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Abstract

We prove statistical limit laws for Hölder observations of the Lorenz at-
tractor, and more generally for geometric Lorenz attractors. In particular, we
prove the almost sure invariance principle (approximation by Brownian mo-
tion). Standard consequences of this result include the central limit theorem,
the law of the iterated logarithm, and the functional versions of these results.

1 Introduction

The Lorenz equations

ẋ = 10(y − x), ẏ = 28x− y − xz, ż = xy − 8
3
z, (1.1)

were introduced in 1963 by Lorenz [8], originally as a simplified nonlinear model
for the weather, but more significantly to emphasise the presence of chaotic dynam-
ics in simple-looking systems. The mathematical study of these equations began
with the geometric Lorenz flows, introduced independently by Afrăımovič, Bykov &
Sil′nikov [1] and Guckenheimer & Williams [7, 20] as an abstraction of the numerically-
observed features of solutions to (1.1). The geometric flows were shown to possess a
“strange” attractor with sensitive dependence on initial conditions. Moreover, these
attractors admit a “physical” (SRB) measure, namely an ergodic invariant probabil-
ity measure µ with the property that time averages and space averages coincide for
Lebesgue almost every solution starting close to the attractor. Further, the measure
µ has a positive Lyapunov exponent.

The main result in this paper is the almost sure invariance principle (ASIP) for
geometric Lorenz attractors.
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Theorem 1.1 (ASIP) Let Tt : R3 → R3 be a geometric Lorenz flow with SRB
measure µ. Let ψ : R3 → R be a Hölder continuous observable with

∫
R3 ψ dµ = 0.

Then (on a possibly enriched probability space) there is a Brownian motion W (t)
with variance σ2 ≥ 0, and there exists ε > 0 such that µ-a.e.∫ t

0

ψ ◦ Ts ds = W (t) +O(t
1
2
−ε) as t→∞.

Remark 1.2 For any geometric Lorenz attractor, the ASIP is nondegenerate
(σ2 > 0) for typical Hölder observables ψ. Indeed, the observables for which σ2 = 0
lie inside a closed subspace of infinite codimension, see §4.3.

There are a number of consequences of the ASIP [13]. These include the central
limit theorem and law of the iterated logarithm.

Corollary 1.3 Assume the set up of Theorem 1.1. Then

(CLT) 1√
t

∫ t

0
ψ ◦ Ts ds→d N(0, σ2) as t→∞.

(LIL) lim supt→∞
1√

2t log log t

∫ t

0
ψ ◦ Ts ds = σ almost everywhere.

Recently, Tucker [17, 18] obtained a numerically-assisted proof that the Lorenz
equations (1.1) indeed define a geometric Lorenz flow. In particular, the Lorenz
equations possess a strange attractor with an SRB measure with positive Lyapunov
exponent. Moreover, the attractor is robust, so nearby flows also possess a strange
attractor with these properties.

Corollary 1.4 The ASIP, and hence CLT and LIL, are valid for Hölder observables
of the Lorenz equations (1.1) and all nearby flows.

Remark 1.5 In [9], it is shown that mixing is automatic for Lorenz attractors, but
currently there are no results on the rate of decay of correlations. Oddly, the loga-
rithmic singularity of h is is a crucial part of the proof of mixing in [9], yet is the main
obstruction to proving statistical limit laws or rapid decay of correlations. The tech-
niques in the current paper overcome the obstruction in the case of statistical limit
laws but require further refinement for decay of correlations, see Remark 3.3(iv).

In the remainder of this section, we outline the structure of this paper and describe
how the proof of Theorem 1.1 relates to techniques developed in the uniformly and
nonuniformly hyperbolic settings.

For uniformly hyperbolic flows, the CLT and ASIP were proved by Ratner [14]
and Denker & Philipp [5]. A key step is to view the flow as a suspension (or special
flow) over a uniformly hyperbolic diffeomorphism with Hölder roof function h. Sta-
tistical limit laws proved in the simpler setting of diffeomorphisms then transfer to
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the suspension flow under certain conditions. The boundedness of the roof function
was relaxed by Melbourne & Török [12].

Gouëzel [6] (resp. Melbourne & Nicol [11]) used the approach in [12] to prove
the CLT and stable laws (resp. the ASIP) for classes of nonuniformly hyperbolic
flows. The flow is again a suspension over a nonuniformly hyperbolic diffeomorphism
with Hölder roof function h, but the diffeomorphism itself is now modelled as a
discrete suspension (Young tower [21, 22]) over a uniformly hyperbolic diffeomorphism
(induced map) with an unbounded integer-valued roof function r. Statistical laws for
the flow are obtained by twice applying the suspension procedure, see [11].

Geometric Lorenz flows are suspension flows over a singular uniformly hyperbolic
diffeomorphism P , where the roof function h has a logarithmic singularity. The dif-
feomorphism P , being singular, has poor distortion properties. It is well-known how
to construct an inducing scheme to model P as a discrete suspension over a diffeomor-
phism P r that inherits the uniform hyperbolicity and in addition has good distortion.
The ASIP for P r is then a consequence of [11], but the logarithmic singularity for h
is a nontrivial obstacle to lifting the ASIP to the flow. In this paper, we construct a
more complicated inducing scheme along the lines used by Benedicks & Carleson [2]
and Benedicks & Young [3] for Hénon-like diffeomorphisms. The inducing scheme
is constructed specifically in order to control the growth of h along trajectories and
enables us to prove the ASIP for the underlying flow. (Nevertheless, the construction
is considerably simpler than that required in the Hénon case.)

In §2, we collect some background material on geometric Lorenz attractors. In
§3, we describe the inducing scheme constructed in this paper. In §4, we use the
inducing scheme to prove Theorem 1.1. The remainder of the paper is concerned
with the proof of the inducing scheme. The inducing scheme is explained in §5. For
completeness, all proofs are given. However, some of the lengthier (though standard)
arguments are included as appendices.

2 Background on geometric Lorenz attractors

In this section, we describe some of the structure associated with geometric Lorenz
attractors. Let 0 be an equilibrium for a smooth (at least C1+ε) flow Tt on R3. Denote
the corresponding vector field Z : R3 → R3. We suppose that the eigenvalues of (dZ)0

are real and satisfy

λss < λs < 0 < λu and λu > |λs|. (2.1)

Choose coordinates (x1, x2, x3) so that (dZ)0 = diag{λu, λss, λs}. We suppose that
the flow Tt is C1+ε-linearisable in a neighbourhood of 0.

Remark 2.1 By Sternberg [16], the flow for the actual Lorenz equations is C∞-
linearisable near 0. Moreover, the flow for all nearby sufficiently smooth vector fields
is C2-linearisable (see for example [15]).
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After rescaling, we may suppose that the flow is linearised in a neighbourhood
of the unit cube. Define the cross-sections X = {(x1, x2, 1) : |x1|, |x2| ≤ 1},
X ′ = {(1, x2, x3) : |x2|, |x3| ≤ 1}. The Poincaré map P : X → X (where de-
fined) decomposes into P = P2 ◦ P1 where P1 : X → X ′ and P2 : X ′ → X. Write
Px = Th(x)x where h : X → R+ is the first return time to X.

Proposition 2.2 Let β = |λs|/λu ∈ (0, 1), β′ = |λss|/λu > β. Then P1(x1, x2, 1) =

(1, xβ′

1 x2, x
β
1 ), and h(x) = −λ−1

u log |x1|+ h0(x) where h0 ∈ Cβ(X).

Proof Note that h(x) = τ1(x) + τ2(P1x) where τ1 : X → R+ and τ2 : X ′ → R+

are the first-hit times for P1 and P2 respectively. A standard calculation using the
linearised flow between X and X ′ yields the required formula for P1 and shows that
τ1(x) = −λ−1

u log |x1|. Moreover, P2 is a diffeomorphism so τ2 is smooth. This
combined with the formula for P1 implies that h0 = τ2 ◦ P1 ∈ Cβ(X).

