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Abstract

Given an Axiom A attractor for a C1** flow (o > 0), we construct a count-
able Markov extension with exponential return times in such a way that the
inducing set is a smoothly embedded unstable disk. This avoids technical issues
concerning irregularity of boundaries of Markov partition elements and enables
an elementary approach to certain questions involving exponential decay of
correlations for SRB measures.

1 Introduction

Statistical properties of Anosov and Axiom A diffeomorphisms [3, B3] were developed
extensively in the 1970s. Key tools were the construction of finite Markov parti-
tions [10, B2] and the spectral properties of transfer operators [28]. In particular,
ergodic invariant probability measures were constructed corresponding to any Holder
potential [12] 29, [31]; moreover, it was shown that hyperbolic basic sets for Axiom A
diffeomorphisms are always exponentially mixing up to a finite cycle for such mea-
sures, see for example [12, 22] 29].

Still in the 1970s, finite Markov partitions were constructed [11], 26] for Anosov
and Axiom A flows. This allows us to model each hyperbolic basic set as a suspension
flow over a subshift of finite type, enabling the study of thermodynamic formalism (see
e.g. [I4]) and statistical properties (see e.g. [17,27]). By the Anosov alternative [3] 23],
a transitive Anosov flow is mixing if and only if it is a constant suspension over an
Axiom A diffeomorphism.
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However, rates of mixing for Axiom A flows are still poorly understood.
By [24],130], mixing Axiom A flows can mix arbitrarily slowly. Although there has been
important progress starting with [16] I8 20], it remains an open question whether
mixing Anosov flows have exponential decay of correlations. Very recently, this ques-
tion was answered positively [35] in the case of C*° three-dimensional flows.

It turns out that using finite Markov partitions for flows raises technical issues due
to the irregularity of their boundaries [5, (15 [34]. Even in the discrete-time setting,
it is known that the boundaries of elements of a finite Markov partition need not be
smooth [I3]. In this paper, we propose using the approach of [36] to circumvent such
issues at least in the case of SRB measures. In particular, we show that

Any attmctmﬂ for an Aziom A flow can be modelled by a suspension flow
over a full branch countable Markov extension where the inducing set is
a smoothly embedded unstable disk. The roof function, though unbounded,
has exponential tails.

A precise statement is given in Theorem [2.1] below.

Remark 1.1 The approach of Young towers [36] has proved to be highly effective
for studying discrete-time examples like planar dispersing billiards and Hénon-like
attractors where suitable Markov partitions are not available. However, as shown in
the current paper, there can be advantages (at least in continuous time) to working
with countable Markov extensions even when there is a well-developed theory of finite
Markov partitions. The extra flexibility of Markov extensions can be used not only
to construct the extension but to ensure good regularity properties of the partition
elements.

As a consequence of Theorem [2.1] we obtain an elementary proof of the following
result:

Theorem 1.2 Suppose that A is an Aziom A attractor with SRB measure p for a
C'™ flow ¢y with C'* stable holonomied| and such that the stable and unstable bundles
are not jointly integrable. Then for all Holder observables v, w : A — R, there exist
constants ¢,C' > 0 such that

‘/vwogbtd,u—/vdu/wd,u‘ < Ce™ forallt>0.
A A A

Remark 1.3 Joint nonintegrability holds for an open and dense set of Axiom A
flows and their attractors, see [19] and references therein. It implies mixing and
is equivalent to mixing for codimension one Anosov flows. It is conjectured to be
equivalent to mixing for Anosov flows [23].

'Here, an attractor is an attracting hyperbolic basic set, and so is topologically transitive with
an open basin of attraction.
2C1* means C" for some r > 1.



Remark 1.4 (a) In the case when the unstable direction is one-dimensional and
the stable holonomies are C?; this result is due to [9, 8, [4, [5]. In particular, using
the fact that stable bunching is a robust sufficient condition for smoothness of sta-
ble holonomies together with the robustness of joint nonintegrability, [4] constructed
the first robust examples of Axiom A flows with exponential decay of correlations.
The smoothness condition on stable holonomies was relaxed from C? to C'* in [6]
extending the class of examples in [4]. This class of examples is extended further
by Theorem with the removal of the one-dimensionality restriction on unstable
manifolds.

(b) There is no restriction on the dimension of unstable manifolds in [8], and it is not
surprising that the smoothness assumption on stable holonomies can also be relaxed
as in [6]. However, there is a crucial hypothesis in [8] on the regularity of the inducing
set in the unstable direction which is nontrivial in higher dimensions.

Theorem [1.2]is stated in the special case of Anosov flows in [I5]. In [I5, Appendix]
it is argued that at least in the Anosov case the Markov partitions of [26] are suf-
ficiently regular that the methods in [§] can be pushed through. In [5], a sketch is
given of how to prove Theorem [1.2] also in the Axiom A case, but the details are not
fully worked out.

As mentioned, our approach in this paper completely bypasses such issues since
our inducing set is a smoothly embedded unstable disk. Moreover, our method works
equally well for Anosov flows and Axiom A attractors. As a consequence, we recover
the examples in [I5], in particular that codimension one volume-preserving mixing
C' Anosov flows are exponentially mixing in dimension four and higher.

The remainder of the paper is organised as follows. In Section [2], we state precisely
and prove our result on good inducing for attractors of Axiom A flows. In Section [3]
we prove a result on exponential mixing for a class of skew product Axiom A flows,
extending/combining the results in [6, B]. In Section [ we complete the proof of
Theorem [1.2

2 Good inducing for attractors of Axiom A flows

Let ¢y : M — M be a C'* flow defined on a compact Riemannian manifold (M, dy,),
and let A C M be a closed ¢;-invariant subset. We assume that A is an attracting
transitive uniformly hyperbolic set with adapted norm and that A is not a single
trajectory. In particular, there is a continuous D¢-invariant splitting ThaM = E° &
E°¢ @ E" where E° is the one-dimensional central direction tangent to the flow, and
there exists A € (0,1) such that [D¢v| < X for all v € E* t > 1; |Dop_v| < Xy
forallv € E* ¢t > 1. Since the time-s map ¢5 : A — A is ergodic for all but countably
many choices of s € R [25], we can scale time by a constant close to one if necessary
so that ¢_; : A — A is transitive. Then there exists p € A such that |J,~, ¢_ip is
dense in A. -



We can define (local) stable disks W#(y) = {z € W*(y) : du(y,2z) < 6} for
d > 0 sufficiently small for all y € A. Define local centre-stable disks W§*(y) =
Ujij<s W5 (y). Let Leb and d denote induced Lebesgue measure and induced distance
on local unstable manifolds. It is convenient to define local unstable disks W¥(y) =
{z € W"(y) : d(y, z) < ¢} using the induced distance.

For §y small, define D = W (p) and D = Usep Wi (x). Define 7 : D — D such

that 7|Wg*(z) = . Whenever ¢,y € D, we set g,y = T(dny).
We are now in a position to give a precise description of our inducing scheme.

