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In this short note we consider the behaviour of random iterations of a finite set of
Euclidean isometries, elements of the group E(n), acting on Euclidean space. We
were motivated by a paper of Ambroladze and Adahl [1] in which they proved that
orbits are bounded with probability one if and only if the isometries have a common
fixed point. Issues such as the growth rate in the unbounded case are not addressed
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Abstract

We consider the statistical behaviour of i.i.d. compositions of a finite set of
Euclidean isometries of R*. We give a new proof of the central limit theorem
and weak invariance principles, and we obtain the law of the iterated logarithm.
Our results generalise immediately to Markov chains.

We also give simple geometric criteria for orbits to grow linearly or sub-
linearly with probability one and for nondegeneracy (nonsingular covariance
matrix) in the statistical limit theorems.

Our proofs are based on dynamical systems theory rather than a purely
probabilistic approach.

Introduction

in [1].



Gorostiza [7, 8] established the central limit theorem (CLT) and the weak invari-
ance principle (WIP) for compositions of independent identically distributed (i.i.d.)
Euclidean isometries with second moments, generalising results of [16, 17].

In this paper, we specialise to the case where the isometries are chosen from a
finite subset {(1),...,7(d)} of E(n). We give a new proof of the CLT and WIP and
in addition we prove the law of the iterated logarithm (LIL). The idea is that random
iteration of a finite set of isometries is equivalent to iterating a skew product map on
X x E(n) where X is a full shift on d symbols. We are thus in a position to apply
results on the dynamical behaviour of Euclidean extensions of chaotic dynamical
systems (references [13, 6, 12]).

Moreover, the setting in [13, 6, 12] works equally well for Euclidean extensions
X x E(n) for which X is a subshift of finite type. Hence our results for i.i.d.’s
generalise immediately to finite Markov chains.

We also give simple geometric conditions for these statistical limit laws to be
nondegenerate and we distinguish between linear and sublinear growth.

The remainder of this paper is structured as follows. In Section 2, we state the
problem precisely and list our main results. The reformulation as a skew product
X x E(n) is given in Section 3. The proofs of our results are given in Section 4.

2 Random Euclidean Isometries

In this section, we describe our main results. For the most part, we concentrate on
random compositions of i.i.d. isometries. The generalisation to Markov chains is given
in Subsection (b) below.

The Euclidean group E(n) is the group of isometries of R". We denote elements
of E(n) as v = (h, k) where h € O(n) and k € R". The action of E(n) on R" is given
by

v-z=hz+k.
Accordingly, the group multiplication is given by
(h,k)(W, k") = (hh', hK + k),

and we have the semidirect product E(n) = O(n) x R".

Fix a finite collection y(1), ... ,v(d) € E(n), and fix probabilities p(1), ... ,p(d) €
(0,1) with p(1) + --- + p(d) = 1. Given a point Z; € R", we choose (i) with
probability p(:) and map Zy — Z; = 7(i)Zp. Then we iterate the process starting
with the point Z;, and so on.



More precisely, we consider a sequence of i.i.d. random variables Y7, Y5, ... taking
values in {7(1),...,7(d)} such that Y; = (i) with probability p(i). Given Z; € R",
we then consider the trajectory {Zy : N > 0} in R" given by

Zo, Zy=NZy, Zy=YaZy=YV1Zy, ... Zn=YnNZN1=YNYN1---Y2V1Z

Note that {Zy} is a sequence of random variables with values in R”. We are interested
in the rate of growth (linear, square-root growth, bounded, etc) of Zy. (The rate of
growth is independent of the initial condition Z;.)

It is clear that if the isometries (i) have a common fixed point, then Zy is
bounded. Indeed, if xy is the common fixed point, then |Zy — xo| = |Zy — z¢| for
all N. Conversely, Ambroladze and Adahl [1] show that if the (i) do not have a
common fixed point, then {Zy} is unbounded with probability one. Moreover, if K
is any compact subset of R”, then Pr(Zy € K) — 0 as N — oc.

