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Abstract

In both experimental studies and numerical simulations of waves in ex-
citable media, rigidly rotating spiral waves are observed to undergo transitions
to complicated spatial dynamics with long-term Brownian-like motion of the
spiral tip. This phenomenon is known as hypermeander.

In this paper, we review a number of recent results on dynamics with non-
compact group symmetries and make the case that hypermeander may occur
at a codimension two bifurcation from a rigidly rotating spiral wave. Our pre-
dictions are based on center bundle reduction (Sandstede, Scheel & Wulff),
and on central limit theorems and invariance principles for group extensions of
hyperbolic dynamical systems. These predictions are confirmed by numerical
simulations of the center bundle equations.



1 Introduction

Spiral waves occur in chemical reactions, such as the Belousov-Zhabotinskii (BZ) re-
action, and in numerical simulations of partial differential equations (PDEs) modeling
excitable media. There is a variety of transitions from rigidly rotating spiral waves to
more complicated states including spirals that quasiperiodically meander and linearly
drift [44, 26], retracting waves [28], and hypermeander [35]. Surveys of spiral wave
behavior in chemical reactions and in PDE models can be found in [22, 23, 42].

The transitions to meander and linear drift are now well-understood [4, 14, 39, 19]
and are a consequence of the Euclidean symmetry in the problem. The key technical
tool here is the center bundle reduction method of Sandstede et al. [39]. A partial
explanation of the transition to retracting waves can be found in [2].

The transition to hypermeander was first documented by Rossler & Kahlert [35],
see also Winfree [42]. Here the dynamics is “complicated/chaotic” and the motion of
the spiral is reminiscent of a random walk, or even Brownian motion.

Biktashev & Holden [6] suggested that chaotic dynamics at the orbit space level
could lead to square root growth rates for the translation drift hence providing a
mechanism for hypermeander. Nicol et al. [29, 3]) proved this to be the case under
certain hyperbolicity assumptions on the orbit space dynamics, and showed further-
more that the drift converges in distribution to a standard n-dimensional normal
distribution. More recently, Field et al. [16] have obtained results on approximation
by Brownian motion (weak and almost sure invariance principles).

As in the case of meander [19], it is only within the context of local bifurcation
theory that the global dynamics described in [6, 16, 29] can manifest itself as hyper-
meander in physical space. Hence, the global results must be combined with the local
bifurcation theory approach in [14, 19].

Fiedler & Turaev [15] considered Takens-Bogdanov bifurcation from a rotating
wave in systems with Euclidean symmetry and, using the approach in [14], made
the remarkable observation that the homoclinic orbit in the orbit space (which is of
course nonchaotic) leads to Brownian motion-like behavior in physical space. How-
ever, this behavior is not hypermeander (indeed, no such claim was made in [15]) as
it is associated with an asymptotic slowing down of the large-scale tip motion. It is
natural to consider the remaining codimension two bifurcations (steady-state/Hopf
or Hopf/Hopf mode-interactions) since these are known to produce chaotic dynam-
ics [20].

In this paper, we focus on Hopf/Hopf bifurcation from rotating waves in systems
with Euclidean symmetry (our investigations indicate that the steady-state/Hopf
mode-interaction leads to very similar conclusions) and attempt to explain the onset
of hypermeander in terms of the chaotic dynamics arising in this local bifurcation.
The explanation relies on the following theoretical ingredients:



1. Codimension two Hopf/Hopf bifurcation from rigidly rotating spiral waves in
the underlying chemical reaction or modeling PDE leads via center bundle re-
duction [39] to a 7-dimensional skew-product ODE.

2. A consequence of the chaotic dynamics associated with Hopf/Hopf (or steady-
state/Hopf) bifurcation is that the evolution of the translation coordinate for
the skew product ODE, and hence the motion of the spiral tip in the underlying
PDE, is asymptotic to a Brownian motion [29, 16].

The new feature of this paper is the proposed explanation of hypermeander as arising
through the combination of these techniques from local and global dynamical systems
theory. Furthermore, we present numerical results from truncations of the center
bundle equations that indeed yield Brownian motion-like trajectories for the spiral
tip, in accordance with our theoretical predictions.

The remainder of this paper is organized as follows. In Section 2, we recall cer-
tain aspects relating to hypermeander in experimental and numerical studies of spiral
waves in excitable media. In Section 3, we review and analyze transitions of spiral
waves from the perspective of local bifurcation theory, concentrating on the cases of
Hopf bifurcation, Takens-Bogdanov bifurcation and the Hopf/Hopf bifurcation men-
tioned above. In Section 4, we survey recent results that make rigorous the con-
nection between the low-dimensional chaos that occurs in the steady-state/Hopf and
Hopf/Hopf mode-interactions and the Brownian-like motion of hypermeander.

Finally, in Section 5, we present an overview of our proposed explanation of hyper-
meander of spiral waves, with a discussion of how close this is to being a completely
rigorous explanation.

2 Experimental and numerical results

In the simplest instance, planar spiral waves rigidly rotate and the tip of the spiral
traces out a circle in the plane. Such a solution is called a rotating wave and its time
evolution corresponds to rigid rotation.

As system parameters are varied, there is a variety of transitions to spiral waves
that exhibit more complicated motions as they rotate. Zykov [44] and Winfree [42]
illustrate this with a two parameter bifurcation diagram for the FitzHugh-Nagumo
equation, see Figure 1. These transitions are well-confirmed both in experimental
systems [22, 25, 33, 41| and in numerical simulations of two-dimensional excitable
media such as the FitzHugh-Nagumo equation or the Oregonator [22, 26]. Rigidly
rotating spirals are observed in the region of parameter space between the transition
curves OR and OM in Figure 1.



