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Abstract

We obtain results on mixing for a large class of (not necessarily Markov)
infinite measure semiflows and flows. Erickson proved, amongst other things,
a strong renewal theorem in the corresponding i.i.d. setting. Using operator
renewal theory, we extend Erickson’s methods to the deterministic (i.e. non-
i.i.d.) continuous time setting and obtain results on mixing as a consequence.

Our results apply to intermittent semiflows and flows of Pomeau-Manneville
type (both Markov and nonMarkov), and to semiflows and flows over Collet-
Eckmann maps with nonintegrable roof function.

1 Introduction

Recently, there has been increasing interest in the investigation of mixing properties
for infinite measure-preserving dynamical systems [2, 13, 24, 27, 28, 31, 32, 33, 34,
35, 37, 40, 41, 43]. Most of these results are for discrete time noninvertible systems.

For results on semiflows preserving an infinite measure, we refer to [37] (the
Markov case) and [13] (which does not assume a Markov structure). The setting
is that F : Y → Y is a mixing uniformly expanding map defined on a probability
space (Y, µ) and τ : Y → R+ is a nonintegrable roof function with regularly varying
tails:

µ(y ∈ Y : τ(y) > t) = `(t)t−β for various ranges of β ∈ [0, 1]. (1.1)

Here, ` : [0,∞) → [0,∞) is a measurable slowly varying function (so
limt→∞ `(λt)/`(t) = 1 for all λ > 0). Consider the suspension (Y τ , µτ ) and sus-
pension semiflow Ft : Y τ → Y τ (the standard definitions are recalled in Section 3).
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The aim is to prove a mixing result of the form

lim
t→∞

at

∫
Y τ
v w ◦ Ft dµτ =

∫
Y τ
v dµτ

∫
Y τ
w dµτ ,

for a suitable normalisation at →∞ and suitable classes of observables v, w : Y τ → R.
Under certain hypotheses, [13, 37] obtained results on mixing and rates of mixing

for such semiflows. The hypotheses were of two types: (i) assumptions on “renewal
operators” associated to the transfer operator of F and the roof function τ , and (ii)
Dolgopyat-type assumptions of the type used to obtain mixing rates for finite measure
(semi)flows [17].

As pointed out to us by Dima Dolgopyat, Péter Nándori and Doma Szász, mixing
for indicator functions can be regarded as a local limit theorem and hence hypotheses
of type (ii) should not be necessary.

In this paper, we show that operator renewal-theoretic assumptions (i) are indeed
sufficient for obtaining the mixing results in [13, 37]. The abstract framework in [13]
turns out again to be flexible enough to cover nonMarkov situations. Moreover, our
main results extend to flows and we are able to treat large classes of observables v, w.
(Conditions of type (i) alone are not sufficient for obtaining rates of mixing; the best
results remain those in [13].)

The analogous probabilistic results go back to Erickson [20] who obtained strong
renewal theorems in an i.i.d. continuous time framework under the assumption
β ∈ (1

2
, 1]. (In the discrete time setting, see [22] for the i.i.d. case and [35] for

the deterministic case.) Our results on mixing when β ∈ (1
2
, 1] for semiflows (Corol-

lary 3.1 and the extensions in Section 9) and for flows (Theorem 10.5), are proved by
adapting Erickson’s methods to the deterministic setting.

For β ≤ 1
2
, additional hypotheses are needed on the tail of τ to obtain a strong

renewal theorem (and hence mixing) even for discrete time; see [15, 19, 22] for i.i.d.
results and [24] for deterministic results (see also [41] for higher order theory in both
the i.i.d. and deterministic settings). For the continuous time case, Dolgopyat &
Nándori [18] obtain strong renewal theorems for a class of Markov semiflows includ-
ing the range β ≤ 1

2
(again under extra hypotheses on the tail µ(τ > t)), though

our main examples seem beyond their framework. In the absence of additional tail
hypotheses, [20] showed how to obtain a partial result in the probabilistic setting
with limit replaced by lim inf. In Corollary 3.5, we obtain such a lim inf result for
semiflows with β ∈ (0, 1

2
].

We now describe two families of examples to which our results apply. For def-
initeness, we restrict to our main mixing result Corollary 3.1 which applies when
β ∈ (1

2
, 1]. (Corollaries 3.3 and Corollary 3.5 hold for all β ∈ (0, 1].)

Example 1.1 (NonMarkovian intermittent semiflows and flows) Consider
the map f : [0, 1]→ [0, 1] given by

f(x) = x(1 + c1x
1/β) mod 1 where β ∈ (1

2
, 1], c1 > 0.
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This is an example of an AFN map [45], namely a nonuniformly expanding one-
dimensional map with at most countably (in this case finitely) many branches with
finite images and satisfying Adler’s distortion condition sup |f ′′|/|f ′|2 < ∞. Up to
scaling, there is a unique absolutely continuous invariant measure µ0. The measure
µ0 is infinite and the density has a singularity at the neutral fixed point 0.

Let τ0 : [0, 1] → [1,∞) be a roof function of bounded variation and Hölder con-
tinuous, and let ft denote the suspension semiflow on [0, 1]τ0 with invariant measure
µτ00 = µ0 × Lebesgue. Note that there is now a neutral periodic orbit of period τ0(0).

In [13], under a Dolgopyat-type condition on τ0 and for sufficiently regular observ-
ables v and w supported away from the neutral periodic orbit, we proved a mixing
result with rates and higher order asymptotics. Here we obtain the mixing result with-
out requiring the Dolgopyat-type condition or high regularity for the observables. It
suffices that ft has two periodic orbits (other than the neutral periodic orbit) whose

periods have irrational ratio. Define m(t) =

{
log t β = 1

t1−β β ∈ (1
2
, 1)

. We show that

limt→∞m(t)
∫
v w ◦ ft dµτ00 = const

∫
v dµτ00

∫
w dµτ00 , (1.2)

where the constant depends only on f and τ0. Here, v is any continuous function
supported away from the neutral periodic orbit and w is any integrable function.

Remark 1.2 If c1 is a positive integer, then f is Markov and is a special case of the
class of maps considered by [42]. In this case, it suffices that τ0 is Hölder continuous.
Moreover, it follows from [18] that the mixing result (1.2) holds for all β ≤ 1. When
c1 is not an integer, f is not Markov and [18] does not apply, as far as we can tell,
regardless of the value of β.

As in [33, 34], we can also consider solenoidal flows with a neutral periodic orbit.
Our results on mixing apply equally to such flows, see Remark 11.3.

Example 1.3 (Suspensions over unimodal maps) We consider a class of exam-
ples studied in [13, Example 1.2]. Under a Dolgopyat-type condition on τ0 and for
sufficiently regular observables v and w, we proved a mixing result with rates and
higher order asymptotics. Again, the emphasis is now on mixing rather than mixing
rates, with significantly relaxed hypotheses on the roof function and the observables.

Let f : [0, 1] → [0, 1] be a C2 unimodal map with unique non-flat critical point
x0 ∈ (0, 1). We suppose further that f is Collet-Eckmann [16]: there are constants
C > 0, λCE > 1 such that |(fn)′(fx0)| ≥ CλnCE for all n ≥ 1. It follows [26] that there
is a unique acip µ0 that is mixing up to a finite cycle. We restrict to the case when
µ0 is mixing. Finally, we suppose that x0 satisfies slow recurrence in the sense that
limn→∞ n

−1 log |fnx0 − x0| = 0.
Consider a roof function τ0 : [0, 1] → R+ of the form τ0(x) = g(x)|x − x0|−1/β

where β ∈ (1
2
, 1) and g : [0, 1] → (1,∞) is differentiable, and form the suspension
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semiflow ft : [0, 1]τ0 → [0, 1]τ0 . Suppose that ft has two periodic orbits whose periods
have irrational ratio. We obtain the mixing property (1.2) for any continuous function
v supported in [0, 1]× [0, 1] and any integrable w.

The remainder of this paper is organised as follows. In Section 2, we describe the
operator renewal-theoretic hypotheses required in this paper and we state a strong
renewal theorem for β ∈ (1

2
, 1] as well as related results for β ≤ 1

2
. In Section 3, we

show how these results lead to mixing properties for semiflows. Sections 4 and 6 are
devoted to the proof of the strong renewal theorem, while Sections 7 and 8 contain
the proofs of the remaining results in Section 2. Section 5 contains prerequisites from
operator renewal theory.

Corollary 3.1 (mixing for semiflows) is stated for observables that are certain
indicator functions. This restriction is relaxed considerably in Section 9. The corre-
sponding result for flows is stated and proved in Section 10.

Finally, in Section 11 we return to Examples 1.1 and 1.3.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1. Also, we write
an ∼ bn if limn→∞ an/bn = 1.

2 Strong renewal theorem for continuous time de-

terministic systems

Let (Y, µ) be a probability space and let F : Y → Y be an ergodic and mixing
measure-preserving transformation. Let τ : Y → R+ be a measurable nonintegrable
function bounded away from zero. For convenience, we suppose that ess inf τ > 1.
Throughout we assume the regularly varying tail condition (1.1).

Let τn =
∑n−1

j=0 τ ◦ F j. Given measurable sets A,B ⊂ Y , define the renewal
measure

UA,B(I) =
∞∑
n=0

µ(y ∈ A ∩ F−nB : τn(y) ∈ I), (2.1)

for intervals I ⊂ R. We write UA,B(x) = UA,B([0, x]) for x > 0. Our aim is to
generalise [20, Theorems 1 and 2] to this set up. That is, we want to obtain the
asymptotics of UA,B(t+ h)− UA,B(t) for any h > 0.

With the same notation as in [13], let H = {Re s ≥ 0}. Given δ > 0 and L > 0,
let Hδ,L = (H ∩Bδ(0)) ∪ {ib : |b| ≤ L}. Define the family of operators for s ∈ H,

R̂(s) : L1(Y )→ L1(Y ), R̂(s)v = R(e−sτv).

Here R : L1(Y )→ L1(Y ) is the transfer operator for F (so
∫
Y
Rv w dµ =

∫
Y
v w◦F dµ

for all v ∈ L1(Y ), w ∈ L∞(Y )).
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We assume that there exists p0 ≥ 1, and for each p ∈ (p0,∞), γ ∈ (0, β) and
L > 0 there exists a Banach space B = B(Y ) containing constant functions, with
norm ‖ ‖B, and constants δ ∈ (0, L), α0 ∈ (0, 1) and C > 0 such that

(H) (i) B is compactly embedded in Lp.

(ii) ‖R̂(s)nv‖B ≤ C(|v|p + αn0‖v‖B) for all s ∈ Hδ,L, v ∈ B, n ≥ 1.

(iii) |R(τ γv)|p ≤ C‖v‖B for all v ∈ B.

Also, most of our results require one of the following conditions:

(S) (i) For all b ∈ [−L,L], b 6= 0, the spectrum of R̂(ib) : B → B does not contain 1.

(ii) For all b ∈ [−L,L], b 6= 0, the spectral radius of R̂(ib) : B → B is less
than 1.

Hypothesis (H) is similar to [13, hypothesis (H1)]. The hypotheses in (S) are signifi-
cant weakenings of [13, hypothesis (H4)] and the diophantine ratio assumption used
in [37] (Dolgopyat-type condition). The remaining hypotheses in [13], namely (H2)
and (H3) (re-inducing), are not required.

Remark 2.1 (a) For ease of exposition, hypothesis (H) is stated on the half-plane H,
though we only use s real and s imaginary in this paper. For Theorems 2.3 and 2.4,
we can take s = ib, b ∈ [−L,L] in (H)(ii). For Theorem 2.6, we can take s = a,
a ∈ [0, δ) in (H)(ii).

(b) For our main results Theorem 2.3 and Corollary 3.1, it suffices that γ > 1 − β
(this is possible since β > 1

2
in those results). For our other results which include

β ≤ 1
2
, it suffices that γ > 0.

In addition, as in [13], there exists p0 ≥ 1 depending only on β and γ such that (H)
is required to hold only for one value of p > p0.

Remark 2.2 In the simplest setting, studied in [37], where the map F : Y → Y
is Gibbs-Markov [1, 3], hypothesis (H) is satisfied with B a symbolic Hölder space
and p = ∞. See [13, Remark 2.4] and [37, Proposition 3.5] for further details. This
includes the case of Markovian intermittent semiflows.

As explained in Section 11.1, this situation generalizes to the case when F is
an AFU map (i.e. an AFN map as defined in Example 1.1 but uniformly expanding
instead of nonuniformly expanding), with B consisting of bounded variation functions,
enabling us to treat the nonMarkovian intermittent semiflows in Example 1.1.

Define

dβ =

{
1
π

sin βπ β < 1

1 β = 1
, m(t) =

{
`(t)t1−β β < 1∫ t

1
`(s)s−1 ds β = 1

.

Throughout we suppose that A,B ⊂ Y are measurable and that 1A ∈ B.
Our main result generalizes [20, Theorem 1] to the present non i.i.d. set up:
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Theorem 2.3 (Strong renewal theorem) Assume µ(τ > t) = `(t)t−β where β ∈
(1

2
, 1]. Suppose that (H) and (S)(i) holds. Then for any h > 0,

lim
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) = dβµ(A)µ(B)h.

