition is automatically satisfied for any
cocycle if the group Γ is compact, nilpotent, or a semidirect product of compact and
nilpotent.

One of the key notions used in this paper was introduced in [6]:

Definition 2.4 Let Γ be a connected Lie group, X a hyperbolic basic set for f :
X → X, β : X → Γ a cocycle, and fβ : X × Γ → X × Γ the skew-extension. Given
x ∈ X, let

Lβ(x) = {γ ∈ Γ : there exist xk ∈ X and nk > 0 such that

xk → x and fnk
β (xk, eΓ)→ (x, γ)}.

That is, the set Lβ(x) consists of the possible limits limk→∞ β(nk, xk), subject to
xk → x and fnk(xk)→ x. Note that we do not require that nk →∞ or that xk 6= x.
Clearly Lβ(x) is a closed subset of Γ.

The following theorem is a special case of [6, Lemma 3.1, Theorem 3.3].

Theorem 2.5 Assume that X is a hyperbolic basic set for f : X → X, that Γ is a
connected Lie group and that β : X → Γ is a Hölder cocycle that has subexponential
growth. Then

(a) Lβ(x) is a closed semigroup of Γ for each x ∈ X.

(b) β is a transitive cocycle if and only if there exists a point x0 ∈ X such that
Lβ(x0) = Γ.

Denote by W s(x) (W s
loc(x)) and W u(x) (W u

loc(x)) the (local) stable and (local)
unstable leaves of f through x. The next lemma is a consequence of [11, Appendix A].

Lemma 2.6 Assume that X is a hyperbolic basic set for f : X → X, that Γ is a
connected Lie group and that β : X → Γ is an α-Hölder cocycle that has subexponential
growth. Then the Γ-extension fβ : X×Γ→ X×Γ admits stable and unstable foliations
which are α-Hölder and invariant under right multiplication by elements of Γ. The
stable and unstable leaves of fβ through (x, eΓ) ∈ X×Γ are the graphs of the functions

γsx : W s(x)→ Γ, γsx(y) = lim
n→∞

β(n, x)β(n, y)−1,

γux : W u(x)→ Γ, γux(y) = lim
n→∞

β(−n, x)β(−n, y)−1.
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These functions are α-Hölder and vary continuously with the cocycle β in the following
sense: if βk → β in C0-topology and βk remains Cα-bounded, then γsk,x → γsx on
W s
loc(x) and γuk,x → γux on W u

loc(x) in C0-topology.

We call the values of the functions γsx, γ
u
x holonomies along stable/unstable leaves.

The following lemma is a special case of [6, Lemma 2.2].

Lemma 2.7 Assume that X is a hyperbolic basic set for f : X → X, that Γ is a
connected Lie group and that β : X → Γ is an α-Hölder cocycle that has subexponential
growth. Then there is a constant C > 0 with the following property.

Given ε > 0 sufficiently small and n ≥ 1, assume that there are two trajectories
xk = fk(x0), yk = fk(y0), such that dM(xk, yk) < ε for 0 ≤ k ≤ n− 1. Then

d(β(n, x0), β(n, y0)) ≤ C(‖Ad(β(n, x0))‖+ 1)εα. (2.1)

3 Rd-valued cocycles and periodic data

In this section, we review and extend results on Rd-extensions. As always, X ⊂ M
is a hyperbolic basic set for f : M → M . Let Sr(X,Rd) be the set of Cr cocycles
β : X → Rd that are not cohomologous to a cocycle with values in a half-space in
Rd. More generally, if K is a connected compact Lie group, denote by Sr(X,Rd×K)
the Cr-cocycles β : X → Rd × K whose Rd-component is not cohomologous to a
cocycle with values in a half-space in Rd. A necessary condition for transitivity is
that β ∈ Sr(X,Rd ×K).

First we recall a result of [10, 2, 7].

Theorem 3.1 There is an open and dense set U ⊂ Sr(X,Rd×K) such that if β ∈ U ,
then β : X → Rd ×K is transitive.

Next, we prove that one can prescribe periodic data for Hölder Rd-cocycles. This
is needed in the proof of Theorem 1.4.