Meander and linear drift The simplest transition from rigidly rotating spirals
is to meandering spirals where the tip of the spiral traces out a flower-like pattern
(Figure 2(b)). These are quasiperiodic two-frequency solutions, and the spiral tip un-
dergoes an epicycle motion superimposed on the basic spiral wave circle. Barkley et
al. [5] explained this transition as a Hopf bifurcation from a rotating wave, as con-
firmed experimentally in [41]. The Hopf bifurcation takes place along the curve 0M
in Figure 1.

There is a codimension two point where the frequency wiqps of the Hopf bifurcation
is close to the frequency w,. of the rotating wave, leading to a remarkable resonance
phenomenon where the amplitude of the epicycle is large even close to the Hopf
bifurcation. The ‘petals’ of the flower are now well-defined and may point inwards or
outwards (Figure 2(c,d)) depending on whether the epicycle has the same orientation
to the motion on the circle or the reverse orientation; this orientation has been referred
to as the ‘petality’ of the path. We note that the circle representing the rigidly rotating
spiral corresponds to the flower away from resonance and to the petals near resonance.

At whopt = Wrot, the petality changes from inwards to outwards, the radius of the
flower grows infinitely large, and the spiral appears to drift linearly off to infinity
(Figure 2(e)).

Barkley [4] gave the first explanation of the resonant meandering and linear drift,
and highlighted the need to discuss the full Euclidean E(2) symmetry in models
including translations as well as rotations. Li et al. [25] obtained experimental con-
firmation of this explanation. The first rigorous results were due to Wulff [43] and
culminated in the work of Sandstede et al. [39]. (See also [14, 18, 38].) As a result,
meander and linear drift are now understood in terms of a codimension two bifurca-
tion from a rotating wave in a system with E(2) symmetry. Section 3(a) reviews this
work in more detail below.

Interpretations in physical space When speaking of the motion of the tip of a
spiral wave, there is the implicit assumption that the spiral tip (or even the complete
spiral structure) is well-defined throughout the chaotic motion. That is, the shape of
the spiral undergoes negligible change relative to the change in position, or drift of
the spiral in the plane.

By contrast, one can construct models with periodic solutions that are spiral-like
for part of the period, but not resembling a spiral for another part of the period. In
such a situation, it is clearly not possible to discuss motion of the spiral tip.

There is no problem of interpretation for a rigidly rotating spiral, since the shape
of the spiral is constant by assumption. Recall that the transition from rotating spirals
to meandering spirals is a Hopf bifurcation. Hence, in addition to the quasiperiodic
meander of the spiral, there is a 27 /wyepr-periodic modulation of the shape of the



spiral given by the modes excited in the Hopf bifurcation. It is readily verified (see for
example Golubitsky et al [19]) that the magnitude of the change in shape is identical
to the magnitude of the change in drift: both scale as v/A where ) is the bifurcation
parameter. Nevertheless, as described in more detail in [19], the shape change is a
disorganized localized motion whereas the drift is a rigid global planar motion. As a
result, it makes sense to view the motion of the spiral as a rigid quasiperiodic epicyclic
motion in the plane combined with a periodic fluctuation of the shape of the spiral.

Hypermeander Hopf bifurcation from rigidly rotating spirals leads to meandering
spirals which are two-frequency quasiperiodic states. Rossler & Kahlert [35] dis-
covered a further transition to a more complicated state known as hypermeandering
spirals. The motion in the plane is similar to meandering, except that there is an
additional Brownian motion-like component, so that the center of the flower pattern
undergoes a random walk over long timescales.

At present, this transition to hypermeander remains somewhat controversial [6].
Experimentally, the transition appears to take place along the curve 0C' in Figure 1.
However, in several instances, careful simulations have revealed apparent hypermean-
der to be a (long) transient, before the motion settles down to an ordinary meander;
see Figure 3.

It is worth mentioning that, as was the case for meander, the fluctuation in the
shape of a hypermeandering spiral is again negligible so that it makes sense to track
the motion of the spiral in the plane. This is strongly indicative [19] that hyperme-
ander is the result of a local bifurcation and can be modelled using low dimensional
dynamics.

3 Local bifurcations from rigidly rotating spirals

Let u(z,t) be a solution to a PDE (such as the FitzHugh-Nagumo equations or the
Oregonator) modeling a homogeneous excitable medium. Here z € R? denotes the
spatial variables and ¢ is time. The vector u represents the concentrations of the
active chemicals in the reaction.

As a result of the homogeneity of the excitable media, the modeling PDE is
equivariant with respect to rotations, reflections and translations in the plane, and
so has Euclidean E(2) symmetry. This means that if u(z,?) is a solution, then so is
u(yz,t) for each v € E(2).

The solution u(x,t) is a relative equilibrium if u(z,t) = uo(y(t)x) where () €
E(2). Thus, time evolution corresponds to rigid spatial motion. By continuity, 7(%)
actually lies in the special Euclidean group SE(2) consisting of rotations and trans-
lations. Writing the PDE as an evolution equation u; = F'(u) on some Banach space,



an equivalent formulation is that (dF'),, = uy for some £ € LSE(2), where LSE(2)
is the Lie algebra of SE(2). In this case, v(t) = exp(t£).

