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Abstract. In this paper, we consider the existence of self-sustained magnetic dynamos in
rotating Bénard convection. Dynamical systems techniques are used to bridge the gap between
the kinematic dynamo problem and the full rotating magnetohydrodynamic equations.

Building upon the solution of Childress and Soward, proposed in 1972, to the kinematic
dynamo problem, we show that secondary bifurcation from purely convective states leads to
solutions to the full nonlinear dynamo problem. In particular, we address issues that arise from
the Kiippers-Lortz instability in rotating convection. We obtain steady, periodic, traveling and
intermittent weak-field dynamos.
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1 Introduction

Dynamo theory investigates the creation of self-sustained magnetic fields in elec-
trically conducting fluids. See the review of Roberts and Soward [17]. The aim
is to explain magnetic fields in the Earth and the Sun. Since fluid motion in
the Earth’s core and in the Sun are driven by convection, it is natural to study
convecting fluids.

The underlying rotating magnetohydrodynamic equations are given as fol-
lows. Consider an incompressible, uniformly rotating fluid between two infinite



horizontal plates and suppose that the lower plate is heated uniformly. At low
temperatures, the fluid is in a purely conductive, stationary state. Convection sets
in at a critical temperature that is determined by the linear stability of the con-
ducting state. The departure from the pure conduction state is governed by the
Boussinesq equations for rotating convection. We suppose that the fluid is elec-
trically conducting, so that the Boussinesq equations are coupled to the magnetic
induction equation by the Lorentz force.

Let 2 = R?x [0, 1] denote the domain of the fluid. We shall denote points in the
domain Q as (z, z) where z = (z1,72) € R? and z € [0, 1]. Writing V : Q — R3 for
the velocity field of the fluid, B : Q — R? for the magnetic field, p : Q — R for the
pressure and 6 : 2 — R for the deviation of the temperature from the conduction
state, the governing partial differential equation (PDE) has the form [3]

oV/ot = —(V -V)V = Vp+ VTV x k+ AV + VROk — B x curl B
90/0t = —(V - V)0 + Pr (A0 + VRV - k) (1.1)
0B/ot = BAB + curl(V x B)

divV = divB = 0, /Blz/BQ:O.
Q Q

(We have omitted the centrifugal term which can be incorporated into the pres-
sure.) The constants R, T, Pr and (3 are dimensionless (Rayleigh number, Taylor
number, Prandtl number and magnetic Prandtl number) and k£ = (0,0, 1).

Homogeneous boundary conditions are imposed at the top and bottom of €.
For definiteness, we consider the specific boundary conditions

ovy, 0V, 0By 0By
0z 0z 0z 0Oz =0, Vs =By =0=0, (1.2)
when z =0 and z = 1.

Now, V' can be written as the sum of a conservative vector field and a diver-
gence free vector field. The equation for 0V/0t splits up into two components
one of which can be solved for the pressure p. The remaining system of equations
(which we continue to label by (1.1) and which we do not write out explicitly) is
an evolution equation in (V, 0, B) where V and B are divergence free vector fields
and @ is a scalar field.

In this paper, we shall say that a magnetic dynamo is an w-limit set containing
points (V, 0, B) with B # 0. If the w-limit set is an attractor, then we speak of
an attracting magnetic dynamo. However, it should be understood that even for
convective solutions, the notion of attractivity is highly problematic when con-
sidering stability to all possible perturbations in the infinite planar model. A
standard remedy (see [18] for example) is to consider stability only to perturba-
tions with a certain kind of spatial periodicity.

One approach to proving the existence of magnetic dynamos is to use bifurca-
tion theory. There is a convenient ‘trivial’ solution, namely the pure conduction
state (V, 0, B) = (0,0,0). It is easy to see that this state cannot lose stability di-
rectly to a magnetic dynamo: Observe that equations (1.1) possess the symmetry
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B — —B and hence the convection solutions (V, 6) lie in the dynamically-invariant
subspace {B = 0}. Obtaining a bifurcation out of this subspace is equivalent to
requiring a bifurcation from the solution B = 0 in the 0B/0t equation. For
the pure conduction state we have V' = 0 and the right-hand-side of the 0B/0t
equation reduces to SAB which is negative definite.

Similarly, for fixed § > 0 and V' small, all solutions to the 0B/0t equation are
exponentially damped to 0 as ¢ — co. When V is large, the possibility of instabil-
ity depends on the precise form of V' and there are antidynamo theorems [17] that
rule out instabilities when V' is not sufficiently complicated. It is thus necessary to
find a bifurcation from the pure conduction state to a sufficiently complicated con-
vective state which, on reaching large enough amplitude, can undergo a secondary
bifurcation to a ‘weak-field’ magnetic dynamo.