Proposition 3.2 Suppose that β : X → Rd is a Hölder cocycle and U ⊂ X is an
open set.

(a) Assume that β is transitive. Then the periodic data of β on orbits that intersect
U is dense in Rd.
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(b) Assume that β is stably transitive. Then, given any ε > 0 and a ∈ Rd, there
exists a Cr cocycle β′ : X → Rd ε-close to β in the Cr-topology, such that β
and β′ differ only on U and a is the periodic data of β′ on a periodic orbit
intersecting U .

Proof (a) Pick an open set V ⊂ U with V ⊂ U . Let a ∈ Rd and δ > 0. By the tran-
sitivity of β, there is a point x0 ∈ V and an orbit segment x0, f(x0), . . . , fN(x0) such
that dM(x0, f

N(x0)) < δ and ‖β(N, x0)−a‖ < δ. Anosov’s Closing Lemma [3] implies
that there is a periodic orbit y0, f(y0), . . . , fN(y0) = y0 such that dM(fk(x0), fk(y0)) <
Cδ for 0 ≤ k ≤ N − 1, where C depends only on f . The estimate (2.1) shows then
that β(N, y0) is within C ′δα of a, where C ′ depends only on f and ‖a‖. If δ is small
enough then y0 ∈ U , and the conclusion follows.

For part (b), fix a C∞ bump function g : X → [0, 1] supported in U such that
g|V ≡ 1 for an open set V ⊂ U . Let M = ‖g‖Cr . By part (a), there exists a periodic
orbit P intersecting V with height β(P ) = b such that ‖a−b‖ < ε/M . Let c = g(P ) be
the height of g on P . Since P intersects V , we have c ≥ 1. Define β′ = β+(a− b)g/c.
Then ‖β′ − β‖Cr ≤ ‖a− b‖‖g‖Cr < ε, and β′(P ) = β(P ) + (a− b) = a as required.

4 Open and dense transitivity (compact commu-

tator subgroup)

In this section we prove Theorem 1.5. We start with a preliminary result that is of
independent interest.

Proposition 4.1 Let Γ be a connected finite dimensional Lie group. Suppose that

(a) N is a compact normal subgroup of Γ with quotient group H and natural pro-
jection π : Γ→ H.

(b) The only closed connected subgroup Γ′ ⊂ Γ satisfying π(Γ′) = H is Γ′ = Γ.

Assume that the cocycle β : X → Γ has subexponential growth, and let βH : X → H
be the cocycle obtained after quotienting by N .

Then β : X → Γ is transitive if and only if βH : X → H is transitive.

Proof We begin with the observation:

(*) Suppose that (i) Γ′ is a closed semigroup in Γ and (ii) π(Γ′) = H. Then Γ′ = Γ.
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For suppose that γ ∈ Γ′. By (ii), there exists n ∈ N such that γ−1n ∈ Γ′. Hence
n ∈ Γ′. But n lies in the compact group N , so the closed semigroup generated by n
is a group. In particular n−1 ∈ Γ′ and so γ−1 ∈ Γ′. Combined with (i), this shows
that Γ′ is a closed subgroup of Γ. By (ii), π(Γ′) = H. By hypothesis (b), Γ′ = Γ as
required.

Choose x0 ∈ X. By Theorem 2.5(b), it suffices to show that Lβ(x0) = Γ if and
only if LβH

(x0) = H. Clearly, if Lβ(x0) = Γ, then LβH
(x0) = H. It remains to prove

the converse.
So, suppose that LβH

(x0) = H. We show that Γ′ = Lβ(x0) satisfies the hypotheses
of (*), and so Lβ(x0) = Γ as required. Now (i) is immediate by Theorem 2.5(a). Let
γ ∈ Γ. Then γN ∈ H and there exists xk ∈ X and mk > 0 such that fmkxk → x0

and βH(xk,mk)→ γN . Hence β(xk,mk) = γknk where γk → γ and nk ∈ N . Since N
is compact, we can pass to a subsequence so that nk → n ∈ N . Hence γn ∈ Lβ(x0).
Thus (ii) is satisfied.