Definition 2.3 The flow Tt has a stable foliation if there is a compact neighbourhood
N ⊂ X satisfying P (N −{x1 = 0}) ⊂ X with a C1+ε P -invariant foliation into stable
leaves (including the “singular” leaf {x1 = 0}), and a constant λ0 ∈ (0, 1) such that
for all x, y in the same leaf and all n ≥ 1,

|P nx− P ny| ≤ Cλn
0 . (2.2)

Remark 2.4 Throughout this paper, C denotes a generic constant C ≥ 1 that de-
pends only on the geometric Lorenz flow Tt and which may vary from line to line.

We assume that Tt has a stable foliation. For notational convenience, suppose that
each stable leaf intersects X1 = {(x1, 0, 1) : |x1| ≤ 1} ∼= [−1, 1] in a single point.
Let ̂ : X → X1 denote the C1+ε projection along leaves. Quotienting along stable
leaves, we obtain a C1+ε one-dimensional map T : X1 → X1 with a singularity at 0.
In symbols, Tx1 = {P (x1, 0, 1)}̂ .

Remark 2.5 We can viewX1 as a subset or quotient ofX. The interpretation should
be clear from the context. In later sections we often write X̄ instead of X1.

Proposition 2.6 (a) T ′x1 = |x1|β−1g(x1) where g ∈ Cβε(X1), g > 0.

(b) h = h1 + h2 where h1(x) = −λ−1
u log |x̂| and h2 ∈ Cε(X).

(c) h = h̃1 + h̃2 where h̃1(x) = λ−1
u (1− β)−1 log T ′x̂ and h̃2 ∈ Cβε(X).

Proof Part (c) is immediate from (a) and (b). By Proposition 2.2, Tx1 =
{P2(1, 0, x

β
1 )}̂ . Part (a) follows since ̂ and P2 are C1+ε.

Note that x̂ has the same sign as x1 and in particular, x̂ = 0 if and only if x1 = 0.
Define v(x) = log |x̂|− log |x1| when x1 6= 0 and v(x) = 0 when x1 = 0. We show that
v : X → R is Hölder.
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Let p(x) = x̂ be the projection along stable leaves. Since p is C1+ε and p(0, x2) ≡ 0,
we can write p(x) = x1q(x) where q is Cε and positive. Hence

v(x) = log |p(x)| − log |x1| = log(|x1|q(x))− log |x1| = log q(x),

which is Hölder provided that q(x) = x̂/x1 is bounded below.
Let ubx be the graph of the stable leaf containing x̂. Then x1 = ubx(x2) = ubx(x2)−

u0(x2) so |x1| ≤ C|x̂| (since the foliation is Lipschitz). Hence q(x) is bounded below
proving part (b).

In addition, we assume that T is uniformly expanding: there are constants λ1 > 1
and c > 0 such that for all x1 ∈ X1 and n ≥ 1,

(T n)′(x1) ≥ cλn
1 . (2.3)

For our purposes, a geometric Lorenz flow is a three-dimensional flow with an
equilibrium satisfying the eigenvalue conditions (2.1), possessing a stable foliation as
in Definition 2.3 with quotient map T satisfying (2.3).

Proposition 2.7 Let γ = max{λ0, λ
−1
1 } ∈ (0, 1). If x, y ∈ Y satisfy sgnT jx̂ =

sgnT j ŷ for j = 0, 1 . . . , n, then |Pmx̂− Pmŷ| ≤ Cγn−m for m = 0, 1, . . . , n.

Proof By assumption, T n−j restricts to a bijection on an interval containing T jx̂
and T j ŷ. By (2.3), we have 2 ≥ |T n−jT jx̂− T n−jT j ŷ| ≥ cλn−j

1 |T jx̂− T j ŷ|. Hence

|T jx̂− T j ŷ| ≤ 2c−1γn−j. (2.4)

We claim that

‖(dPm)x‖ ≤ C
m∑

j=1

γm−j(T j)′(x̂). (2.5)

Then it follows from (2.4) and (2.5) that

|Pmx̂− Pmŷ| ≤ 2c−1C

m∑
j=1

γm−jγn−j ≤ 2c−1C(1− γ2)−1γn−m.

It remains to prove the claim. After a preliminary C1 change of coordinates, we
may assume that the stable leaves are vertical in X. Recall that P = P2 ◦ P1 where
P1 is as given in Proposition 2.2. The assumption on the stable foliation means that

P2(1, u2, u3) = (Q(u3), R(u2, u3), 1),

where Q and R are smooth. Hence Px = (Tx1, Sx) where S(x) = g(xβ
1 , x

β′

1 x2) and

g is C1. We can write (dPm)x =
( (Tm)′(x1) 0

Um(x) Vm(x)

)
. By definition of the stable

foliation, |Vm| ≤ Cλm
0 . Also, U1(x) = ∂x1S(x) so by Proposition 2.6(a)

|U1(x)| ≤ Cxβ−1
1 ≤ CT ′x1.
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Since (dPm)x = (dPm−1)Px(dP )x, we have the relation Um(x) = Um−1(Px)T
′(x1) +

Vm−1(Px)U1(x). It follows by induction that

Um+1(x) = U1(P
mx)(Tm)′(x1) +

m−1∑
j=0

Vm−j(P
j+1x)U1(P

jx)(T j)′(x1),

and so |Um(x)| ≤ C
∑m

j=1 λ
m−j
1 (T j)′(x1). We have now obtained estimates for all the

terms in (dPm)x, and claim (2.5) is verified.

3 Inducing scheme for Lorenz-like expanding maps

Let X̄ = X1 = [−1, 1] with Lebesgue measure m. In §2, we recalled how to extract a
one-dimensional singular expanding map T : X̄ → X̄ from a geometric Lorenz flow.
In this section, we state a result yielding an induced map F : Ȳ → Ȳ . The ASIP for
“weighted Lipschitz” observables on the induced system then follows from [11].

Definition 3.1 A C1+ε map T : X̄−{0} → X̄ is called a Lorenz-like expanding map
if T satisfies Proposition 2.6(a) and condition (2.3), and T (0+) = −1, T (0−) = +1,
T (1) ∈ (0, 1), T (−1) ∈ (−1, 0).

The following result is proved in §5.

Theorem 3.2 There exists a measurable subset Ȳ = Ȳ − ∪ Ȳ + ⊂ X̄ − {0} with
m(Ȳ ±) > 0 satisfying the following properties:

(1) There is a countable measurable partition {Ȳj} of Ȳ consisting of subsets of
(−1, 0) and (0, 1).

(2) There is a return time function r : Ȳ → Z+, constant on each Ȳj such that
the induced map F (y) = T r(y)(y) restricts to a bijection F : Ȳj → Ȳ − or
F : Ȳj → Ȳ + for all j.

(3)
∑r(y)−1

`=0 | log T ′(T `x)− log T ′(T `y)| ≤ C|Fx− Fy|εβ for all x, y ∈ Ȳj.

(4) m(r ≥ n) ≤ Cρnγ
where ρ, γ ∈ (0, 1).

(5) − log |T ny| ≤ Cn for all y ∈ Ȳ , n ≥ 1.

Remark 3.3 (i) A consequence of condition (3) is that | logF ′x− logF ′y| ≤ C|Fx−
Fy|εβ for all x, y ∈ Ȳj, i.e. F : Ȳ → Ȳ has bounded distortion.
(ii) It is well-known that there exist inducing schemes satisfying conditions (1)–(4)
for Lorenz-like expanding maps and which moreover achieve exponential decay in (4).
We require the auxiliary condition (5), which is achieved at the cost of weakening the
decay rate in (4) to a stretched exponential decay rate (for any γ ∈ (0, 1

2
)).
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(iii) The full strength of the estimates in (4) and (5) are not required for the ASIP.
For example, if we assume the growth estimate in (5), then we can weaken (4) to the
condition that

∑
n≥1 n

4+εm(r = n) <∞ for some ε > 0.