The possibility or impossibility of this secondary magnetic instability is called
the kinematic dynamo problem. This concerns the linear stability of 0 in the 0B/0t
equation given the V' component of the convection solution. To obtain a solution
to the full hydromagnetic dynamo problem, that is, to find a magnetic dynamo
in the coupled nonlinear PDE (1.1), it is necessary to show that the magnetic
instability is saturated by the Lorentz force (the so-called dynamo effect [17]).

In this paper, we show how techniques from equivariant bifurcation theory
and dynamical systems can be used to turn a solution to the kinematic dynamo
problem into a full-fledged solution to the hydromagnetic dynamo problem. We
concentrate on rotating convection. In nonrotating convection (7" = 0) the pure
conduction solution typically gives rise to a bifurcation of rolls solutions and the
desired secondary magnetic instability is ruled out by the antidynamo theorems.
However, it is widely believed since Childress and Soward [4, 18] that rolls so-
lutions in rotating convection (7" # 0) are sufficiently complicated to undergo
a magnetic instability. The required linear stability calculations turn out to be
highly nontrivial and have led to many spurious solutions. Recent calculations of
Matthews [14] appear to overcome these difficulties.

Assuming that solutions to the kinematic dynamo problem in rotating convec-
tion exist, the nature of the corresponding solutions to the hydromagnetic dynamo
problem depends on two main factors:

e The primary bifurcation may lead to stable rolls or unstable rolls.

e The secondary magnetic instability of convection rolls may occur via a
steady-state bifurcation or a Hopf bifurcation.

The stability of the primary branch of rolls in rotating convection was studied
by Kiippers and Lortz [10]. Rolls are stable provided 7" is small enough, but
once T exceeds some critical value, rolls are unstable to convective perturbations
consisting of rolls oriented at angle close to 58°. As shown by Busse and Heikes |2,
9], there is a homoclinic cycle corresponding to an intermittency phenomenon
observed in fluid experiments where, locally, systems of rolls form but are then
replaced as time goes on by new systems of rolls inclined at an angle of roughly
60° to the old rolls.



The existence of the Busse-Heikes cycle can be made completely rigorous by
performing a reduction to a six-dimensional center manifold consisting of solu-
tions that are spatially-periodic with respect to a hexagonal lattice. There is a
three-dimensional flow-invariant submanifold [1] that contains the three sets of
rolls. The homoclinic cycle connecting the three sets of rolls is robust (due to the
symmetry) and is asymptotically stable to perturbations preserving the hexag-
onal lattice. For mathematical details of the analysis in the three-dimensional
subspace, see [8]. We refer also to [15, 6, 12]

There are thus four cases that we analyze in this paper:

(i) Steady-state bifurcation from stable rolls,

(ii) Hopf bifurcation from stable rolls,
(iii) Steady-state bifurcation from the Busse-Heikes cycle,
(iv) Hopf bifurcation from the Busse-Heikes cycle.

Cases (i) and (ii) reduce to bifurcations analyzed in [7], whereas cases (iii)
and (iv) are transverse bifurcations of homoclinic cycles [5].

The remainder of this paper is organized as follows. In Section 2, we describe
the symmetries of equations (1.1). In Section 3, we recall the primary, purely
convective, bifurcation to rolls and we describe the Busse-Heikes cycle. The four
secondary bifurcations (i)—(iv) are analyzed in Section 4 and conclusions for the
magnetic dynamo problem are presented in Section 5.

2 The Symmetries of the Problem

Equation (1.1) is equivariant under the special Euclidean group SE(2) of rotations
and translations in the plane. The action is effectively given by translation and
rotation of the unbounded domain variables z € R?. In addition, there is an
up-down symmetry 7 which transforms z to 1 — z and a field-reversal symmetry
p which transforms B to —B. The up-down symmetry is a consequence of the
identical boundary conditions at z =0 and z = 1.

Altogether, we have an action of the group SE(2) X Zy(7) X Zs(p) on functions
(V,0,B) : R? x [0,1] — R".

Reduction to a compact group

There are technical problems in dealing with noncompact symmetry groups such
as the one just described. A standard method for avoiding these difficulties is to
restrict to a class of functions that is doubly spatially-periodic in the plane [7].
For our purposes, it is sufficient to restrict to the hexagonal lattice.