Remark 4.2 If A ⊂ G is a subgroup of a nilpotent group, then A[G,G] = G implies
that A = G (see [4, Theorem 16.2.5]).

Proof of Theorem 1.5
Since Γ is nilpotent, cocycles β : X → Γ automatically have subexponential

growth. By Remark 4.2, Γ and its compact commutator subgroup N = [Γ,Γ] satisfy
the hypotheses of Proposition 4.1. (This is not so hard to check directly for Γ =
Hn/Z.)

Let β ∈ Sr(X,Γ). So the quotient cocycle β̃ : X → Ra is not cohomologous to a
cocycle with values in a half-space in Ra, where Γ/[Γ,Γ] ∼= Ra×Tb. By Theorem 3.1,

there is an open and dense set U ⊂ Sr(X,Γ) such that if β ∈ U , then β̂ : X → Γ/[Γ,Γ]
is transitive. By Proposition 4.1, β : X → Γ is also transitive.

5 Elements of Lβ
In this section we recall a method to obtain elements of Lβ introduced in [8]. Through-
out, (M,dM) is a Riemannian manifold, X ⊂M a hyperbolic basic set for f : X → X,
Γ a connected Lie group and β : X → Γ a Hölder cocycle that has subexponential
growth.
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Definition 5.1 By a periodic heteroclinic cycle we mean a cycle consisting of points
p1, . . . , pk that are periodic for the map f , have disjoint trajectories, and such that
pj is transverse heteroclinic to pj+1 through a point ζj ∈ W u(pj) ∩ W s(pj+1), for
j = 1, . . . , k (where pk+1 = p1).

Let P1, . . . , Pk be the corresponding periodic orbits and denote the periods by
`1, . . . , `k. Denote by Oj the heteroclinic trajectory from pj to pj+1 (of the point ζj
chosen above), and by Hj the holonomy along this heteroclinic connection (that is,
along W u(pj) from pj to ζj and then along W s(pj+1) from ζj to pj+1).

Replace the heteroclinic orbit Oj from pj to pj+1 by the trajectory Qj of length
`jMj + `j+1Mj+1 that spends time `jMj in the first half of Oj and time `j+1Mj+1 in
the second half of Oj; that is, Qj = {fn(ζj) | −`jMj ≤ n < 0} ∪ {fn(ζj) | 0 ≤ n <
`j+1Mj+1}). For the trajectory connecting pk to pk+1, we allow M1 and Mk+1 to be
distinct. The positive integers Mj will be chosen later.

Consider the heights β(Pj) and β(Qj) over the periodic orbits Pj and trajectories
Qj (see Definition 2.1).

Lemma 5.2 For j = 1, . . . , k, the limit

lim
Mj ,Mj+1→∞

β(Pj)
−Mjβ(Qj)β(Pj+1)−Mj+1 = Hj

exists and is the product of the holonomies along the unstable and stable leaves of Oj,
from pj to pj+1.

Proof This follows from Lemma 2.6.

Definition 5.3 Consider a sequence of vectors N(1), N(2) . . . ∈ Nk+1 whose entries
are positive integers. Write N(i) = (M1(i), . . . ,Mk+1(i)). The sequence is admissible
if there is a constant C2 ≥ 1 such that Mp(i)/Mq(i) ≤ C2 for all p, q = 1 . . . , k + 1
and all i ≥ 1.

If N = (M1, . . . ,Mk+1) is a sequence of vectors, we write N →∞ if Mp →∞ for
each p = 1, . . . , k+ 1. (For an admissible sequence, this is equivalent to Mp →∞ for
at least one value of p.)

The following result is [8, Theorem 3.4].

Theorem 5.4 Let N = (M1, . . . ,Mk+1) ∈ Nk+1. Define

A(N) = β(P1)M1H1 β(P2)2M2H2 · · · β(Pk)
2MkHk β(P1)Mk+1 .
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If the limit A = limN→∞A(N) exists along an admissible sequence N(1), N(2), . . . ,
then A ∈ Lβ(p1).

6 Transitivity for Γ = Hn

In this section, we return to the Heisenberg group Γ = Hn and prove our main result
Theorem 1.4. First, we specialize the methods of Section 5 to this situation.