(iv) Condition (5) implies uniform quadratic growth in r(y) for
∑r(y)−1

`=0 log |T `y|.
One approach [10] to proving rapid decay of correlations for flows relies crucially on
a uniform linear growth rate for this quantity coupled with an exponential decay rate
in condition (4). It seems likely that parameter exclusion arguments combined with
the techniques in this paper and in [10] will yield rapid decay of correlations for at
least a positive measure set of parametrised Lorenz attractors. This is the subject of
work in progress.

Standard arguments guarantee that there is a unique ergodic F -invariant proba-
bility measure µ̄ on Ȳ equivalent to m|Ȳ . Moreover, dµ̄/dm|Ȳ is bounded.

Proposition 3.4 r ∈ Lp(Ȳ , µ̄) for all 1 ≤ p <∞.

Proof It suffices to show that r ∈ Lp(Ȳ ,m|Ȳ ). This follows from Theorem 3.2(4).

For x, y ∈ Ȳ , define the separation time s(x, y) to be the least integer n ≥ 0 such
that F nx, F ny lie in distinct partition elements Ȳj. Given θ ∈ (0, 1) we define the
metric dθ(x, y) = θs(x,y).

Lemma 3.5 Let Φ : Ȳ → R be an observable with
∫

Ȳ
Φ dµ̄ = 0. Suppose that there

exists an integer q ≥ 0 such that

(a) |Φ(y)| ≤ Cr(y)q, and

(b) |Φ(x)− Φ(y)| ≤ Cr(y)qdθ(x, y),

for all x, y ∈ Ȳj, j ≥ 1. Then Φ satisfies the ASIP on (Ȳ , µ̄).

Proof By Proposition 3.4, rq ∈ L2+δ(Ȳ , µ̄). Now apply [11, Corollary 2.5].

4 ASIP for Lorenz flows

In this section we prove Theorem 1.1 (assuming Theorem 3.2 to be valid). In §4.1,
we show how a Hölder observable ψ on the flow leads via a sequence of reductions
to an observable Φ̂ on the induced system F : Ȳ → Ȳ satisfying the hypotheses of
Lemma 3.5 and hence satisfying the ASIP. In §4.2, we recall briefly how the absolutely
continuous measure µ̄ on Ȳ lifts to an SRB measure for the flow. In §4.3, we show
that the ASIP for Φ̂ lifts to the ASIP for ψ.
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4.1 Estimates for observables

Let ψ : R3 → R be a Hölder observable and define φ : X → R, φ(x) =
∫ h(x)

0
ψ(Ttx) dt.

Proposition 4.1 Suppose that ψ ∈ Cη(R3). Let x, y ∈ X with sgnx1 = sgn y1. Then
|φ(x)| ≤ |ψ|∞h(x) and |φ(x)− φ(y)| ≤ C‖ψ‖η{h(x)|x− y|ηβ + |h(x)− h(y)|}.

Proof The first estimate is immediate. For the second estimate, we suppose that
x1, y1 > 0. By Proposition 2.2, h(x) = τ1(x) + h0(x) where τ1(x) = −λ−1

u log x1 and
h0 ∈ Cβ(X). Then φ = φ1 + φ2, where

φ1(x) =
∫ τ1(x)

0
ψ(Ttx) dt, φ2(x) =

∫ h0(x)

0
ψ(TtP1x) dt.

It follows from Proposition 2.2 that |P1x − P1y| ≤ 3|x − y|β. Since the flow is C1,
|TtP1x− TtP1y| ≤ C|x− y|β for all 0 ≤ t ≤ |h0|∞. Hence

|φ2(x)− φ2(y)| ≤ |h0(x)− h0(y)||ψ|∞ + |h0|∞|ψ|η|TtP1x− TtP1y|η

≤ |h0|β|ψ|∞|x− y|β + C|h0|∞|ψ|η|x− y|ηβ ≤ C‖ψ‖η|x− y|ηβ.

By a change of variables, φ1(x) = τ1(x)
∫ 1

0
ψ(Ttτ1(x)x) dt. Hence

|φ1(x)− φ1(y)| ≤ τ1(x)|ψ|η sup
0≤t≤1

|Ttτ1(x)x− Ttτ1(y)y|η + |τ1(x)− τ1(y)||ψ|∞.

Using the form of the linearised flow, we have

Ttτ1(x)(x1, x2, x3) = (x1−t
1 , xtβ′

1 x2, x
tβ
1 ), 0 ≤ t ≤ 1,

and so sup0≤t≤1 |Ttτ1(x)x− Ttτ1(y)y| ≤ 4|x− y|β. The result follows.

Let Y be the lift of Ȳ to X with measurable partition {Yj}, return time function
r : Yj → Z+ constant on partition elements. For x, y ∈ Y , define the separation
time s(x, y) to be the least integer n ≥ 0 such that F nx̂, F nŷ lie in distinct partition
elements Ȳj.

We model P : X → X by a tower f : ∆ → ∆, see Young [21, 22]. Here ∆ = Y r

is a discrete suspension with partition ∆j,` = Yj × {`} and f(y, `) = f(y, ` + 1) for
` = 0, . . . , r(y) − 2 and f(y, r(y) − 1) = (Py, 0). The map π : ∆ → X given by
π(y, `) = P `y satisfies f ◦ π = π ◦ P .

If p = (y, `) ∈ ∆, we define p̂ = (ŷ, `). Two points p, q ∈ ∆ are said to lie in
the same stable leaf if p̂ = q̂. Quotienting along stable leaves, we obtain the quotient
tower ∆̄. For p̂ = (x̂, `), q̂ = (ŷ, `) ∈ ∆̄, define s(p̂, q̂) = s(x̂, ŷ). Given any θ ∈ (0, 1),
we define a metric dθ on ∆̄ by setting dθ(p̂, q̂) = θs(bp,bq).

Define χ : ∆ → R, χ(p) =
∑∞

m=0 φ(Pmπp)− φ(Pmπp̂).

Lemma 4.2 |χ(p)| ≤ C‖ψ‖η for all p ∈ ∆.
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Proof We suppose without loss that p = (y, 0) ∈ Y . (If p = (y, `), then we can
replace p by (y, 0) which gives an overestimate.) Then Pmπp = Pmy. By Proposi-
tion 2.6(b) and Theorem 3.2(5),

h(Pmy) = −λ−1
u log |P̂my|+ h2(P

my) ≤ −λ−1
u log |Tmŷ|+ |h2|∞ ≤ C(m+ 1),

|h(Pmy)− h(Pmŷ)| = |h2(P
my)− h2(P

mŷ)| ≤ |h2|ε|Pmy − Pmŷ|ε.

Hence, by condition (2.2) and Proposition 4.1,

|χ(p)| ≤ C‖ψ‖η

∞∑
m=0

(m+ 1)|Pmy − Pmŷ|ηβ + |h2|ε|Pmy − Pmŷ|ε

≤ C‖ψ‖η

∞∑
m=0

(m+ 1)λαm
0 ≤ C‖ψ‖η; α = min{ε, ηβ}.

Now define φ̂ = φ ◦ π + χ ◦ f − χ : ∆ → R. Note that φ̂ : ∆ → R is a
mean zero observation and that φ̂(p) =

∑∞
m=0 φ(Pmπp̂) − φ(Pmπf̂p). In particular,

φ̂(p) = φ̂(p̂), so φ̂ depends only on future coordinates and can be viewed as an

observable φ̂ : ∆̄ → R. In the next result, we define r : ∆ → Z+ by r(y, `) = r(y).

Lemma 4.3 There exists θ ∈ (0, 1) such that |φ̂(p)− φ̂(q)| ≤ C‖ψ‖ηr(p)dθ(p̂, q̂), for
all p, q ∈ ∆̄.