As discussed in the introduction, additional hypotheses are needed to obtain a
strong renewal theorem when β ≤ 1

2
. However, generalizing [20, Theorem 2] to the

present non i.i.d. set up, we still obtain a lim inf result:

Theorem 2.4 Assume µ(τ > t) = `(t)t−β where β ∈ (0, 1). Suppose that (H) and
(S)(ii) holds. Then for any h > 0,

lim inf
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) = dβµ(A)µ(B)h.

Remark 2.5 In the i.i.d. setting, results of this type are first due to [22] for discrete
time and β < 1. The results of [20] extended [22] to continuous time and incorporated
the case β = 1.

For the proof of Theorem 2.4, we will need the following result which gives the
asymptotics of UA,B for the entire range β ∈ [0, 1]. This implies a property for the
semiflow Ft known as weak rational ergodicity [1, 4] (see Corollary 3.3 below) and
thus is of interest in its own right.

Theorem 2.6 Assume µ(τ > t) = `(t)t−β where β ∈ [0, 1]. Suppose that (H) holds.
Then

lim
t→∞

t−1m(t)UA,B(t) = Dβ µ(A)µ(B),

where Dβ = {Γ(1− β)Γ(1 + β)}−1 if β ∈ (0, 1) and D0 = D1 = 1.

For the proof of Theorem 2.4, we will also require the following local limit theorem
with error term which may also be of interest in its own right. Let

qβ(t) = 1
2π

∫∞
−∞ e

ibte−cβ |b|
β
db, cβ = i

∫∞
0
e−iσσ−β dσ.

Theorem 2.7 (LLT) Assume the setting of Theorem 2.4 with β ∈ (0, 1). Let dn > 0
be an increasing sequence with dn → ∞ such that nµ(τ > dn) = n`(dn)d−βn → 1, as
n→∞. Then for any h > 0 there exists en > 0 with limn→∞ en = 0 such that for all
t > 0, n ≥ 1,∣∣∣µ(y ∈ A ∩ F−nB : τn(y) ∈ [t, t+ h])− h

dn
qβ(t/dn)µ(A)µ(B)

∣∣∣ ≤ en
dn
.
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Alternative hypotheses In certain examples, such as those where F : Y → Y is
modelled by a Young tower with exponential tails [44], hypothesis (H)(iii) is prob-
lematic. In such cases, it is necessary as in [13] to consider alternative hypotheses.

We assume that for every (sufficiently large) p ∈ (1,∞), there exists a Banach
space B containing constant functions, with norm ‖ ‖B, and constants δ > 0, α0 ∈
(0, 1) and C > 0 such that

(A) (i) B is compactly embedded in Lp.

(ii) ‖R̂(s)nv‖B ≤ C(|v|L1 + αn0‖v‖B) for all s ∈ Hδ,L, v ∈ B, n ≥ 1.

It follows from these assumptions (see Lemma 5.1(d) below), that (after possibly
shrinking δ) there is a continuous family of simple eigenvalues λ(s) for R̂(s) : B →
B, s ∈ H ∩ Bδ(0), with λ(0) = 1. Let ζ(s) ∈ B be the corresponding family of
eigenfunctions normalized so that

∫
Y
ζ(s) dµ = 1. We assume further that there

exists β+ ∈ (β, 1) such that

(A) (iii)
∣∣ ∫

Y
(e−sτ − 1)(ζ(s)− 1) dµ

∣∣ ≤ C|s|β+ for all s ∈ H ∩Bδ(0).

Theorem 2.8 Suppose that hypothesis (H) is replaced by hypothesis (A). Then The-
orems 2.4, 2.6 and 2.7 remain valid. If in addition µ(τ > t) = ct−β + O(t−q) where
c > 0, β ∈ (1

2
, 1), q > 1, then Theorem 2.3 remains valid.

3 Mixing for infinite measure semiflows

In this section, we obtain various mixing results for semiflows as consequences of the
results in Section 2.

Let F : Y → Y and τ : Y → R+ be as in Section 2. Define the suspension
Y τ = {(y, u) ∈ Y × R : 0 ≤ u ≤ τ(y)}/ ∼ where (y, τ(y)) ∼ (Fy, 0). The suspension
semiflow Ft : Y τ → Y τ is given by Ft(y, u) = (y, u+ t), computed modulo identifica-
tions. The measure µτ = µ × Lebesgue is ergodic, Ft-invariant and σ-finite. Since τ
is nonintegrable, µτ is an infinite measure.

Throughout this section, we suppose that A1 = A× [a1, a2], B1 = B × [b1, b2] are
measurable subsets of {(y, u) ∈ Y × R : 0 ≤ u ≤ τ(u)} (so 0 ≤ a1 < a2 ≤ ess infA τ ,
0 ≤ b1 < b2 ≤ ess infB τ), and that 1A ∈ B. Also, we continue to suppose that
µ(τ > t) = `(t)t−β for various ranges of β ∈ [0, 1].

Corollary 3.1 Assume the setting of Theorem 2.3 (alternatively Theorem 2.8), so
in particular β ∈ (1

2
, 1]. Then limt→∞m(t)µτ (A1 ∩ F−1

t B1) = dβµ
τ (A1)µτ (B1).

Proof Recall that ess inf τ > 1. Let h ∈ (0, 1) and note using (2.1) that

UA,B(t+ h)− UA,B(t) = µ(y ∈ A : F ny ∈ B and τn(y) ∈ [t, t+ h] for some n ≥ 0)

= µ(y ∈ A : Ft+h(y, 0) ∈ B × [0, h]).
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After dividing rectangles into smaller subrectangles, we can suppose without loss
that b2 − b1 < 1. Set h = b2 − b1. Then

µτ (A1 ∩ F−1
t B1) = µτ{(y, u) ∈ A× [a1, a2] : Ft(y, u) ∈ B × [b1, b2]}

= µτ{(y, u) ∈ A× [a1, a2] : Ft+u−b1(y, 0) ∈ B × [0, h]}

=

∫ a2

a1

µ{y ∈ A : Ft+u−b1(y, 0) ∈ B × [0, h]} du

=

∫ a2

a1

(UA,B(t+ u− b1)− UA,B(t+ u− b1 − h)) du. (3.1)

Hence

m(t)µτ (A1 ∩ F−1
t B1) =

∫ a2

a1

m(t)(UA,B(t+ u− b1)− UA,B(t+ u− b1 − h)) du

=

∫ a2

a1

m(t)

m(t+ u− b1 − h)
χ(t+ u− b1 − h) du,

where χ(t) = m(t)(UA,B(t+h)−UA,B(t)) is bounded by Theorem 2.3. Also m(t)/m(t+
u−b1−h) is bounded by Potter’s bounds (see for instance [11]). Since m(t) is regularly
varying, we have limt→∞m(t)/m(t+u−b1−h) = 1 for each u ∈ [0, 1]. By Theorem 2.3,
limt→∞ χ(t+ u− b1 − h) = dβµ(A)µ(B)h = dβµ(A)µτ (B1) for each u ∈ [0, 1]. Hence
the result follows from the bounded convergence theorem.

Remark 3.2 The result also holds for all sets of the form F−1
r A1 and F−1

s B1 for
fixed r, s > 0. Indeed, by Corollary 3.1, using that m(t) ∼ m(t+ s− r),

m(t)µτ (F−1
r A1 ∩ F−1

t+sB1) = m(t)µτ (A1 ∩ F−1
t+s−rB1)

→ µτ (A1)µτ (A2) = µτ (F−1
r A1)µτ (F−1

s A2).

Corollary 3.3 (Weak rational ergodicity) Assume the setting of Theorem 2.6
(alternatively Theorem 2.8), with β ∈ [0, 1]. Then

lim
t→∞

t−1m(t)

∫ t

0

µτ (A1 ∩ F−1
x B1) dx = Dβµ

τ (A1)µτ (B1).

Proof Continuing from (3.1) (with h = b2 − b1),∫ t

0

µτ (A1 ∩ F−1
x B1) dx =

∫ a2

a1

∫ t

0

(UA,B(x+ u− b1)− UA,B(x+ u− b1 − h)) dx du

=

∫ a2

a1

∫ t

0

UA,B(x+ u− b1) dx du−
∫ a2

a1

∫ t−h

−h
UA,B(x+ u− b1) dx du

=

∫ a2

a1

∫ t

t−h
UA,B(x+ u− b1) dx du−

∫ a2

a1

∫ 0

−h
UA,B(x+ u− b1) dx du = I1 + I2.
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Now

t−1m(t)I1 = t−1m(t)UA,B(t)

∫ a2

a1

∫ 0

−h

UA,B(x+ t+ u− b1)

UA,B(t)
dx du.

By Theorem 2.6, UA,B(t) is regularly varying so the integrand UA,B(x + t + u −
b1)/UA,B(t) is bounded for x, u bounded and converges pointwise to 1 as t → ∞.
Hence

lim
t→∞

∫ a2

a1

∫ 0

−h

UA,B(x+ t+ u− b1)

UA,B(t)
dx du = (a2 − a1)h = (a2 − a1)(b2 − b1).

By Theorem 2.6, t−1m(t)UA,B(t) = Dβµ(A)µ(B)(1 + o(1)). Hence,
limt→∞ t

−1m(t)I1 = Dβµ(A)µ(B)(a2 − a1)(b2 − b1) = µτ (A1)µτ (B1). A simpler argu-
ment shows that t−1m(t)I2 = o(1).

Proposition 3.4 Let f : [0,∞)→ R be bounded and integrable on compact sets, and
let K ∈ R. Suppose that β ∈ (0, 1), that `(t) is slowly varying, and that

(a) lim inft→∞ `(t)t
1−βf(t) ≥ K,

(b) limt→∞ `(t)t
−β ∫ t

0
f(x) dx = β−1K.

Then there exists a set E ⊂ [0,∞) of density zero such that limt→∞, t 6∈E `(t)t
1−βf(t) =

K.
In particular, lim inft→∞ `(t)t

1−βf(t) = K.

Proof This is the continuous time analogue of [35, Proposition 8.2] (which is itself
a version of [38, p. 65, Lemma 6.2]). We list the main steps which are proved exactly
as in [35].

Step 1. Without loss of generality, K = 0 and `(t)t1−β is increasing.

Step 2. Define the nested sequence of sets Eq = {t > 0 : `(t)t1−βf(t) > 1/q},
q = 1, 2, . . . Then Eq has density zero for each q, i.e. limt→∞

1
t

∫ t
0

1Eq(x) dx = 0.

Step 3. By Step 2, we can choose 0 = i0 < i1 < i2 < · · · such that 1
t

∫ t
0

1Eq(x) dx <
1/q for t ≥ iq−1, q ≥ 2. Define E =

⋃∞
q=1Eq ∩ (iq−1, iq). Then E has density zero and

limt→∞, t 6∈E `(t)t
1−βf(t) = 0.

Corollary 3.5 Assume the setting of Theorem 2.4 (alternatively Theorem 2.8), with
β ∈ (0, 1). Then

(i) lim inft→∞m(t)µτ (A1 ∩ F−1
t B1) = dβµ

τ (A1)µτ (B1), and

(ii) There exists a set E ⊂ [0,∞) of density zero such that
limt→∞, t 6∈Em(t)µτ (A1 ∩ F−1

t B1) = dβµ
τ (A1)µτ (B1).
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Proof We start from the conclusion of Theorem 2.4. Arguing as in the proof of
Corollary 3.1, but with lim replaced by lim inf and using Fatou’s lemma instead of
the bounded convergence theorem, we obtain

lim inf
t→∞

`(t)t1−βµτ (A1 ∩ F−1
t B1) ≥ dβµ

τ (A1)µτ (B1).

This is condition (a) in Proposition 3.4, and Corollary 3.3 is condition (b). Hence the
result follows from Proposition 3.4.

4 Main results used in the proof of Theorem 2.3

The first result needed in the proof of the strong renewal theorem, Theorem 2.3, is
an inversion formula for the symmetric measure

VA,B(I) = 1
2
(UA,B(I) + UA,B(−I)).

Here, U(−I) = U({x : −x ∈ I}) (with U(−I) = 0 if I ⊂ [0,∞]). We find it
convenient to adapt the formulation in [20, Section 4], but such an inversion formula
goes back to [21] (see also [12, Chapter 10]).1

By (H) and (S)(i), T̂ (s) = (I − R̂(s))−1 is a bounded operator on B for all s ∈
H \ {0}. Let A, B ⊂ Y be measurable with 1A ∈ B.

Proposition 4.1 ( Analogue of [20, Inversion formula, Section 4]. ) Let g :
R→ R be a continuous compactly supported function with Fourier transform ĝ(x) =∫∞
−∞ e

ixbg(b) db satisfying ĝ(x) = O(x−2) as x→∞. Then for all λ, t ∈ R,∫ ∞
−∞

e−iλ(x−t)ĝ(x− t) dVA,B(x) =

∫ ∞
−∞

e−itbg(b+ λ) Re

∫
B

T̂ (ib)1A dµ db.

