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Abstract

Systems of reaction-diffusion equations posed on bounded rectangular do-
mains with Neumann boundary conditions often exhibit behavior that seems
degenerate given the physical symmetries of the problem. It is now well-
understood that Neumann boundary conditions lead to hidden symmetries that
are respounsible for subtle changes in the generic bifurcations of such systemms.

In this article, we consider the analogous situation for partially unbounded
domains such as the strip R x [0,7]. We show that hidden symmetries due
to assuming Neumann boundary conditions have remarkable consequences for
the validity of Ginzburg-Landau equations which govern the local bifurcations.
A single Ginzburg-Landau equation (which is universal for general boundary
conditions on R X [0, 7]) no longer suffices in general. Instead, it is necessary to
consider p coupled Ginzburg-Landau equations, where p is an arbitrary positive
integer.
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1 Introduction

Consider a system of reaction-diffusion equations u; = F(u) posed on a bounded
domain © C R™. Suppose that Neumann boundary conditions (NBC) are imposed
on the boundary of €2. The equations themselves are invariant under the Euclidean
group E(n), so the physical symmetries of the equations on 2 are given by the compact
subgroup I' C E(n) that preserves the domain €.

For certain domains, it turns out that there are ‘hidden symmetries’ in E(n) — "
that have important, though subtle, consequences for the generic bifurcations of the
system of reaction-diffusion equations. The simplest case is n = 1, Q = [0, 7]. The
group of physical symmetries is [' = Zy generated by the reflection x — 7 — . How-
ever, every solution that satisfies NBC on [0, 7] extends to a 27-periodic solution on R
so that the NBC problem embeds in a problem with full E(1) symmetry. The effects
of hidden translations in E(1) — Zy are documented in Fujii et al. [11] and formal-
ized in Armbruster and Dangelmayr [1]. These ideas were developed by Crawford,
Golubitsky, Gomes, Knobloch and Stewart [8] and were expanded upon in a series of
articles. See the recent review article of Gomes et al. [16], and references therein.

The effects of hidden symmetries are not restricted to reaction-diffusion equa-
tions. Experiments of Simonelli and Gollub [27] on the dynamics of parametrically
excited surface waves in square containers (2 = [0, 7]?) exhibit apparently degenerate
behavior that is not expected for problems with square symmetry (I' = D). In a
series of papers, Crawford investigated the effects of hidden translations and hidden
rotations for E(2)-equivariant equations posed on square domains with NBC. In par-
ticular, experiments devised in Crawford [3, 4] and carried out in Crawford, Gollub
and Lane [7] established that the ‘degenerate’ phenomena observed by Simonelli and
Gollub [27] are a direct consequence of hidden translations. Remarkably, transitions
in the surface wave experiment are controlled by symmetries that exist only in the
mathematical models and not in physical space. See Crawford [5, 6] for a discussion
of the theoretical (and potentially experimental) implications of hidden rotations.

In this paper, we consider systems of reaction-diffusion equations on partially
unbounded domains 2 (that is, we suppose that some spatial domain variables are
bounded, and some are unbounded). A concrete example is Q = R x [0,7] C R?,
so I' = E(1) x Zy. It is immediate that solutions satisfying NBC on € extend to
solutions on R? that are 2m-periodic in the zo-direction. Hence, we expect that hidden
translations and rotations in E(2) — I' have subtle effects on the generic bifurcations
of PDEs posed on 2.

However, the purpose of this paper is to point out a rather dramatic implication of
hidden symmetries for the Ginzburg-Landau theory of PDEs on partially unbounded
domains. Again, consider the partially unbounded domain R x [0, 7]. Since there
is a single unbounded domain variable, generically certain bifurcations (steady-state



bifurcations with nonzero critical wavenumber) are governed by a universal envelope
equation, or Ginzburg-Landau equation, of the form

AT = COAXX + ClA + CQ|A‘2A, (11)

where A is a complex-valued amplitude function depending slowly on the unbounded
space and time variables, and ¢y, ¢1, ¢2 are real constants. See for example Newell [21]
and also [9, 23]. For rigorous results, see [24, 19]. In particular, for general boundary
conditions on R x [0, 7], it follows from [19, 20] that generically there is a rigorous
justification of equation (1.1).