Suppose that ug(z) is a (one-armed) spiral solution. Note that ug(z) itself has no
symmetry. Generically (and in particular for most small perturbations) the solution
will drift along the SE(2)-group orbit. Moreover, this drift is generically a rotation [1].
Hence, u(z,t) = uo(Ry,.,:) is a rigidly rotating spiral wave. (The existence of such
solutions has been proved rigorously by Scheel [40].) Again, we can write (dF'),, = ug
where £ € LSO(2). Let L = (dF),, — ug. Since dim SE(2) = 3, it follows that L has
three eigenvalues on the imaginary axis forced by symmetry. If the remainder of the
spectrum is bounded away from the imaginary axis into the left-half-plane, then the
rotating wave u(x,t) is asymptotically stable. If there is any spectrum with positive
real part, then u(x,t) is unstable.

A local bifurcation occurs when eigenvalues cross the imaginary axis. We suppose
that at the bifurcation point, there are finitely many eigenvalues on the imaginary
axis, and the remainder of the spectrum is bounded into the left-half-plane. Then
Sandstede et al. [39] proved, under certain additional technical hypotheses, that there
is a reduction to a finite-dimensional ODE on the center bundle X x SE(2). The
dimension of the center bundle is equal to the number of eigenvalues on the imaginary
axis.

We identify SE(2) with S* x C and use coordinates (z,p,v) € X x S* x C.
Also, we suppress bifurcation parameters for the moment. A computation using
SE(2)-equivariance shows that the center bundle equations have the skew product
form [14, 18]

i:fz($)7 Qb:fcp(x)ﬁ ’l.):ei(pfv(x)a (31)

where f, : X = X, f, : X =R, f, : X — R?. The ‘origin’ £ = 0 corresponds to the
underlying spiral solution, so we can assume that

fz(O) = 0’ f(P(O) = Wrot, fu(o) =0.

The skew product equations (3.1) can be thought of as an SE(2) group extension
of the base dynamics & = f,(x) on X, see [29]. In the original PDE model [19] the
base dynamics on X represents the ‘shape variables’ which modulate the shape of
the underlying ‘trivial solution’ (in the case, the rigidly rotating spiral wave) while
the group variables (¢, v) in SE(2) describe the rotation and translation drift of the
solution in the plane. Here, v can be thought of as modelling the location and ¢ the
orientation of a fixed reference point on the spiral wave; for example the spiral tip.

We discuss in detail three bifurcations from rigidly rotating spiral waves; (a)
and (b) reviews previous work, including some new simulations for (b), whereas (c) is
one of the simplest local bifurcations that has all the ingredients necessary to generate
hypermeandering solutions.



(a) Hopf bifurcation: X = R* 2 C, (dfy)o = iwopf,

(b) Takens-Bogdanov bifurcation: X = R?, (df,)o = ( 8 (1) ), and

(c) Hopf/Hopf bifurcation: X = R* 2 C?, (df,)o = ( Zt(c))l 7,(?) >
2
We could equally well study steady-state/Hopf bifurcation with X = R* 2 C x R
and (df;)o = ( 28) 8 ) Both steady-state/Hopf and Hopf/Hopf bifurcation have
the ingredients necessary to generate hypermeander. Since our numerical simulations
of the two cases lead to similar behaviour, we focus for the sake of brevity on the
Hopf/Hopf case.

(a) Hopf bifurcation: meander and linear drift

In the case of Hopf bifurcation, a pair of complex eigenvalues cross the imaginary
axis at tiwgeps and there is a five-dimensional center bundle C x SE(2). We briefly
review the calculation of the solutions to the center bundle equations (3.1). For more
details, see [14, 18, 19].

Let A € R denote the bifurcation parameter. Hopf bifurcation leads to a branch
of 2 /wyoept(A)-periodic solutions in the g-equation, where wiepf(0) = wWhepr. Substi-
tuting into the ¢-equation in (3.1) and integrating yields

Qo(t) = Wrot ()‘)t + QZ(t),

where wrot(0) = wror and @(t) is 27 /wiepr(A)-periodic. The 9-equation can now be
written in the form

= eiert(A)tH(t),

where H(t) is a 27 /wmopt(A)-periodic function. Expanding H as a Fourier series,
it follows that v has frequencies wyo(A) + Nwhoeps(A) for n = 0,1,2,---. Resonance
occurs when

Wrot(A) + Nwnoepr(A) = 0

for some n. In the absence of resonance, v(t) is a two-frequency quasiperiodic function.
The graph of (p(t),v(t)) describes the motion of the spiral tip in the plane and is a
epicyclic flower pattern as shown in Figure 2(b). (Figure 2(b) is taken from [19] and
incorporates also the shape change of the spiral.)

At resonance, there is an additional linear term in v(¢) (due to the constant term
in ) resulting in Figure 2(e). The motion of the tip close to resonance is shown in
Figure 2(c,d).



(b) Takens-Bogdanov bifurcation

The consequences of a Takens-Bogdanov bifurcation were discussed in [15]. One
obtains a two-dimensional center manifold X = R? and hence a five-dimensional
center bundle R? x SE(2) for the skew product equations (3.1). A universal unfolding
of the singularity on R? is given by

fo(@,y) = (y, A+ py + 2° £ zy),

where (z,y) € R? and ), u € R are the unfolding parameters. The main effect of the
=+ is on the stability of certain limit cycles that arise in the dynamics of the unfolding;
the minus sign ensures that these limit cycles are asymptotically stable.

There is a curve C C R? defined in a neighborhood of the origin such that the
(x, y)-equations have a homoclinic loop for (A, u) € C. Fiedler & Turaev [15] proved
the existence of Brownian-motion like dynamics in the skew product (3.1) for such
parameter values. Note that the dynamics in the noncompact group extension R? x
SE(2) exhibits random behavior even though the base dynamics on R? is nonchaotic.