As in Section 1, we denote by β̂ : X → R2n the projection of β : X → Hn.
By Theorem 3.1 and Proposition 3.2(b), we can assume without loss of generality

that the following holds for β and some periodic orbit P1:

β is stably transitive

β̂(P1) = (0, 0) ∈ R2n.
(6.1)

We will make a finite number of arbitrarily small, localized, changes to the cocycle.
At each step of this process, the property (6.1) will be preserved. The main step is
the following:

Lemma 6.1 Let β ∈ Sr(X,Hn) satisfying (6.1) and ε > 0. For any U ⊂ X open
and nonempty, and any vectors e, f ∈ Rn there exists β′ : X → Hn ε-close to β in
the Cr topology and h, k ∈ Rn with the properties:

(a) for all u, v ∈ Z there exists c ∈ R such that (h+ ue, k + vf, c) ∈ Lβ′(p1);

(b) β′ satisfies (6.1);

(c) the vector (h, k) ∈ R2n is the sum of holonomies for β̂′ along a heteroclinic cycle;
therefore, it can be modified by localized changes of the cocycle, while preserving
properties (a) and (b) above;

(d) β′ differs from β only on U .

Proof We consider a concatenation of six periodic orbits:

A(N) = β(P1)M1H1 β(P2)M2H2 . . . β(P6)M6H6 β(P1)M7 , (6.2)

where P1 is the orbit used in (6.1) and N = (M1, . . . ,M7) ∈ N7. Using the notation
in (1.1), write β(Pi) = (ai, bi, ci), Hi = (hi, ki, `i), i = 1, . . . , 6. Then

β(Pi)
MiHi = (Miai + hi , Mibi + ki , Mici + `i + 1

2
Mi(Mi − 1)aTi bi +Miaiki). (6.3)
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Let h = h1 + · · ·+h6 and k = k1 + · · ·+k6. Also it is convenient to write (a7, b7, c7) =
(a1, b1, c1). Using (6.2) and (6.3), we compute that A(N) = (Z1, Z2, Z3) where

Z1 =
7∑
i=1

aiMi + h, Z2 =
7∑
i=1

biMi + k, (6.4)

and Z3 is a quadratic polynomial in M1, . . . ,M7 with leading terms

1
2

7∑
j=1

(aTj bj)M
2
j +

∑
1≤i<j≤7

(aTi bj)MiMj

= 1
2

( 7∑
i=1

aiMi

)T( 7∑
j=1

bjMj

)
+ 1

2

∑
1≤i<j≤7

(aTi bj − aTj bi)MiMj. (6.5)

By (6.1) and Proposition 3.2(b), we can prescribe the (ai, bi) components of the
periodic data of P2, P3, P4, P5, P6 by making arbitrarily Cr-small perturbations of β
localized in U . We arrange the perturbation so that

(a2, a3, a4, a5, a6) = (e, 0,−8e, 2e, e), (b2, b3, b4, b5, b6) = (0, f,−f, f, 0).

We claim that with this choice of ai, bi ∈ Rn, for any u, v ∈ Z there is an admissible
sequence (M1, . . . ,M7) ∈ N7 that yields A(N) = (Z1, Z2, Z3) = (h + ue, k + vf, Z3)
with Z3 bounded. Passing to a subsequence, we obtain that A(N)→ (h+ue, k+vf, c)
for some c.

It remains to verify the claim. First set

M1 = M7 = M4, M2 = 4M4 −M5 + u, M3 = M4 −M5 + v, M6 = 4M4 −M5. (6.6)

In particular,
∑
aiMi = ue and

∑
biMi = vf , hence Z1 and Z2 take the required

values Z1 = h+ ue, Z2 = k + vf .
Substituting (6.6) into (6.5) gives a quadratic polynomial in M4,M5. We compute

(see Remark 6.2 below) that

Z3 = Q(M4,M5) = (eTf)(4M2
4 − 8M4M5 +M2

5 ) +D1M4 +D2M5 + E, (6.7)

where D1, D2, E are real coefficients (depending on ai, bi, ci, hi, ki, `i, u, v).
The discriminant of Q(M4,M5) is positive. Moreover the roots of 4x2−8x+ 1 are

1± 1
2

√
3 which are positive and irrational. We take θ = 1 + 1

2

√
3. By Corollary A.3
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we obtain an infinite sequence (M4,M5) ∈ N2 such that Z3 = Q(M4,M5) is bounded
as required and moreover that

M4 ≈ θM5. (6.8)

Since θ > 1, it follows from (6.6) and (6.8) that the integers M1, . . . ,M7 are eventually
positive (for u and v fixed) and the sequence (M1, . . . ,M7) is admissible.