Theorem 2.1 There exists an open unstable disk' Y = Wi (p) C D (for some ¢ €
(0,60)) and a discrete return time function R :Y — Z* U {oco} such that

(i) Leb(R > n) = O(»") for some vy € (0,1);

(ii) Each connected component of {R = n} is mapped by ¢, into D and mapped
homeomorphically by g, onto Y.

Remark 2.2 Let P be the partition of Y consisting of connected components of
{R = n} for n > 1. (It follows from Theorem [2.1{(i) that P is a partition of ¥ mod 0.)
Define F' :' Y — Y, F = ggp = mwo ¢r. Note that F' is locally the composition of a
time-R map ¢ (where R is constant on each partition element) with a centre-stable
holonomy. Since centre-stable holonomies are Holder continuous, it follows that F'
maps partition elements U € P homeomorphically onto Y and that F|y : U — Y
is a bi-Holder bijection. If moreover, the centre-stable holonomies are C!, then the
partition elements are diffeomorphic to disks (in contrast to the situation for finite
Markov partitions of A [13]).

In the remainder of this section, we prove Theorem 2.1} Our proof is essentially
the same as in [36, Section 6] for Axiom A diffeomorphisms, but we closely follow the
treatment in [2] which provides many of the details of arguments sketched in [36].

Choice of constants We can choose dy > 0 such that the following bounded
distortion property holdsﬂ: there exists C; > 1 so that
| det Do, (z)| EY|
| det D (y)|E|

<q (2.1)

for every n > 1 and all z,y € A with ¢,z, ¢,y in the same unstable disk such that
d(¢jx, p;y) < 46 for all 0 < j < mn.

3The function ¢ = log | det D¢;|E¥| is Holder (since the flow is C1* and the bundle E* is Holder).
Hence Z;l;ol {¥(¢jz) —(d;y)} is bounded for the specified n, z,y. Estimate ([2.1) follows.



By standard results about stable holonomies, 7 is absolutely continuous and C*
for some « € (0, 1) when restricted to unstable disks in D. For dy sufficiently small,
there exists Cy, C3 > 1 such that

_, _ Leb(n(E))
' < o S0 (2.2)

for all Lebesgue-measurable subset £ C W (y) N D and all y € A, and
d(?TZL‘, Wy) < C3d($, y)a (23)

for all z,y € D with z,y in the same unstable disk such that d(x,y) < 40p.
Let d, = dim E* and fix L > 3 so that
P | 1

CiC2 ——— < —. 2.4
1%2 (L —_ 1)du 4 ( )
By the local product structure, there exists d; € (0, dg) such that W (x) "Wy (y)
consists of precisely one point for all z,y € A with dy(x,y) < 46;. Similarly, there
exists § € (0, 1) such that Wi (x) Wi (y) consists of precisely one point for all 2,y €
A with dy(z,y) < (L + 1)d. Since local centre-stable/unstable manifolds lie in the
corresponding cones, and the centre-stable/unstable cones are uniformly transverse,
the intersection point z € ng(x)ﬂwg(y) satisfies d(z,y) < Cydp(z,y) where Cy > 1

is a constant. Shrink § > 0 if necessary so that €5{36)*<1d-C3(30)* < 18y and
Cy(L +1)6 < . Choose Ny > 1 such that Ufill ¢_;p is d-dense in A.

Construction of the partition We consider various small neighbourhoods D, =
Wes(p) with ¢ € {1,2, L — 1, L}. Define D, = U, cp, W5 ().
Take Y = D;. Define a partition {Ij : k > 1} of Dy \ Dy,

Iy = {y € Dy : 6(1 4+ 1) < d(y,p) < 6(1 + A**=D)].

Fix ¢ > 0 small (as stipulated in Propositions and and Lemma [2.9| below).
We define sets Y,, and functions ¢, : Y,, = N, and R : Y — Z" inductively, with Y,, =
{R > n}. Define Yy =Y and ty = 0. Inductively, suppose that Y,,_; =Y \ {R < n}
and that ¢,_; : Y,,_1 — N is given. Write Y,,_; = A,,_1 U B,,_; where

An—l = {tn—l = 0}7 Bn—l = {tn—l > 1}
Consider the neighbourhood
Aq(f—)l - {y €Y, 1: d(¢ny7 anAn—l) < 5}

of the set A,,_1. Define U,fj, j > 1, to be the connected components of Aifll N ¢_n15L

that are mapped inside Dy, by ¢,, and mapped homeomorphically onto Dy, by ¢,,. Let
c _gr7L -1 —
U, =Uy;Ng, D. forc=1,2L—1
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Define R|Uﬁj = n for each Uﬁj and take Y, = Yn_l\Uj Uﬁj. Finally, define t,, : Y;, & N
as
k, Yy € Uj Uij and g,y € Ij for some k > 1
tn(y) = 07 Y€ An—l \ Uj Ugj
tnfl(y) - 17 y e anl \ Uj Ur%]

and take A, = {t, =0}, B, ={t, > 1} and Y,, = A, UB,,.

Remark 2.3 By construction, property (ii) of Theorem is satisfied. It remains
to verify that Leb(R > n) decays exponentially.

Visualisation of B,. The set B, is a disjoint union B, = |J _, C,(m) where
Cy(m) is a disjoint union of collars around each component of { R = m}. Each collar
in Cy,(m) is homeomorphic under g, to J;,,_,,,1 Ix With outer ring homeomorphic
under g, to I,_,,+1, and the union of outer rings is the set {t,, = 1}. This picture
presupposes Proposition below which guarantees that each new generation of
collars Cy,(n) does not intersect the set | J,., .., ; Cn_1(m) of collars in the previous
generation. A sample visualisation after 7 generations is shown in Figure [T}

Figure 1: Visualisation of Y after 7 generations where there is one return at time 2
and one return at time 7. The pink region B; consists of collars around the sets
{R = 2} and {R = 7} that have made a return. The two outermost shells {t; = 1}
and {t; = 2} of each collar are shown. The collars in B; are diffeomorphic by g, and
g7 respectively to an annulus; in reality the collar around {R = 2} should be slightly
distorted and the collar around {R = 7} more so (and smaller).

We now turn to the proof of Proposition A cautionary diagram is shown in
Figure

Proposition 2.4 Choose ¢ < (C5'0)Y* sufficiently small that W¥(x) C D for all
x € D;. Then Uj UTfj_l C A,_q for alln > 1.
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Figure 2: This diagram indicates some subtleties in the proof of Proposition 2.4, The
solid black curve denotes part of the boundary of A,,_; formed by a much earlier
return. The dashed black curve denotes the corresponding part of the boundary of

A® . The red curve denotes the boundary of a UY;. Even though U}; is contained

in A,(fll it is not clear that Urfj_l is contained in A,,_;.

Proof We argue by contradiction. There is nothing to prove for n = 1. Let n > 2
be least such that the result fails and choose j such that U,fj’l intersects B,,_1. Then

either (i) U,fj_l C By—1, or (ii) Ufj_l intersects 0A,,_1.