The second result required in the proof of Theorem 2.3 comes directly from [20]
and does not require any modification in our set up. To state this result, for each
a > 0 we let ĝa(0) = 1 and for x 6= 0, define

ĝa(x) =
2(1− cos ax)

a2x2
.

Proposition 4.2 ( [20, Lemma 8] ) Let {µt, t > 0} be a family of measures such
that µt(I) <∞ for every compact set I and all t. Suppose that for some constant C,

lim
t→∞

∫ ∞
−∞

e−iλxĝa(x) dµt(x) = C

∫ ∞
−∞

e−iλxĝa(x) dx,

for all a > 0, λ ∈ R. Then µt(I) → C|I| for every bounded interval I, where |I|
denotes the length of I.

1The result does not require any regular variation assumptions on µ(τ > t), but we use the extra
structure for simplicity.
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Next, note that ĝa is the Fourier transform of

ga(b) =

{
a−1(1− |b|/a), |b| ≤ a

0, |b| > a
.

The final result required in the proof of Theorem 2.3 is as follows.

Proposition 4.3 For all a > 0 and λ ∈ R,

lim
t→∞

m(t)

∫ ∞
−∞

e−itbga(b+ λ) Re

∫
B

T̂ (ib)1A dµ db = πdβga(λ)µ(A)µ(B).

Proof of Theorem 2.3 With the convention I + t = {x : x− t ∈ I}, let

µt(I) = 2m(t)VA,B(I + t) = m(t)(UA,B(I + t) + UA,B(−I − t))

and note that for I = [0, h] with h > 0,

m(t)(UA,B(t+ h)− UA,B(t)) = µt(I).

Now,

m(t)

∫ ∞
−∞

e−iλ(x−t)ĝa(x− t) dVA,B(x) = m(t)

∫ ∞
−∞

e−iλxĝa(x) dVA,B(x+ t)

=
1

2

∫ ∞
−∞

e−iλxĝa(x) dµt(x).

Since ĝa satisfies the assumptions of Proposition 4.1,∫ ∞
−∞

e−iλxĝa(x) dµt(x) = 2m(t)

∫ ∞
−∞

e−itbga(b+ λ) Re

∫
B

T̂ (ib)1A dµ db.

By Proposition 4.3 together with the Fourier inversion formula
∫∞
−∞ e

−iλxĝa(x) dx =
2πga(λ),

lim
t→∞

∫ ∞
−∞

e−iλxĝa(x) dµt(x) = 2πdβga(λ)µ(A)µ(B) = dβ

∫ ∞
−∞

e−iλxĝa(x) dxµ(A)µ(B).

Hence, we have shown that the hypothesis of Proposition 4.2 holds with C =
dβµ(A)µ(B). It now follows from Proposition 4.2 with I = [0, h] that

m(t)(UA,B(t+ h)− UA,B(t)) = µt([0, h])→ dβµ(A)µ(B)h,

as t→∞.

The proof of Propositions 4.1 and 4.3 are given in Section 6.
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5 Prerequisites from operator renewal theory

In this section, we establish some estimates for T̂ = (I−R̂)−1. The arguments closely
follow [13, Section 4] (which was restricted to the case `(t) = c+o(1) for some constant
c > 0 and did not include the case β = 1).

The estimates are carried out under hypotheses (H) and (S)(i) in Subsection 5.1.
The analogous results required under hypotheses (A) and (S)(i) are obtained in Sub-
section 5.2.

5.1 Estimates under hypotheses (H) and (S)(i)

Throughout this subsection, β ∈ (0, 1] and L > 0 are fixed. We begin with γ ∈ (0, β),
δ ∈ (0, L) and p > 1 as in (H). During the subsection, the values of γ, δ and p change
finitely many times; the changes in γ are arbitrarily small. Also C > 0 is a constant
whose value changes finitely many times.

For r ∈ [0, 1], let T̂r(s) = (I − rR̂(s))−1. Define

˜̀(t) =

{
`(t) β < 1∫ t

1
`(s)s−1 ds β = 1

, cβ =

{
i
∫∞

0
e−iσσ−β dσ β < 1

1 β = 1
.

Lemma 5.1 (a) ‖R̂(s1)− R̂(s2)‖B→Lp ≤ C |s1 − s2|γ for all s1, s2 ∈ H.

(b) There exists r0 < 1 such that ‖T̂r(ib)‖B ≤ C for all |b| ∈ [δ, L], r ∈ [r0, 1].

(c) For all δ ≤ b < b+ h < L,

‖T̂ (i(b+ h))− T̂ (ib)‖B→Lp ≤ Chγ.

(d) There exists a continuous family λ(s), s ∈ H ∩ Bδ(0), of simple eigenvalues
for R̂(s) : B → B with λ(0) = 1. In addition, the corresponding family of spec-
tral projections P (s) are bounded linear operators on B for all s ∈ H ∩ Bδ(0) and
sups∈H∩Bδ(0) ‖P (s)‖B <∞. Moreover,

‖P (s1)− P (s2)‖B→Lp ≤ C|s1 − s2|γ for all s1, s2 ∈ H ∩Bδ(0).

(e) Define the complementary projections Q(s) = I − P (s). Then

‖(I − rR̂(ib))−1Q(ib)‖B ≤ C for all |b| < δ, r ∈ [0, 1].

Proof (a) Recall that R̂(s)v = R(e−sτv). Since R is a positive operator,

|(R̂(s1)− R̂(s2))v| ≤ R(|e−s1τ − e−s2τ ||v|) ≤ 2|s1 − s2|γR(τ γ|v|).

By (H)(iii), |(R̂(s1)− R̂(s2))v|p ≤ 2|s1 − s2|γ|R(τ γ|v|)|p � |s1 − s2|γ‖v‖B.

(b,c) Fix b > 0. It is immediate from hypothesis (S)(i) that ‖T̂ (ib)‖B <∞. Using also
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part (a), it follows from (H)(i,ii) and [29, Theorem 1] that there exists h0 > 0, r0 < 1
and C > 0 such that ‖T̂r(i(b+ h))‖B ≤ C and ‖T̂ (i(b+ h))− T̂ (ib)‖B→Lp ≤ C|h|γ for
all |h| < h0, r ∈ (r0, 1]. The desired estimates follow from compactness of [δ, L].

(d) This follows from (H)(i,ii) by [29, Corollary 1] exactly as in [13, Lemma 4.4] (with
β − ε replaced by γ).

(e) By (H)(i,ii) and [29, Corollary 2], for δ > 0 sufficiently small there exists ρ ∈ (0, 1)
such that ‖(rR(ib)Q(ib))n‖B ≤ ‖(R(ib)Q(ib))n‖B ≤ Cρn for all |b| < δ, n ≥ 0.

Let ζ(s) denote the corresponding family of eigenfunctions normalized so that∫
Y
ζ(s) dµ = 1. We have ζ(0) ≡ 1 and P (0)v =

∫
Y
v dµ for all v ∈ B. It is immediate

that ζ(s) inherits the estimates obtained for P (s). In particular, there is a constant
C > 0 such that |ζ(s)− ζ(0)|p ≤ C|s|γ for all s ∈ H ∩Bδ(0).

Following [23] (see [13, Equation (4.2)]),

λ(s) =
∫
Y
e−sτ dµ+ χ(s) where χ(s) =

∫
Y

(e−sτ − 1)(ζ(s)− ζ(0)) dµ. (5.1)

From now on, we fix δ ∈ (0, 1) so that all conclusions of Lemma 5.1 hold.

Proposition 5.2 Write s = a+ ib ∈ H.

(a) 1−
∫
Y
e−sτ dµ ∼ cβ ˜̀(1/|s|)sβ as s→ 0.

(b) When β = 1, Re
(
1−

∫
Y
e−ibτ dµ

)
∼ π

2
`(1/|b|)|b| as b→ 0.

(c) |
∫
Y

(e−i(b+h)τ − e−ibτ )dµ| ≤ C ˜̀(1/h)hβ for 0 < h < b < δ.

Proof Part (a) is proved as in [36, Lemma 2.4] for β < 1. Suppose that β = 1 and let
G(x) = µ(τ > x). Then 1−

∫
Y
e−sτ dµ = s

∫∞
0
e−sx(1−G(x)) dx = sIC(s)− isIS(s),

where

IC(s) =
∫∞

0
e−ax cos bx (1−G(x)) dx, IS(s) =

∫∞
0
e−ax sin bx (1−G(x)) dx.

By [35, Proposition 6.2], we have for a ≥ |b| that

IC(s) = ˜̀(1/a)(1+o(1))+O(|b|a−1`(1/a)) = ˜̀(1/|s|)(1+o(1))+O(`(1/|s|)) ∼ ˜̀(1/|s|).

Similarly, for a ≤ |b|, we have IC(s) = ˜̀(1/|b|)(1+o(1))+O(a|b|−1`(1/|b|)) ∼ ˜̀(1/|s|).
Hence IC(s) ∼ ˜̀(1/|s|) as s→ 0. In the same way, it follows from [35, Proposition 6.2]
that |IS(s)| � `(1/|s|). Part (a) for β = 1 follows immediately from these estimates.
Moreover, IS(ib) ∼ π

2
`(1/|b|) sgn b as b → 0 by the proof of [35, Lemma 6.8]. Since

Re
(
1−

∫
Y
e−ibτ dµ

)
= bIS(ib), part (b) follows.

Finally, part (c) follows by the argument used in the proof of [22, Lemma 3.3.2].

Proposition 5.3 (a) |χ(s)| ≤ C|s|β+γ for s ∈ H ∩Bδ(0),
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(b) When β > 1
2
, |χ(i(b+ h))− χ(ib)| ≤ Cbβhγ for 0 < h < b < δ.

Proof Choose ε > 0 arbitrarily small and r > 1 such that (β − ε)r < β with
conjugate exponent r′. Then τ (β−ε)r ∈ L1 and it follows from Hölder’s inequality that

|χ(s)| ≤ 2|s|β−ε|τβ−ε(ζ(s)− 1)|1 ≤ 2|s|β−ε|τβ−ε|r|ζ(s)− 1|r′ � |s|β−ε+γ,

yielding part (a). Here we used that |ζ(s) − 1|p = O(|s|γ) for p as large as desired.
Similarly,

|χ(i(b+ h))− χ(ib)| ≤ |(ei(b+h)τ − 1)(ζ(i(b+ h))− ζ(ib))|1 + |(eihτ − 1)(ζ(ib)− 1)|1
� (b+ h)β−εhγ + hβ−εbγ � bβhγ−ε,

(Note that hβ−εbγ = hγ−εhβ−γbγ ≤ hγ−εbβ since γ < β and h < b.) This proves
part (b).

Corollary 5.4 Write s = a+ ib ∈ H.

(a) 1− λ(s) ∼ cβ ˜̀(1/|s|)sβ as s→ 0.

(b) When β = 1, Re(1− λ(ib)) ∼ π
2
`(1/|b|)|b| as b→ 0.

(c) When β > 1
2
, |λ(i(b+ h))− λ(ib)| ≤ C(˜̀(1/h)hβ + bβhγ), for 0 < h < b < δ.

(d) |1− rλ(ib)|−1 ≤ C ˜̀(1/|b|)−1|b|−β for all |b| < δ, r ∈ [1
2
, 1].

(e) When β = 1, |Re(1 − rλ(ib))|−1 ≤ C`(1/|b|)˜̀(1/|b|)−2|b|−1 for all |b| < δ,
r ∈ [1

2
, 1].

Proof Parts (a) and (b) are immediate from (5.1) and Propositions 5.2(a,b)
and 5.3(a). Part (c) follows from (5.1) and Propositions 5.2(c) and 5.3(b). By part (a),

|1− rλ(ib)| ≥ | Im(1− rλ(ib))| ≥ 1
2
| Imλ(ib)| ∼ 1

2
| Im(iβcβ)|˜̀(1/|b|)|b|β,

yielding part (d). Using also that Reλ(ib) ∈ [0, 1] for |b| < δ, we compute for β = 1
that

|Re(1− rλ(ib)−1)| = Re(1− rλ(ib)) |1− rλ(ib)|−2

≤ Re(1− λ(ib)) |r Im(λ(ib))|−2 ≤ 4 Re(1− λ(ib)) |r Im(λ(ib))|−2,

so part (e) follows from parts (a) and (b).

Lemma 5.5 T̂ (s) = c−1
β

˜̀(1/|s|)−1s−β(P (0) +E(s)) for s ∈ H∩Bδ(0), where E(s) is
a family of operators satisfying lims→0 ‖E(s)‖B→L1 = 0.
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Proof By Corollary 5.4(a), (1− λ(s))−1 ∼ c−1
β

˜̀(1/|s|)−1s−β as s→ 0. Also,

T̂ (s) = (1− λ(s))−1P (s) + (I − R̂(s))−1Q(s) = (1− λ(s))−1(P (0) + E(s)),

where

E(s) = P (s)− P (0) + (1− λ(s))(I − R̂(s))−1Q(s). (5.2)

By (H), ‖(I − R̂(s))−1Q(s)‖B = O(1). By Lemma 5.1(d), ‖P (s) − P (0)‖B→L1 =
O(|s|γ). Hence ‖E(s)‖B→L1 � |s|γ + |s|β−ε.