Remark 6.2 The computation required to go from (6.5) and (6.6) to (6.7) is routine
but a little tedious. It is convenient to organise the calculation as follows.

(i) The first term in (6.5) reduces to 1
2
uv(eTf) and hence contributes only to the

constant term E in (6.7).

(ii) Since a1 = b1 = a7 = b7 = 0, a2 = a6, b2 = b6 and M2 − M6 = u, it is
easily verified that the second term in (6.5) contributes to the quadratic part
only 1

2
{(aT3 b4 − aT4 b3)M3M4 + (aT3 b5 − aT5 b3)M3M5 + (aT4 b5 − aT5 b4)M4M5} or

(eTf)(4M3M4 −M3M5 − 3M4M5).

(iii) Substituting M3 = M4 −M5 gives the required result.

Remark 6.3 We note certain properties of the perturbations in Lemma 6.1. There
was an initial global perturbation which ensures that the quotient cocycle β̂ : X →
R2n is stably transitive. All further perturbations preserve this property. The next
perturbation is local to the vertices p2, . . . , p6 of the heteroclinic cycle through p1 and
specifies the heights of β̂ at P2, . . . , P6. The values of h, k can then be adjusted by
a further perturbation local to the heteroclinic cycle but not affecting the heights at
P1, . . . , P6.

Evidently, we may repeat the construction in Lemma 6.1 for any number of hetero-
clinic cycles at p1 with localised and hence independent perturbations. In particular,
for any s ≥ 1 and any ei, fi ∈ Rn, i = 1, . . . , s, there exists β′ : X → Hn ε-close to β
in the Cr topology, and (hi, ki) ∈ R2n, i = 1, . . . , s, given by the holonomies of each
cycle, with the property:

For all i = 1, . . . , s, and all u, v ∈ Z, there exists c ∈ R such that
(hi + uei, ki + vfi, c) ∈ Lβ′(p1).

Moreover, the central `i components of the holonomies can also be perturbed (in-
dependently of the (hi, ki) and of the heights β(Pi)) so that the values of c can be
modified as necessary.

13



Proof of Theorem 1.4 By Remark 6.3, we can choose (2n+ 1) pairs (ei, fi) ∈ R2n

that do not lie in a half-space, and by Lemma 6.1 we obtain elements (hi + uiei, ki +
vifi, ci) ∈ Lβ(p1) with ui, vi ∈ Z arbitrary. In particular, we can choose ui, vi large
and positive so that the vectors yi = (hi + uiei, ki + vifi) do not lie in a half-space
in R2n. We can make a further perturbation (along the heteroclinic connections) to
adjust the values of hi, ki so that the vectors y1, . . . , y2n+1 generate R2n as a closed
group and hence (e.g., by [10, Lemma 5] or [7, Lemma 2.12]) as a closed semigroup.

Let x∗ ∈ Rn − {0}; for definiteness we take x∗ = (1, 0, . . . , 0). By Remark 6.3,
we can repeat Lemma 6.1 for another heteroclinic cycle; using the density of the
semigroup generated by the yi’s, we can make an arbitrarily small perturbation to
the holonomy of the new cycle to arrange that (x∗, x∗, c1) ∈ Lβ(p1) for some c1 ∈ R.

Repeat the above step three more times to obtain in Lβ(p1) four elements

g1 = (x∗, x∗, c1), g2 = (x∗,−x∗, c2), g3 = (−x∗, x∗, c3), g4 = (−x∗,−x∗, c4),

where ci ∈ R for i = 1, . . . , 4.
Let c = c1 + c2 + c3 + c4. A calculation shows that

gm1 g
m
2 g

m
4 g

m
3 = (0, 0,mc− 2m2), gm2 g

m
1 g

m
3 g

m
4 = (0, 0,mc+ 2m2).