In practice, it is not possible to choose parameters (\, p) lying exactly on C,
but we can consider parameters that are close. For an open set of parameters there
is an asymptotically stable limit cycle on the center manifold X corresponding to
flow-invariant tori in the skew product

T=1
=A+uy+2> -y
()b:fgo(xay)

b =e"f,(z,y)

and hence to meandering spiral waves in the application. For parameters close enough
to C, there is a transient dynamics that behaves as predicted in [15].

In Figure 4, we show the skew product dynamics for the parameter values A =
—0.001, p = —0.0226177 which lie close to C. (We take f, = wyot +az + by, f, =
ax + By, where a = 1.2, b = 0.7, « = 0.8 + 0.57, # = 0.6 4+ 0.7z, but these choices
are not so important.) The dynamics with and without the transient are shown in
Figure 4(a) and (b) respectively.

Figure 4(a) is reminiscent of certain numerical simulations of hypermeander in
reaction-diffusion equations, see Figure 3. It is worth stressing that Figure 4(a)
is obtained by numerically integrating the five-dimensional center bundle equations
whereas Figure 3 is obtained by integrating an approximation of the infinite-dimensional
FitzHugh-Nagumo equations.

Note however that the parameters A and p have to be chosen extremely close to
the curve C' on which the homoclinic loop exists. Moreover, the transient is quite
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short and the initial conditions (z¢,yy) € R? have to be chosen sufficiently distant
from the limit cycle.

(c) Hopf/Hopf mode-interaction

For Hopf/Hopf bifurcation, there is a four-dimensional center manifold X = C* = R*
and the linearization (dfy)o typically has w;/ws irrational. To unfold the linear part
of such a bifurcation one needs two parameters in addition to the angular frequencies
w;, 1 = 1,2. A system near such a bifurcation point can be transformed using near-
identity transformations into a polynomial normal form [20] through arbitrarily high
order. This process introduces normal form phase-shift symmetry which aids in the
analysis of the dynamics but suppresses the dynamics that we are interested in. In
particular, the chaotic dynamics that occurs in the Hopf/Hopf mode-interaction arises
from terms in the tail that break the normal form symmetry. Hence we consider
a system of equations (using real variables only) that does not have normal form
symmetry:

W= \w+wz — (0.1 +y*)w?

= —ww+ Mz — wx
§= Aoy + woz — (0.1 + w?)y®
b= —wyy + Aoz — ¥’z (3.2)

Sb: f(p(waxayaz)
1-) = ei‘pfv(w,a:,y,z)

where (w,z,y,2) € R* and (p,v) € SE(2). There are four parameters; the Hopf
frequencies wy, wy and the bifurcation parameters Ay, Ao.

For simplicity, we take f, to be real and we suppose that f, and f, depend only
on w. In particular, we take

folw,z,y, 2) = a1 + agw + asw? + agw?

folw,z,y,2) = by + bow + bsw? + byw?

where a;, b; € R. As we will see, this form of f,, f, is sufficient to give the expected
generic behaviour. Addition of explicit dependence on x, ¥, z or choosing f, complex
does not change the qualitative drifting behaviour as long as both of the Hopf modes
are excited. We use the parameter values

(al, a9, as, a4) = (01, 02, 03, 04), (b1, b2, b3, b4) = (01, 02, 05, —0.2),

which are chosen to avoid having any obvious symmetries. Qualitatively similar
results were found for other parameter values, although no systematic study of the
parameter space was attempted.



It is well-known [20] that Hopf/Hopf mode-interaction leads to invariant tori in
the (w,z,y, z)-equations. Generically, the dynamics on an invariant torus is phase-
locked to a periodic solution, but with high probability the flow is a two-frequency
quasiperiodic motion. On further variation of parameters, the invariant tori break up
leading to chaotic dynamics [27, 20]. We consider these two cases in turn.

Quasiperiodic dynamics The choice of parameters (A1, Ay, w1, ws) = (1,1, 3.8,1.5)
leads to large-scale quasiperiodic dynamics, see Figure 5(a). Typically, the dynamics
in the Euclidean extension is bounded [24, 29] so that there is a three-frequency
quasiperiodic motion (the additional frequency coming from the underlying rotating
wave). Figure 5(b) confirms this theoretical prediction.

Chaotic dynamics The choice of parameters (A, Ao, wq,w2) = (3,2,3.21,1.5).
leads to chaotic dynamics, see Figure 6(a). (There is a very short transient in this
data set.) Figure 6(b) shows the translation components (vq, v9) of the corresponding
drift along the Euclidean group orbit.

Figure 7 shows how the behaviour of the v component is Brownian-like motion
not only qualitatively but also quantitatively. We consider an ensemble of 50 initial
conditions with all values the same except for a range of values of w separated by 0.02.
Figure 7(a) shows how the motion of the v component is Gaussian in distribution after
some time. More precisely, Figure 7(b) shows that the mean drift of this ensemble is
apparently very small for all times while the variance is growing linearly at a rate of
approximately 3.08 units squared per time unit.

The dynamics, as is typical for chaotic behaviour, is very sensitive to parameter
changes. Changing w; from 3.21 to 3.20 results in a chaotic transient that locks into a
high period periodic orbit. The expected drift is then quasiperiodic, see Figure 8. As
a consequence, we see no reason why the rate of variance growth per unit time that
characterizes the Brownian motion (in the absence of ‘genuine’ noise) should depend
continuously on parameters in the problem. (There remains the possibility of upper
semicontinuity properties such as is found for Lyapunov exponents.)