Proof We let s(p̂, q̂) = 2N and prove that |φ̂(p) − φ̂(q)| ≤ C‖ψ‖ηr(p)Nγ
N
1 where

γ1 = γα, γ = max{λ0, λ
−1
1 }, α = min{ε, ηβ}. The result follows for any θ > γ

1/2
1 .

Write |φ̂(p)− φ̂(q)| ≤ I + II + III + IV , where

I =
N∑

m=0

|φ(Pmπp̂)− φ(Pmπq̂)|, II =
N−1∑
m=0

|φ(Pmπf̂p)− φ(Pmπf̂q)|,

III =
∞∑

m=N

|φ(Pmπfp̂)− φ(Pmπf̂p)|, IV =
∞∑

m=N

|φ(Pmπfq̂)− φ(Pmπf̂q)|.

We give the details for terms I and III, the remaining terms being similar.
In term III, note that fp̂ and f̂p lie in the same stable leaf. Moreover, fp̂ = f̂p

(and so III = 0) except possibly if fp̂, f̂p ∈ Y . In this case, arguing as in the proof
of Lemma 4.2, but with the sum starting at m = N instead of m = 0, we obtain
III ≤ C‖ψ‖ηNγ

N
1 .

Next we consider term I. Note that p and q do not separate during this part of
the calculation since s(p, q) = 2N . Writing p = (x, `), q = (y, `),

I =
N∑

m=0

|φ(Pm+`x̂)− φ(Pm+`ŷ)| =
(r(x)−1∑

m=`

+
N+∑̀

m=r(x)

)
|φ(Pmx̂)− φ(Pmŷ)|
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so that

|I| ≤
r(x)−1∑

k=`

|φ(P kx̂)− φ(P kŷ)|+
N∑

m=0

|φ(PmFx̂)− φ(PmF ŷ)|.

By Proposition 2.6(b,c), Theorem 3.2(5) and Proposition 4.1,

|φ(P kx̂)− φ(P kŷ)| ≤ C‖ψ‖η

{
(k + 1)|P kx̂− P kŷ|α + | log T ′(T kx̂)− log T ′(T kŷ)|

}
.

Note that s(P kx̂, P kŷ) = 2N for 0 ≤ k ≤ r(x) − 1. Hence by Proposition 2.7 and
Theorem 3.2(3), and noting that r(x)− ` ≤ N ,

r(x)−1∑
k=`

|φ(P kx̂)− φ(P kŷ)| ≤ C‖ψ‖η

{r(x)−1∑
k=`

(k + 1)γ2N
1 +

r(x)−1∑
k=0

| log T ′(T kx̂)− log T ′(T kŷ)|
}

≤ C‖ψ‖η{Nr(x)γ2N
1 + |Fx̂− F ŷ|α} ≤ C‖ψ‖η{Nr(x)γ2N

1 + γ2N−1
1 } ≤ C‖ψ‖ηNr(x)γ

2N
1 .

Since s(PmFx̂, PmF ŷ) ≥ 2N −m− 1, a similar argument shows that

N∑
m=0

|φ(PmFx̂)− φ(PmF ŷ)| ≤ C‖ψ‖ηNγ
N
1 ,

completing the proof.

Finally, define Φ̂ : Y → R by setting Φ̂(y) =
∑r(y)−1

`=0 φ̂(y, `). Again Φ̂ depends

only on future coordinates and can be viewed as an observable Φ̂ : Ȳ → R.

Corollary 4.4 Let x, y ∈ Ȳj for some j. Then

(a) |Φ̂(y)| ≤ C‖ψ‖ηr(y)
2.

(b) |Φ̂(x)− Φ̂(y)| ≤ C‖ψ‖ηr(y)
2dθ(x, y).

Proof We have Φ̂(y) =
∑r(y)−1

`=0 φ(T `y) + χ(Fy) − χ(y). By Proposition 2.6(b),

Theorem 3.2(5), Proposition 4.1 and Lemma 4.2, |Φ̂(y)| ≤ C|ψ|∞
∑r(y)−1

`=0 `+C‖ψ‖η,
proving part (a). Part (b) is immediate from Lemma 4.3.

4.2 Measures

Recall from §3 that there is a unique ergodic F -invariant probability measure µ̄ on Ȳ
equivalent to Lebesgue measure m on Ȳ . Moreover the density g = dµ̄/dm is bounded
above. Standard techniques [19, Chapter 6.3] lead from µ̄ to an SRB measure µ for
the underlying flow. We take a marginally different, but equivalent, route to the
definition of µ, defining intermediate measures on Y , ∆ and X.
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µY : Let P r : Y → Y be the induced map for P : X → X (in the same way that
F = T r : Ȳ → Ȳ is the induced map for T : X̄ → X̄). Using Definition 2.3,
a general construction (see [4, p. 22] or [19, Chapter 6.3]) leads to an ergodic P r-
invariant probability measure µY on Y . Moreover, µ̄ is the push forward of µY by the
projection Y → Ȳ along stable leaves.

µ∆: Recall that Y is the base of the tower ∆. We define µ∆ on ∆j,` = Yj × ` to
be a copy of µY |Yj

. Normalising by
∫

Y
r dµY yields an ergodic f -invariant probability

measure µ∆ on ∆.

µX: Use the projection π : ∆ → X to define the push forward measure µX = π∗µ∆.
This defines an ergodic T -invariant probability measure on X.

µ: Define µ = µX×Lebesgue/
∫

X
h dµX to obtain an ergodic Tt-invariant probability

measure on the suspension Xh ⊂ R3.

It is immediate from the definitions that µ̄ is an SRB measure for F : Ȳ → Ȳ .
The SRB property is preserved throughout the steps described above, resulting in the
SRB measure µ for the original flow Tt.

Proposition 4.5 h ∈ Lp(X,µX) for all 1 ≤ p <∞.

Proof Write h = h1 + h2 as in Proposition 2.6(b) with h2 bounded. Compute that∫
X

hp
1 dµX =

∫
∆

hp
1 ◦ π dµ∆ =

∑
j,`

∫
∆j,`

hp
1 ◦ π dµ∆ =

∑
j,`

∫
Ȳj

hp
1 ◦ T ` dµ̄

=
∑
j,`

∫
Ȳj

hp
1 ◦ T ` g dm ≤ |g|∞

∑
j

∫
Ȳj

(r(y)−1∑
`=0

h1(T
`y)

)p

dm.

By Theorem 3.2(5),
∑r(y)−1

`=0 h1(T
`y) ≤ Cr(y)2 so

∫
X
hp

1 dµX ≤ C
∑

j

∫
Ȳ
r2pdm.

4.3 Proof of the ASIP

To prove the ASIP for ψ on (Xh, µ) we begin with the ASIP for Φ̂ on (Ȳ , µ̄) and
follow the route in §4.2 proving intermediate ASIPs on Y , ∆ and X.

Φ̂ on Ȳ : This follows from Lemma 3.5 and Corollary 4.4.

Φ̂ on Y : Since the projection Y → Ȳ is measure-preserving.

φ̂ on ∆: By [12] (see eg. [11, Corollary B.2]), this follows from the ASIP on Y for Φ̂
and similarly for r (more precisely r −

∫
Y
r dµY ), and the fact that r ∈ L2+δ(Y, µY ).

φ on X: Since φ◦π = φ̂+χ−χ◦T where χ is bounded (Lemma 4.2), φ◦π satisfies
the ASIP on ∆. Now use the fact that π : ∆ → X is measure-preserving.
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ψ on Xh: The roof function h (more precisely h −
∫

X
h dµX) is a special case of

φ (with ψ ≡ 1) and so h also satisfies the ASIP on (X,µX). By Proposition 4.5,
h ∈ L2+δ(X,µ). The ASIP for ψ on (Xh, µ) follows by [12, Theorem 4.2].