When NBC are imposed on R X [0, 7], we show that equation (1.1) is no longer
universally valid. Indeed, p critical wavenumbers are excited simultaneously, where p
is an arbitrary positive integer. In place of equation (1.1), we require a system of p
coupled Ginzburg-Landau equations. (It can then be shown, as in [19, 20], that gener-
ically there is a rigorous justification of the coupled Ginzburg-Landau equations.)

The need for p coupled equations can be seen as follows. The underlying equations
have E(2) symmetry when posed on the whole of R?> and generically have a unique
critical wavenumber k. > 0. The critical eigenfunctions have the form vpe'™®™® where
k € R? satisfies |k| = k.. Restricting to the NBC problem, we have the constraint
that ky € Z. Summarizing, the critical eigenfunctions for the NBC problem are given
by vie*®! cos kywy where ki € R, ky € Z and k? + k2 = k2. Thus ko is constrained
to finitely many, but arbitrarily many, values. Suppose that k. is not an integer, and
let p € Z be such that p — 1 < k. < p. Then ky = 0,1,... ,p— 1 and so there are p
critical wavenumbers k; for the unbounded spatial variable z;; namely

key K2 —1, /K2 —4,--- /K2 — (p—1)2.

Note that the integer p depends on the aspect ratio k./m which compares the critical
wavenumber for the planar PDE to the width of the strip €.

The remainder of this paper is organized as follows. In Section 2, we recall ideas
of Crawford et al. [8] on hidden symmetries resulting from NBC on certain bounded
domains. In Section 3, we consider the partially unbounded domain Q2 = R X [0, 7].
Further extensions of these ideas are described in Section 4.




2 Boundary conditions as symmetry constraints

In this section, we review the main ideas described in Crawford et al. [8]. For the
purposes of this paper, it is convenient to focus attention on the spatial domains
[0,7] (Fujii et al. [11], Armbruster and Dangelmayr [1]) and [0,7]> (Crawford et
al. [3,4, 5,6, 7, 8]).

Elsewhere, hidden translation symmetries have been studied in detail for hyper-
rectangular domains by Gomes [14, 15] and Gomes and Stewart [17, 18]. A systematic
analysis of hidden rotation symmetries for hyperrectangular domains can be found
in Ashwin [2]. Field, Golubitsky and Stewart [10] study hidden symmetries on hemi-
spherical domains, and present a general framework for hidden symmetries induced
by Neumann and Dirichlet boundary conditions on a large class of spatial domains.
These results have found a wide variety of applications, and we refer again to the
review article by Gomes et al. [16] for further details and references.

Neumann boundary conditions on [0, 7]

To fix ideas, we consider a nonlinear heat equation of the form

Up = Ugg + f(u), (2'1)

where f : R — R is a smooth nonlinearity, and v : R — R.

When equation (2.1) is restricted to the interval [0,7] with identical boundary
conditions at 0 and 7, the physical symmetry group is [' = Z, generated by the
reflection x — 7 — x.

However, suppose that we impose NBC so u/(0) = «/(7) = 0. Any C* function u
satisfying NBC on [0, 7] can be extended to a C' function satisfying PBC on [—, 7]
by setting u(x) = u(—=x) for = € [—m, 0]. Moreover, it follows from elliptic regularity
that if u is a smooth solution to equation (2.1) on [0, 7| then the extension yields a
smooth solution on [—m, 7]. Since the solution on [—m, 7] satisfies PBC, there is a
further extension to a 2m-periodic solution on R. Note that not every 27-periodic
solution is obtained in this manner, since by construction the solution is invariant
under the reflection z — —z.