Translation symmetry In the absence of rotational/reflection symmetries, the
Euclidean group is reduced to just the pure translations (R?). In this case a Hopf/Hopf
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mode-interaction of the shape variables similarly gives rise to an extension of the form
W= \w+wz — (0.1 +3%)w?
= —ww+ Mz — w’x
U = Aoy + woz — (0.1 +w?)y® (3.3)
5= —woy + Aoz — Y2
0= fy(w,z,y,2)

where f, has components (f,):(w, z,y,2) = b1 + bipw + bizw? + byyw?; simply polyno-
mials in w. Using the parameter values \; and w; as before, and

(b11, b12, b13, b14) = (—0.8, 0.2, 03, 04), (bzl, bzg, b23, b24) = (—1.3, 0.2, 05, —0.2),

we obtain similar behaviour to the hypermeander above with the difference that (a)
there is a mean drift and (b) the growth in variance is anisotropic. To illustrate
this, Figure 9 shows the behaviour of v components for an ensemble of 50 trajectories
generated by taking a selection of regularly spaced w values. All trajectories start
at (0,0) and ¢ = 0 and snapshots are shown every 50 time units. Observe that the
uniform average drift rate, and a slower spread within the ensemble consistent with
long term linear growth scaling the variance of a Gaussian distribution of errors. This
example clearly shows evidence of an anisotropic covariance matrix, namely the lines
of equiprobability are ellipses rather than circles.

4 Approximation by Brownian motion in systems
with translation symmetry

In Section 3, we considered local bifurcations in systems with translation and rotation
symmetry. For the case of the Hopf/Hopf mode interaction we found that chaotic
dynamics in the shape variables lead in numerical simulations to random walk dy-
namics in the drift variables, reminiscent of the Brownian motion-like hypermeander
of spiral waves observed in reaction-diffusion systems.

We now review mathematical results that go some way to explaining these simu-
lations. In four subsections, we discuss:

(a) An example of one-dimensional diffusion [9, 6] with symmetry group I' = R.

(b) Some results of Biktashev & Holden [6] for the group I' = R, seen from an
ergodic-theoretical perspective.

(c) Generalizations to the case I' = R" for n > 2.

(d) Generalizations to the case I' = SE(n) for n > 2.

11



(a) An example of deterministic diffusion in R

Coullet & Emilsson in [9] study Ising-Bloch wall dynamics in a modified complex
Ginzburg-Landau equation

O = \u — Blu*u + ad’u + yu,

where u = u(z) : R — C, «, 8, A are complex parameters and v € R. They consider
time-dependent wall solutions u(x,t) with the property that u(z,t) — us as x — +o00
for all t. Here uy are homogeneous equilibria, independent of both time and space.

If the wall solution u(zx,t) is itself an equilibrium, then typically there will be
directed linear drift either to the left or right. Instead, Coullet & Emilsson observed
for certain parameter values and initial conditions that the drift appears to be a
superposition of directed linear drift motion and Brownian motion. In the cases
where the linear drift is zero, they computed that the mean square displacement
scales as t.

Biktashev & Holden [6] pointed out that the motion of the drift could be a con-
sequence of chaotic motion coupled with the translation symmetry present in the
problem. In particular, they showed that if the dynamics on the orbit space (mod-
ulo the translation symmetry) exhibits rapid decay of correlations, then in a frame
of reference translating with constant speed, the mean square displacement (defined
below, see (4.2)) satisfies

I(t) = o*t + 0(1),

where 0% > 0 is the variance (also defined below, see (4.1)). The O(1) notation means
that that there is a constant C such that |I(t) — o%¢t| < C for all ¢ > 0.

(b) T =R: One-dimensional deterministic Brownian motion

Local bifurcation from a uniformly traveling relative equilibrium (Ising-Bloch wall
solution) leads to center bundle equations on X X R of the form

&= f(z), ©=¢(z)

where f: X — X and ¢ : X — R. We suppose that the shape equation & = f(z)
admits chaotic dynamics, as in the cases of the codimension two Hopf/Hopf mode-
interaction discussed in Section 3(c).

To simplify the exposition, we first consider the easier case of discrete time dy-
namics. That is, we consider iteration of a diffeomorphism F': X x R — X x R of
the form

F(z,v) = (f(z),v + ¢(z))

12



where f: X — X and ¢ : X — R. Iterating,
FN(z,v) = (fN(z),vn(z)), where vy =v+ E;Y:_Olqﬁ o fi.

The mapping ¢ can be viewed as a smooth observation on the (nonequivariant) dy-
namical system X. Results of a statistical nature about the partial sums Z;-V:_Ol ¢po fI
correspond directly to results about the translation drift.

Mean drift If 4 is an ergodic measure on X (supported on A say), then the ergodic
theorem states that

~un(z) = [(ddu as N — oo,
for p-almost every z € X. In other words, the translation drift at time N satisfies
vy = Nv+0o(N) as N — oo,

for almost every initial condition, where 7 = [ x @dup is the mean drift. Provided
o # 0 (which is typical since there are no restrictions on ¢), we have linear drift.

Now suppose that A C X is a topologically mixing hyperbolic basic set equipped
with a Gibbs measure u. In particular, p is an ergodic measure. Typically, there is
linear drift, but by passing to a moving frame, we can set v = 0. In other words, we
restrict attention to observations with mean zero ( f ¢ = 0). The statistical properties
of hyperbolic basic sets are well-understood; see the books by Ruelle [36], Bowen [8]
and Parry & Pollicott [31].