For each of the d isometries y(i) € E(n), we have the decomposition y(i) =
(h(7),k(:)) € O(n) x R*. It is convenient to introduce the subgroup G C O(n)
defined to be the smallest closed subgroup containing h(1),... ,h(d). The group G
acts on R" and we define Fix(G) = {v € R* : gv = v for all g € G}.

Our first result gives necessary and sufficient geometric conditions for the growth
to be linear almost everywhere.

Theorem 2.1 Define E_z Z;j_:l p())k(2). Let m: R* — R" be orthogonal projection
onto Fix(G) and define Z = wk. Then with probability one,

. 1 -
lim NZN = 7.

N—o0

Thus, we conclude that the growth is almost surely linear if £ has a nonzero
component in Fix(G) and almost surely sublinear otherwise.
We now state our main results.

Theorem 2.2 (Central Limit Theorem (CLT)) The sequence {ﬁ(ZN - NZ)}
converges in distribution to a normal distribution with mean zero and covariance
matriz 3. That is, for all rectangles I C R”,

1
1 1 -1
PrYF U = N2 €12 (e sy e /Iexp{_5<z pppde

as N — oo. The covariance matrix 3 satisfies g = Xg for all g € G.

Our statistical limit theorems are nondegenerate if ¥ is nonsingular, (equivalently,
(3z,z) > 0 for all nonzero z € R"). We have the following conditions for nondegen-
eracy.



Theorem 2.3 (Nondegeneracy) The following conditions are equivalent:
(a) X is singular.
(b) ¢c- (Zy — NZ) is bounded for some nonzero c € R".
(¢) There is a G-irreducible subspace V. C R* such that (Zy — NZ)|y is bounded.

(d) There is a nontrivial G-irreducible subspace V- C R"™ such that the restricted
isometries y(i)|y have a common fized point, or there is a trivial (hence one-
dimensional) G-irreducible subspace on which the restricted isometries (trans-
lations) are all equal.

Set Wx(0) =0, and

Wy(t) = < (Zne — NtZ), t=1/N,2/N,...

Linearly interpolating on each interval [(r — 1)/N,r/N], r > 1, we obtain a sequence
of random elements Wy € C([0, c0), R™).

The weak invariance principle (which is a refinement of the CLT) states that
the sequence {Wy} converges weakly to Brownian motion. Recall that a stochastic
process W : [0,00) x Q@ — R" is called an n-dimensional Brownian motion if (i)
W(0) = 0 almost surely, (ii) there is an n X n covariance matrix X such that W (t)
has distribution N(0,¢X) for each ¢ > 0, and (iii) for each 0 < t; < t3 < --+ < tg,
the increments W (ty), W (ts) — W (t1),... , W (tx) — W (tx_1) are independent random
vectors. It is a basic property of Brownian motion that the random element W lies
almost surely in C([0, 00), R").

Theorem 2.4 (Weak Invariance Principle (WIP)) The sequence {Wx} con-
verges weakly in C([0,00), R") to an n-dimensional Brownian motion with covariance
Y. (In other words, the measures induced by Wy on C([0,00),R") converge weakly
to an n-dimensional Wiener measure.)

Given ¢ € R", we define 02 = ¢TYc. Theorem 2.2 is equivalent to the statement
that ﬁc- (Zy — NZ) converges in distribution to a one-dimensional normal distribu-

tion with mean zero and variance o2. The analogous comment applies to Theorem 2.4.
We also have the following almost sure result.

Theorem 2.5 (Law of the Iterated Logarithm (LIL)) With probability one,
forallce R®

limsup c¢- (Zy — NZ)/+/2Nloglog N = o..

N—o0



Recall that (i) = (h(i), k(¢)) where h(i) € O(n) and k(i) € R". Let E denote
expectation with respect to the probability vector (p(1),...,p(d)). So for example,
E(h) = 321, p(i)h(0)-

Write R* = Fix(G) @ Fix(G)*. Since ¥ commutes with the action of G, we have
the corresponding direct sum X = 31 @ Xo. Write h(i) = h(i)1 @ h(i)2 and so on.