Nondegeneracy We end this section by discussing the nondegeneracy criterion in
Remark 1.2. Recall that dθ defines a metric on Ȳ .

Proposition 4.6 The ASIP for ψ : Xh → R is degenerate if and only if there exists
a Lipschitz function w : Ȳ → R such that Φ̂ = w ◦ F − w.

Proof First notice that nondegeneracy is preserved throughout all the steps from
Ȳ to Xh (by [12] for the suspension steps and immediately for the other two steps).

Hence it suffices to consider nondegeneracy at the level of Φ̂ on Ȳ . Now apply
Melbourne & Nicol [11, Corollary 2.3(c)].

We can view F : Ȳ → Ȳ as a shift on infinitely many symbols and it is clear
that there are infinitely many periodic orbits for F . (It is less clear how these relate
to the periodic orbits for the underlying flow, but that is of no consequence for this
argument). If y ∈ Ȳ is a periodic point of period k, define τ(y) =

∑k−1
j=0 Φ̂(F jy).

It follows from Proposition 4.6 that if the ASIP is degenerate then τ(y) = 0 for
every periodic point y. Hence degeneracy occurs inside a closed subspace of infinite
codimension as claimed in Remark 1.2.

5 Construction of the inducing scheme

In the remainder of the paper, we prove Theorem 3.2. For simplicity of notation,
we drop the “bars”. In particular, T : X → X is a Lorenz-like expanding map,
X ∼= [−1, 1], as in Definition 3.1 and we construct an induced map F : Y → Y
satisfying the properties listed in Theorem 3.2.

The structure of the proof is organised as follows. In §5.1, we define the set
Y = Y − ∪ Y + ⊂ X and establish some elementary properties of Y . In particular,
the set Y is defined so that estimate (5) holds and we verify that m(Y ±) > 0. In
§5.2, we construct a partition {Yj} with return time function r : Y → Z+ satisfying
conditions (1,2). The bounded distortion estimates (3) and tail estimates (4) are
proved in the appendices.

Preliminaries Fix δ ∈ (0, 1) with dδ = log δ−1 ∈ N and let U = (−δ, δ). For each
d ≥ dδ, define Id = [e−(d+1), e−d) and subdivide each Id into d2 identical subintervals
Id,m, 1 ≤ m ≤ d2. Set I−d = −Id, I−d,m = −Id,m. Define the interval partition of U
IU = {Id,m : |d| ≥ dδ, m = 1, . . . , d2}. Then I = IU ∪ {0} ∪ {±[δ, 1]} is an interval
partition of X.
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Given Id,m ∈ IU , let I±d,m denote the elements of I that are adjacent to Id,m on

the right and left. Define Îd,m = I−d,m ∪ Id,m ∪ I+
d,m. Then Î = {Îd,m : |d| ≥ dδ, m =

1, . . . , d2} ∪ {0} is a cover of X.

5.1 Definition of Y

Choose δ small enough that TU ∩ U = ∅. Let Ω0 = Ω−
0 ∪ Ω+

0 where Ω±
0 = I±dδ ,1 are

the outermost elements of IU . Following [3, Section 3.2], we fix α1 > 0 and define
inductively Ω0 ⊃ Ω1 ⊃ · · · as follows. Let ω be a connected component of Ωn−1.
We delete from ω the interval T−n(−e−α1n, e−α1n). Further, if ω′ is a component of
what remains of ω and T nω′ does not cover an element of IU then we delete ω′ as
well. (In particular, the deleted subset lies inside T−n(−e−(α1−1)n, e−(α1−1)n).) Define
Y =

⋂
n≥1 Ωn. Also, set Ω±

n = Ωn ∩ Ω±
0 and Y ± = Y ∩ Ω±

0 .

Proposition 5.1 Estimate (5) of Theorem 3.2 is valid, and
∑n

`=1 log T ′(T `y) ≤ Cn2

for all y ∈ Ωn, n ≥ 1.

Proof The validity of estimate (5) is immediate from the definitions. The second
statement follows from Proposition 2.6(a).

Corollary 5.2 There exists λ2 > 1 such that cλn
1 ≤ (T n)′(y) ≤ λn2

2 for all y ∈ Ωn,
n ≥ 1.

Proposition 5.3 For all n ≥ 1, m(Ω±
n−1 − Ω±

n ) ≤ c−1e−(α1−2)n.

Proof Let ω be a component of Ω±
n−1 and let ω′ ⊂ ω be the piece that will be deleted

in the n’th step. Then T nω′ ⊂ (−e−(α1−1)n, e−(α1−1)n) and so by (2.3), m(ω′) ≤
c−1m(T nω′) ≤ 2c−1e−(α1−1)n. Also Ω±

n−1 consists of at most 2n−1 components ω.

Corollary 5.4 For α1 sufficiently large, m(Y ±) > 0.

Proof Let α = α1 − 2. By Proposition 5.3,

m(Ω±
0 − Y ±) =

∑
n≥1

m(Ω±
n−1 − Ω±

n ) ≤ c−1(eα − 1)−1.

Choose α so that c−1(eα − 1)−1 ≤ 1
2
m(Ω±

0 ). Then m(Y ±) ≥ 1
2
m(Ω±

0 ) > 0.

We record the following elementary properties of Y for subsequent use.

Proposition 5.5 Suppose that x ∈ Ωn−1 and T nx ∈ Y . Then x ∈ Y .
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Proof We must show that |T kx| ≥ e−α1k for all k ≥ 1. The inequality holds for
1 ≤ k ≤ n− 1 since x ∈ Ωn−1 and holds for k = n since T nx ∈ Y ⊂ (δ, 1]. If k > n,
then |T kx| = |T k−n(T nx)| ≥ e−α1(k−n) ≥ e−α1k since T nx ∈ Y ⊂ Ωk−n.

Note that Y takes the form of a Cantor set. Let G denote the set of connected
components of Ω0 − Y (i.e. the gaps of the Cantor set) and define G± = G|Y ±.

Proposition 5.6 For α2 sufficiently large,
∑

γ∈G:m(γ)≤εm(γ) ≤ C exp{−α2(log ε−1)1/2}
for all ε > 0.

Proof Let Un = (−e−nα1 , e−nα1) and let ω be a connected component of Ωn−1. If
T nω covers Un, then this creates a gap ω ∩ T−nUn ⊂ Ωn−1 −Ωn. Since ω ⊂ Ωn−1, we

have (T n−1)′|ω ≤ λ
(n−1)2

2 by Corollary 5.2. Also, TU ∩ U = ∅ and so T ′ is bounded
on T−1U . Hence (T n)′ is bounded by Cλn2

2 on ω ∩ T−nU so that m(ω ∩ T−nUn) ≥
2C−1λn2

2 e
−nα1 ≥ λ−n2

3 for some λ3 > 1.
If T nω only partially covers Un, then we can adjoin the partial gap to a previously

created gap, thus ensuring that all gaps created at time n have measure at least λ−n2

3 .

Choose n0 so that λ
−n2

0
3 ∼ ε. Then

∑
γ∈G:m(γ)≤εm(γ) ≤

∑
n>n0

m(Ωn−1 − Ωn) ≤
Ce−(α1−2)n0 by Proposition 5.3. The result follows.

5.2 Markov structure for Y

We now define a new nested sequence of sets Ω̃n ⊂ Ωn. We define also a sequence of
interval partitions Pn of Ω̃n that are nested in the sense that Pn is a refinement of
the restriction of Pn−1 to Ω̃n. Simultaneously, we define the return time function r.

Definition 5.7 An interval ω ⊂ Ωn−1 makes a regular return (to Ω±
0 at time n) if

either T nω ⊃ Ω−
0 or T nω ⊃ Ω+

0 .

Set Ω̃0 = Ω0 and P0 = {Ω±
0 }. Assume inductively that Ω̃n−1 and Pn−1 are defined.

Let ω ∈ Pn−1.