Decay of correlations Suppose that A C X is a topologically mixing hyperbolic
basic set. For each smooth observation ¢ : X — R with mean zero, there are constants
p € (0,1) and C' > 0 such that | [ ¢(¢ o f7)] < Cp’ for all j > 1. This property is
known as exponential decay of correlations.

Variance Suppose that v = [ ¢ = 0. It follows easily from decay of correlations
that + [ v% converges as N — oc. Define the variance 0? = limy_oo ~ [ v%. Then
o € [0,00). Moreover,

[vy =No*+0(1) as N — cc. (4.1)

The degenerate case ¢ = 0 occurs if and only if vy is uniformly bounded on A. In
fact, 0 > 0 for an open and dense set of smooth functions ¢ : X — R.
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Mean square displacement Next, define the mean square displacement

<

-1

I(V) = Jim =3 (@0 1Y —go fI)? (4.2)

~l=

.
Il
)

as a map from X to R™. It follows from the ergodic theorem that this limit exists
almost everywhere and indeed that I(N) = [ v} almost everywhere. Hence,

I(N)=No*+0(1) as N — oo,

almost everywhere. This recovers the results of Biktashev & Holden [6].

Central limit theorem A deterministic central limit theorem (CLT) for topolog-
ically mixing hyperbolic basic sets (Ruelle [36, p. 102]) states that \/—lﬁvN converges

in distribution to a normal distribution N(0,0?) with mean zero and variance o?.

Weak invariance principle There is a refinement of the CLT known as the weak
invariance principle (WIP) (or functional CLT). This result follows from the results
of Denker and Philipp [10] described below and also from [16].

We define a sequence of random elements Wy : X — C([0,00),R) (where the
variable ¢ € [0, 00) represents time) taking the value 0 at ¢ = 0 and

Wi (t) = 5w, fort=1/N,2/N,-- (4.3)

Let W denote Brownian motion with variance o2 (so for each ¢, the random variable
W (t) has variance to?). Then the sequence of random elements Wy converges in
distribution to W inside C'([0, 00),R). See [7] for precise definitions.

A consequence of the WIP is that for each continuous function x : C([0,0),R) — R,
the corresponding sequence of random variables x(Wy) converges in distribution to
the random variable x(W). Taking x to be evaluation at ¢t = 1, we recover the CLT.

Almost sure invariance principle Denker and Philipp [10] prove an ‘almost sure

invariance principle’ (ASIP) whereby there is a random element S taking values in
C([0,00),R) such that the sequences {vy; N > 1} and {S(IN); N > 1} are equal in
distribution and for § > 0 sufficiently small,

S(t)=W(t) +0(t"* %) ast— oo, (4.4)

almost everywhere. Again, W is Brownian motion with variance o2.
To summarize, we have the following result.
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Theorem 4.1 Suppose that A C X is a topologically mizing hyperbolic basic set and
¢: X = R is smooth. Let v = [ ¢ and 0 = imy_,o0  [(vy — N©)2. Then for an
open dense set of smooth ¢, and for almost all initial conditions, the translation drift
s a superposition of a linear directed drift with velocity v # 0 and a motion that is
asymptotically Brownian motion with variance o > 0. |

Law of the iterated logarithm The ASIP (4.4) subsumes all of the previous
results, as well as the functional law of the iterated logarithm [32]. The latter result
implies the standard law of the iterated logarithm (LIL): if o = [ ¢ = 0, then

limsup vy/+/2Nloglog N = 0 almost everywhere.

N—oo

Flows The case of a skew-product flow on X X R is similar to the case of a diffeo-
morphism, but with some technical complications. The skew product equations take
the form

&= f(z), ©=¢)

where f: X — X, ¢ : X — R. Suppose that z(¢) is the solution to the & equation
(with initial condition z(0) = z say), then the solution to the ¥ equation with initial
condition v(0) = 0 is given by v(t) = fot od(z(s))ds. If u is an ergodic measure on X
and 7 = [, ¢ dp, then

v(t) =tv+o(t), ast— oo,

for almost every initial condition zy. Again, it is typically the case that v # 0.

Statistical results such as exponential decay of correlations are much harder for
hyperbolic flows than for diffeomorphisms, see for example [37, 34]. (For substantial
recent progress, see [12, 13] and references therein.) Nevertheless, under certain
technical assumptions on the mean zero function ¢, Denker & Philipp [10] prove that
the translation drift v(t) is a superposition of a linear directed drift with velocity
7 # 0 and a motion that is asymptotically Brownian motion with variance o2 > 0.
This is an analogue of Theorem 4.1 for flows.

(c) I'=R": nonstandard n-dimensional deterministic Brow-
nian motion

Consider a skew product diffecomorphism F : X x R" — X x R". So F(z,v) =
(f(z), +é(z)) where f: X — X and ¢ : X — R™. Iterating,

FN(z,v) = (f¥(z),vn(x)), where vy =v+ Z;y;()lqﬁo fi.

15



Again, we suppose that A is a topologically mixing hyperbolic basic set equipped with
a Gibbs measure p. Define the mean drift o = [ ¢. As before, we have that

vy =N+ 0o(N) as N — oo,

for almost every initial condition.

Passing to a moving frame so that ¥ = [ ¢ = 0, we obtain n-dimensional analogues
of the results for X xR. The variance o is replaced by an n x n-dimensional covariance
matrix X satisfying

Jonvy = NE +0(1).

Note that X is symmetric and positive-semidefinite. Again, ¥ = 0 if and only if
vy is uniformly bounded. The conditions for nondegeneracy (det > 0) are more
complicated: det¥ = 0 if and only if mvy is uniformly bounded on A for some
projection 7 : R® — R. Moreover, det ¥ > 0 for an open and dense set of smooth
functions ¢ : X — R. Indeed ¥ is a general n X n symmetric positive-definite
symmetric matrix, cf. [29].