Lemma 5.6 Let β = 1. Then Re T̂ (ib) = π
2
`(1/|b|)˜̀(1/|b|)−2|b|−1(P (0) + E(b)) for

b ∈ R, 0 < |b| < δ, where limb→0 ‖E(b)‖B→L1 = 0.

Proof By Corollary 5.4(a,b),

Re((1− λ(ib))−1) = Re(1− λ(ib))|1− λ(ib)|−2 ∼ π

2
`(1/|b|)˜̀(1/|b|)−2|b|−1.

As in the proof of Lemma 5.5, Re T̂ (ib) = {Re((1− λ(ib))−1)}(P (0) + E(b)) where

E(b) = Re(1− λ(ib)) Re{(1− λ(ib))−1(P (ib)− P (0)) + (I −R(ib))−1Q(ib)},

and

‖E(b)‖B→L1 � ‖P (ib)− P (0)‖B→L1 + |1− λ(ib)|‖(I −R(ib))−1Q(ib)‖B→L1)� |b|1−ε,

completing the proof.

Corollary 5.7 Let β ≤ 1, L > 0. There are constants r0 < 1 and C > 0 such that

‖Re T̂r(ib)‖B→L1 ≤ Cψβ(|b|) for 0 < |b| ≤ L, r0 ≤ r ≤ 1,

where

ψβ(x) =

{
`(1/x)−1x−β β < 1

`(1/x)˜̀(1/x)−2x−1 β = 1
.

Proof By Lemma 5.1(b), we can restrict to the range |b| < δ on which

T̂r(ib) = (I − rR̂(ib))−1 = (1− rλ(ib))−1P (ib) + (I − rR̂(ib))−1Q(ib).

The result follows from the estimates for P , (I − rR̂)−1Q and (1− rλ)−1 obtained in
Lemma 5.1(d,e) and Corollary 5.4(d,e).
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Remark 5.8 (a) Note that ψβ is integrable on [0, L] for all β ≤ 1. This is clear for

β < 1 while ˜̀(1/x)−1 is an antiderivative for ψ1. In particular, supr |Re T̂r(ib)1A|1 ≤
Cψβ(b)‖1A‖B which is integrable.

(b) By Karamata’s theorem on integration of regularly varying sequences [11], ˜̀ is
slowly varying and `(x) = o(˜̀(x)) as x → ∞ when β = 1. In particular, ψβ(b) �
˜̀(1/|b|)−1|b|−β for all β ≤ 1.

Lemma 5.9 Let β ∈ (1
2
, 1]. For 0 < h < b < δ,

‖T̂ (i(b+ h))− T̂ (ib)‖B→L1 ≤ C
{

˜̀(1/b)−2b−2β ˜̀(1/h)hβ + b−βhγ
}
.

Proof Recall as in Lemma 5.5 that T̂ (ib) = A1(b) + A2(b), where

A1(b) = (1− λ(ib))−1P (ib), A2(b) = (I − R̂(ib))−1Q(ib).

Using Lemma 5.1(d) and Corollary 5.4(a,c),

‖A1(b+ h)− A1(b)‖B→L1 � |1− λ(i(b+ h))|−1‖P (i(b+ h))− P (ib)‖B→L1

+ |1− λ(ib)|−1|1− λ(i(b+ h))|−1|λ(i(b+ h))− λ(ib)|‖P (ib)‖B→L1

� ˜̀(1/b)b−βhγ + ˜̀(1/b)−2b−2β(˜̀(1/h)hβ + bβhγ)

� ˜̀(1/b)−2b−2β ˜̀(1/h)hβ + b−βhγ−ε.

An argument from [33, Proposition 3.8] shows that ‖A2(b+ h)−A2(b)‖B→L1 � hγ−ε,
completing the proof.

5.2 Estimates under hypotheses (A) and (S)(i)

Let ε ∈ (0, β). Since R : L1 → L1 is a contraction,

|(R̂(s1)− R̂(s2))v|1 ≤ |(e−s1τ − e−s2τ )v|1 ≤ 2|s1 − s2|β−ε|τβ−εv|1.

Choose r > 1 such that (β − ε)r < β with conjugate exponent r′. By Hölder’s
inequality and (A)(i), |τβ−εv|1 ≤ |τβ−ε|r|v|r′ � ‖v‖B. Hence ‖R̂(s1)− R̂(s2)‖B→L1 �
|s1 − s2|β−ε for all s1, s2 ∈ H.

Using [29] as before, we deduce that the conclusions of Lemma 5.1 hold with Lp

replaced by L1 and γ replaced by β − ε.

Proposition 5.10 The conclusions of Lemmas 5.5 and 5.6 and Corollary 5.7 are
unchanged under hypotheses (A) and (S)(i).

Proof It is immediate from hypothesis (A)(iii) that |χ(s)| � |s|β+ where β+ > β,
and hence the proofs are unchanged.

Lemma 5.9 becomes:
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Lemma 5.11 ‖T̂ (i(b+ h))− T̂ (ib)‖B→L1 ≤ Cb−2βhβ−ε for all 0 < h < b < δ.

Proof Since ‖ζ(s)‖B is bounded, it follows again from Hölder’s inequality that

|χ(i(b+ h))− χ(ib)| ≤ |(ei(b+h)τ − 1)(ζ(i(b+ h))− ζ(ib))|1 + |(eihτ − 1)(ζ(ib)− 1)|1
≤ 2|ζ(i(b+ h))− ζ(ib)|1 + 2hβ−ε|τβ−ε|r|(ζ(ib)− 1)|r′ � hβ−ε.

Hence by (5.1) and Proposition 5.2(c), |λ(i(b+ h))− λ(ib)| � hβ−ε. Now proceed as
in the proof of Lemma 5.9.

The presence of the ε in Lemma 5.11 necessitates some alterations to the strategy
in [20]. As in [13], we make use of the following refinement of Lemma 5.5.

Lemma 5.12 Assume that µ(τ > t) = ct−β +O(t−q) where c > 0, β ∈ (1
2
, 1), q > 1.

Then cT̂ (ib) = c−1
β b−βP (0) + Ẽ(b) for b ∈ [0, δ), where ‖Ẽ(b)‖B→L1 ≤ Cb−(2β−β+).

Proof A calculation using only the expression for µ(τ > t) shows that 1 −∫
Y
e−sτ dµ = ccβb

β+O(b) (see [13, Eq. (4.4)]). By (5.1) and the estimate |χ(s)| � |s|β+
where β+ ∈ (β, 1), we obtain 1− λ(ib) = ccβb

β(1 +O(bβ+−β)). Hence

c(1− λ(ib))−1 = c−1
β b−β(1 +O(b−(2β−β+))).

By (5.2), cT̂ (ib) = c(1 − λ(ib))−1P (0) + c(1 − λ(ib))−1E(ib) = c−1
β b−βP (0) + cẼ(b)

where Ẽ(b) = (1− λ(ib))−1E(ib) +O(b−(2β−β+)) and

E(ib) = P (ib)− P (0) + (1− λ(ib))(I − R̂(ib))−1Q(ib) = O(bβ−ε).

Hence Ẽ(b) � b−ε + b−(2β−β+). Recall that 2β − β+ > 2β − 1 > 0, so we can choose
ε ∈ (0, 2β − β+) completing the proof.

6 Completion of the proof of Theorem 2.3

In this section, we give the proof of Propositions 4.1 and 4.3, thereby completing
the proof of Theorem 2.3. In Subsections 6.1 and 6.2, we assume hypotheses (H)
and (S)(i). In Subsection 6.3, we show that the results remain true under hypothe-
ses (A) and (S)(i).

6.1 Proof of Proposition 4.1

Fix β ≤ 1. Throughout, we write U and V instead of UA,B and VA,B. Following [12,
Chapter 10] (see also [20, Section 4]), we define for r ∈ (0, 1),

Ur(I) =
∞∑
n=0

rnµ(y ∈ A ∩ F−nB : τn(y) ∈ I),

Vr(I) = 1
2
(Ur(I) + Ur(−I)).
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For n ≥ 0, the Fourier transform of the distribution Gn(x) = µ(τn(y) ≤ x, y ∈
A ∩ F−nB) is given by

∫
Y

1A 1B ◦ F n eibτn dµ =
∫
B
R̂(−ib)n1A dµ. Hence∫ ∞

−∞
eibx dVr(x) = Re

∫ ∞
0

eibx dUr(x)

=
∞∑
n=0

rn Re

∫
B

R̂(ib)n1A dµ = Re

∫
B

T̂r(ib)1A dµ,

where T̂r(s) = (I − rR̂(s))−1.
Let ĝ and g be as in the statement of Proposition 4.1. Note that dVr is a finite

measure and g is compactly supported, so eibxg(b) lies in L1(dVr × db). Hence it
follows from Fubini’s theorem that for r ∈ (0, 1),∫ ∞

−∞
ĝ(x) dVr(x) =

∫ ∞
−∞

{∫ ∞
−∞

eibxg(b) db
}
dVr(x)

=

∫ ∞
−∞

g(b)
{∫ ∞
−∞

eibx dVr(x)
}
db =

∫ ∞
−∞

g(b) Re

∫
B

T̂r(ib)1A dµ db.

Replacing g(b) by g1(b) = e−ibtg(b + λ) and ĝ(x) by ĝ1(x) =
∫∞
−∞ e

ibx g1(b) db =

e−iλ(x−t)ĝ(x− t), we obtain∫ ∞
−∞

e−iλ(x−t)ĝ(x− t) dVr(x) =

∫ ∞
−∞

e−ibtg(b+ λ) Re

∫
B

T̂r(ib)1A dµ db. (6.1)

It remains to justify passing to the limit r → 1− on both sides of (6.1).
First, we consider the left-hand side of (6.1). Since τ ≥ 1, we have U(x) =

U([0, x]) ≤
∑∞

n=0 µ(τn ≤ x) ≤ x+ 1 for all x. Integrating by parts,∫ ∞
1

x−2 dU(x) = −U(1) + 2

∫ ∞
1

U(x)x−3 dx <∞.

Hence
∫
|x|≥1

x−2dV (x) <∞. Since
∫ 1

−1
|ĝ(x−t)| dV (x) <∞ and ĝ(x−t) = O(x−2) for

each fixed t, it follows that f(x) = e−iλ(x−t)ĝ(x−t) is integrable with respect to dV (x).
But Vr(I) ↗ V (I) as r → 1− for every measurable I, so limr→1−

∫∞
−∞ f(x) dVr(x) =∫∞

−∞ f(x) dV (x) which is the required result for the left-hand side.
Finally, we consider the right-hand side of (6.1). Choose L > 0 such that supp g ∈

[−L,L]. By Remark 5.8(a), |Re T̂r(ib)1A|1 � ψβ(b)‖1A‖B for |b| ≤ L + |λ|, where
ψβ is integrable. Hence the desired limit as r → 1− follows from the dominated
convergence theorem.

6.2 Proof of Proposition 4.3

Fix β ∈ (1
2
, 1]. We follow the proof of [20, Theorem 1] (an adaptation of the argument

in [22]). Let W (b) = Re
∫
B
T̂ (ib)1A dµ.
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Fix ω > 1 and write
∫∞
−∞ e

−itbga(b + λ) Re
∫
B
T̂ (ib)1A dµ db = I1(t, ω) + I2(t, ω)

where

I1(t, ω) =

∫ ω/t

−ω/t
e−itbga(b+ λ)W (b) db, I2(t, ω) =

∫
|b|>ω/t

e−itbga(b+ λ)W (b) db.

Proposition 4.3 follows immediately from the estimates for I1(t, ω) and I2(t, ω)
below.

Lemma 6.1 limω→∞ limt→∞m(t)I1(t, ω) = πdβga(λ)µ(A)µ(B).

Proof It follows from the definition of ga that |ga(b1)− ga(b2)| ≤ a−2|b1− b2|. Hence∣∣∣I1(t, ω)− ga(λ)

∫ ω/t

−ω/t
e−itbW (b) db

∣∣∣ ≤ ∫ ω/t

−ω/t
|ga(b+ λ)− ga(λ)| |W (b)| db

≤ 2a−2ωt−1

∫ ω/t

0

|W (b)| db.

By Remark 5.8(a),
∫ ω/t

0
|W (b)| db� ‖1A‖ for t > ω/δ. Hence

lim
t→∞

m(t)I1(t, ω) = 2ga(λ) lim
t→∞

m(t)

∫ ω/t

0

W (b) cos tb db.

For β < 1, define ξ(b) = µ(A)µ(B) +
∫
B
E(ib)1A dµ where E is as in Lemma 5.5.