We define a projection IT on the space of n xn matrices by I[I(Y) = %(fG gY grdv+
f G gYTg"dv). Note that IT averages Y over G and symmetrises Y, so II projects onto

the space of symmetric matrices that commute with the action of G. In particular,
[(x) = x.

Theorem 2.6 (Formula for X)

21 - E((kl - El)(k'l - El)T)
o = T{E(kzky ) + 2(I — E(h2)) " E(k2) E (k3 h2)}.

(a) Irreducible actions of G

The statement of our main results is greatly simplified when G acts irreducibly on
R™. This is the typical situation, in the sense that if n > 2 and d is large enough,
then most d-tuples {h(1),..., h(d)} will generate the group G = SO(n) or the group
G = O(n) both of which which certainly act irreducibly on R™.

More precisely, we claim that for sufficiently large d, a residual subset of d-tuples
in O(n)¢ will generate SO(n) or O(n). It is clear that d = 2 suffices when n = 2. It
follows from [2] that d = 3 suffices for any n > 3. Moreover, when n > 3, the set of
generating d-tuples is open and dense [10] and even Zariski open [5].

When G fails to act irreducibly on R", we can decompose R* = Vi @ --- @V,
into G-irreducible subspaces. Let m; be the orthogonal projection onto V;. Then
{m;Zn} is identical to the sequence {Zy} obtained by replacing k(i) with m;k(7) and
Zy with 7;Zy. Hence, for many purposes, we may suppose from the outset that G
acts irreducibly on R”.

If n=1and G =1, then {Zy} is a simple random walk on R. We exclude this
special case and assume that G acts irreducibly and nontrivially on R". Immediate
consequences of this assumption are that Fix(G) = {0}, Z = 0 and & = 02,. A
summary of our main results for such actions of G is as follows.

Theorem 2.7 Suppose that G acts irreducibly and nontrivially on R*. Then
(a) limy oo +Zn = 0 with probability one.

(b) {ﬁZN} converges in distribution to an n-dimensional normal distribution with
mean zero and variance o?1,.



(c) o =0 if and only if the isometries y(i) have a common fized point.

(d) The sequence {Wy} converges weakly to an n-dimensional Brownian motion
with covariance o21,.

(e) With probability one, for all c € R", limsupy_,, ¢ Zy/v/2NloglogN = o.
(f) 0% = %{E|k|2 +240((I — E(h)) " E(k)E(kTh)) }

Remark 2.8 This result is an immediate consequence of our main results. In par-
ticular, to prove part (f), note that ¥y = ¥ = ¢%I, in Theorem 2.6. Taking traces
on both sides and dividing by n yields the required result. We note that this formula
for the variance in the irreducible case was obtained by Gorostiza [7].

(b) Markov chains

Fix a finite set of isometries {y(1),...,7(d)} C E(n) as before. Let P = {P,;} be a
d x d stochastic matrix consisting of entries F;; > 0 with row sums Z?Zl P;; =1 for
all i. We assume that P is irreducible: for each (7, j) there exists an integer n > 1
such that the (i, 7)'th entry of P™ is positive.

We suppose that the random sequence {Zy} is defined in an analogous way to
the i.i.d. case, with Zy = YyYy_1---Y2Y1Z, except that if Y1 = (i), then Yy is
chosen to be 7(j) with probability P;;. (Since we are interested in asymptotics, the
method of choosing Y] is unimportant.)

If Pj > 0 for all 1 < 4,5 < d, then our main results go through without any
change except for the formulas for the mean Z and the variance ¥. In fact Z =
7r ijl q(7)k(7) where ¢ = (q(1),...,q(d)) is the unique probability vector (¢(j) > 0
and Z?:l q(j) = 1) satisfying PTq = q. We do not attempt to give an explicit formula
for 3.