• If ω does not make a regular return, then (i) Put ω′ = ω ∩ Ωn into Ω̃n. (ii)
Define Pn|ω′ = (T−nI)|ω′.

• If ω does make a regular return to Ω±
0 , then (i) Put ω′ = (ω−T−nY ±)∩Ωn into

Ω̃n. (ii) Define Pn|ω′ = (T−nI ∨ T−nG±)|ω′. (iii) Define r = n on ω ∩ T−nY ±.
(If a regular return occurs simultaneously to Ω−

0 and Ω+
0 then ignore the super-

script ±’s.)

• Modify the definition of Pn: Any end subintervals of T nω′ that only partially
cover an Id,m are adjoined to the adjacent subinterval.

The properties of Pn that will be used in this paper can be summarised as follows.
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Proposition 5.8 Let ω ∈ Pn−1. Then

(a) T `ω is covered by an element of Î, for each ` = 0 . . . , n− 1.

(b) If ω does not make a regular return at time n, then either (i) ω∩Ωn ∈ Pn (and

is covered by an element of Î) or (ii) ω∩Ωn =
⋃
ω(d,m) where where each ω(d,m)

lies in Pn and satisfies T nω(d,m) ≈ Id,m for some Id,m ∈ IU .

(c) If ω makes a regular return to Ω±
0 at time n, then

(ω − T−nY ±) ∩ Ωn = (
⋃

ω(d,m)) ∪ ωY ∪ ω̃,

where each ω(d,m) lies in Pn and satisfies T nω(d,m) ≈ Id,m; ωY is a union of
elements of Pn and T nωY is a union of elements of G; ω̃ is the union of finitely
many (at most 2) elements of Pn.

Remark 5.9 We refer to the situation of Proposition 5.8(b)(ii) as an essential return,
and say that ωi has essential return depth d. Note that T nω ≈ Id,m means that Id,m ⊂
T nω ⊂ Îd,m ∩ U . It is then immediate from the definitions and Proposition 2.6(a)
that m(T nω) ≤ Ce−dd−2 and m(T n+1ω) ≥ C−1e−βdd−2.

Remark 5.10 It follows from the definitions and Proposition 5.5 that

{x ∈ X : r(x) = n} = Y ∩ (Ω̃n−1 − Ω̃n).

We can extend r to a function r : Y → Z+ ∪ {∞} by setting r = ∞ on
⋂

n≥0 Ω̃n.

Definition 5.11 Define

{Yj} =
∨
n≥1

{ω ∩ Y : ω ∈ Pn−1 makes a regular return at time n}.

Remark 5.12 Note that the Yj are distinct since points are discarded once they
make a good return. Moreover r is constant on elements Yj. We can make {Yj} into

a partition of Y by adjoining the set
⋂

n≥1 Ω̃n (where r = ∞). However, it turns out
in Appendix B that m(r = ∞) = 0.

Corollary 5.13 If r|Yj = n, then T nYj = Y − or T nYj = Y +.

Proof By definition, Yj = ω ∩ Y where ω ∈ Pn−1 makes a regular return at time n.
Let y ∈ Y ±. By definition of regular returns, there exists x ∈ ω such that T nx = y.
Since x ∈ ω ⊂ Ω̃n−1 ⊂ Ωn−1, it follows from Proposition 5.5 that x ∈ Y . Hence
x ∈ ω ∩ Y and T nx = y.

15



A Appendix: Bounded distortion estimates

In this appendix, we prove the bounded distortion estimate in Theorem 3.2(3).

Define the cover Î of X starting from the subset U = (−δ, δ) ⊂ X as in §5. Define

Îd to be the union of all elements J ∈ Î such that J ∩ (−Id ∪ Id) 6= ∅. Then

m(J) ≤ C dist(Îd, 0)/d2, (A.1)

for all J ∈ Î, J ⊂ Îd, |d| ≥ dδ. (Note that C is roughly order δ−1.)

Proposition A.1 Let α = βε be the Hölder exponent in Proposition 2.6(a). If
sgnx = sgn y, then | log T ′x− log T ′y| ≤ C(|x− y|α + |x− y|/min{|x|, |y|}).

Proof By Proposition 2.6(a), log T ′x = f + (β− 1) log |x| where f is Cα. Moreover,
for 0 < y < x < 1, log x− log y = log(1 + x/y − 1) ≤ x/y − 1 = (x− y)/y.

Theorem A.2 Let ω ⊂ X be an interval and let n ≥ 1. Suppose that for ` =
0, . . . , n− 1 there exists J` ∈ Î such that T `ω ⊂ J`. Then

(a)
∑n−1

`=0 |T `x − T `y|α ≤ C and
∑n−1

`=0 |T `x − T `y|/min{|T `x|, |T `y|} ≤ C for all
x, y ∈ ω.

(b) C−1m(T kω′)

m(T kω)
≤ m(T `ω′)

m(T `ω)
≤ C

m(T kω′)

m(T kω)
for all 0 ≤ k, ` ≤ n and all ω′ ⊂ ω.

Proof For each d ≥ 1, let L(d) be the largest ` so that J` ⊂ Îd. Then by (2.3)

and (A.1), for all ` with J` ⊂ Îd,

m(T `ω) ≤ (cλ
L(d)−`
1 )−1m(TL(d)ω) ≤ (cλ

L(d)−`
1 )−1m(JL(d)) ≤ C(λ

L(d)−`
1 )−1 dist(Îd, 0)/d2.

Hence
∑

J`⊂bId
m(T `ω) ≤ C dist(Îd, 0)/d2, and so

n−1∑
`=0

|T `x− T `y|/min{|T `x|, |T `y|} ≤
∑
d≥1

∑
J`⊂bId

m(T `ω)/ dist(Îd, 0) ≤ C
∑
d≥1

1/d2.

A simpler argument yields

n−1∑
`=0

|T `x− T `y|α ≤
∑
d≥1

∑
J`⊂bId

m(T `ω)α ≤ C
∑
d≥1

m(Îd)
α ≤ C

∑
d≥1

e−dα,

completing the proof of part (a).
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Let x, y ∈ ω and ` ≤ n. By Proposition A.1 and part (a),

log
(T `)′(x)

(T `)′(y)
=

`−1∑
j=0

log T ′(T jx)− log T ′(T jy)

≤ C
( `−1∑

j=0

|T jx− T jy|α +
`−1∑
j=0

|T jx− T jy|/min{|T jx|, |T jy|}
)
≤ C,

and so (T `)′(x)/(T `)′(y) ≤ C. Hence for ω′ ⊂ ω and k, ` ≤ n, it follows from the
mean value theorem that there exist ξ1, . . . , ξ4 ∈ ω such that

m(T `ω′)m(T kω)

m(T kω′)m(T `ω)
=

(T `)′(ξ1)(T
k)′(ξ3)

(T k)′(ξ2)(T `)′(ξ4)
≤ C,

proving part (b).

Corollary A.3 Estimate (3) of Theorem 3.2 is valid.

Proof Let n = r(x) = r(y), so T nYj = Y ±. By construction, Yj lies inside an
interval ω ∈ Pn−1 and hence by Proposition 5.8(a), T `ω is covered by an element of

Î for 0 ≤ ` ≤ n− 1. By Theorem A.2(b),

m(T `[x, y]) ≤ Cm(T n[x, y])m(T `ω)/m(T nω) ≤ Cm(Y ±)−1m(T n[x, y])m(T `ω),

for all x, y ∈ ω and all ` ≤ n. By Proposition A.1,

| log T ′(T `x)− log T ′(T `y)| ≤ C
{
m(T `[x, y])α +m(T `[x, y])/dist(T `ω, 0)

}
≤ Cm(T n[x, y])α

{
m(T `ω)α +m(T `ω)/dist(T `ω, 0)

}
.

Hence

n−1∑
`=0

| log T ′(T `x)−log T ′(T `y)| ≤ Cm(T n[x, y])α

n−1∑
`=0

{m(T `ω)α+m(T `ω)/dist(T `ω, 0)}.