In case (i), choose x € UnLj’1 (so in particular ¢,z € D) with g,z = p. Since
UnLj’1 C Ufj C Aifll, there exists y € A,_1 with d(¢,z,¢,y) < €. In particular,
Ony € D so gny is well-defined. Note that x € U,fj_l and y ¢ UnLj_1 since UnLj_1 C
B,,_1. Hence the geodesic ¢ in D joining g,z and g,y intersects gnanj_l. Choose
z € QUL N g L. Since g, = 7 0 ¢y, it follows from (2:3) that

d < (L—1)0 =d(gnz, gnz) < d(gnz, gny) < Cs3d(ppz, ppy)* < C3e® < 0

which is a contradiction. This rules out case (i).

In case (ii), choose = € Ufj_l N 0A,—1. We show below that there exists y €

8A7(21 such that d(¢,z, dny) < e. In particular, g,z and g,y are well-defined and
d(gn, gny) < C3e® < 6. Since U} C A we have that y ¢ Uk Tt follows that

n—1»
gnx € Dp_q while g,y € Dr. Hence d(g,z, g,y) > 6 which is the desired contradiction.
It remains to verify that there exists y € 8A§21 such that d(¢,x, ¢,y) < e. Since n
is least, B,_1 is a disjoint union of collars as described in the visualisation above.
Hence there exists a collar Q C C,,_1(n — k) intersected by Ufj_l for some 1 < k <n
such that x lies in the outer boundary 0,Q of Q). Note that 0, = 0A,_1 N Q. Let

D denote the disk enclosed by 0,Q and let
S =DNo(¢p_nB:(¢p,0D)).

We claim that S # 0 and S C . Then S is a (dimY — 1)-dimensional sphere
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contained in 8A£le and there exists y € S with the desired properties, see Figure .
(The point of the claim is that S lies entirely in Y,,_;.)

Figure 3: Schematic of the claim in the proof of Proposition 2.4] The pink region is
a collar ). The blue curve denotes the boundary of a Uij’l. The claim is that the

relevant part S of 8A£fll lies inside () enabling the choice of a point y close to, but
not too close to, x.

Note that g,,_; maps ) homeomorphically onto the set J = (J,, /; which is an
annulus of radial thickness SA*. By ([2-3), ¢n—r maps Q homeom(;rphically onto a
set J = m~1J of radial thickness at least (C5 '6A“*)Y/e = (C515)YaNF,

Moreover, ¢y(J N AL ) C ¢,AP | is contained in the set of points within
d-distance ¢ of gbn@Aq(f_)l, so by definition of A\ we have that J N gbn_kAT(fZl is con-
tained in the set of points within d-distance e\¥ of the outer boundary of .J. Since
e < (C5'6)Y*, we obtain that J N ¢,_x0A | is homeomorphic to a (dimY — 1)-
dimensional sphere contained entirely inside .J. Hence S = Q N 8A,(fll is homeomor-
phic to a (dim Y — 1)-dimensional sphere contained entirely inside @, as required. B

Proposition 2.5 Choose ¢ < {C5'0(A™® — 1)}1/a. Then for alln > 1,
(a) Agfll C{yeY,:tona(y) <1} foralln > 1.
(b) ¢_aW(dnz) C A9 for all x € A,_,.

Proof (a) Suppose that t,_1(y) > 1. Then there exists a collar in C,,_1(n — k)
containing y. Let ) denote the outer ring of the collar with outer boundary ) and
inner boundary Q2. Then ¢, 1|Q = 1 and ¢,_1(y) > 1, so y lies inside the region
bounded by Q5.

Suppose for contradiction that y € Aﬁfll. Then we can choose x € A,_; with
d(pnzx, Pry) < €. Let £ be the geodesic in W*(¢,x) connecting ¢,z to ¢,y and define
G €Q;N byl for j=1,2.



Recall that () is homeomorphic under g,_j to I. Moreover, g,_g; lic in distinct
components of the boundary of I, so

d(Qn%Ql»ank%) 2 5()\04(1@—1) - )\ak) - 5(}\—04 - 1))\04]4:.

Hence

d(¢nq1a ¢nq2) > /\_kd(qsn_kql’ ¢n—kQ2)
> XG5 gk, ganao)} 1 2 GO = 1)} >

But d(énq1, png2) < d(dny, pnx) < € so we obtain the desired contradiction.

(b) Let © € A,y and y € ¢_,W*(dnz). Note that y € AZ | if and only if
y € Y,_1. Hence we must show that y € Y,,_;. If not, then there exists k > 1 such that
y € {R =n—k}. Define Q C C,,_1(n — k) to be the outer ring of the corresponding
collar. Choosing ¢; and ¢, as in part (a) we again obtain a contradiction. |

Lemma 2.6 There exists a; > 0 such that for alln > 1,
(a) Leb(Bn_l N An) 2 ay Leb(Bn_l).
(b) Leb(An_l N Bn) S iLeb(An_l)
(¢) Leb(A,—1 N{R =n}) < 1 Leb(A,_y).
Proof (a) Let y € B,,_1. By Proposition , y ¢, Urfj_l so in particular y € Y,,.
Note that ¢,(y) = 0 if and only if ¢,_1(y) = 1. Hence B,_1 N A, = {t,—1 = 1}.
Now let @ C C,_1(n — k) C B, be a collar (1 < k < n) with outer ring

QNA,=Qn{t,.1 =1}. Then g, 1, = 7o ¢, maps @ homeomorphically onto
Uisi Li and @ N {t,—1 = 1} homeomorphically onto I;. Let d, = dim E*. By (2.1)

and (2.9),

Leb(@) Leb(Q) <C Leb(¢n— Q)
Leb(QNA,)  Leb(QN{tn_y =1}) = 'Leb(dn_r(Q N {tn_1 = 1}))
<C 02M = C1C2D(dy, A, k)
— 1%Y2 Leb([k) 1“9 Uy )

where D(dy, A\, k) = (L+ N7 — 1 . Since limy oo D(dy, A\, k) = (1—N)71

ur 7 (1 + Me=1)du — (1 4 \F)du —o0 w7 ’
we obtain that Leb(Q) < C1C3D Leb(Q N A,,) where D = supys; D(dy, A%, k) is a
constant depending only on d, and A®. Summing over collars @, it follows that
Leb(B,_1) < C1C3D Leb(B, 1 N A,).




(b) By Proposmlo# U2 UL ''c A,_, for each j. It follows that A,_; N B, =

UJ By (2.1] and .,
Leb(U2,\ UY)) Leb(D, \ Dy) 2 —1 1
M < O 0t = 00— < .
Leb(UET) = 17 Leb(Dyy) 2L 1)d T g
Hence 9 1
Leb(A,—1 N By) < Zj Leb(Unj \ Unj) < 1
= L1 A
Leb(A, ) > Leb(ULY) 4

(¢) Proceeding as in part (b) with U?; \ U, replaced by U,;, leads to the estimate

ngo

Leb(A, i N{R=n}) _ 3,;LebUy) _ CiC3
Leb(A,_1) T Y Leb(Uh) T (L —1)n

<1
4 |
Corollary 2.7 For alln > 1,
(a) Leb(A,_1NA,) > %Leb(An_l).
(b) Leb(B,-1 N By,) < (1 —ay)Leb(B,_1).
(c) Leb(B,) < XLeb(A,_1) + (1 — a1) Leb(B,_1).
(

(d) Leb An) 2 %Leb(An_1> —+ a; Leb(Bn_l).