Conversely, suppose that u is a 27-periodic solution on R satisfying u(—z) = u(z).
Then u'(0) = 0. Moreover, u(2m — x) = u(z) so that v'(7) = 0. Hence u restricts to
a solution on [0, 7| satisfying NBC.

Whereas the NBC problem has only Z, symmetry, the PBC problem has O(2)
symmetry generated by translations modulo 27 and reflections. Moreover, solutions
to the NBC problem are precisely those solutions to the PBC problem that satisfy the
symmetry constraint u(—z) = u(z). Let D; denote the subgroup of O(2) generated



by the reflection x — —x. We have shown that the NBC problem is the restriction
of the PBC problem to the fixed-point subspace FixD.

To understand the implications of this observation, it is convenient to revisit the
notion of hidden symmetries [12].

Hidden symmetries Suppose quite generally that I" is a compact Lie group acting
linearly on R™ and that X is an isotropy subgroup of I' with fixed-point subspace
Fix Y. Any I'-equivariant vector field f : R™ — R™ restricts to a vector field fy :
Fix ¥ — Fix X.

The largest subgroup of I' that preserves FixX is the normalizer N(3). Quoti-
enting out by ¥ (which acts trivially on Fix X) we obtain that fx is a Dx-equivariant
map where Dy, = N(X)/X.

However, it is not always the case that fx is a general Dy-equivariant vector field.
That is, not every Dyg-equivariant vector field extends smoothly to a ['-equivariant
vector field on R™. The simplest example of this is for the group I' = D5 acting in
its standard action on R?> & C (generated by z + €2™/%z, z ++ Z). Let ¥ be the
subgroup generated by z — Z, so Fix¥ =2 R. Note that N(X) = ¥ so that Dy = 1.
In particular, z + x? is a Dx-equivariant vector field on Fix¥. But a calculation
shows that there are no nontrivial Ds-equivariant quadratic maps on R? and hence
there is no smooth equivariant map f : R? — R? such that f(z) = 22 for x € Fix X.

Returning to the equation (2.1), we have seen that the PBC problem has O(2)
symmetry and that the NBC problem is the restriction of the PBC problem to FixID;
where I is generated by the reflection x — —z. We compute that N(D;) = Dy
generated by x — —z and ¢ — m — z. Hence, Dy = Z, generated by z — 7 — x
corresponding to the obvious symmetry of the NBC problem. Again, it is not the
case that every Zs-equivariant vector field on FixD; extends smoothly to an O(2)-
equivariant vector field. Hence, the NBC problem has hidden translation symmetry
leading to the ‘degeneracies’ discussed in [1, 11].

Remark 2.1 The analysis of hidden symmetries for equation (2.1) applies to a much
larger class of PDEs including systems of reaction-diffusion equations. Indeed, the
reflection trick that embeds NBC in PBC goes through provided elements of E(1) act
on functions u by transforming the spatial domain variables in the standard way:

r—=>x+b, T b— .

This is the case for equation (2.1) and for systems of reaction-diffusion equations in
general, but it is easy to write down equations with reflections acting as u(z) —
Au(b — z) where A is a range symmetry (with A? = I). If A is nontrivial, the
reflection trick fails. Hidden symmetries may still be significant at the level of critical
eigenfunctions, but we do not address such issues here.



Neumann boundary conditions on [0, 7|2

Next, we consider the analogous situation in R?. For definiteness, we consider the
equation

up = Au + f(u), (2.2)

where f : R — R is smooth, and A is the two dimensional Laplacian. Thus, u is a
real-valued function of two variables z1, z,.

Suppose that equation (2.2) is posed on the square [0, 7] so that ' = D;. Again,
NBC on [0, 7]* embeds in PBC on [—m,7]2. The PBC problem has symmetry group
Dy x T? where the 2-torus T? corresponds to translations mod 27 parallel to the
sides of the square. (To make the correspondence with the one dimensional case, it
is convenient to think of O(2) as Z, x T!.)