The mean square displacement

<

-1

I(N) = lim [po f7N — o fII. (4.5)

~l=

<.
Il
o

satisfies
I(N)=NtrX+0(1) as N — oo,

almost everywhere.

An n-dimensional CLT (Ruelle [36, p. 102]) implies that ﬁv]v converges in dis-
tribution to an n-dimensional normal distribution N(0,X) with mean zero and co-
variance matrix X. Similarly, we obtain an n-dimensional version [16] of the WIP.
Define a sequence of random elements Wy € C([0,00), R") using formula (4.3) and
let W denote n-dimensional Brownian motion with covariance matrix ¥. Then Wy
converges in distribution to W inside of C'([0, c0), R").

The following version of the LIL is proved in [16]. For each ¢ € R",

limsup c-wvy/+/2Nloglog N =0, almost everywhere,

N—oo

where 02 = ¢ - Xc.
Finally, we turn to the ASIP. The following result is conjectured in [16].
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Conjecture 4.2 Suppose that A C X 1is a topologically mizing hyperbolic basic set
and that ¢ : X — R" is smooth. Suppose further that v = [ ¢ =0 and det X > 0.

Then there is a random element S taking values in C([0,00),R") such that the
sequences {vy; N > 1} and {S(N); N > 1} are equal in distribution and for 6 > 0
sufficiently small,

S(t) =W (t)+O(tY* %) ast— oo,
almost everywhere. Again, W is Brownian motion with covariance X. |

The following weaker result is proved in [16].

Theorem 4.3 Assume the hypotheses of Conjecture 4.2.

For each vector c € R", there is a random element S, taking values in C([0, 00), R)
such that the sequences {c-vy; N > 1} and {S.(N); N > 1} are equal in distribution
and for § > 0 sufficiently small,

S.(t)=c-W(t)+O0@t"*%) ast— oo,

almost everywhere. |

(d) T = SE(n): standard n-dimensional deterministic Brow-
nian motion

When I' = SE(n) = SO(n) x R", the skew product diffeomorphism F': X x SE(n) —
X x SE(n) takes the form

F(z,9,v) = (f(2), gh(x), v + gk()),
where f: X — X, h: X — SO(n) and ¢ : X — R". It is convenient to write

F(x,g,v) = (S(z,9),v+ ¢(x,9)),

where S(z,g) = (f(z), gh(z)) is a skew product diffeomorphism on X x SO(n). In
this way, we can view F' as an R" extension of the diffeomorphism S. Iterating,

FN(z,v) = (SN (2, 9),vn(2,9)), where vy =v+ Z;V:_Olqﬁ 0 S7.

Once again, we suppose that A C X is a topologically mixing hyperbolic basic
set equipped with a Gibbs measure p. The corresponding invariant set A x SO(n) C
X x SO(n) is an example of a partially hyperbolic basic set. It is important to keep
in mind that ¢ : X x SO(n) — R" has the special structure ¢(z,g) = gk(x). This
is equivalent to saying that ¢ : X x SO(n) — R" is SO(n)-equivariant in the sense
that ¢(z,ag) = a - ¢(z, g) for all a € SO(n). To summarize, we have shown that the
translation drift on X x SE(n) can be studied in terms of the statistics of SO(n)-
equivariant observations on the partially hyperbolic set X x SO(n).
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Proposition 4.4 If ¢ : X x SO(n) — R" is an equivariant observation, and n > 2,
then ¢ has mean zero. That is, the mean drift v is automatically zero.

Proof Let P = fso(n)gdl/ : R — R". We claim that P = 0. Let a € SO(n).

Then fso(n) agdv = fso(n) g dv by the translation invariance of Haar measure. Hence

aP = P so that aPv = Pv for all a € SO(n) and all v € R". (In other words, P is

projection onto the fixed-point space of the action of SO(n) on R™.) But SO(n) acts

fixed-point freely on R" (since n > 2) and so Pv = 0 for all v proving the claim.
Writing ¢(x, g) = gk(x), we compute that

fXxSO(n)¢(x’ g)dm = (fso(n)gd’/)(kad,u) = Pkadp =0

as required. [

Of course, if X x SO(n) is the trivial extension of X (h = e), then X x SO(n) is
not ergodic and no interesting results are possible. It turns out [17, 30] that SO(n)
extensions are typically ergodic, and even weak mixing. From now on, we assume
that A x SO(n) is weak mixing with respect to the measure m = p x v. It follows
from ergodicity and Proposition 4.4 that vy = o(N) grows sublinearly for almost
every initial condition in X x SO(n), and there is no directed linear drift.

Although Dolgopyat [11] has counter-examples to decay of correlations for general
observations on A x SO(n), it turns out that exponential decay of correlations holds
for smooth SO(n)-equivariant observations [16]. Hence, we can define the covariance
matrix ¥ = limy_,o % [unvy. It is easy to see that ¥ is an SO(n)-equivariant
matrix: Xg = g% for all ¢ € SO(n). It follows from irreducibility of the action of
SO(n) on R" that ¥ = 021, where 02 > 0. Again, o = 0 if and only if vy is uniformly
bounded, and typically o > 0, see Nicol et al. [29].