Proof Recall that A, ; C Y, 1 = Y, U{R =n} = A,UB,U{R = n}. Hence by
Lemma [2.6b,c),

Leb(A,_1) = Leb(A,_; N A,) + Leb(A,_1 N By) + Leb(A,_; N {R = n})
< Leb(An,1 N An) + %Leb(An,1>,

proving (a). Similarly, by Lemma [2.6{a)

Leb(B,,—1) = Leb(B,_1 N A,,) + Leb(B,,_1 N B,,) + Leb(B,,_1 N {R = n})
Z aq Leb(Bn_l) + Leb(Bn_l N Bn),
proving (b).
Next, recall that B, = B, NY,_1 = B, N (An,l U Bn,l). Hence part (c) follows

from Lemma . ) and part (b). Similarly, A, = A, N (An_l U Bn_l) and part (d)
follows from Lemma [2.6(a) and part (a). |

Corollary 2.8 There exists ag > 0 such that Leb(B,,) < ag Leb(A,) for alln > 0.
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2—|—CL1

Proof Let ap = . We prove the result by induction. The case n = 0 is trivial

3]
since By = (). For the induction step from n — 1 to n, we consider separately the cases

Leb(B,,_1) > ﬁ Leb(A,_;) and Leb(B,_;) < ﬁ Leb(A,_1).
Suppose first that Leb(B,_1) > ﬁ Leb(A,_1). By Corollary (c),

Leb(B,) < {1a1 + (1 — a1) } Leb(B,_1) = (1 — Lay) Leb(B,_1) < Leb(B,_1).
By Corollary [2.7(d),
Leb(A,) > (5 + a15,-) Leb(A, 1) = Leb(A, ).
Hence by the induction hypothesis,
Leb(B,) < Leb(B,,-1) < agLeb(A,,—1) < ap Leb(A,),

establishing the result at time n.
Finally, suppose that Leb(B,_;) < ﬁ Leb(A,-1). By Corollary (a,c),

Leb(B,) < §Leb(A,_1) 4+ Leb(By_1) < (3 4 5-) Leb(A, 1)

<
< (3 + &) Leb(A,) = ag Leb(A,),

2

completing the proof. |

Lemma 2.9 Let =c{(8:565)—< € (0,300)_be small as in Propositions and .

There exist ¢; > 0 and N > 1 such that

N
Leb (U{R =n+ 2}) > ¢y Leb(A,,—1) foralln > 1.
i=0

Proof Fix A€ (0,1),L>1,0<0 <9 <dand N; > 1 as defined from the outset.

Recall that €5(36)*<-167-C5(30)" < 10 and Cy(L + 1)d < §. Choose Ny > 1 such
that AV < g/§y and take N = N; + N.

We claim that
(*) For all z € A, there exists i € {1,..., N;} such that (¢, n,W*(2)NDyL) D Dy.

Fix z € A. By the definition of Ny, there exists 1 < ¢ < Nj such that
dy(d_ip, dn,2) < 8. Let y € Dp. Then

dM(¢—iy7 ¢N2’Z) < d((b—iy, ¢—ip>+dM(¢—ipa ¢N2’Z) < d(yap)+dM(¢—ip7 ¢N2Z) < (L+1>5

Using the local product structure and choice of §, we can define v € W§*(¢_y) N
Wit (¢n,2). Then ¢z € W§(y) C D and g;x = ndw = y. Also,

d(l’, ¢N2Z) < C4dM(¢,iy, ¢NQZ> < O4(L + 1)(5 < (50.
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By the definition of Ns,
pix € ¢iWs (dny2) C Giyn, W (2).

Hence we obtain that y = m¢;x € w(¢in, W2 (2) N Dy) proving (¥).
Next, we claim that

(**) For all z € ¢,A,_1, n > 1, there exist i € {0,...,N} and j such that

1 u 1 u

To prove (**), define V. = ¢_,W*(z). By Proposition (b), V. C A,(fll. We now
consider two possible cases.

Suppose first that V. C A, for all 0 < i < N. By claim (*), there exists
1 <i< N = N;+ N, such that

W(qbn_;_i‘/s N ﬁL) = 7T(QZ52WEU(Z) N 5L) D) DL,

while V. C A,.;_1 by assumption. This means that V. D UF*

wiij for some j. Hence

Ut,..cuk

n+i,j n+i,j CV:C Qb W 5050/4( )
and we are done.

In this way, we reduce to the second case where there exists 0 < i < N least such
that V. ¢ A, ;. Since i is least, V. C Agﬂi_l. (The ¢ is required in case i = 0.) By
Proposition 2.5(a), V. C {tn4i-1 < 1}. Hence

Va\An—H’:(VﬂBn—i—i) (Vﬂ{R:n+i})

C{tnsicn <1t > 1} U{R=n+i} C| Ul
J

Since V. \ A, 1; # 0, this means that there exists j so that V. intersects U?> Hence

n—+1i
we can choose ag € W*(z) N ¢n i 7
Recall that ¢,;U"; ; C 'Dm and In+iUpi
= Q;as € DQ and ¢y = g;as € Ds.
Let ¢; € D;. Then dy(c1,be) < dp(cy,ca) + dar(ea,b2) < 30 + 07 < 46;. Hence,
using the local product structure and definition of d;, we can define by € Wy*(c1) N
Wit (b2) and a; = ¢_;b;. Note that

= D,, for m = 1,2. In particular,

¢ia7“ — bT7 7Tb7« = Cp, r= ]-7 2

Hence
d(ay,as) < d(by,by) < Csd(cq, ) < C3(35) < 1(50’

andso%&ﬁ%ﬂﬂ—f—d{aa—z—}e—%—% . 2) < dlay,as) + d(as, 2) < 18y + ¢ < 14,.
It  follows  that %%%7%%@2% thereby  that
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&%%Qﬁ_—zﬁ,—)c € g (Wi ,(2) N0 ¢_iDy). This  proves  that

Dy C (W .(2) N é_iDy). Hence Ul . C g (ninDi C ¢ W ,(2) verifying
claim (*%).