If some of the P;; are zero, we need an additional hypothesis. A word W is a
finite sequence of symbols W = jjjs - - « jm, where each j, € {1,...,d}. The word is
admissibleif P ;... > 0forallr =1,... ,m —1. An admissible word W = j1j2 -+ jm
is periodic if in addition P; ; > 0. If W = j1jo--- jm, is a periodic word, then we
define h(W) = h(1)h(ja) - - hljm).

Fix ¢ € {1,...,d} and let W; denote the set of all periodic words W = j; - - - jy,
(ranging over all possible m > 1) satisfying j; = 4. Let G; be the smallest closed
subgroup of G containing {h(W) : W € W;}. It is easily seen that the subgroups G;,
1=1,...,d, are conjugate in G.



Theorem 2.9 Suppose that P defines an irreducible Markov chain. If G; = G for
some (and hence all) i, then Theorems 2.1-2.5 are valid, except that

d
Z=m>_ p(k(),
j=1
where ¢ = (q(1),...,q(d)) is the unique probability wvector (q(j) > 0 and

Z;-Zzl q(j) = 1) satisfying PTq = q.

3 Reformulation as a dynamical system

We continue to suppose that {y(1),...,v(d)} C E(n) is a finite set of isometries
chosen at random. Write (i) = (h(i), k(7)) where h(i7) € O(n) and k(i) € R*. Let G
be the closed group generated by h(1),...,h(d) and assume that G acts irreducibly
and nontrivially on R*. Let ' = G x R* C E(n).

Let X = {1,2,...,d} be the space of one-sided sequences whose entries lie
in {1,...,d} and let T : X — X be the full shift on d symbols. In the i.i.d.
case, we define u to be the Bernoulli measure induced by the probability vector
(p(1),...,p(d)). In the Markov case, we restrict to the subshift of finite type X = Xp
corresponding to P (so we only consider sequences (jo, j1, - - -) that are admissible in
the sense that P;,; ., > 0 for all » > 0), and we let 1 be the Markov measure induced
by the stochastic matrix P = {P,;} (see for example [11, Theorem I1.10.1]).

Let £: X — {v(1),...,7v(d)} be defined by &(x) = (i) if zy = i. In other words,
¢ is a I'-valued random variable that depends only on the 0’th coordinate of z.

Form the product X x I' and define the I'-extension T¢ : X x I' =+ X x I' by

Te(z,7) = (T, &(x)7).-
Then TN (z,7v) = (T"x,&n(x)y) where
En(z) = E(TV1a) - - £(T)é(2).

Note that Y; = & o 7Y is a sequence of random variables taking values in
{v(1),...,v(d)} just as in Section 2. Moreover, if v = (e, Zp), then we can re-
construct the random sequence Zy from the formula

TgN(x, (e, Zy)) = (TN, (Gn, Zy)),

where Gy is the product of the first N matrices selected from {h(0),... ,h(d)}.
Hence the statistical properties of the sequence {Zx} can be recovered from the
statistical properties of the I'-extension 7.
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An equivalent problem is to study skew-products of the form T¢(z,v) = (z,v¢(x)).
In [13], we began a systematic investigation of such skew-products. The difference is
only notational, but we shall proceed with the cocycle ¢ acting on the right to make
the connection with [6, 12, 13].

The first step is to make use of the semidirect product structure of I' = G x R".
Write &(z) = (h(x),k(z)). Then h(z) = h(i) whenever xy = i and similarly for &, so
again h and k are functions that depend only the 0’th coordinate. Writing v = (g, v),
(where g € O(n), v € R") we have

Te(x,g,v) = (Tz, gh(x), v + gk(z)).

Defining Tj, : X x G — X X G by Ty(z,9) = (Tz,gh(z)) and ¢ : X x G — R* by
&(x, g) = gk(x), we can rewrite the skew product in the form

Tg(x,g,v) = (Th(xag)av + ¢(x,g))
and so
N _ (TN
T§ (SL‘,g,’U) - (Th (ZE,g),U+¢N(:E,g)),
where ¢y = Z;V:_Ol ¢o T,{. Moreover,
Zn(z) = Zo + dn(z,e).