Thus, we may view the NBC problem as the restriction of a D, X T?-equivariant
problem to the fixed-point subspace Fix 3, where 3 = D? consists of the elements
(z1,22) — (£x1,+72). We compute that N(X) = Dy x D? so that Dy = Dy as
expected.

The implications of embedding NBC in PBC are considered in Crawford, Gollub
and Lane [7], with emphasis on the surface wave experiment in a square domain [27].
In the event of a steady-state bifurcation, the space of critical eigenfunctions should
generically be an irreducible representation of the physical symmetry group [I' = Dy;
see [13]. However, certain irreducible representations of D, x 7 have the property
that their restriction to FiXID)f is not Dy-irreducible. Some of these calculations are
repeated below (the case k. = 4/10). In particular, critical eigenspaces that are not
D, -irreducible may (and do) occur in the surface wave experiment, even though this is
degenerate behavior for a general problem with D,-symmetry. For a detailed analysis
of the implications of hidden translations both at the linear and nonlinear level, we
refer to [7]. Moreover, experiments devised in [3, 4] and carried out in [7] establish that
certain observed phenomena in the surface wave experiment are a direct consequence
of hidden translations.

There is a further embedding, where the D, x T?-equivariant PBC problem can
be viewed as a restriction of an E(2)-equivariant problem posed on the whole of
R?. Note that assuming PBC means restricting the E(2)-equivariant problem to
Fix £ where £ = (27Z)? is the two dimensional lattice generated by the translations
(z1,m2) = (21 + 27, 33), (%1, T2) — (21,79 + 27). Moreover N (L) = Dy x R* where
R? consists of all translations. Hence D, 2 D, x T? where T? = R?/L.

Thus, we have the hierarchy of embeddings

NBC < PBC C infinite plane
]D)4 ]D)4 x T2 E(Q)



The second embedding takes into account hidden rotations (and reflections) in
E(2) that are not present in the PBC problem [5, 6]. We note that this second step
of embedding the PBC problem in the full problem on the unbounded domain is
not, required in the one dimensional case. The difference is that in one dimension,
the Euclidean group E(1) preserves the invariant subspace Fix 27Z corresponding to
PBC, whereas in two dimensions, only the subgroup D, X R? preserves the subspace
Fix £ corresponding to PBC. (Put differently, ¥ = 27Z is a normal subgroup of E(1),
so there are no further hidden symmetries, whereas > = L is not a normal subgroup
of E(2).)

As in Remark 2.1, the method of embedding NBC in PBC is valid for systems
of reaction-diffusion equations, and more generally for systems of E(2)-equivariant
PDEs for which the action of E(2) on functions u = u(z1, x2) is given purely in terms
of the standard action of E(2) on the domain variables z1,xo. This includes the
Swift-Hohenberg equation

up = —(A+ kg)u+ f(u), (2.3)

where f : R — R is smooth and k. > 0.

Equation (2.3) has an important property that is shared by certain systems of
reaction-diffusion equations but not by equation (2.1). Hence, for illustrative pur-
poses, it is convenient to consider equation (2.3). Suppose that f'(0) = 0. If equa-
tion (2.3) is posed on the whole plane (so u : R* — R), then the critical eigenfunc-
tions corresponding to the linear term —(A + k2)? are given by e**® where |k| = k..
Thus equation (2.3) has nonzero critical wavenumber k. (whereas for reaction-diffusion
equations, it is necessary to consider systems to obtain a nonzero critical wavenum-
ber).