We are now in a position to complete the proof of the lemma. Let n > 1, and
let Z C ¢ A,-1 be a maximal set of points such that the balls W /Q(Z) are disjoint
for 2 € Z. If v € ¢pA,1, then Wy ,(z) intersects at least one Wy ,(2), z € Z, by
maximality of the set Z. Hence ¢, A, 1 C U, Wi (2). It follows that

A € | 0-aW3 (2).

z€Z

Let z € Z and let U, = U, ; be as in claim (**). In particular, g,;U. = D; =
W(p). Also, Leb(¢,;U,) < |Déy|E"["" Leb(¢,U,) where m = dim E*. Hence,
by (2.2),

1 1
< Dy |EH N < Cyy| Dty | B[N

1
Leb(¢,U.) > Leb(¢n+iU.) > Leb(Wy(p))

By (2.1),
Leb(¢nW5(2) _ ., Leb(Wyi(2) _

Leb(U.,) = U Leb(¢,U,) ~
sup,cy Leb(W3 (y)) sup,cy Leb(W3 (y))

here &=C O Dy HawNm K = C,Co| Do | B N™ )
where TOPTT (o0 Leb(Wy(p)) WJ&WWW

Finally, the sets U, are connected components of (Jo.,cy{R = n + i} lying in

distinct disjoint sets o= W5 (=)o, W;' 5(2). Hence

Leb(A-1) < Y Leb(¢, Wi (2) < K Leb(U.) < K Leb ( U {R=n+ i}),

z2€Z z2€Z 0<i<N

as required. [

We can now complete the proof of Theorem [2.1]
Corollary 2.10 Leb(R > n) = O(«") for some vy € (0,1).

Proof By Corollary 2.8 and Lemma [2.9]

Leb(R > 1) = Leb(A, 1) + Leb(By_1)
< (14 ap) Leb(A,-1) < ds Leb (U{R =n-+ @})

=0
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where dy = ¢ (1 + ag). It follows that

dy'Leb(R >n) < Leb(R=n) +---+ Leb(R=n+ N)
= Leb(R > n) — Leb(R > n + N).

Hence
Leb(R>n+ N) < (1 —d,")Leb(R > n).

In particular, Leb(R > kN) < 4*N with v = (1 — d; ")/ and the result follows. B

3 Exponential decay of correlations for flows

In this section, we consider exponential decay of correlations for a class of uniformly
hyperbolic skew product flows satisfying a uniform nonintegrability condition, gen-
eralising from C? flows as treated in [8] to C'** flows. In doing so, we remove the
restriction in [9, [6] that unstable manifolds are one-dimensional.

The arguments are a straightforward combination of those in [6 [§]. We follow
closely the presentation in [6], with the focus on incorporating the ideas from [§]
where required.

Quotienting by stable leaves leads to a class of semiflows considered in Subsec-
tion B.1l The flows are considered in Subsection [3.21

The current section is completely independent from Section [2| so overlaps in no-
tation will not cause any confusion.

3.1 C'*® uniformly expanding semiflows

Fix a € (0,1). Let Y C R™ be an open bal]ﬁ] in Euclidean space with Euclidean
distance d. We suppose that diamY = 1. Let Leb denote Lebesgue measure on Y.
Let P be a countable partition mod 0 of Y consisting of open sets.

Suppose that F : [ ep U — Y is C' on each U € P and maps U diffeomorphi-
cally onto Y. Let H={h:Y — U : U € P} denote the family of inverse branches,
and let H,, denote the inverse branches for F™. We say that F is a C'T® uniformly
expanding map if there exist constants C; > 1, py € (0, 1) such that

(i) |Dhlo < Cypy for all h € H,,, n > 1;
(ii) |log|det Dh||, < C; for all h € H;

where ||, = sup,, [¥(y) — ¥ (y')]/d(y,y')*. Under these assumptions, it is stan-
dard [I] that there exists a unique F-invariant absolutely continuous measure p. The
density du/dLeb is C, bounded above and below, and p is ergodic and mixing,.

4More generally, we could consider a John domain as in [8] but the current setting suffices for
our purposes.
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We consider roof functions r : |J;;cp U — RT that are C' on partition elements U
with infr > 0. Define the suspension Y" = {(y,u) € Y xR : 0 < u < r(y)}/ ~ where
(y,7(y)) ~ (Fy,0). The suspension semiflow F; : Y™ — Y" is given by Fy(y,u) =
(y, u+t) computed modulo identifications, with ergodic invariant probability measure
p" = (u x Lebesgue)/7 where 7 = [, rdu. We say that F is a C'™® uniformly
expanding semiflow if F is a C1® uniformly expanding map and we can choose C
from condition (i) and € > 0 such that

(i) |D(r o h)|w < C, for all h € H:
(iv) D jes €572 | det Dh|o < 0.
Let r, = Z;:& r o IV and define
Yhihy =Tnohy —rpohy Y = R,

for hi,hy € H,. We require the following uniform nonintegrability condition [8,
Equation (6.6)]:

(UNI) There exists £ > 0 and hy, hy € H,,, for some sufficiently large no > 1, with
the following property: There exists a continuous unit vector field ¢ : R™ — R™
such that | D, p,(y) - £(y)| > E for ally € Y.

(The requirement “sufficiently large” can be made explicit as in [0, Equations (2.1)
to (2.3)].) From now on, ng, hy and hy are fixed.
Define F,(Y") to consist of L* functions v : Y — R such that ||v|la = |[v]e +
|v|o < 00 where
|U|a _ sup |U(y, u) — U(ylv U)|
oty AYY)°

Define F, ;(Y") to consist of functions with ||v||,x = Z?:o 1070l < oo where 9,
denotes differentiation along the semiflow direction.

We can now state the main result in this section. Given v € L' (Y™), w € L®(Y™"),
define the correlation function

Poaw(t) —/UwoFtd,uT—/vdM/wd,ur.

Theorem 3.1 Suppose that Fy : Y™ — Y7 is a C*T uniformly expanding semiflow
satisfying (UNI). Then there exist constants ¢, C' > 0 such that

1Pow ()] < Ce™v|lal|wllas for allt >0 and all v, w € F,;(Y"),

(alternatively, all v € Foo(Y"), w e L®(Y7)).
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In the remainder of this subsection, we prove Theorem [3.1]
For s € C, let P; denote the (non-normalised) transfer operator

P, = Z A p, Aspv = e " det Dh|v o h.
heM

For v : YV — C, define [[v|lo = max{|v|, |[v]o} Where |v], = sup,, |v(y) —
v(y)|/d(y,y')*. Let C*(Y) denote the space of functions v : Y — C with ||v]|, < oo.
We introduce the family of equivalent norms

[olls = max{|v]so, [v]a/(1 4+ [6]*)}, b ER.

Proposition 3.2 Write s = o +ib. There exists ¢ € (0,1) such that the family s —
Py of operators on C*(Y') is continuous on {o > —e}. Moreover, supy, . || Psl|y < oo.