For m large enough, this yields elements of the form (0, 0, d1), (0, 0, d2) with d1 < 0,
d2 > 0. If necessary, we can perturb c1 (say) so that d1 and d2 are incommensurate.
Since Lβ(p1) is a closed semigroup, we deduce that Lβ(p1) contains the center R.

Next we return to the elements (y1, t1), . . . , (y2n+1, t2n+1) where the vectors yi =
(hi + uiei, ki + vifi) ∈ R2n do not lie in a half-space and generate (as a semigroup) a
dense subset of R2n. Since Lβ(p1) is a closed semigroup containing {0}×R, it follows
that R2n × {0} ⊂ Lβ(p1) completing the proof.

A Bounds for indefinite binary quadratic polyno-

mials

In this appendix, we recall classical results of Chebyshev and Minkowski that give
bounds for indefinite binary quadratic polynomials along sequences of positive inte-
gers. A proof of the next theorem, due to Chebyshev, can be found in [12] (only a few
steps of [12] are needed to prove (A.1) with 2 replaced by some bounded constant;
that is sufficient for our purposes). Corollary A.2 is a weaker form of a result that
Minkowski proved in 1901.
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Theorem A.1 (Chebyshev, 1866) Let θ be irrational and ω a real number. Then
there exist an infinite number of integer pairs (x, y), y > 0, for which the quantity
|x− θy − ω| is made arbitrarily small while

|x− θy − ω| < 2

y
. (A.1)

Corollary A.2 Let θ > 0 be irrational and ω a real number. Then for any real
numbers B1, B2, B3, there exist constants ε ∈ (0, θ) and M = M(B1, B2, θ) > 0, and
an infinite set of distinct pairs of positive integers (x, y) that satisfies

θ − ε < x

y
< θ + ε (A.2)

and
|(x− θy − ω)(B1x+B2y +B3)| < M. (A.3)

Proof Pick a sequence of integers (x, y) given by Theorem A.1. As θ > 0, we can
assume that x and y have the same signs, and thus are positive.

Consider now (A.1) and divide both sides by y. One has∣∣∣∣xy − θ − ω

y

∣∣∣∣ < 2

y2
,

which implies the existence of ε and (A.2).
To prove (A.3), use (A.1), (A.2) and take y sufficiently large so that

|(x− θy − ω)(B1x+B2y +B3)| ≤ 2

∣∣∣∣B1 ·
x

y
+B2 +

B3

y

∣∣∣∣
≤ 2|B1|(θ + ε) + 2|B2|+ 1 = M.

Corollary A.3 Let Q(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F be a quadratic
polynomial with positive discriminant B2− 4AC > 0. Suppose that there exists θ > 0
irrational such that Aθ2 +Bθ + C = 0. Then there exist constants ε ∈ (0, θ), M > 0
and an infinite set of positive integers (x, y) such that

θ − ε < x

y
< θ + ε and |Q(x, y)| < M.
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Proof Since B2 − 4AC 6= 0, we can write Q(x, y) = Ax̃2 + Bx̃ỹ + Cỹ2 + F̃ where
x̃ = x+ a, ỹ = y + b and a, b, F̃ ∈ R. Since B2 − 4AC > 0, there are real roots θ1, θ2

such that Ax̃2 +Bx̃ỹ+Cỹ2 = A(x̃− θ1ỹ)(x̃− θ2ỹ). Hence there exist ω1, ω2 ∈ R such
that

Q(x, y) = A(x− θ1y − ω1)(x− θ2y − ω2) + F̃ .

At least one of the roots, say θ1, is irrational and positive, and we set θ = θ1. The
result follows from Corollary A.2.
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[8] I. Melbourne, V. Niţică, A. Török. Transitivity of Euclidean-type extensions of
hyperbolic systems. Ergod. Th. & Dynam. Sys. 29 (2009) 1585–1602.

16
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