In particular, |ξ(b)| ≤ |1A|1 + |E(ib)1A|1 � ‖1A‖ and |ξ(b) − µ(A)µ(B)| ≤
‖E(ib)‖B→L1‖1A‖ → 0 as b→ 0. Hence

m(t)

∫ ω/t

0

W (b) cos tb db = `(t)t1−β Re
{
c−1
β

∫ ω/t

0

`(1/b)−1b−βξ(b) cos tb db
}

= Re
{
c−1
β

∫ ω

0

[`(t)/`(t/b)]b−βξ(b/t) cos b db
}
.

By the dominated convergence theorem,

lim
t→∞

m(t)

∫ ω/t

0

W (b) cos tb db = (Re c−1
β )

∫ ω

0

b−β cos b db µ(A)µ(B),

and the result for β < 1 follows.
Now suppose that β = 1 and recall that ψ1(b) = `(1/b)˜̀(1/b)−2b−1. By Lemma 5.6,

m(t)

∫ ω/t

0

W (b) cos tb db = ˜̀(t)
π

2

∫ ω/t

0

ψ1(b)ξ(b) cos tb db.
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where ξ(b) has the same properties as before. Now

˜̀(t)

∫ ω/t

0

ψ1(b)ξ(b) db = ˜̀(t)

∫ ω/t

0

ψ1(b)(µ(A)µ(B) + o(1)) db

= ˜̀(t)˜̀(t/ω)−1(µ(A)µ(B) + o(1))→ µ(A)µ(B).

Next,

˜̀(t)

∫ ω/t

0

ψ1(b)ξ(b)(cos tb− 1) db =

∫ ω

0

˜̀(t)
˜̀(t/σ)

`(t/σ)
˜̀(t/σ)

ξ(σ/t)
cosσ − 1

σ
dσ.

By Remark 5.8(b), ˜̀ is slowly varying and `(x) = o(˜̀(x)) as x → ∞. By Potter’s
bounds, the integrand is dominated by σ1−ε for any ε > 0, so the integrand con-

verges to zero pointwise and ˜̀(t)
∫ ω/t

0
ψ1(b)ξ(b)(cos tb − 1) db → 0 as t → ∞. Hence

limt→∞m(t)
∫ ω/t

0
W (b) cos tb db = π

2
µ(A)µ(B) yielding the result for β = 1.

Lemma 6.2 Let β′ ∈ (1
2
, β). Then lim supt→∞m(t)I2(t, ω) = O(ω−(2β′−1)).

Proof It follows from evenness of ga and W (b), together with the fact that supp ga =
[−a, a], that

I2(t, ω) =

∫
b>ω/t

[e−itbga(b+ λ) + eitbga(b− λ)]W (b) db =

∫ a+|λ|

ω/t

h(b)W (b) db,

where h(b) = e−itbga(b + λ) + eitbga(b − λ). Continuing as on [20, p. 278] down as
far as [20, Equation (5.14)], we obtain m(t)|I2(t, ω)| ≤ a−1J1(t, ω) + πa−2J2(t, ω) +
a−1J3(t, ω), where

J1(t, ω) = m(t)

∫ ω/t

(ω−π)/t

|W (b+ π/t)| db, J2(t, ω) = m(t)t−1

∫ a+|λ|

ω/t

|W (b)| db,

J3(t, ω) = m(t)

∫ a+|λ|

ω/t

|W (b+ π/t)−W (b)| db.

By Remark 5.8(a), W is integrable on [0, a + |λ|] so J2(t, ω) � ˜̀(t)t−β → 0 as
t→∞. By Lemma 5.5, for β < 1,

J1(t, ω)� `(t)t1−β
∫ (ω+π)/t

ω/t

`(1/b)−1b−β db =

∫ ω+π

ω

(`(t)/`(t/σ))σ−β dσ � ω−(β−ε),

for any ε > 0 by Potter’s bounds. By Lemma 5.6 and Remark 5.8(b), for β = 1,

J1(t, ω)� ˜̀(t)

∫ (ω+π)/t

ω/t

ψ1(b) db = ˜̀(t){˜̀(t/(ω + π))−1 − ˜̀(t/ω)} → 0 as t→∞.
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By Lemma 5.9 with h = π/t,

J3(t, ω)� ˜̀(t)2t1−2β

∫ ∞
ω/t

˜̀(1/b)−2b−2β db+ t1−β+ε−γ
∫ a+|λ|

0

b−β db = J3,1 + J3,2.

By Potter’s bounds,

J3,1 =

∫ ∞
ω

[˜̀(t)/˜̀(t/σ)]2σ−2β dσ �
∫ ∞
ω

σ−2β′ dσ � ω−(2β′−1).

Finally, since we are in the case β > 1
2
, we can choose γ ∈ (1−β, β) in hypothesis (H).

Hence J3,2 � t1−β+ε−γ = o(1) as t→∞ for ε > 0 sufficiently small.

6.3 Modified argument under hypotheses (A) and (S)(i)

Assume hypotheses (A) and (S)(i) and that µ(τ > t) = ct−β + O(t−q) where c > 0,
β ∈ (1

2
, 1), q > 1. Recall that β+ > β.

First, we note by Proposition 5.10 that Corollary 5.7 is unchanged. Hence the
proof of Proposition 4.1 is unchanged.

For Proposition 4.3, we adopt a different strategy from before. Instead of consider-
ing limω→∞ lim supt→∞ Ir(t, ω) for r = 1, 2, we consider limt→∞ Ir(t, t

κ) for a suitable
choice of κ > 0.

Lemma 6.3 limt→∞m(t)I1(t, tκ) = πdβga(λ)µ(A)µ(B) for all κ > 0.

Proof Following the proof of Lemma 6.1 and using Lemma 5.5 and Proposition 5.10,∣∣∣m(t)I1(t, ω)− 2m(t)ga(λ)

∫ ω/t

0

W (b) cos tb db
∣∣∣� ωt−β

∫ ω/t

0

b−β db� ω2−βt−1.

By Lemma 5.12,

m(t)

∫ ω/t

0

W (b) cos tb db = t1−β
∫ ω/t

0

(Re c−1
β b−βµ(A)µ(B) +O(b−(2β−β+)) cos tb db

= Re c−1
β

∫ ω

0

b−β cos b db µ(A)µ(B) +O(t−(β+−β)ω1−2β+β+).

Finally, a calculation (see for example [35, Proposition 9.5]) shows that∫ ω
0
b−β cos b db = Γ(1− β) sin(βπ/2) + O(ω−β). Hence the result follows with ω = tκ

for any κ > 0.

Lemma 6.4 limt→∞m(t)I2(t, tκ) = 0 for all κ > 0 sufficiently large.
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Proof We use the same decomposition m(t)|I2(t, ω)| ≤ a−1J1(t, ω) + πa−2J2(t, ω) +
a−1J3(t, ω) as in the proof of Lemma 6.2. By Proposition 5.10, we still have J1(t, ω)�
ω−(β−ε) and J2(t, ω)� t−β. By Lemma 5.11 with h = π/t,

J3(t, ω)� t1−βt−(β−ε)
∫ ∞
ω/t

b−2β db� tεω−(2β−1),

for any choice of ε > 0. Now take ω = tκ with ε < κ(2β − 1).

7 Proof of the local limit theorem with error term

In this section, we prove Theorem 2.7. The proof combines results from Section 5
with arguments from [39]. (A related argument [3, Theorem 6.3] based on [12] gives
a similar conclusion but without the error term.)

For ease of exposition, we assume hypotheses (H) and (S)(ii) throughout. However,
Lemma 5.9 is not required in this section, so we can just as well use hypothesis (A)
instead of hypothesis (H) by Proposition 5.10. Recall that qβ(t) = 1

2π

∫∞
−∞ e

ibte−cβ |b|
β
db

where cβ = i
∫∞

0
e−iσσ−β dσ.

In Section 4, we made use of the family of kernels ga(b) = a−1g(b/a) with Fourier
transforms ĝa(x) = ĝ(ax), where

g(b) =

{
1− |b|, |b| ≤ 1

0, |b| > 1
and ĝ(x) =

2(1− cosx)

x2
.

Since the current section closely follows [39] which uses slightly different conventions,
we now use ka(b) = g(ab) with transforms k̂a(x) = 1

2π
a−1ĝ(b/a). (In [39], k̂a is called

Ka.)
Let

µn(I) = µ(y ∈ A ∩ F−nB : τn(y) ∈ I),

and define

Vn(t, h, a) =

∫ ∞
−∞

k̂a(t− t′)µn([dnt
′, dn(t′ + h)]) dt′.

Lemma 7.1 Let L > 0. Then

Vn(t, h, a) = h
{
qβ(t)µ(A)µ(B) + e(n, h, a, t)

}
for a ≥ (Ldn)−1,

where e(n, h, a, t)→ 0 as n→∞, h→ 0 and a→ 0, uniformly in t ∈ R.

Proof In fact, we show that

|Vn(t, h, a)− hqβ(t)µ(A)µ(B)| ≤ const. h{e1(n) + e2(h) + e3(a)}
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where limn→∞ e1(n) = limh→0 e2(h) = lima→0 e3(a) = 0.
As in Section 5, we write R̂(ib) = λ(ib)P (ib) + Q̃(b) for |b| ≤ δ, where Q̃(b) =

R(ib)Q(ib). Then

R̂(ib)n = λ(ib)nP (0) + λ(ib)n(P (ib)− P (0)) + Q̃(b)n. (7.1)

Moreover, there exist constants C > 0, γ > 1− β, α1 ∈ (0, 1), where

‖P (ib)− P (0)‖B→L1 ≤ C|b|γ, ‖Q̃(b)n‖B ≤ Cαn1 , for all |b| ≤ δ, n ≥ 1. (7.2)

Also, we can choose C > 0, α1 ∈ (0, 1) so that

‖R̂(ib)n‖B ≤ Cαn1 for all b ∈ [δ, L], n ≥ 1. (7.3)

(Such an estimate for fixed b > 0 holds by (S)(ii). The uniform estimate follows
from [29, Corollary 2, part 2].)

By Corollary 5.4(a), 1− λ(ib) ∼ cβ`(1/|b|)bβ. Hence

λ(ib) ∼ e−cβ`(1/|b|)|b|
β

as b→ 0, lim
n→∞

λ(id−1
n b)n = e−cβ |b|

β

. (7.4)

Let β′ ∈ (0, β). By (7.4) and Potter’s bounds, for each fixed n, there exists

C1(n), C2(n) > 0 such that |λ(id−1
n b)|n ≤ C1(n)e−C2(n)|b|β′ for all |b| ≤ δdn. Also,

there exists n0 ≥ 1 such that |λ(id−1
n b)|n ≤ 2e−cβ |b|

β
for all |b| ≤ δdn, n ≥ n0. Hence

there exists C1, C2 > 0 such that

|λ(id−1
n b)|n ≤ C1e

−C2|b|β
′

for all |b| ≤ δdn, n ≥ 1. (7.5)

Now k̂a(t) = 1
2π

∫
R e
−ibtka(b) db and hence

Vn(t, h, a) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−ib(t−t
′)ka(b) db

∫
A∩F−nB

1{τn∈[dnt′,dn(t′+h)]} dµ dt
′

=
1

2π

∫
|b|≤a−1

e−ibtka(b)

∫
A∩F−nB

∫ d−1
n τn

d−1
n τn−h

eibt
′
dt′ dµ db

=
1

2π

∫
|b|≤a−1

e−itbka(b) (1− e−ihb) (ib)−1

∫
A∩F−nB

eid
−1
n bτn dµ db

=
h

2π

∫
|b|≤a−1

e−itbG(b, h, a)

∫
B

R̂(id−1
n b)n1A dµ db,

where G(b, h, a) = ka(b) (1− e−ihb) (ihb)−1.
Note that |G(b, h, a)| ≤ 1. Using (7.3) and that a ≥ (Ldn)−1,∣∣∣ ∫
δdn≤|b|≤a−1

e−itbG(b, h, a)

∫
B

R̂(id−1
n b)n1A dµ db

∣∣∣ ≤ ‖1A‖B ∫
δdn≤|b|≤Ldn

‖R̂(id−1
n b)n‖B db

= ‖1A‖B dn
∫
δ≤|b|≤L

‖R̂(ib)n‖B db ≤ C‖1A‖B dnαn1 .
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Hence this term can be incorporated into e1(n).
It remains to analyse

h

2π

∫
|b|≤δdn

e−itbG(b, h, a)

∫
B

R̂(id−1
n b)n1A dµ db =

h

2π
(I1 + I2 + I3),

where by (7.1),

I1 =

∫
|b|≤δdn

e−itbG(b, h, a)

∫
B

λ(id−1
n b)nP (0)1A dµ db,

I2 =

∫
|b|≤δdn

e−itbG(b, h, a)

∫
B

λ(id−1
n b)n(P (id−1

n b)− P (0))1A dµ db,

I3 =

∫
|b|≤δdn

e−itbG(b, h, a)

∫
B

Q̃(d−1
n b)n1A dµ db.

By (7.2) and (7.5),

|I2| ≤
∫
|b|≤δdn

C1e
−C2|b|β

′

C|d−1
n b|γ‖1A‖B db ≤ CC1‖1A‖B d−γn

∫ ∞
−∞
|b|γe−C2|b|β

′

db� d−γn ,

and

|I3| ≤ dn

∫
|b|≤δ

Cαn1‖1A‖B db� dnα
n
1 .