Applying Theorem A.2(a) yields the required result.

In Appendix B, we require the following additional bounded distortion estimate.

Lemma A.4 Let ω ⊂ X be an interval and let n ≥ 1. Suppose that for ` =
0, . . . , n− 1 there exists J` ∈ Î such that T `ω ⊂ J`. Suppose in addition that
T n−1ω ⊂ U . Then there is a constant C0 independent of δ such that

C−1
0

m(ω′)

m(ω)
≤ m(T nω′)

m(T nω)
≤ C0

m(ω′)

m(ω)
.
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Proof We follow the proof of Theorem A.2. The only constant that depends on
δ occurs in the estimate for m(T `ω) which uses (A.1). The issue is that Îd,m is
significantly larger than Id,m when Id,m is an outermost element of IU . In particu-
lar, we can take C = C0 independent of δ in (A.1) provided |d| ≥ dδ + 1. Hence,

for T `ω ⊂ Îd with |d| ≥ dδ + 1, we obtain m(T `ω) ≤ C0(λ
L(d)−`
1 )−1 dist(Îd, 0)/d2.

It remains to find a similar estimate when |d| = dδ. Write T n−1ω ⊂ Îd∗,m∗ ∩
U . Then m(T `ω) ≤ (cλn−1−`

1 )−1m(Id∗,m∗ ∩ U) ≤ C0(λ
n−1−`
1 )−1 dist(Îd∗ , 0)/d2

∗ ≤
C0(λ

n−1−`
1 )−1 dist(Îdδ

, 0)/d2
δ .

B Appendix: Tail estimates

In this appendix, we show that m(r > n) decays at a stretched exponential rate
provided U = (−δ, δ) is chosen small enough, proving Theorem 3.2(4). We follow the
argument used in [3] for Hénon maps, and [21] for piecewise expanding maps, where
the partition elements are Cantor sets.

Theorem B.1 For any γ ∈ (0, 1
2
), there exists δ > 0 and ρ ∈ (0, 1) such that

m(y ∈ Y : r(y) ≥ n) ≤ Cρnγ
.

We continue to let C ≥ 1 denote a generic constant depending on the the map
T : X → X and the construction of F : Y → Y (with the exception of C0 in
Lemma A.4). In addition, we let ρ ∈ (0, 1) denote a generic constant depending on
T and F .

First, for each x ∈ X we define a (possibly finite) sequence of regular returns
0 = τ0(x) < τ1(x) < τ2(x) < · · · . Assuming τk−1(x) is defined, let τk(x) be the

smallest j > τk−1(x) such that x ∈ Ω̃j−1 and the interval ω ∈ Pj−1 containing x
makes a regular return to Ω±

0 at time j (if such a j exists). In particular, for y ∈ Y
the sequence {τk(x)} is finite and bounded above by r(y).

To prove Theorem B.1, we show that for y ∈ Y , (i) regular returns occur often
enough and quickly enough up to time r(y), and (ii) sufficiently many points land
in Y on each regular return. Point (ii) is dealt with easily. Let Θk = {y ∈ Y :
τk(y) is defined}.

Proposition B.2 m{y ∈ Θk : r(y) > τk(y)} ≤ ρk.

Proof Note that

Θk ⊂ {y ∈ Θk−1 : r(y) > τk−1(y)}. (B.1)

Now Θk is a disjoint union of subsets ω ∩ Y where each ω lies in Pj−1 for some j and
τk|ω = j. (In particular, T jω ⊃ Ω±

0 .) By Theorem A.2(b),

m(ω ∩ T−jY )

m(ω)
≥ C−1m(T jω ∩ Y )

m(T jω)
≥ 1

2
C−1m(Y ±) ≥ C−1 > 0.
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Hence m{y ∈ Θk : r(y) = τk(y)} ≥ C−1m(Θk) and so m{y ∈ Θk : r(y) > τk(y)} ≤
ρm(Θk). The result follows inductively using (B.1).

For point (i) we require the following preliminary lemma.

Lemma B.3 There exist δ > 0, such that the following holds for all j ≥ 0, n ≥ 1.
Suppose that ω ∈ Pj−1 makes a regular return at time j and let ω′ = (ω−T−jY )∩Ωj.
Then

m{x ∈ T jω′ : T−jx has no regular returns between j and j + n+ 1} ≤ Cρ
√

n.

We postpone the proof of Lemma B.3 to the end of the appendix.

Lemma B.4 (a) For a.e. y ∈ Y , if y ∈ Θk and r(y) > τk(y), then y ∈ Θk+1.
(b) For any 0 < γ′ < γ < 1

2
, there exists ε > 0 such that

m({x ∈ Ω̃n ∩ΘN : τN(x) > n}) ≤ ρnγ

for all N ≤ εnγ′.

Proof By Lemma B.3, for each j, k,

m{y ∈ Θk : τk(y) = j and there are no further regular returns before time n} ≤ Cρ
√

n,

and so m{y ∈ Θk : τk(y) = j is the final regular return} = 0. Hence for each k,
m{y ∈ Θk : τk(y) is the final regular return} = 0, proving part (a).

To prove part (b), let 1 ≤ n1 < · · · < n` ≤ n be fixed for the moment. For k ≤ n,
define Ak = Ak(n1, . . . , n`) to be the set

{x ∈ Ω̃k : the regular returns of x up to time k are exactly those ni’s with ni ≤ k}.

(i.e. τi(x) = ni for all ni ≤ k and if ni > k, then either τi(x) > k or τi(x) is undefined.)
Applying Lemma B.3 to ω = Ω0 (with j = 0, n = n1 − 1), we obtain m(An1−1) ≤

Cρ
√

n1−1. Now An1−1 is a union of intervals ω ∈ Pn1−1. Discard those ω that fail to
make a regular return at time n1 and replace those that do by ω′ = (ω−T−n1Y )∩Ωn1 .
Then An1 is the union of these ω′. By Theorem A.2(b) and Lemma B.3 (with j = n1,
n = n2 − n1 − 1),

m(ω ∩ An2−1)

m(ω)
≤ C

m(T n1(ω′ ∩ An2−1))

m(T n1ω)
≤ C

ρ
√

n2−n1−1

m(Ω±
0 )

.

Hence m(An2−1)/m(An1−1) ≤ Cρ
√

n2−n1−1. Proceeding inductively,

m(An) =
m(An)

m(An`−1)

m(An`−1)

m(An`−1−1)
. . .

m(An2−1)

m(An1−1)
m(An1−1) ≤ C`ρS ≤ C`ρ

√
n,
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where

S = (n1 − 1)1/2 + (n2 − n1 − 1)1/2 + · · ·+ (n` − n`−1 − 1)1/2 + (n− n` − 1)1/2

≥ {(n1 − 1) + (n2 − n1 − 1) + · · ·+ (n− n` − 1)}1/2 ≥ (n− `− 1)1/2

≥ n1/2 − (`+ 1)1/2.

Choose ε > 0 so small that Cερ = ρ′ < 1. Then for ` ≤ εnγ we have m(An) ≤ (ρ′)nγ′

and so for N ≤ εnγ′ ,

m{x ∈ Ω̃n ∩ΘN : τN(x) > n} =
N−1∑
`=0

∑
1≤n1<···<n`≤n

m(An(n1, . . . , n`) ∩ΘN)

≤
N−1∑
`=0

( n
`

)
(ρ′)nγ′ ≤ N

( n
N

)
(ρ′)nγ′ ≤ (ρ′′)nγ

.

Proof of Theorem B.1 Define N = [εnγ′ ] as in Lemma B.4(b). By Lemma B.4(a),
for almost every y ∈ Y , either r(y) > τN(y), or r(y) = τk(y) for some k ≤ N . It
follows that

{y ∈ Y : r(y) > n} ⊂ {y ∈ ΘN : r(y) > τN(y)} ∪
⋃

k≤N

{y ∈ Ω̃n ∩Θk : τk(y) > n}.