In this way, questions about the rate of growth of Zy reduce to statistical questions
about the observation ¢ : X xG — R" defined on the compact G-extension X x G [13].

4 Proofs

In this section, we prove our main results. We restrict throughout to the i.i.d. case,
until we reach the proof of Theorem 2.9.

Let v denote Haar measure on GG, and define the product measure m = p X v on
X X (G. By the definition of G, it is easily seen that

Proposition 4.1 The G-extension Ty, : X x G — X X G is ergodic with respect to m.

Proof By Livsic regularity, it suffices to show that T}, is topologically transitive (cf.
[14, Corollary 4.5]). Let U = Ux x Ug and V = Vx x Vg denote open sets in X x G.
Choose gy € Ug. We show that there exists € Ux such that o7 (z, go) € V for some
Jj=>1

Given a word W = z125 - - - x,,, we let Cy, denote the corresponding cylinder set
in X and we define h(W) = h(z1) - - - h(z,). Note that h(W) = h,(z) for all z € Cy .
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In the i.i.d. case, X is a full shift so all words are admissible. Fix a word W of
length n say such that Cy, € Ux. Let ¢’ = h(W;) and choose ¢" = h(i1)h(iz) - - - h(ip,)
such that gog'¢g"” € V. (This can be done since the h(i) generate a dense subset of
G.) Define Wy = iqiy - - - i, to be the corresponding word in X so that h(Ws) = ¢".
Finally choose a word W3 so that Cy, € Vy

Now let z € Cw,w,w,. It follows from the choice of W; and W3 that x € Ux and
o™tz € Vx. Moreover o7 ™ (z, go) = (6""x, gohnim(2)) = (6" T™x, goh(W1Ws)) =
(6™™z, g0g'g") € Vx X Vg as required. |

Proof of Theorem 2.1 Let ¢ = fXXc # dm. By the ergodic theorem, ¢ /N — ¢
as N — oo for almost every (z,g9) € X x G.
From the equivariance condition ¢(z, g) = gk(z), it follows as in [13] that

5=/c;gdl//Xk(x)du(x):7r/Xkd,u.

But k(z) = k(zo) and so [y kdu = Y7 p(i)k(i). Hence ¢ = Z. Moreover, it
follows from equivariance that ¢y /N — Z for all g € G, for almost every z € X. In
particular, ¢ (z,e)/N — Z for almost every z € X.

Finally, Zn(z) = Zy + ¢n(z, e) and the result follows. |

The proofs of Theorems 2.2-2.5 are now a straightforward application of results
in [6, 12]. For completeness, we sketch the main ideas.

Standard techniques enable us to pass between (G-extensions of one-sided and two-
sided shifts on X. First suppose for simplicity that GG is a connected compact Lie
group and that the product measure m on X X G is not only ergodic (as guaranteed
by Proposition 4.1) but also weak mixing. In the one-sided case, Field et al. [6]
used spectral properties of the equivariant Ruelle operator [15] to obtain a martingale
approximation for the sequence {¢x} defined in Section 3. Results of Billingsley [3, 4]
then yield the CLT and WIP for the sequence {¢y} on X x G (with respect to the
probability measure p x v). Similarly, the LIL for {¢y} is a consequence of the
almost sure invariance principle (ASIP) established in [6]. Nicol et al. [13] proved the
equivalence of conditions (a)—(c) in Theorem 2.3. The equivalence of condition (d)
follows from [1].

It follows from Melbourne and Nicol [12] that the CLT, WIP and LIL for the
sequence {¢x} on X x G hold equally for the sequence Zy(z) = Zy + dn(z,e€)
defined on X. It is also shown in [12] that the mixing hypothesis of [6] can be
weakened to ergodicity and that G' need not be connected. This completes the proof
of Theorems 2.2-2.5.