Again, these terms can be incorporated into e1(n).
This leaves the term I1 = I ′1µ(A)µ(B) where I ′1 =∫

|b|≤δdn e
−itbG(b, h, a)λ(id−1

n b)n db. Write I ′1 = J1 + J2 + J3 where

J1 =

∫
|b|≤δdn

e−itbka(b)
{

(1− e−ihb)(ihb)−1 − 1
}
λ(id−1

n b)n db,

J2 =

∫
|b|≤δdn

e−itb(ka(b)− 1)λ(id−1
n b)n db,

J3 =

∫
|b|≤δdn

e−itbλ(id−1
n b)n db.

Since |(1− e−ihb)(ihb)−1 − 1| ≤ 1
2
h|b| it follows from (7.5) that

|J1| ≤ h

∫ ∞
−∞

C1e
−C2|b|β

′

|b| db� h.

Also,

|J2| ≤
∫ ∞
−∞
|ka(b)− 1|C1e

−C2|b|β
′

db,

which converges to zero by the dominated convergence theorem as a→ 0. These are
the sole contributions to e2 and e3 respectively.
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Finally,

|J3 − 2πqβ(t)| ≤
∫
|b|≤δdn

|λ(id−1
n b)n − e−cβ |b|β | db+

∫
|b|≥δdn

e−cβ |b|
β

db,

which converges to zero by (7.4), (7.5) and the dominated convergence theorem as
n→∞.

Lemma 7.2 Let ε > 0 and L > 0. There exists n0 ≥ 1 and h0 > 0 such that

h(qβ(t)µ(A)µ(B)− ε) ≤ µn([dnt, dn(t+ h)]) ≤ h(qβ(t)µ(A)µ(B) + ε),

for all n ≥ n0, h ∈ [(Ldn)−1, h0], t ∈ R.

Proof Let q̃β = qβµ(A)µ(B). Since qβ is the Fourier transform of an L1 function,
q̃β is uniformly continuous and bounded. Let q∞ = |q̃β|∞ and choose h1 ∈ (0, 1) such
that |q̃β(t)− q̃β(t′)| ≤ 1

4
ε whenever |t− t′| ≤ h1.

For ε1 > 0, set ε2 =
∫
|x|>1/ε1

k̂1(x) dx. We choose ε1 ∈ (0, 1
6
) sufficiently small that

(q∞ + 2ε1q∞ + 1
2
ε)(1− ε2)−1 − q∞ ≤ ε, 2ε1q∞ + ε2(q∞ + ε) ≤ 1

2
ε. (7.6)

By Lemma 7.1, there exists n0 ≥ 1 and h0 ∈ (0, h1) such that for all n ≥ n0,
h ∈ [(Ldn)−1, h0], t ∈ R,

Vn(t− ε1h, h(1 + 2ε1), ε21h) ≤ h(1 + 2ε1)q̃β(t− ε1h) + 1
6
εh (7.7)

≤ h(1 + 2ε1)(q̃β(t) + 1
4
ε) + 1

6
εh ≤ h(q̃β(t) + 2ε1q∞ + 1

2
ε),

where we used the constraint ε1 ≤ 1
6
. Also, we can ensure that

Vn(t+ ε1h, h(1− 2ε1), ε21h) ≥ h(1− 2ε1)q̃β(t+ ε1h)− 1
4
εh (7.8)

≥ h(1− 2ε1)(q̃β(t)− 1
4
ε)− 1

4
εh ≥ h(q̃β(t)− 2ε1q∞ − 1

2
ε).

Now, for |t′| ≤ ε1h,

µn([dn(t+ ε1h− t′), dn(t− ε1h− t′ + h)]) ≤ µn([dnt, dn(t+ h)])

≤ µn([dn(t− ε1h− t′), dn(t+ ε1h− t′ + h)]).

Also
∫∞
−∞ k̂1 dx = 1, so

1− ε2 =

∫
|x|≤1/ε1

k̂1(x) dx = ε21h

∫
|x|≤1/ε1

k̂ε21h(ε
2
1hx) dx =

∫
|x|≤ε1h

k̂ε21h(x) dx.
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Hence

Vn(t− ε1h, h(1 + 2ε1), ε21h)

=
∫∞
−∞ k̂ε21h(t

′)µn([dn(t− ε1h− t′), dn(t+ ε1h− t′ + h)]) dt′

≥
∫
|t′|≤ε1h k̂ε21h(t

′)µn([dn(t− ε1h− t′), dn(t+ ε1h− t′ + h)]) dt′

≥
∫
|t′|≤ε1h k̂ε21h(t

′)µn([dnt, dn(t+ h)]) dt′ = (1− ε2)µn([dnt, dn(t+ h)]).

By (7.6) and (7.7),

µn([dnt, dn(t+ h)]) ≤ (1− ε2)−1Vn(t− ε1h, h(1 + 2ε1), ε21h)

≤ h(q̃β(t) + 2ε1q∞ + 1
2
ε)(1− ε2)−1 ≤ h(q̃β(t) + ε).

Arguing similarly, and exploiting the last estimate for µn([dnt, dn(t+ h)]),

Vn(t+ ε1h, h(1− 2ε1), ε21h)

≤
∫
|t′|≤ε1h k̂ε21h(t

′)µn([dn(t+ ε1h− t′), dn(t− ε1h− t′ + h)]) dt′

+

∫
|t′|≥ε1h

k̂ε21h(t
′)h(q∞ + ε) dt′

≤ µn([dnt, dn(t+ h)]) + ε2h(q∞ + ε).

By (7.6) and (7.8),

µn([dnt, dn(t+ h)]) ≥ Vn(t+ ε1h, h(1− 2ε1), ε21h)− ε2h(q∞ + ε)

≥ h((q̃β(t)− 2ε1q∞ − 1
2
ε− ε2(q∞ + ε)) ≥ h(q̃β(t)− ε).

This completes the proof.

Proof of Theorem 2.7 After a change of variables, Lemma 7.2 reads as follows:
Let ε > 0 and L > 0. There exists n0 ≥ 1 and h0 > 0 such that

sup
t∈R

dn

∣∣∣µn([t, t+ h])− h

dn
qβ(d−1

n t)µ(A)µ(B)
∣∣∣ ≤ hε, (7.9)

for all n ≥ n0, h ∈ [L−1, dnh0].
Fix h > 0 and define en = supt∈R dn

∣∣µn([t, t + h]) − h
dn
qβ(d−1

n t)µ(A)µ(B)
∣∣. We

must show that limn→∞ en = 0.
Let L = 1/h. By (7.9), for any ε > 0 there exists n0 ≥ 1, h0 > 0, such that

en ≤ hε for all n ≥ n0 subject to the constraint dnh0 ≥ h. Since dn → ∞, there
exists n1 ≥ n0 such that dnh0 ≥ h for all n ≥ n1. Hence en ≤ hε for all n ≥ n1 as
required.
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8 Proof of Theorems 2.4 and 2.6

In this section, we prove Theorem 2.4 by establishing separately an upper bound
(Corollary 8.3) and a lower bound (Corollary 8.4). In the process of obtaining the
upper bound, we prove Theorem 2.6.

For ease of exposition, we assume hypothesis (H) throughout. Again, Lemma 5.9
is not required in this section, so we can just as well use hypothesis (A) by Proposi-
tion 5.10.

8.1 Upper bound for lim inf

In this subsection, we only require hypothesis (H) with s ∈ R+ in (H)(ii). A simplified
version of the argument used in the proof of Lemma 5.5 can be used to obtain

Proposition 8.1 Assume the setting of Theorem 2.6 with β ∈ [0, 1]. For σ > 0,

T̂ (σ) = Dβ
′ ˜̀(1/σ)−1σ−β(P (0) + E(σ)),

where Dβ
′ = Γ(1 − β)−1 for β ∈ (0, 1) and D0

′ = D1
′ = 1, and E(σ) is a family of

operators satisfying limσ→0 ‖E(σ)‖B→L1 = 0.

We can now complete

Proof of Theorem 2.6 For n ≥ 0, the real Laplace transform of the distribu-
tion Gn(x) = µ(τn(y) ≤ x, y ∈ A ∩ F−nB) is given by

∫
Y

1A 1B ◦ F n e−στn dµ =∫
B
R̂(e−σ)n1A dµ. Hence,∫ ∞

−∞
e−σt dUA,B(t) =

∞∑
n=0

∫
B

R̂(e−σ)n1A dµ =

∫
B

T̂ (e−σ)1A dµ.

The conclusion follows from Proposition 8.1 by the continuous time version of Kara-
mata’s Tauberian Theorem [11, Theorem 1.7.1].

Lemma 8.2 Assume the setting of Theorem 2.6 with β ∈ (0, 1]. Let z : [0,∞) →
[0,∞) be integrable. Then

lim inf
t→∞

m(t)

∫ t

0

z(t− y) dUA,B(y) ≤ dβµ(A)µ(B)

∫ ∞
0

z dx.

Proof This is proved in the same way as [20, Lemma 9] using Theorem 2.6.

Corollary 8.3 Assume the setting of Theorem 2.6 with β ∈ (0, 1]. Then for any
h > 0,

lim inf
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) ≤ dβµ(A)µ(B)h.
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Proof Let z = 1[0,h]. By Lemma 8.2,

lim inf
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) = lim inf
t→∞

m(t+ h)

∫ t+h

0

z(t+ h− y) dUA.B(y)

≤ dβµ(A)µ(B)

∫ ∞
0

z dx = dβµ(A)µ(B)h,

as required.

8.2 Lower bound for lim inf

Corollary 8.4 Assume the setting of Theorem 2.4. Then for any h > 0,

lim inf
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) ≥ dβµ(A)µ(B)h.

Proof Let m ≥ k ≥ 0. By (2.1) and Theorem 2.7,

UA,B(t+ h)− UA,B(t) ≥
m∑
n=k

µ(y ∈ A ∩ F−nB : τn(y) ∈ [t, t+ h])

=
m∑
n=k

h

dn
qβ(t/dn)µ(A)µ(B) + Ek,m,

where Ek,m =
∑m

n=k en/dn.
Let κ ∈ (1, 1/β). Then d−1

n = O(n−κ) and Ek,m = O(supn≥k |en|)→ 0 as k →∞.
Choosing k = [C1t

β/`(t)] and m = [C2t
β/`(t)], for fixed C2 > C1 > 0 and arguing

word for word as in [20, Proof of eq. (7.2)], we obtain

lim inf
t→∞

m(t)(UA,B(t+ h)− UA,B(t)) ≥ µ(A)µ(B)

∫ C2

C1

x−1/βqβ(x−1/β) dx.

Now let C1 → 0 and C2 →∞ and use that
∫∞

0
x−1/βqβ(x−1/β) dx = dβ.

9 General class of observables

In this section, we extend mixing for semiflows, Corollary 3.1, to cover more general
classes of observables. As well as being of interest in its own right, this is useful for
the extension to flows in Section 10.

Throughout, we suppose that we are in the setting of Corollary 3.1; in particular
β ∈ (1

2
, 1] and hypotheses (H) and (S)(i) hold. We also suppose from now on that Y

is a metric space with inner regular2 Borel probability measure µ and that F and τ

2µ is inner regular if µ(A) = supµ(K : K ⊂ A, A compact} for all open sets A ⊂ Y .
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are almost everywhere continuous. It is well-known that mixing for infinite measure
system is not a measure-theoretic property [25, 30] and that care needs to be taken
with the class of observables. Here we follow Krickeberg [30]. As a special case of the
general theory, we prove the following result:

Theorem 9.1 Define Hn = {(y, u) ∈ Y × [0,∞) : τ(y) − n ≤ u ≤ τ(y)}, n ≥ 1.
Then

lim
t→∞

m(t)

∫
Y τ
v w ◦ Ft dµτ = dβ

∫
Y τ
v dµτ

∫
Y τ
w dµτ (9.1)

for all bounded and almost everywhere continuous functions v : Y τ → R supported in
Hn for some n, and all w ∈ L1(Y τ ).

Note that this includes all bounded almost everywhere continuous observables v
supported in a set of the form A× [a1, a2] ⊂ Y τ where A ⊂ Y , 0 < a1 < a2 ≤ infA τ
and supA τ < ∞. For the results on flows in Section 10 we require the more general
class of observables in Theorem 9.1.

In the remainder of this section, we prove a more general result along the lines
of [30] and use this to prove Theorem 9.1.

Let C be a collection of measurable subsets A ⊂ Y with 1A ∈ B such that

(i) µ(∂A) = 0 for all A ∈ C,
(ii) A1 ∩ A2 ∈ C for all A1, A2 ∈ C,
(iii) C is a basis for the topology on Y .

In practice, we can often take C to consist of all measurable sets A ⊂ Y with 1A ∈ B
and µ(∂A) = 0. This is the case for the examples in Section 11.