Proof The first five lines of the proof of [0, Proposition 2.5] should be changed to
the following:

Using the inequality 1 — ¢ < —logt valid for t > 0, we obtain for a > b > 0 that
a—b=a(l-2)<—alog? = a(loga—logb). Hence “ det Dh(z)| — | det Dh(y)|| <
| det Dh|s (log | det Dh(z)| — log | det Dh(y)]) and so by (ii),

|| det Dh(z)| — | det Dh(y)|| < Ci|det Dh|w d(z,y)* forallh € H, z,y € Y. (3.1)

The proof now proceeds exactly as for [0, Proposition 2.5] (with R, A’ and |z — y|
changed to r, det Dh and d(z,y)). |

The unperturbed operator Py has a simple leading eigenvalue \g = 1 with strictly
positive C eigenfunction fo. By Proposition [3.2] there exists ¢ € (0,1) such that
P, has a continuous family of simple eigenvalues A\, for |o| < e with associated C*
eigenfunctions f,. For s = o + ib with || < e, we define the normalised transfer
operators

Ly = (Ao fo) Pl fov) = Aofo) " D Asnlfov),

heH

In particular, L,1 =1 and |Lg|o < 1.
Set Co = C2/(1 —p), p = py. Then

(iiy) |log|det Dh||, < Cy for all h € H,,, n > 1,
(iliy) |D(rn o h)|e < Cy for all h € Hy, n > 1.
Write

L'v=X\"f"1 Z Asnn(fov),  Agpnv =e " det Dhlv o h.
h€H7L
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Lemma 3.3 (Lasota-Yorke inequality) There is a constant C5 > 1 such that

| Liv]a < Cs(1 4 [b[*)[v]oe + Cap"[vla < C3(1 + [B]%){ [0l + 2" [[0]]s},

foralls=o0+1ib, |o| <e, and alln > 1, v € C*(Y).
Proof It follows from (ii;) that
|| det Dh(z)| — | det Dh(y)|| < Cs|det Dh|o d(z,y)* < Coe®?| det Dh(z)| d(z, y)

for all h € H,, n > 1, z,y,z € Y. The proof now proceeds exactly as for [0,
Lemma 2.7]. |

Corollary 3.4 || L?||, < 2C5 for all s =0 +ib, |o| < e, and alln > 1.

Proof This is unchanged from [6, Corollary 2.8]. |
Given b € R, we define the cone

C, = { (u,v) :u,v € C*Y), u>0, 0<|v| <u, |logu|, < C4lb]%,

o) = v()| < Calblu(y)d(,y)* forall z,y €Y }.

(The constant Cy is specified in Lemma [3.8])
Throughout Bs(y) = {x € R™ : d(z,y) < d}.

Lemma 3.5 (Cancellation Lemma) Assume that the (UNI) condition is satisfied
(with associated constants E > 0 and ng > 1). Let hy, hy € H,, be the branches from
(UNI).

There exists 0 < § < A = 4w /E such that for all s = o +ib, |o| <&, [b| > 1, and
all (u,v) € C, we have the following:

For every y' € Y with Bsyny/p(y') C Y, there exists y" € Bajp(y') such that one
of the following inequalities holds on By (y"):

Case h;: |A8,h1,no(fav) + As7h27no(fov)| < %Aa,hl,no (fou) + Aa,hz,no(fau)7
Case h2: ’As,hl,no (fov) + As,hz,no<fov>| < Aa,h1,no<fou) + %Aa,hz,no(fcru)'

Proof Let 6 =V — by, p, where ¥, py = Ty © b1 — Ty 0 he and V = arg(v o hy) —
arg(v o hy).
We follow the following steps from [6, Lemma 2.9]:

(1) Reduce to the situation where [v(h,y')| > $u(hyy’) for both m =1 and m = 2.
(2) Establish the estimate |V (y) — V(y')| < 7/6 for all y € Bsyn)p(y)-
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(3) Construct y” € Ba,pj(y') such that

b(Vny ns(Y") — Yny e (') = 0(y') — m mod 2.

(4) Deduce that |0(y) — m| < 2m/3 for all y € Bisyay/p(y).
(5) Conclude the desired result.

Only step (3) requires any change from the argument in [0, Lemma 2.9]. We
provide here the modified argument. Approximate the continuous unit vector field
¢:R™ — R™ in (UNI) by a smooth vector field ¢ : R™ — R™ with |¢(z)| < 1 for all
x € R™. By condition (iii;), the approximation can be chosen close enough that

| DY, (y) - L(y)| = 3£ forally €Y. (3.2)
Let g : [0,A/]b]] — R™ be the solution to the initial value problem
@="Log, g(0)=y

and set y; = g(t). Note that d(y;,y") < fo [€(g(s))|ds < A/|b], so y, € Baypi(y') for
all t € [0,A/]b]]. By the mean Value theorem apphed to Yp,p, 09 1 [0,A/]0]] = R

and ,

|1/Jh17h2 (yt) - ’Qbhth (y/)l > tse[énAfAbH |D¢h1,h2 (y8) ’ é(y8)| > %Et = (27T/A)t
for all t € [0,A/[b]]. It follows that b(¢n, n,(Yt) — ¥y 4, (y')) fills out an interval
around 0 of length at least 27 as ¢ varies in [0, A/|b||. In particular, we can choose
y" € Bayip(y') such that (3) holds. |

Let {y},...,y,} C Y be a maximal set of points such that the open balls
Bs4ay|(y;) are disjoint and contained in Y.

Let (u,v) € C,. For each i = 1,... k, there exists a ball B; = Bsjp(yi') on which
the conclusion of Lemma [3.5] holds erte type(B;) = hy, if we are in case h,,. Let

B B16/|b|(yz)
There exists a universal constant C' > 0 and a C' function w; : Y — [0, 1] such

that w; =1 on By, w; =0 on Y \ By, and ||w;||cr < C|b]/68. Define w : Y — [0, 1],

i(F™0y), S hon,s =1,2
W(y) Ztype =hy Wi ( ) Y ran'ge m
0 otherwise.

Note that ||w||c1 < C'|b] where C” = C§ is independent of (u,v) € C, and s € C, and
we can assume that C' > 4. Then x = 1 —w/C" : Y — [3,1] satisfies [Dx| < [b].
Moreover, if type(B;) = h,, then x = n on range h,, where n =1 —1/C" € (0, 1).

Corollary 3.6 Let 6, A be as in Lemma [3.5, Let [b] > 1, (u,v) € Cp. Let x =
x(b,u,v) be the C' function described above (using the branches hy, hy € H,, from
(UNI)). Then |L7v| < L (xu) for all s = o + b, |o] < e.
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Proof This is immediate from Lemma [3.5] and the definition of . n
Define the disjoint union B = | J B;.

Proposition 3.7 Let K > 0. There exists ¢c; > 0 such that féwd,u > fy wdp for
all C* function w : Y — (0,00) with |logw|, < K1b|*, for all |b| > 167/E.

Proof Let y €Y. Since (6 + A)/|b] < 2A/[b] = 87/(E|b|) < 3, there exists z € Y
with Bspayp(2) C Y such that d(z,y) < (6 + A)/[b]. By maximality of the set
of points {y},...,y,}, there exists y; such that By (2) intersects Bsya) /s (i)-
Hence Y C (I, Bf where Bf = Bs(s1a)/18/(y;)- Since the density dy/d Leb is bounded
above and below, there is a constant ¢, > 0 such that ju(B;) > cop(B?) for each i.