Finally, we derive the expression for .

Proof of Theorem 2.6 The proof generalises an argument of [7] in the irreducible
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case. Recall [6, 12] that

1
Y= lim — PnPydm.

N—o0 XxG

We can divide the proof up into the cases G = {1} and Fix(G) = {0}.

Suppose first that G = {1} and define k = k—%k Then © =
lmy e + [y ,I;N,l%%dm, where ky = k+koT + -+ koTN=1. Tt is well known
(see for example [6]) that the full shift on d symbols exhibits exponential decay of
correlations and that as a consequence

Y =E&E)+ Y BEkoTik) + > EkE oT9).
j=1 j=1

By independence, E(k o TV kT) = E(k o T9)E(k)" = 0. Similarly, E(k k7 o T9) = 0.
Hence, ¥ = E(k k') as required.
Next, we consider the case Fix(G) = {0}. We make the following observations

(a) I — E(h) is invertible (cf. [7, Lemma 1]).

(b) If A is a nonsingular matrix and ||A|| < 1, then
N-1
N —r 1
At =T —-A)" - —(I-AY)I - A2
> (T — A" = (1 = AN)(I - A4)

r=1

To see that (a) is true, note that E(h) = pihy + paho + -+ + pghg where h; is
orthogonal. Assume that I — E(h) is singular, that is that there exists x # 0 such
that (I — E(h))z = z, or E(h)z = z. This is equivalent to p1hyz + - - - + pghgr = .
We have |p;jh;z| = pj|z|, so the individual lengths of the vectors p;jh;x sum exactly
to the length of . So we can only have E(h)z = z if all the h;z have the same
direction, which means that hjz = x for every j. In other words z € Fix(G) = {0}
contradicting the fact that = # 0. Statement (b) can be proved by induction.

We have ¥ = A}i_r)r;o%/quvgé% and
x [ ook = [ oo+ %(NZ [wawior + NZ [wawior)
N-1 N-1
= o5t + 5 (X [wse+ X [ow o)
i>j 1<j

N—lN_ N—lN_
= [or+ 2o Jwras+ LG [ewer

10



where Ul¢ = (boT,f and integrals are over X x G with respect to the product measure
m=p X V.

Note that [ ¢¢Tdm = [,g([x kkTdp)g"dv = IIE(kKT). A more complicated
calculation gives

/ U edTam= [  gooT] "¢ dm

:/X</Ggh(x)h(Tx)"'h(TT1x)k(TTx)k(x)TgTdu)dy
/X ( /G gh(Tz) - h(T" 2)k(T"z) k(a:)Th(x)gleu> dv

i /X W(Tx) - - BT 2)k(T" ) k(z)Th(z)dp

L(E(h) E(k)EKR)),

where II(Y) = Jo9Y g"dv and we have used independence in the last line. By (a)
and (b),

N-1

SN B R (1 B)
r=1
and so
N1 _
YA [Wrest 5 T - Bw) EREE).
r=1
Similarly
N-1
3 N]; ! /¢(UT¢)T — TI((I - E(h) " E(k)E(KTR))".
r=1
Thus we obtain the required formula for X. |

Proof of Theorem 2.9 The main step is to verify that Proposition 4.1 is still valid.
Suppose that this is the case. The computation of Z differs in the Markov case only in
the computation of [, k du. To obtain the required formula for 7, it suffices to observe
that (by definition of the Markov measure p [11]) the probability distribution of z,
is given by the probability vector g associated to the defining stochastic matrix P.

The proofs of Theorem 2.2, 2.4 and 2.5 are identical to before, since the results
in [6, 12] apply equally well to full shifts and to subshifts of finite type.

11



It remains to verify that Proposition 4.1 is still valid. Choose (admissible) words
W, and W3 as before. Without loss of generality, we can augment W; (which shrinks
the cylinder Cyy,) so that WiWjs is admissible. Let i be the first symbol in Ws.
IfU,---.U, €W, and ky,... ,k,, > 1, then WlUfl...Ufang is admissible. It
suffices to show that Uy, ---,U,, € W; and ky,... .k, > 1 can be chosen so that
h(Wy)h(Uy)k - - - (U, )™ generates G.