We now repeat certain calculations, carried out in [3, 7], for the Swift-Hohenberg
equation. Consider equation (2.3) posed on the domain [—7,7]?> with PBC. The
critical eigenspace is spanned by eigenfunctions e with |k| = k, such that &, ko € Z.
We consider in turn the cases k. = v/5 (which exhibits no degeneracies at the linear
level), k. = v/10 (degeneracies due to hidden translations) and k. = 5 (degeneracies
due to hidden rotations).

k. =+/5 The critical eigenfunctions are e*** where k = (2, £1), (£1,+2), so that
there is an eight dimensional critical subspace spanned by

COS 2Z1 COS Xy, COS 2Z1 Sin Ty, Sin 221 COS T, Sin 24 sin x4

COS L1 COS 2%9, COS X1 Sin 2x9, Sin X1 COS 2T, Sin xq Sin 22

This is an irreducible representation of D, x T?. Restricting to NBC on [0,7]? (so
first and third order normal derivatives vanish on the boundary, or equivalently PBC
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together with the symmetry constraint u(+z;, £x9) = u(z1,22)) we obtain the two
dimensional subspace spanned by

VU1 = COS 2Z1 COS T, U9 = COS T'1 COS 2T5.

Observe that D, is generated by the symmetries (z1,29) — (z2,21), (21,22) —
(m — x1,22). The induced action on the eigenfunctions vy, v, is given by

(01,02) — (U27U1)7 (Ulav2) — (Ul, —Uz),

which is an irreducible action of Dy (in accordance with [13]).

k. = /10 The critical eigenfunctions are e’ where k = (£3, £1), (£1, £3). Again,
we obtain an eight dimensional irreducible representation of Dy x T2, and restricting
to NBC yields the two dimensional subspace spanned by

VU1 = COS 3x1 COS X, Vg = COS L1 COS 3T5.
However, the action of D, on these eigenfunctions is now given by

(v1,v2) = (v2,v1),  (v1,v2) — (—v1, —vg),

which is no longer an irreducible action (the subspaces spanned by v, + vy are Dy-
invariant).

In this case, the ‘degeneracy’ is a direct consequence of the hidden translations
x1 +— x1 + 7 and x9 — x9 + 7; see [3, 4, 7).

k. =5 The critical eigenfunctions are e*** where k = (44, £3), (£3, £4), (£5,0),
(0, £5). The resulting twelve dimensional subspace is no longer an irreducible rep-
resentation of Dy x 72. This behavior for the PBC problem is degenerate for a
D, x T?-equivariant problem and hence is a consequence of hidden rotations (in par-
ticular, the rotation that maps the vector (3,4) onto the vector (5,0)); see [5, 6.
Restricting to NBC yields a four dimensional critical eigenspace as a result of hidden
rotations.

Continuing in this way, we see that there are values of k. that yield critical
eigenspaces of arbitrarily high (but finite) dimension for the NBC problem with de-
generacies due to the combined effects of hidden translations and rotations. This
phenomenon occurs robustly in codimension one bifurcations for E(2)-equivariant
systems of PDEs posed on Q = [0, 7]> with NBC. However, ‘most’ values of k. yield
(both Dy-irreducible and reducible) critical eigenspaces of dimension two for the NBC
problem).



3 Neumann boundary conditions on R X [0, 7]

Suppose that equations of the form (2.2) or (2.3) are posed on the infinite strip
R x [0, 7|, with physical symmetry I' = E(1) x Zs. Again, the NBC problem embeds
in a PBC problem on R x [—m, 7] with symmetry E(1) x O(2). This in turn embeds
in a problem on R? with symmetry group E(2). As in the case of the bounded
domain 2 = [0,7]? considered in the previous section, the embedding of NBC in
PBC implies hidden translation symmetry, and the embedding of PBC in the planar
problem implies hidden rotation symmetry. We now highlight the new implications
for Ginzburg-Landau theory that are not present for NBC on bounded domains.