Let # € B;, y € BY. Then d(z,y) < 4(6 + A)/|b] and so |w(z)/w(y)| < X" where
K'={4(6 + A)}*K. It follows that

/ wdp > M(B\z) infw > coe™ u(B)) supw > cl/ wdp,
B B ;

. 3 *
i i ;

where ¢; = coe %', Since the sets Ez C Y are disjoint,

/wdp Z/ wdﬂ>012/ wdp,>cl/wdp

as required. [

Lemma 3.8 (Invariance of cone) There is a constant Cy depending only on Cf,
Cy, | fi oo and | fola such that the following holds:
For all (u,v) € Cy, we have that

(L2 (xu), L) € Gy,
foralls =0 +ib, |o| <e, |b] > 1. (Here, x = x(b,u,v) is from Corollary|3.6)

Proof This is unchanged from [6, Lemma 2.12]. |
Lemma 3.9 (L? contraction) There ezist ¢, 3 € (0,1) such that
[z dn < g7
Y

forallm > 1, s =o+1ib, |o] <e, |b] > max{167/E, 1}, and allv € C*(Y) satisfying
[0le < Calb]*[v] oo
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Proof Define uy = 1,v) = v/|v| and inductively,

Um+1 = Lgo (Xmum)a Um+1 = LZO(UW)7

where X, = X(b, U, V). It is immediate from the definitions that (ug,vg) € Cp, and
it follows from Lemma that (U, vm) € Cp for all m. Hence inductively the y,, are
well-defined as in Corollary [3.6]

We proceed as in [0, Lemma 2.13] in the following steps.

(1) It suffices to show that there exists 5 € (0,1) such that [, u2,, du < 8 [u2 du
for all m.

(2) Define w = Lg°(u2,). Then

2 () < {swmw(y) yeB
T lowly)  yeY\B

where (o) can be made as close to 1 as desired by shrinking . Here, n; € (0,1)
is a constant independent of v, m, s, y.

(3) The function w : Y — R satisfies the hypotheses of Proposition [3.7; conse-
quently | gwdp > ¢ fy\ 5 W dp. This leads to the desired conclusion. [

Lemma 3.10 (C* contraction) Let E' = max{16n/E,2}. There ezists € € (0,1),
v € (0,1) and A > 0 such that ||P||, < A" for all s = o +ib, |o| < ¢, |b|] > F',
n > Alog |b].

Proof This is unchanged from [6, Proposition 2.14, Corollary 2.15 and Theo-
rem 2.16]. |

Proof of Theorem This is identical to [6, Section 2.7]. We note that there is a
typo in the statement of [6, Lemma 2.23] where || < D’ should be |b] > D’ (twice).
Also, for the second statement of [6, Proposition 2.18] it would be more natural to
argue that

e dLeb = / e®" d Leb
=3

her VN

=y / e**"| det Dh| dLeb < Leb(Y) Y _ e[ det Dh|
hen /Y heH

which is finite by condition (iv). Hence [, 7" du < oo by boundedness of dyi/d Leb. ®

20



3.2 (C'" uniformly hyperbolic skew product flows

Let X =Y x Z where Y is an open ball of diameter 1 with Euclidean metric dy
and (Z,dyz) is a compact Riemannian manifold. Define the metric d((y, 2), (v, 2)) =
dy(y,y') +dz(z,2") on X. Let f(y,z) = (Fy,G(y,z)) where F: Y =Y, G: X - Z
are C1+e,

We say that f : X — X is a C**® uniformly hyperbolic skew product if F : Y — Y
is a C1** uniformly expanding map satisfying conditions (i) and (ii) as in Section 3.1]
with absolutely continuous invariant probability measure p, and moreover

(v) There exist constants C' > 0, vy € (0,1) such that d(f"(y, z), f"(y,2')) <
Cryd(z,2') forally € Y, 2,2/ € Z.

Let #° : X — Y be the projection 7°(y, z) = y. This defines a semiconjugacy
between f and F' and there is a unique f-invariant ergodic probability measure px
on X such that miux = pu.

Suppose that 7 : JyepU — RT is C! on partition elements U with infr > 0.
Define r : X — R™ by setting r(y, 2) = r(y). Define the suspension X" = {(z,u) €
X xR:0<wu<r(x)}/ ~ where (z,7(z)) ~ (fz,0). The suspension flow f; : X" —
X" is given by fi(z,u) = (z,u + t) computed modulo identifications, with ergodic
invariant probability measure u% = (ux x Lebesgue) /7.

We say that f; is a O uniformly hyperbolic skew product flow provided f : X —
X is a C'** uniformly hyperbolic skew product as above, and r : Y — R satisfies
conditions (iii) and (iv) as in Section 3.1} If F: Y — Y and r : Y — R* satisfy
condition (UNI) from Section then we say that the skew product flow f; satisfies
(UNI).

Define F,(X") to consist of L> functions v : X" — R such that |[v]ls = |[v]eo +
|v]a < 00 where

’U(ya 2,y U) - U(ylv Zlu U)|
v]a = sup PRSIV
ey 2w Ay, 2), (Y, 2))

Define F, 1 (X") to consist of functions with [|v]|ar = Z?:o 10?0, < co where 0,
denotes differentiation along the flow direction.

We can now state the main result in this section. Given v € L}(X"), w € L*(X"),
define the correlation function

prnlt) = [vwo it — [t [wans

Theorem 3.11 Assume that f, : X — X is a C'T hyperbolic skew product flow
satisfying the (UNI) condition. Then there exist constants ¢,C > 0 such that

|pow(®)] < Ce™vllallw]la,r,
for allt >0 and all v, w € Fo1(X") (alternatively all v € F,2(X"), w € Fo(X")).

Proof This is unchanged from [6], Section 4]. |
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4 Proof of Theorem 1.2

We return to the situation of Section [2| so A C M is a uniformly hyperbolic attractor
for a C1* flow, o € (0,1), defined on a compact Riemannian manifold. Define the
open unstable disk Y = W¥(p) with discrete return time R : Y — Z* and induced
map F=7o¢r:Y — Y as in Theorem [2.1]

Under smoothness assumptions on holonomies, we verify the conditions on the
suspension flow f; in Section 3| and obtain Theorem as an easy consequence.

Proposition 4.1 Suppose that the centre-stable holonomies are C***. (In particular,
7:D — D is C'.) Then (after shrinking &y in Section@ if necessary) F is a C1H
uniformly expanding map.