Define the subgroup of translations £ C SE(2) generated by translations

0=c(0,1),  Llo=c(*2, 1),
where ¢ > 0 is a unit of length to be chosen later. Then

L= {m1€1 + m2£2 1My, Mo € Z} = Z2
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is a discrete subgroup of the group of translations. Consider the space Fix £ of
functions that are spatially periodic with respect to £, that is, V(z+¢, z) = V (z, 2)
for all £ € £ and similarly for # and B. The equivariance of equations (1.1) implies
that the space Fix £ is invariant under the semiflow induced by the PDE.

The holohedry of L is the subgroup Zg C SO(2) of rotations that preserve the
hexagonal lattice £. This is the largest subgroup of SO(2) that preserves Fix L.
Thus the residual group of symmetries in SE(2) is a semidirect product Zg+R? of
certain rotations together with all translations. We quotient out the translations in
L (which act trivially on Fix £) and obtain a two-torus of translations T? = R? /L.
This results in a compact symmetry group I' acting on Fix L:

I'= (Z6+T2) X ZQ(’T) X Zz(p)

Equation (1.1) defines a I'-equivariant dynamical system on Fix L.
We note that Fix £ consists of functions (V, 6, B) with Fourier expansions

V(z,2) =) Vi(2)e™?,

where the sum is over all vectors k € R? such that k- ¢ = 0 mod 27, and similarly
for @ and B. Equivalently, k£ € £L* where L£* is the dual lattice generated by

Y dr (1 \/g
ﬁ(170)7 ﬁ(ia?)‘

3 Primary Bifurcation to Convection Rolls

As discussed in the introduction, the primary bifurcation from the trivial (pure
conduction) solution (V; 6, B) = (0,0, 0) takes place inside the flow-invariant sub-
space {B = 0} and leads to pure convection solutions (V,#,0). Hence, we may
restrict to the Boussinesq equations (equation (1.1) with B = 0). We review the
results for linear stability of the trivial solution and the bifurcations to convection
rolls and to the Busse-Heikes cycle.

Linear stability of the trivial solution

If all eigenvalues of the linearization of the Boussinesq equations around the pure
conduction solution (V,6) = (0,0) have negative real part, then this solution is
asymptotically stable. As the Rayleigh number R is increased, the pure conduction
state may lose stability as certain eigenvalues cross the imaginary axis.

For fixed values of Pr > 1 and 7', the initial loss of stability occurs via a steady-
state bifurcation as the parameter R is increased [3]. That is, an eigenvalue of the
linear terms passes through zero. At criticality, the (complexified) kernel W, of
the linearized PDE is spanned by eigenfunctions of the form d(z)e®*®, where the
wave vectors k satisfy |k| = k. for some fixed k. > 0 (the critical wavenumber).
Since k € L*, the dimension of W is finite and depends on the unit of length ¢
that was introduced in the definition of £. For the choice ¢ = 47/+/3k., we have
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dim Wy = 6 and a basis for W, is obtained by applying rotations in the holohedry
Zg to the eigenfunction

eo(, 2) = do(2)e™™ + dy(z)e™ "1, (3.1)
A computation using the boundary conditions (1.2) shows that dy has the form
do(z) = (Acosmz, Bcosmz,Csinmz, Dsinmz), (3.2)

for some constants A, B,C,D € C. (In general, the form of dy depends on the
choice of boundary conditions.)

Bifurcation of rolls

To discuss the bifurcation to rolls, it is useful to work in the abstract framework
of [7]. The six-dimensional kernel is given by

WO = {wleo + w2R27r/3 -ey + ’LU3R471—/3 * €y Wi, We, W3 € C} & (Cg,

where Ry € SO(2) denotes rotation through angle . The center manifold theorem
reduces the underlying PDE (1.1) to a I'-equivariant six-dimensional ordinary
differential equation on W, while preserving the local dynamics (near the pure
conduction solution) close to criticality (R = R.).

The action of T on functions (V, 6, B) induces on W the action

¢ = (1, 02) € T? 1 (w1, wa, w3) —> (€9 wy, €92wy, e #1T2)qy5)

Rr/3 € Zg : (w1, wa, w3) > (Wa, W3, W1 )

TIWw— —w, prwr w.
Remark 3.1 Note that the action of 7 follows from the form (3.2) of the eigen-
functions, whereas the remainder of the action of I' follows from the general struc-
ture (3.1) and hence is independent of the choice of boundary conditions. For gen-
eral boundary conditions that are identical on top and bottom, 7 can act as plus
or minus the identity on W,. However, in practice only the minus identity action

seems to be realized, cf [6]. (Of course, if there are different boundary conditions on
top and bottom, then there is no up-down symmetry 7 and I' = (Zg+T?) x Za(p).)