To emphasize the bifurcation theory aspects, we incorporate a bifurcation param-
eter A € R into the Swift-Hohenberg equation (2.3). Thus, we consider the equation

up = —(A + k2)*u + Mu + f(u), (3.1)

where k. > 0, f : R — R is smooth and f'(0) = 0. Note that k. is the critical
wavenumber for the PDE posed on the infinite plane R?. That is, when A = 0, the
critical eigenfunctions have the form e** where |k| = k.. (In other words, there is a
steady-state bifurcation at A = 0 with nonzero critical wavenumber k. [20].)

Now consider equation (3.1) posed on the strip @ = R x [0, 7] subject to NBC.
There is a one-to-one correspondence between solutions satisfying NBC on R x [0, 7]
and solutions on the whole of R? satisfying the symmetry constraints

u(zy, —xe) = u(x1,29), u(T1, s+ 2m) = u(x1, 22).

It follows that the critical eigenfunctions at A = 0 are given by e*1%1 cos kyxy where
ki € R, ky € Z, and k? + k3 = k?. Note that there is a finite but arbitrarily large
number of possible values for ko (depending on the value of k2). Indeed, the number
p of nonnegative values of ky is given by [k;] + 1 where [k.] is the integer part of k..

If k. < 1, then ks = 0 and the critical wave functions are e**1%! where k; = +k..
As in [19], we can reduce to a single Ginzburg-Landau equation on the line (see
equation (1.1)). However, if 1 < k. < 2, then ks = 0 or k2 = 1 and the critical wave
functions are e*1%1 k; = +k., and e*1% coszy, k; = +£1/k2 — 1. Accordingly, we
make the Ginzburg-Landau-type ansatz

w(z1, 2o, t) = €A(X, T)e™*™ + eB(X, T)e'V* 171 cos x4 + c.c.
X =ex;, T=¢% M=¢€,

where A and B are complex-valued amplitude functions depending slowly on the un-
bounded space and time variables. In this way, we obtain a pair of coupled Ginzburg-
Landau equations. For generic values of k. € (1, 2), the coupling terms are the obvious
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ones and the Ginzburg-Landau equations have the form

AT = 4kgAXX + A + Cl‘A|2A + CQ‘B|2A
By = (4k? — 1)Bxx + B + d1|A|*B + dy| B|*B,

where ¢y, ¢, d1, d> are real constants that depend on the quadratic and cubic terms
in f. For example, if f(u) = au® + O(u?), then ¢; = dy = 3a, ¢y = dy = 6a. If f
has a quadratic term, then the expressions for the constants are considerably more
complicated.

In general, suppose that p is a positive integer and that p — 1 < k. < p. Then
ke =0,1,... ,p— 1 and the critical eigenfunctions are given by

eFVHRTI B o5y 1 =0,1,... ,p— 1.
The ansatz

w1, Ty, t) = €Ay (X, T)e*et 4 e Ay(X, T)e'VE1% cos g 4 - - -
+ €Ay (X, T)eVFE=r=07 21 co5(p — 1)z5 4 c.c.

leads to a system of p coupled Ginzburg-Landau equations of the form

Al,T = 4k2A1,XX + Al + 011‘A1‘2A1 +---+ Clp|Ap|2A1
Ao = 4(1473 — 1Ay xx + As + 021‘A1|2A2 +- 4 02p|Ap|2A2

Ap,T = 4(k§ - (p - 1)2)Ap,XX + Ap + Cp1|A1|2Ap +oot Cpp|Ap|2Ap-

If f(u) = au® + O(u*), then we have ¢;; = 3a if i = j and 6 if 7 # j.

Note that the size p of the reduced system increases monotonically with k. and
hence is often large (in contrast to the case Q = [0, 7]* discussed in Section 2 where
large systems of reduced equations occur robustly but relatively rarely.)