Proposition 9.2 Let C ′ = {A×[a1, a2] ⊂ Y τ : A ∈ C}. Let D be the ring generated by
C ′ and let H ∈ D. Then (9.1) holds for all bounded and almost everywhere continuous
functions v : Y τ → R supported in H, and all w ∈ L1(Y τ ).

Proof It is immediate that conditions (i)–(iii) for C are inherited by the collection
C ′ of subsets of Y τ (with µ replaced by µτ ).

Write q(t) = d−1
β m(t). By Corollary 3.1,

lim
t→∞

q(t)µτ (A ∩ F−1
t B) = µτ (A)µτ (B), (9.2)

for all A ∈ C ′ and all measurable rectangles B ⊂ Y τ . The argument now proceeds as
in [30, Section 2]. We provide the details for completeness.
Step 1: Let B ⊂ Y τ be a measurable rectangle. Then (9.2) holds for all A ∈ C ′ and
hence (using condition (ii)) for all finite unions and differences of elements of C ′. In
other words, (9.2) holds for all A ∈ D.
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Step 2: Let B ⊂ Y τ be a measurable rectangle. Recall that H ∈ D and let A ⊂ H
such that µτ (∂A) = 0. Suppose that K ⊂ IntA is compact. Since C ′ is a basis and
D is stable under finite unions, there exists D ∈ D such that K ⊂ D ⊂ IntA. Using
also the inner regularity of µτ ,

µτ (A) = µτ (IntA) = sup{µτ (K) : K ⊂ IntA, K compact}
= sup{µτ (D) : D ⊂ A, D ∈ D}.

Similarly,

µτ (H \ A) = sup{µτ (D) : D ⊂ H \ A, D ∈ D} = sup{µτ (H \D) : D ⊃ A, D ∈ D},

so µτ (A) = inf{µτ (D) : D ⊃ A, D ∈ D}. Hence for any ε > 0, there exist D1, D2 ∈ D
such that D1 ⊂ A ⊂ D2 and µτ (D2) − µτ (D1) < ε. Since (9.2) holds for D1 and D2

and µτ (D1 ∩ F−1
t B) ≤ µτ (A ∩ F−1

t B) ≤ µτ (D2 ∩ F−1
t B),

(µτ (A)− ε)µτ (B) ≤ µτ (D1)µτ (B) ≤ lim inf
t→∞

q(t)µτ (A ∩ F−1
t B)

≤ lim sup
t→∞

q(t)µτ (A ∩ F−1
t B) ≤ µτ (D2)µτ (B) ≤ (µτ (A) + ε)µτ (B).

As ε is arbitrary, we have verified that (9.2) holds for all A ⊂ H with µτ (∂A) = 0.
In other words, limt→∞ q(t)

∫
Y τ
v 1B ◦ Ft dµτ =

∫
Y τ
v dµτ µτ (B) where v = 1A. This

extends to all finite linear combinations v =
∑
cj1Aj by linearity. We will refer to

such functions v as step functions.
Step 3: Let B ⊂ Y H be a measurable rectangle and suppose that v is as in the
statement of the proposition. We claim that for any ε > 0 there exist step functions
v1 and v2 such that v1 ≤ v ≤ v2 and

∫
Y τ
v2 dµ

τ −
∫
Y τ
v1 dµ

τ < ε. Then(∫
Y τ
v dµτ − ε

)
µτ (B) ≤

∫
Y τ
v1 dµ

τ µτ (B) ≤ lim inf
t→∞

q(t)

∫
Y τ
v 1B ◦ Ft dµτ

≤ lim sup
t→∞

q(t)

∫
Y τ
v 1B ◦ Ft dµτ ≤

∫
Y τ
v2 dµ

τ µτ (B) ≤
(∫

Y τ
v dµτ + ε

)
µτ (B).

Hence (9.1) holds for all v of the desired form and all indicator functions w = 1B
where B is a measurable rectangle.

To prove the claim, let δ > 0 such that δ(µτ (Y ) + 2|v|∞) < ε/2 and let I be a
closed interval covering the image of v. We can write I as a finite union of closed
intervals I1, . . . , IN with diam Ij < δ intersecting only at endpoints.

Let Aj = v−1(Ij) and define Z to be the set of discontinuity points of v. Then
∂Aj ⊂ Z ∪ v−1(∂Ij) for all j. Hence µτ (∂Aj) ≤ µτ (v−1(∂Ij)).

Also, there are at most countably many xk ∈ R such that µτ (v−1(xk)) > 0. We
can modify the intervals Ij slightly so that xk 6∈ ∂Ij for all j, k. This ensures that
µτ (∂Aj) = 0 for all j.
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As in Step 2, it follows from inner regularity of µτ that for each j there exists
Dj ∈ D with Dj ⊂ Aj such that µτ (Aj \Dj) < δ/N . Now define

v1 =
∑

infDj v 1Dj + infY v 1H\⋃Dj , v2 =
∑

supDj v 1Dj + supY v 1H\⋃Dj .

Then v1 ≤ v ≤ v2. Also,∫
Y τ
v2 dµ

τ −
∫
Y τ
v dµτ ≤

∑
µτ (Dj)(supDj v − infDj v) + 2µτ (H \

⋃
Dj)|v|∞

≤ µτ (Y )δ + 2|v|∞
∑

µτ (Aj \Dj) < δ(µτ (Y ) + 2|v|∞) < ε/2.

Similarly,
∫
Y τ
v dµτ −

∫
Y τ
v1 dµ

τ < ε/2 verifying the claim.
Step 4: To prove the general result, suppose without loss that v ≥ 0 and let w ∈
L1(Y τ ). By a more standard approximation argument than the one in Step 3, there ex-
ist simple functions w1 and w2 such that w1 ≤ w ≤ w2 and

∫
Y τ
w2 dµ

τ−
∫
Y τ
w1 dµ

τ< ε.
The result follows.

Proof of Theorem 9.1 Let C ′′ = C ′ ∪ {En, n ≥ 1} where C ′ is the collection
of rectangles in Proposition 9.2 and En =

⋃n
j=1 F

−1
j (Y × [0, 1]). Let I = {C ∩

En : C ∈ C ′, n ≥ 1} and define C ′′′ = C ′′ ∪ I. Then C ′′′ is closed under finite
intersections, and hence conditions (i)–(iii) are satisfied by the collection C ′′′. We
claim that property (9.2) holds for all A ∈ C ′′′. Certainly, the sets En lie in the
ring generated by C ′′′, and Hn ⊂ En, so the conclusion follows from the approximate
argument used to prove Proposition 9.2.

It remains to verify the claim. By Corollary 3.1, property (9.2) holds for all A ∈ C ′.
By Remark 3.2, this holds also for the sets En. Finally, if I ∈ I, then I is contained
in one of the rectangles in C ′ and µτ (∂I) = 0. Hence 1I is a bounded and almost
everywhere continuous function supported in a rectangle in C ′. The claim follows
from Proposition 9.2.

10 Mixing for infinite measure flows

In this section, we show how mixing for semiflows extends to mixing for flows.

10.1 Assumptions and disintegration

We suppose throughout that Ft : Y τ → Y τ is a suspension semiflow over a map
F : Y → Y with nonintegrable almost everywhere continuous roof function τ : Y →
R+ satisfying ess inf τ > 1 and µ(τ > t) = `(t)t−β, β ∈ (1

2
, 1], and we assume that

hypotheses (H) and (S)(i) hold.
Let X = Y × N where Y and N are bounded metric space. Let f(y, z) =

(Fy,G(y, z)) where F : Y → Y and G : Y × N → N are continuous almost every-
where. The projection π : X → Y , π(y, z) = y, defines a semiconjugacy between f
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and F . There exists a unique f -invariant ergodic probability measure µX on X such
that π∗µX = µ, see for instance [9, Section 6].

Define τ : X → R+ by setting τ(y, z) = τ(y) and define the suspension Xτ =
{(x, u) ∈ X × R : 0 ≤ u ≤ τ(x)}/ ∼ where (x, τ(x)) ∼ (fx, 0). The suspension flow
ft : Xτ → Xτ is given by ft(x, u) = (x, u+ t) computed modulo identifications, with
ergodic invariant measure µτX = µX × Lebesgue.

Under two additional assumptions (F1) and (F2) below, we show in Theorem 10.5
that Corollary 3.1 for the semiflow Ft applies equally to the flow ft.

First, we assume contractivity along N :

(F1) limn→∞ d(fn(y, z), fn(y, z′)) = 0 for all z, z′ ∈ N uniformly in y ∈ Y .

Recall that R denotes the transfer operator for F : Y → Y .

Proposition 10.1 Fix z0 ∈ N . Suppose v ∈ C0(X). Then the limit

ηy(v) = lim
n→∞

(Rnvn)(y), vn(y) = v ◦ fn(y, z0),

exists for almost every y ∈ Y and defines a probability measure supported on
π−1(y). Moreover y 7→ ηy(v) =

∫
π−1(y)

v dηy is integrable and
∫
X
v dµX =∫

Y

∫
π−1(y)

v dηy dµ(y).

Proof See for instance [14, Proposition 3].

Remark 10.2 The proof of [14, Proposition 3] shows that the sequence Rnvn is
Cauchy in L∞(Y ). If the metric on Y can be chosen so that Rnvn is continuous for
each n, then v̄ ∈ C0(Y ). (In fact, it can often be shown that v̄ is Hölder when v is
Hölder [14].)

Note that Xτ = Y τ ×N . Given v ∈ C0(Xτ ), define

v̄ : Y τ → R, v̄(y, u) =

∫
x∈π−1(y)

v(x, u) dηy(x).

Then ∫
Xτ

v dµτX =

∫
Y τ
v̄(y, u) dµτ (y, u).

We require the additional assumption:

(F2) The function v̄ : Y τ → R is almost everywhere continuous.

Remark 10.3 If v is uniformly continuous, then for any ε > 0 there exists δ < 0
such that |v̄(y, u) − v̄(y, u′)| < ε for all (y, u), (y, u′) ∈ Y τ with |u − u′| < δ. This
combined with Remark 10.2 shows that condition (F2) is easily satisfied in practice
for a large class of observables v ∈ C0(Xτ ).
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Remark 10.4 The set up in this section (skew product X = Y × N , roof function
τ constant in the N direction) is not very restrictive. Suppose that Tt : M →M is a
smooth flow defined on a Riemannian manifold M and that Λ is a partially hyperbolic
attractor, so there exists a continuous DTt-invariant splitting TΛM = Es⊕Ecu where
Es is uniformly contracting and dominates Ecu. By [7, Proposition 3.2, Theorem 4.2],
the stable bundle Es extends to a neighbourhood U of Λ and integrates to a Tt-
invariant collection Ws of stable leaves that topologically foliate U .

This means that we can choose a topological submanifold X ⊂M that is a cross-
section to the flow Tt formed as a union of stable leaves, and automatically the roof
function τ is constant along stable leaves. (This construction has been widely used
recently [5, 6, 8, 10].) Assuming for convenience the existence of a global chart for
Ws, we obtain a Poincaré map f : X → X where X = Y × N with N playing
the role of the stable direction. Moreover, f has the desired skew product form
f(y, z) = (Fy,G(y, z)), where F : Y → Y is defined by quotienting along the stable
leaves, and condition (F1) is automatically satisfied. Also (F2) holds by Remark 10.2.
Hence our set up holds in its entirety provided F : Y → Y and τ : Y → Z+ satisfy
the required properties.

10.2 The mixing result

Choose a subset H of Y τ as in Proposition 9.2.

Theorem 10.5 Suppose that µ(τ > n) = `(n)n−β where β ∈ (1
2
, 1]. Let v ∈ C0(Xτ )

be supported in C × N where C is a closed subset of IntH. Let w ∈ C0(Xτ ) be
uniformly continuous and supported on a set of finite measure. Assume that (H),
(S1), (F1) and (F2) hold. Then

lim
t→∞

m(t)

∫
Xτ

v w ◦ ft dµτX = dβ

∫
Xτ

v dµτX

∫
Xτ

w dµτX .

Proof Following [10], we define ws : Y τ → R, s > 0, by setting

ws(y, u) = w ◦ fs =

∫
x∈π−1(y)

w ◦ fs(x, u) dηy(x).

Note that
∫
Y τ
|ws| dµτ ≤

∫
Xτ |w| ◦ fs dµτX =

∫
Xτ |w| dµτX so ws ∈ L1(Y τ ) for all s.

The semiconjugacy π : X → Y extends to a measure-preserving semiconjugacy
πτ : Xτ → Y τ , πτ (x, u) = (πx, u). Write m(t)

∫
Xτ v w ◦ ft dµτX = I1(s, t) + I2(s, t)

where

I1(s, t) = m(t)

∫
Xτ

v ws ◦ πτ ◦ ft−s dµτX ,

I2(s, t) = m(t)

∫
Xτ

v (w ◦ fs − ws ◦ πτ ) ◦ ft−s dµτX .
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For t > s,

I1(s, t) = m(t)

∫
Xτ

v ws ◦ Ft−s ◦ πτ dµτX = m(t)

∫
Y τ
v̄ ws ◦ Ft−s dµτ .