Hence the theorem follows from Proposition B.2 and Lemma B.4(b).

Proof of Lemma B.3

Let ω ∈ Pj−1 be as in the statement of Lemma B.3. By Proposition 5.8(c), (ω −
T−nY ) ∩ Ωn = ω′ = (

⋃
ω(d,m)) ∪ ωY ∪ ω̃ where: each ω(d,m) lies in Pj and satisfies

T jω(d,m) ≈ Id,m; ωY is a union of elements of Pj and T jωY is a union of elements of G;
ω̃ is the union of finitely many elements of Pj. We obtain estimates in the following
order: ω(d,m) in Lemma B.5;

⋃
ω(d,m) in Corollary B.6; ω̃ in Corollary B.7; ωY in

Lemma B.8.

Lemma B.5 There exists δ, c1 > 0 such that the following holds. Suppose that ω0 =
ω(d0,m0) ∈ Pj with γ = T jω0 ≈ Id0,m0 where d0 ≤ c1n. Define

γn = {x ∈ γ : T−jx has no regular returns between j and j + n+ 1}.

Then m(γn) ≤ Cρnm(γ).

Proof Note that dδ = log δ−1 is to be taken as large as required in this proof.
If ω is any interval and 0 6∈ T jω for 0 ≤ j ≤ k, then 1 ≥ m(T kω) ≥ cλk

1m(ω)
by (2.3) so that k ≤ −(log c + logm(ω))/ log λ1. In particular, m(Id,m) = e−d/d2, so
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if k is the time between an essential return of depth d and the next essential return,
then for d ≥ dδ large enough, k ≤ 2d/ log λ1.

Let Q = {ω ∈ Pj+n : T jω ⊂ γn}. Then T jQ is a partition of γn. To each ω ∈ Q,
associate the itinerary ω0 ⊃ ω1 ⊃ · · · ⊃ ωn = ω, where ω` ∈ Pj+`, ` = 0, . . . , n. Let

j = j + η0 < j + η1 < · · · < j + ηs ≤ j + n

be the essential returns between times j and j + n for ω. Let di, 0 ≤ i ≤ s, be the
associated depths, so T j+ηiωηi

≈ I±di,mi
for i = 0, . . . , s. In particular, ηi+1 − ηi ≤

2di/ log λ1 and hence d0 + d1 + · · · + ds ≥ 1
2
n log λ1. For each R ≥ 1

2
n log λ1 − d0,

define QR = {ω ∈ Q : d1 + · · ·+ ds = R}. We claim that for any β1 ∈ (0, 1− β), we
can choose dδ > 0 sufficiently large that

(a) #QR ≤ e5R/d
1/2
δ .

(b) m(T jω) ≤ e−β1Re2d0m(γ) for all ω ∈ QR.

It follows that for any β2 < β1, we can choose dδ large enough that
∑

ω∈QR
m(T jω) ≤

e−β2Re2d0m(γ). Hence,

m(γn) =
∑

R≥ 1
2
n log λ1−d0

∑
ω∈QR

m(T jω) ≤ e2d0m(γ)
∑

R≥ 1
2
n log λ1−d0

e−β2R

= Ce−
1
2
nβ2 log λ1e(β2+2)d0m(γ) ≤ Ce−n( 1

2
β2 log λ1−c1(β2+2))m(γ).

The result follows for any c1 <
1
2
β2 log λ1/(β2 + 2).

It remains to prove the claims. To prove (a), note that by Proposition 5.8(b) once
a sequence of partition elements Idk,mk

∈ IU (k = 1, . . . , s) is specified, there is at
most one element ω ∈ Pj+n that has precisely this sequence of essential returns, and
no regular returns, from time j to j + n+ 1. A standard combinatorial estimate ([3,

p. 35]) shows that for δ small, there are at most e5R/d
1/2
δ different ways of choosing

the sequence (dk,mk) such that R = d1 + · · ·+ ds (given the constraints dk ≥ dδ and
mk ≤ d2

k).
To prove claim (b), write

m(T jω) =
m(T jω)

m(T jωηs)
. . .

m(T jωη2)

m(T jωη1)

m(T jωη1)

m(T jωη0)
m(γ) ≤ 1 ·

s∏
k=1

m(T jωηk
)

m(T jωηk−1
)
·m(γ).

By condition (2.3), Remark 5.9 and Lemma A.4

m(T jωηk
)

m(T jωηk−1
)
≤ C0

m(T j+ηk−1+1ωηk
)

m(T j+ηk−1+1ωηk−1
)
≤ C1

m(T j+ηkωηk
)

m(T j+ηk−1+1ωηk−1
)
≤ C2

e−dkd−2
k

e−βdk−1d−2
k−1

,
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and C2 is independent of δ. Hence

m(T jγ) ≤
s∏

k=1

C2
e−dkd−2

k

e−βdk−1d−2
k−1

m(γ) = Cs
2e
−dkd−2

k e−(1−β)(dk−1+···+d1)eβd0d2
0m(γ)

≤ Cs
2e
−(1−β)Re2d0m(γ).

Finally, we note that s < R/dδ (since dk ≥ dδ for all k) so the claim follows.

Corollary B.6 Suppose that γ =
⋃

i T
jωi where ωi ∈ Pj and T jωi ≈ Idi,`i

for each i.
Define γn as in Lemma B.5. Then m(γn) ≤ Cρn.

Proof Clearly m(γn ∩ (−e−c1n, e−c1n)) ≤ 2e−c1n and by Lemma B.5, m(γn −
(−e−c1n, e−c1n)) ≤

∑
iCρ

nm(T jωi) ≤ Cρn. Hence m(γn) ≤ Cρn + 2e−c1n.

Corollary B.7 Suppose that γ = T jω where ω ∈ Pj. Define γn as in Lemma B.5.
Then m(γn) ≤ Cρn.

Proof We may suppose without loss that m(γ) ≥ c−1e−
1
3
n log λ1 . By the same argu-

ment used at the beginning of the proof of Lemma B.5, it follows from (2.3) that γ
makes an essential return at time j0 < n/2. Let γ′ = T j0γn so γ′ satisfies the hypoth-
esis of Corollary B.6. Moreover, points x ∈ γ′ have preimages T−(j+j0)x (that have no
regular returns between j and j+n+1 and hence certainly no regular returns between
j+j0 and j+j0 +(n−j0)+1. In particular, T−(j+j0)x has no regular returns between
j + j0 and j + j0 + n/2. By (2.3) and Corollary B.6, m(γ) ≤ c−1m(γ′) ≤ Cρn/2.

Lemma B.8 Suppose that ω ⊂ Ω̃j is a union of elements of Pj and γ = T jω is a
union of elements of G. Define γn as in Lemma B.5. Then m(γn) ≤ Cρ

√
n.

Proof Choose ρ̃ ∈ (ρ, 1) where ρ is as in Corollary B.7. Let G ′ = {γ ∈ G : m(γ) ≤
ρ̃n} and G ′′ = G − G ′. Let γ = γ′ ∪ γ′′ be the corresponding decomposition of γ. By
Proposition 5.6, m(γ′) ≤ Ce−α3

√
n where α3 = α2(− log ρ̃)1/2.

It remains to estimate m(γ′′n). Let M denote the cardinality of G ′′. Note that
Mρ̃n ≤

∑eγ∈G′′ m(γ̃) ≤ 2, so that M ≤ 2ρ̃−n. If γ̃ ⊂ γ, then γ̃ = T jω̃ where ω̃ ∈ Pj

so, by Corollary B.7, m(γ̃n) ≤ Cρn. Hence

m(γ′′n) =
∑

eγ∈G′′, eγ⊂γ

m(γ̃n) ≤MCρn ≤ C(ρρ̃−1)n.
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