Since G; generates G, we can arrange that h(W1)h(Up)* - - - h(U,,)* is as close to
the identity as desired (with k; = --- = k,, = 1). Hence, we may as well suppose
that h(W7) = e. Now, choose U, so that h(Ui),...,h(U,,) generates G. For any
r =1,...,m, we can choose k, so that h(U,)* is close to the identity. Do this for
m — 1 of the k. and choose the remaining &, = 1, to obtain the group element h(U,).
Choices of this type yield all the h(U,) generating G as required. |

Remark 4.2 (a) There is an alternative proof of Theorem 2.1 in the Markov chain
case based on [9] where it is shown that X X G is not ergodic, if and only if there is a
nontrivial irreducible representation R of G on C™ for some m > 1 and a measurable
function v : X — C™ with |v| =1 a.e. such that

R(h(x))v(Tx) = v(z), a.e.
Iterating, we have
R(hy(x))v(T"x) = v(z), (4.1)

where (as usual) h,(z) = h(x)h(Tx)---h(T" 'z).

It follows from Livsic regularity [14, Theorem 3.1] that it is sufficient to exclude
continuous solutions v to equation (4.1) in order to establish ergodicity. In particular,
we can evaluate (4.1) on periodic solutions to conclude that if W is a periodic word,
then

R(B(W))o(W™) = v(W™). (4.2)

Suppose that y is a sequence, W is periodic of period k, and Wy is admissible.
Then y, = W'y is admissible. Taking n = kr and z = vy, in (4.1), we obtain
R(h(W))"v(y) = v(y,). But y, — W and we can pass to a subsequence so that
R(h(W))" — I, leading to the fact that v(y) = v(W). Since the only restriction
on y is that Wy is admissible, we conclude that (like h), v(y) depends only on the
zero’th symbol in y. Hence (4.2) implies that R(h(W))v(i) = v(7) for all W periodic
with Wi admissible. This certainly includes all W € W;. Since G; = G, we conclude
that R(g)v(i) = v(¢) for all ¢ € G. But R is a nontrivial irreducible representation of
G so v(i) = 0 which is a contradiction. Hence X x G is ergodic as required.
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(b) The method in part (a) of this remark can be used to show that our hypotheses on
the G; are necessary as well as sufficient for ergodicity of X x G. To see this, take i = 1
say and suppose that G; # G. We construct a nontrivial irreducible representation
R of G and a function v : X — C™, |v| = 1, depending only on zero’th coordinates,
such that R(h)voT =wv. By [9], X X G is not ergodic.

Choose an irreducible representation of G' in which Fix(G;) # {0} and set v(1)
to be any unit vector in Fix(G;). If 2 < i < d, then by irreducibility of the Markov
chain, we can choose a word U; such that 7U;1 is admissible. Define

v(i) = h(iU;)v(1).

This completes the construction of R and v. It remains to verify that R(h)voT = v.
Since v and h depend only on zero’th coordinates, it is sufficient to verify that

h(i)v(iz) = v(i1),

whenever 44y is admissible. B B
First, choose a word U; such that 1U;s is admissible. Since 1UU; € Wi, we have
h(1U;)v(i) = h(1U;iU;)v(1) = v(1). Hence,

v(i) = h(10;) "t (1).
Now suppose that 4175 is admissible. Then
h(in)v(iz) = h(iriaUs,)o(1) = h(1U;) " h(W)u(1),
where W = lﬁililigUi2 € W;. Hence
h(i)v(is) = h(10;,) Mo(1) = v(i),
as required.

(c) In the case that G is abelian, the hypothesis on G; reduces to the usual “periodic
data” condition, namely that {h(W)} generates G where W ranges over all periodic
words.
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