Since v̄ is bounded and almost everywhere continuous, supported in H, and ws ∈
L1(Y τ ), it follows from Proposition 9.2 that for all s > 0,

lim
t→∞

I1(s, t) = dβ

∫
Y τ
v̄ dµτ

∫
Y τ
ws dµ

τ = dβ

∫
Xτ

v dµτX

∫
Xτ

w dµτX .

Choose ψ : Y τ → [0, 1] continuous such that supp v ⊂ suppψ × N ⊂ H × N .
Define

Ds : Y τ → R, Ds(y, u) = diamw ◦ fs((πτ )−1(y, u)).

Note that |Ds| ≤ 2|w|∞ and µτ (suppDs) ≤ µτX(f−1
s suppw) = µτX(suppw) < ∞, so

Ds ∈ L1(Y τ ). Also, |w ◦ fs(x, u)− ws ◦ πτ (x, u)| ≤ Ds ◦ πτ (x, u). Hence for t > s,

|I2(s, t)| ≤ |v|∞m(t)

∫
Xτ

ψ ◦ πτ Ds ◦ πτ ◦ ft−s dµτX = |v|∞m(t)

∫
Y τ
ψDs ◦ Ft−s dµτY .

Since ψ ∈ C0(Y τ ) is supported in H and Ds ∈ L1(Y τ ), it again follows from Propo-
sition 9.2 that for all s > 0,

lim sup
t→∞

I2(s, t) ≤ |v|∞ dβ
∫
Y τ
ψ dµτ

∫
Y τ
Ds dµ

τ .

By uniform continuity of w and (F1), lims→∞ |Ds|∞ = 0. Hence |Ds|1 ≤
|Ds|∞ µτ (suppDs) ≤ |Ds|∞ µτX(suppw) → 0 as s → ∞. This combined with the
estimates for I1 and I2 yields the desired result.

11 Examples

In this section, we demonstrate how the methods in this paper apply to the examples
described in the introduction.

11.1 NonMarkovian intermittent semiflows and flows.

Let ft : [0, 1]τ0 → [0, 1]τ0 be an intermittent semiflow as in Example 1.1. The first
step is to pass from the original suspension semiflow on [0, 1]τ0 to a suspension of the
form Y τ where (Y, µ) is a probability space and τ is an nonintegrable roof function.

We take Y ⊂ [0, 1] to be the interval of domain of the rightmost branch of the
AFN map f : [0, 1] → [0, 1]. Define the first return map F = fσ : Y → Y where
σ = min{n ≥ 1 : fny ∈ Y }. Then µ = (µ0|Y )/µ0(Y ) is an absolutely continuous
invariant probability measure for F . Define the induced roof function τ → R+ given
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by τ(y) =
∑σ(y)−1

`=0 τ0(f `y). Let Ft : Y τ → Y τ be the corresponding suspension
semiflow with infinite invariant measure µτ .

Since τ0 is Hölder, it is standard that µ(τ > t) ∼ ct−β for some c > 0 (see for
example [13, Proposition 9.1]).

Proposition 11.1 Suppose that ft has two periodic orbits (other than the neutral
one) whose periods have irrational ratio. Then hypotheses (H) and (S)(i) hold with
B = BV being the space of bounded variation functions on Y , with norm ‖v‖BV =
|v|1 + Var v.

Proof Hypotheses (H)(i,iii) are verified in [13, Proposition 9.2]. Also, hypothe-
sis (H)(ii) is verified in [13, Proposition 9.2] for s ∈ H ∩Bδ(0).

To complete the verification of (H)(ii), we proceed as follows. Since the density
dµ/dLeb lies in BV and is bounded above and below, it suffices to work with the
non-normalised transfer operator P̂ (ib)v = P (eibτv) where

∫
Y
Pv w dLeb =

∫
Y
v w ◦

F dLeb.
Let λ = inf g|Y > 1. Fix L > 0. It suffices to show that there exists a constant C ′

such that
‖P̂ (ib)nv‖BV ≤ C ′n|v|1 + C ′nλ−n Var v,

for all |b| ≤ L, n ≥ 1, v ∈ BV.
Let n ≥ 1 and let {I} be the partition of domains of branches for F n. There is

a constant C0 independent of n such that supI1/(F
n)′ ≤ C0 diam I for all I. Also

F ′ ≥ λ, so |1/(F n)′| ≤ 1/λn for all n.
Write

P̂ (ib)nv =
∑
I

{ζn eibτnv} ◦ ψI 1FnI ,

where ζn = 1/(F n)′, ψI is the inverse branch (F n|I)−1, and τn =
∑n−1

j=0 τ ◦ F j (not to
be confused with τ0). We have the standard estimate

|P̂ (ib)nv|1 ≤ |P̂ (ib)nv|∞ ≤
∑
I

supI(ζn|v|) ≤
∑
I

supIζn(infI |v|+ VarI v)

≤
∑
I

supIζn(diam I)−1

∫
I

|v| +
∑
I

λ−n VarI v ≤ C0|v|1 + λ−n Var v.

Next,

Var(P̂ (ib)nv) ≤
∑
I

VarI(ζn e
ibτnv) + 2

∑
I

supI(ζn|v|)

≤
∑
I

VarI(ζnv) +
∑
I

supI(ζn|v|) VarI e
ibτn + 2C0|v|1 + 2λ−n Var v.

A standard argument shows that∑
I

VarI(ζnv) ≤ C1|v|1 + λ−n Var v,
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where C1 = supn |(F n)′′/[(F n)′]2|. Also,

VarI e
ibτn ≤ |b|VarI τn ≤ L

n−1∑
j=0

VarI(τ ◦ F j) = L

n−1∑
j=0

VarF jI τ.

Let a be the domain of a branch for F . Then τ |a =
∑σ(a)−1

`=0 τ0 ◦ f `. Since the images
f `a are disjoint for ` < σ(a), it follows that Vara τ ≤ Var τ0. But F jI lies in such a
domain a, so VarF jI τ ≤ Var τ0 and it follows that VarI e

ibτn ≤ LnVar τ0. Hence∑
I

supI(ζn|v|) VarI e
ibτn ≤ LnVar τ0

∑
I

supI(ζn|v|) ≤ LnVar τ0 (C0|v|1 + λ−n Var v).

Combining these estimates we have shown that ‖P̂ (ib)nv‖BV ≤ (3C0 + C1 +
C0LVar τ0)n|v|1 + (4 + LVar τ0)nλ−n Var v as required.

Passing to the L2 adjoint of R̂(ib), to verify (S)(i) it is equivalent to rule out the
possibility that there exists b 6= 0 and a BV eigenfunction v : Y → S1 such that
eibτv ◦ F = v. Suppose that y ∈ Y is a periodic point of period k for F . Now,
BV functions have one-sided limits, and F is orientation preserving, so v(y+) =
v(F k(y+)). Substituting into the equation eibτkv ◦ F k = v we obtain eibq = 1 where
q = τk(y+) is the period of the corresponding periodic orbit for ft. This is impossible
under the periodic orbit assumption, so the BV eigenfunction v cannot exist.

It follows from Theorem 9.1 that mixing for Ft holds for all bounded almost
everywhere continuous v̂ supported in Hn = {(y, u) ∈ Y × [0,∞) : τ(y) − n ≤ u ≤
τ(y)} for some n ≥ 1, and all ŵ ∈ L1(Y τ ).

Let v, w : [0, 1]τ0 → R be observables where v is bounded and almost everywhere
continuous and w is integrable. The projection π : Y τ → [0, 1]τ0 , π(y, u) = fu(y, 0),
defines a measure-preserving semiconjugacy from Ft : Y τ → Y τ to ft : [0, 1]τ0 →
[0, 1]τ0 . Define the lifted observables v̂ = v ◦ π, ŵ = w ◦ π : Y τ → R. Then mixing for
Ft holds provided v̂ is supported in an Hn and hence the desired mixing result (1.2)
holds for ft and the observables v and w. This includes all (finite linear combinations
of) observables v supported in A × [0, infA τ0] where A ⊂ {σ ≤ j} for some j ≥ 1.
(For such an observable v, we have supp v̂ ⊂ Hn for n ≥ j|τ0|∞.)

We can enlarge the class of observables v to include all bounded almost ev-
erywhere continuous functions that vanish on a neighborhood of the neutral fixed
point. First, by adjoining preimages of Y we can enlarge Y so that it con-
tains [ε, 1] for any prescribed ε > 0. Hence we can suppose without loss that
supp v ⊂ {(x, u) ∈ [0, 1]τ0 : x ∈ Y }. Since Y is the first return for F , it follows
that supp v̂ ⊂ {(y, u) ∈ Y τ : u ≤ τ0(y)}. Let Yj = {y ∈ Y : σ(y) = j}. Define
C ′ = C × [0, |τ0|∞] where C =

⋃
j≥1{Yj : |τ0|∞ < infYj τ}. For the remaining Yj, we

have j ≤ infYj τ ≤ |τ0|∞ so supYj τ ≤ j|τ0|∞ ≤ |τ0|2∞. Hence supp v̂ ⊂ C ′ ∪ Hn for

n ≥ |τ0|2∞. Such observables are covered by Section 9: Take C to be the collection of
finite unions of intervals in Y and define C ′ as in Proposition 9.2. Certainly C ′ ∈ C ′.
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Define C ′′ as in the proof of Theorem 9.1. Then C ′, Hn ∈ C ′′, so C ′ ∪ Hn lies in the
ring generated by C ′′. In particular, mixing holds for observables such as v̂ supported
in C ′ ∪Hn.

Remark 11.2 To verify hypothesis (S)(ii) it suffices to rule out the possibility that
there exists b 6= 0, λ ∈ S1 and a BV eigenfunction v : Y → S1 such that eibτv◦F = λv.
But then every period q = τ(y) corresponding to a fixed point y for F satisfies eibq = λ.
Hence hypothesis (S)(ii) holds provided this set of periods is not contained in a lattice
of the form a1 + a2Z for some a1, a2 > 0.

Remark 11.3 Combining this example with Remark 10.4 leads to examples of par-
tially hyperbolic intermittent flows preserving an infinite measure. See [33, 34] for
similar examples in the discrete time invertible setting. In addition to extending to
continuous time, our examples are an improvement over those in [33, 34] as far as
mixing is concerned, since we require no assumptions on smoothness of foliations (in
contrast to [33]) or Markov structure (in contrast to [34]).

11.2 Suspensions over unimodal maps

Let ft : [0, 1]τ0 → [0, 1]τ0 be a suspension over a unimodal map f : [0, 1] → [0, 1] as
described in Example 1.3. We sketch the main ingredients following [13, Section 10].

By [13, Lemma 10.2(a)], µ0(τ0 > t) = ct−β + O(t−2β) where the constant c > 0 is
given explicitly. By [44], f : [0, 1] → [0, 1] is modelled by a Young tower F : Y → Y
where Y is a tower with exponential tails over a suitable inducing set Z ⊂ [0, 1]. The
roof function τ0 lifts to a roof function τ : Y → R+ satisfying µ(τ > t) = ct−β+O(t−2β)
where µ is the SRB measure on Y .

To prove (1.2), it remains to verify hypotheses (A) and (S)(i). In [13, Section 8.1],
a new function space B is defined for Young towers with exponential tails, and hy-
pothesis (A)(i,ii) are verified. This relies on a technical condition called (H3) in [13]
which is verified in [13, Lemma 10.3]. (The Lasota-Yorke inequality (A)(ii) is proved
in [13, Theorem B.2] for s ∈ H ∩ B1(0) but holds equally for s ∈ H ∩ BL(0) for any
L > 0.) By [13, Proposition 8.6 and Lemma 10.4], hypothesis (A)(iii) is satisfied. Fi-
nally, hypothesis (S)(i) is immediate from the quasicompactness assumptions (A)(i,ii)
and the assumption about periodic orbits for ft.
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son, Henk Bruin, Dima Dolgopyat, Péter Nándori, Françoise Pène and Doma Szász at
the thematic program Mixing Flows and Averaging Methods at the Erwin Schrödinger
Institute (ESI), Vienna, April/May 2016. We are particularly grateful to Bruin, Dol-
gopyat, Nándori and Pène for continued discussions on this topic and to the referee
for several helpful suggestions.

37



The research of DT and IM was supported in part by funding from ESI. The
research of IM was supported in part by a European Advanced Grant StochExtHomog
(ERC AdG 320977).

References

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Math. Surveys and
Monographs 50, Amer. Math. Soc., 1997.

[2] J. Aaronson. Rational weak mixing in infinite measure spaces. Ergodic Theory
Dynam. Systems 33 (2013) 1611–1643.

[3] J. Aaronson and M. Denker. Local limit theorems for partial sums of stationary
sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1 (2001) 193–237.

[4] T. M. Adams and C. E. Silva. Weak rational ergodicity does not imply rational
ergodicity. Israel J. Math. 214 (2016) 491–506.
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[7] V. Araújo and I. Melbourne. Existence and smoothness of the stable foliation
for sectional hyperbolic attractors. Bull. London Math. Soc. 49 (2017) 351–367.
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