Proof Asin Remark[2.2] it is immediate that F|; : U — Y is a O diffeomorphism
foral U € P. Let h : Y — U be an inverse branch with R|y = n, and define
v = T|gnw) : @n(U) = D. Then

Aol < Aol < [Dgn(@)v] < (D7)~ oo DF (2)0]

for all z € U, v € T,Y. Hence |Dhl|s < po where pg = Asupy |(D7y) e Shrinking
do, we can ensure that py < 1. In particular, condition (i) in Section (3.1 holds (with
Cy = 1). Condition (ii) is the standard distortion estimate. n

In the remainder of this section, we suppose moreover that the stable holonomies
are C17*. Shrink d, € (0,1) as in Proposition and shrink §; € (0,dy) so that
o:(W5 (y)) C Wg (¢ey) for all t > 0, y € A. Recall that D = W (p) and

p=-Uwiw=U a(UWw).

yeD It|<6o yeD

The projection 7° : |J,cp W5 (y) — D given by m|W3 (y) = y is C'**. Moreover,
7 = 7 o ¢,, where ¢, : D — Uyep Wi, (y) and g : D — (=0, ) is C'T. Define
r = R+ 1y on Y. The choice §; < 1 ensures that infr > 1 — dy > 0. Define the
corresponding semiflow F; : Y™ — Y.

Proposition 4.2 F, : Y™ — Y" is a C' uniformly expanding semiflow.

Proof By Proposition , F is a C'*® uniformly expanding map. In particular,
conditions (i) and (ii) are satisfied.

Notice that FF = 7° o ¢, where r = R+ 1y : ¥ — RT is C' on par-
tition elements U € P. Since Dr = Dry on partition elements, it is imme-
diate that supjcy |D(r o h)|ew < |Droloo Suppey |Dhle < po|Drols < 00 veri-
fying condition (iii) on 7. Recall that Leb(R > n) = O(y") for some v €
(0,1), so we can choose ¢ > 0 such that [, e®dLeb < oco. Condition (ii)
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ensures that |det Dh|,, < (LebY)le®t Leb(rangeh) for all h € H. Hence
> nen €M det Dhlow < Y, 05, €915 Leb(range h) = [, e*fdLeb < oo verify-
ing condition (iv) on 7. |

We now make a C'** change of coordinates so that D is identified with D x
W (p) x (—=6o,60) where {y} x W¢ (p) is identified with W (y) for all y € D and
(=00, 00) is the flow direction. Let X =Y x Z where Z = W (p) and define 7 :
X — (0,00) by r(y, z) = r(y). Also, define f = ¢, : X — X and the corresponding
suspension flow f; : X7 — X7

Proposition 4.3 f; : X" — X" is a C1T® uniformly hyperbolic skew product flow.

Proof Note that 7%(X) =Y and 7°(y,2) = y. Also, f(y,z) = (Fy,G(y, z)) where
G : X — Zis C'@. Since Z corresponds to the exponential contracting stable
foliation, condition (v) in Section is satisfied. Hence f : X — X is a O
uniformly hyperbolic skew product and the corresponding suspension flow f; : X" —
X" is a O uniformly hyperbolic skew product flow. n

Next we recall the standard argument that joint nonintegrability implies (UNI)
in the current situation. (Similar arguments are given for instance in [7, Section 3]
and [21], Section 5.3].)

Joint nonintegrability is defined in terms of the temporal distortion function. To
define this intrinsically (independently of the inducing scheme) we have to introduce
the first return time 7 : X — R* and the Poincaré map ¢g : X — X given by

7(x) =1inf{t > 0: ¢(z) € X}, 9(x) = ¢r(z)(T).

Note that 7 is constant along stable leaves by the choice of X.
For x1, 29 € X, define the local product [z, 23] to be the unique intersection point
of W*(x1) N W#(xg). The temporal distortion function D is defined to be

D(x1,22) = »_ {7(¢’21) = 7(¢[w1, 22]) — 7(¢ [w2, 1)) + 7(g"22) }

j=—o00

at points x1,29 € X. The stable and unstable bundles are jointly integrable if and
only if D = 0.

Lemma 4.4 Joint nonintegrability of the stable and unstable bundles implies (UNI).

Proof For points z,2" € X with 2’ € W¥(x), we define

Dy(x,2') = Z {T(g_jx) — T(g_jm')}.
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Since 7 is constant along stable leaves,

D(x1,22) Z {7(g7721) = 7(g77 [w1, 22]) — 7(977 [w2, 21]) + 7(g77x2) }

= Do(xl, (21, x2]) + Do(z2, [T2, 21]).

Next, we find a more convenient expression for Dy in terms of » and f. Note that
for any 2 € X, there exists N(z) € Z* (the number of returns to X up to time r(z))

such that
N(z)-1

rle)= Y 7(g'z),  fl@)=g""
(=0

Corresponding to the partition P of Y, we define the collection P = {Ux 7 :
U € P} of closed subsets of X. Suppose that z,z" € V, Vi € P, with 2/ € W(x).
The induced map f : X — X need not be invertible since it is not the first return
to X. However, we may construct suitable inverse branches z;, z; of z, 2’ as follows.
Set 29 = z, z[, = 2. Since f is transitive and continuous on closures of partition
elements, there exists V] € P and z1 € V} such that fz; = zy. Since F' is full-branch,
fW™(z) N V1) D W"(zp), so there exists z; € W%(z1) NV} such that fz; = 2.
Inductively, we obtain V,, € P and zj, 25 € Vi, with 27 € W"(z;) such that fz; = z; 4
and f2} =27 ;.

By construction, z;_; = fz; = gNV@)z;. Hence z; = g~ NE++NGE) g and

N(z;)—-1 N(z1)++N(z5)
7_ ¢ —(N (z1)++N(z5)) ) Z 7_<g—£l,).
=0 ZZN(Zl)-i-“'-‘rN(Zj,l)-i—l

A similar expression holds for r(z}). Hence

= Z {r(zj) — r(zé)}

We are now in a position to complete the proof of the lemma, showing that if (UNI)
fails, then D = 0. To do this, we make use of [8, Proposition 7.4] (specifically the
equivalence of their conditions 1 and 3). Namely, the failure of the (UNI) condition
in Section means that we can write r = o FF — &+ (on Y where £ : Y — R is
continuous (even C') and ( is constant on partition elements U € P. Extending &
and ¢ trivially to X =Y x Z, we obtain that r = {o f —{+(on X where { : X — R
is continuous and constant on stable leaves, and ( is constant on elements V' € P. In
particular,

n

Do) = 0 {6z — 6) + ()} = €)= ) + D (3.

Jj=1
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For z,2' € Vg, Vy € P, with 2’ € W(z), it follows that
D {r(z) = r(2)} = &(@) = £(2') — €(zn) + £(20).
j=1

Taking the limit as n — 0o, we obtain that Dy(z, 2') = {(x)—&(2"). Hence D(z1,x5) =
E(z1)—E&([w1, o)) =& ([, x1])+E(x2). Since € is constant on stable leaves, D(xy, x9)= 0
as required. |
Proof of Theorem |1.2] By Proposition and Lemmal[4.4] f, is a C**® uniformly
hyperbolic flow satisfying (UNT). The result for C**< observables follows from Theo-
rem [3.11] As in [I8], the result follows from a standard interpolation argument (see
also [0, Corollary 2.3]). |
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