It follows from the methods in Melbourne [20] that the phenomena we have
described for the Swift-Hohenberg equation (3.1) hold universally for systems of
reaction-diffusion equations (and more generally for systems of E(2)-equivariant PDEs
as in Remark 2.1) posed on R x [0, 7] with NBC. Evidently, the size p of the reduced
system is independent of the size of the original system (the reduced system may be
much larger than the original system) and is governed by the (nonuniversal!) value
of the critical wavenumber k. — or more precisely the aspect ratio k./m comparing
the critical wavenumber of the PDE on R? and the width of the strip €.
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Remark 3.1 When p — 1 < k. < p, we have computed that the critical eigenspace
is spanned by eigenfunctions

VK221 cos jrz, j =0,1,...,p—1L

We note that this subspace is irreducible for the physical symmetry group I' = E(1) x
Zs if and only if p = 1. In general, we have a direct sum of p nonisomorphic irreducible
representations of E(1) x Zy. As in Section 2, this linear degeneracy is a consequence
of hidden rotations in E(2).

4 Other partially unbounded domains

The results in Section 3 generalize in an obvious way to higher dimensional partially
unbounded domains 2. In this section, we consider the domains Q = R x [0, 7]* and
Q=R" x [0,7], m > 2.

Neumann boundary conditions on R x [0, 7]?

This domain combines the features of the domains [0, 7]* (Section 2) and R x [0, 7
(Section 3). Consider the Swift-Hohenberg equation (2.3), where A is now the three
dimensional Laplacian. As usual, NBC on R x [0, 7]? (with physical symmetry group
[' = E(1) xDy) extends to PBC on Rx[—, 7|? (with symmetry group E(1)x (D, xT?))
which extends to the whole of R® (with symmetry group E(3)). The extended problem
on R? has critical eigenfunctions e?** where |k| = k.. Restricting to NBC, the critical
eigenfunctions are

eF1® cos kyxo cos kszs, ki €R, ko, ks € Z, kf + k% + k§ = k?
The number of excited modes is given by
p:#{k25k3:0511"' ‘k§+k§ <k?}a

leading generically as in Section 3 to a system of p coupled Ginzburg-Landau equations

with critical wavenumbers \/k2 — k3 — k3.

Remark 4.1 As in Section 3, the positive integer p is arbitrarily large, and is mono-
tonically increasing in k.. However, p is no longer arbitrary and the increments in
p are not uniform. For example, if 0 < k. < 1 the critical eigenfunctions have
(k2, k3) = (0,0) so that p = 1, whereas if 1 < k. < v/2 we have (k, k3) = (1,0), (0, 1)
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so that p = 3. Hence the value p = 2 is not admissible. The first few admissible
values of p are

p=1,3,4,6,89,11,13,15,17, 19,20, 22,26, . ..

It is easily seen that most of the increments are by 1 or 2, but an increment of 4
(from p = 22 to p = 26) occurs as k. passes through 5 (since the modes (ko, k3) =
(3,4),(4,3),(5,0),(0,5) are excited simultaneously). Indeed, the largest increments
correspond to those values of k. that resulted in high dimensional critical eigenspaces
for the case Q = [0, 7]? discussed in Section 2. Arbitrarily large increments occur for
appropriate choices of k.. In contrast to Section 2, the degeneracy at k. = 5 say is
retained for all £, > 5 due to monotonicity of p.

Neumann boundary conditions on R™ x [0, 7], m > 2

This case is similar to the case R x [0,1] in Section 3, the main difference being
that Ginzburg-Landau theory is less well understood when there are two or more
unbounded spatial variables; see [9, 22].

Proceeding as in Section 3, we find that the critical eigenfunctions for NBC are
given by

etk1zittkm—1Zm-1) (g o,

where £k + --- + k% = k? and k,, € Z. So k,, = 0,1,...,p — 1, where p = [k
is an arbitrary positive integer. When m = 2, restricting to certain roll-like solu-
tions and proceeding formally as in [23, 26| leads to a universal system of p coupled
Newell-Whitehead-Segel equations. (Rigorous results in this direction can be found
in Schneider [25]). For all m, a rigorous reduction that incorporates more general
solutions [20] leads to a universal system of p coupled equations of Swift-Hohenberg

type.
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