The mean square displacement as defined in (4.5) satisfies

I(N) = Nno?+0O(1) as N — oo

almost everywhere. In addition, the CLT, WIP, LIL and ASIP for R"-extensions

(Subsection (c)), carry over to the case of SE(n)-extensions with the obvious modifi-

cations; namely that we restrict to SO(n)-equivariant functions ¢ : X x SO(n) - R"

which automatically have zero mean and covariance matrix of the form ¥ = ¢21,,.
For example, the LIL states that for each unit vector ¢ € R",

limsup c-wvy/+/2N loglog N = o almost everywhere.

N—oo
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5 Discussion

In this paper, we have presented a scenario giving onset of hypermeander of spiral
waves in excitable media in terms of a codimension two bifurcation in a dynamical sys-
tem with Euclidean symmetry. We have also indicated how Brownian-like behaviour
superimposed on a linear drift arises for PDEs that have translation symmetry but no
rotation symmetry. Our explanation combines techniques from both local bifurcation
theory and from global dynamics/ergodic theory.

However, one needs to be aware that there are some gaps in a completely rigorous
understanding and therefore one has to make several caveats:

1. There is no proof that the supposed steady-state/Hopf or Hopf/Hopf bifurca-
tion takes place in the FitzHugh-Nagumo model or indeed any PDE model of an
excitable system such as the BZ reaction. It is accepted that meandering spirals
do occur through Hopf bifurcation [5, 41], and so more complicated behavior
documented in Winfree [42] is strongly indicative of a higher codimension bifur-
cation nearby, but it may not necessarily be associated with a local bifurcation.
Other bifurcations that would be expected to lead to hypermeander by the same
arguments are period doubling cascades, crises and homoclinic bifurcations.

2. The results of [29, 16] assume one has a discrete time system with hyperbolic
base dynamics. In the steady-state/Hopf and Hopf/Hopf mode-interactions,
time is continuous and although there exist hyperbolic saddles (in the form of
horseshoes), the chaotic attractors are at best nonuniformly hyperbolic. The
extension to continuous time looks feasible in the case of shift dynamics (fol-
lowing [13]) and would imply the existence of (unstable) solutions exhibiting
hypermeander, corresponding to horseshoes in the base dynamics. This is the
subject of work in progress. The extension to continuous time and nonuniformly
hyperbolic base dynamics is a much more difficult problem.

3. On a more technical level, the center bundle reduction of [39] requires a spectral
hypothesis that is surely invalid as it stands [40]. Nevertheless, the successful
explanation of meandering and linear drift [14, 18] is strongly suggestive that
many aspects of the theory do not require the full strength of this hypothesis.
(One place where the non-validity of this hypothesis definitely leads to problems
is documented in [2, p. 752] but this appears to be an exceptional situation.)

In the past, the very existence of hypermeander in PDE models has been somewhat
controversial since longer numerical simulations often reduce hypermeander to a long
complicated transient [6, footnote 4]. This effect can be explained in the context of our
model since the chaotic dynamics in mode-interactions often occurs in exponentially
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thin wedges in parameter space and hence near onset, hypermeander is difficult to find
and the spiral structure may be lost through other instabilities well before the chaos
from the mode-interaction becomes noticeable. The ODE model makes it easy to
find parameters yielding the desired chaos and hence hypermeander. This should be
contrasted with simulation of a poorly understood phenomenon in the PDE models.
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Figure 1: Spiral transitions in the FitzHugh-Nagumo (FHN) equation. e and  are
parameters in the FHN equation. Adapted with permission from Winfree [42]. Rigidly
rotating spiral waves exist between R and M. OR denotes the transition from
rigidly rotating spirals to retracting waves. dM denotes the transition from rigidly
rotating spirals to meandering spirals. 0C' denotes the transition from meandering
spirals to “complex” states (hypermeander).
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Figure 3: Transient hypermeander in the FitzHugh-Nagumo (FHN) equation.
Adapted with permission from Winfree [42]

26



hypermeander, TB hypermeander, TB

(a) (b)

Figure 4: Motion of the spiral tip in the Takens-Bogdanov bifurcation: (a) shows the
chaotic transient and the eventual meandering solution. (b) shows the asymptotic
dynamics without the transient
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(a) (b)

Figure 5: A trajectory of system (3.2) in a regime giving quasiperiodic dynamics:
(a) shows the base dynamics, projected onto the coordinates w, z, and (b) shows the
evolution of the translation coordinates.
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Figure 6: A trajectory of system (3.2) in a regime giving hypermeander: (a) shows
the base dynamics, projected onto the coordinates w, z, and (b) shows the evolution
of the translation coordinates. The chaotic base dynamics induces a Brownian-type
motion in the plane.
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Figure 7: The growth of variance for an ensemble of 50 trajectories of system (3.2) in
a regime giving hypermeander. (a) illustrates the beginning and end of trajectories
that start at the same point (with v = 0) except for w which is chosen over a range
of initial values separated by 0.02. The length of integration time of all trajectories
was 50. There is a clear decay of dependence on initial condition that leads to a
roughly Gaussian distribution of final values of v. (b) shows the variance o and the
mean motion mean;, mean, of the v-components of this ensemble of trajectories as
a function of time t. As predicted, there is a Brownian-type motion where the mean
drift is zero and the variance grows linearly with time.
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Figure 8: As in Figure 6(b) with parameters identical except that w; = 3.20 (instead
of 3.21). The hypermeander is replaced by a chaotic transient and eventual meander.
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Figure 9: Determinstic diffusion in the plane. This is the pure-translation (R*) sym-
metry analogue of the hypermeander in systems with Euclidean symmetry. An en-
semble of initial conditions starting at v = 0 evolves according to the equation (3.3).
The trajectories are shown projected onto their v components at intervals of 50 time
units. The linear drift is superimposed with an anisotropic Gaussian spread within
the ensemble.
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