Points of the form (a1, 0,0) € Wy, oy € R, correspond to rolls
& = ay(do(2)e™™ + dy(z)e™ ).
The isotropy subgroup s =Yg, = {y € I' : v& = & } is given by
Yrolls = (ZQ(RW)_]_Tl) X Za(T) X Za(p),

where T! C T? consists of translations ¢ = (0, ¢,) parallel to the zy-axis and
7 = 7o(m,m) is the glide reflection corresponding to the up-down symmetry 7
coupled with the translation ¢ = (7, 7) by half a period.
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Observe that dim(Fix X,ops N Wy) = 1. It follows from general theory [7] that
there is generically a pitchfork bifurcation to a branch of rolls solutions. The
branching equation has the form

0= Moy + bozi’ + high order terms,

where A = VR—+V/R, and b € R is a constant that can be computed via the center
manifold reduction. For the boundary conditions (1.2) (and quite generally for
reasonable boundary conditions) it turns out that b < 0 and hence we obtain the
supercritical branch of solutions

&1 = /3 (o)™ + do(e)e %) + O(2).

By equivariance, there is a group orbit I'é; of rolls solutions — three differ-
ent orientations compatible with the hexagonal lattice together with translates.
The three orientations correspond to the subspaces {(wi,0,0)}, {(0,ws,0)} and
{(0,0,w3)}. In the remainder of the paper, we shall let & refer both to the par-
ticular roll solution constructed above and also to the continuous group orbit of
translates. Similarly, the notation {; = Ry./3§; and &3 = Ryr/36; will denote both
a particular rolls solution and also the continuous group orbit of translates.

The Busse-Heikes cycle

The rolls solutions &, & and &3 are related by the rotations in Zg and hence are
mutually oriented at 60°. When the Taylor number is large enough, we have the
Kiippers-Lortz instability whereby the supercritical rolls are saddles in W, with
one neutral eigenvalue, three stable eigenvalues (including the branching direction)
and two unstable eigenvalues.

We introduce the subgroup Ypy = Z3 generated by R,, 7 and p. Observe
that FixXpy N Wy = {(ay, a0,0)} is a two-dimensional flow-invariant subspace.
A calculation based on the Poincaré-Bendixson Theorem shows that there is a
saddle-sink connection in {(c, a9, 0)} joining & to &. By symmetry, there are
connections joining & to & and &3 to &. The resulting homoclinic cycle is robust
to perturbations that preserve the symmetries. In addition, the homoclinic cycle is
asymptotically stable to perturbations that preserve the hexagonal lattice. Again
we refer to [8, 6, 12] for details.

4 Secondary Bifurcation from Convection Rolls

We have seen that the pure conduction state loses stability to a supercritical
branch of convection rolls. For rolls of large enough amplitude, there may be a
secondary instability to magnetic perturbations as predicted in [4].

We assume that such a magnetic instability occurs for suitable choices of the
parameters in (1.1). Let Y; denote the critical eigenspace of rolls in the 0B/0t
component of (1.1). The isotropy subgroup X, acts on Yy and the dynamics
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associated with the bifurcation depends on the action of ... There is some a
prior: information that we can deduce. First, the field-reversal symmetry p acts
as —I on Yj. Second, the translations T acts nontrivially on Y. Otherwise, the
rolls & would be unstable to magnetic perturbations with no x,-dependence and
this is ruled out by Cowling’s antidynamo theorem [17, p. 465].

(i) Steady-state bifurcation from stable rolls

Suppose that we have a primary bifurcation of asymptotically stable convection
rolls, and that these rolls subsequently undergo a secondary magnetic instabil-
ity. Suppose further that this is a steady-state bifurcation, so eigenvalues of the
linearized PDE around rolls pass through zero. It follows from [7] that generi-
cally X,ops acts irreducibly on the kernel Yy. (This genericity property has to be
checked for the particular PDE (1.1) as part of the linear stability calculation.)
Now Erolls = (ZQ(RW)-FTI) X ZQ(%) X Zg(p) = 0(2) X ZQ X Z2 and it follows that
Y} is an irreducible representation of O(2). Since T! C O(2) acts nontrivially, we
deduce that Yy = C is two-dimensional and that coordinates y € Y can be chosen
so that the action of Zy(R,)+T! is given by

R, € Zy:y 1, (0, 09) € Tty = ™2y, (4.1)
for some positive integer n. In addition, we have

Ty =%y,  py=-y.
Without loss of generality, we may suppose that 7y = y (redefining 7 to be 7op if
necessary — this does not change the action of 7 on the purely convective subspace
{B = 0}, for example we still have that the subgroup gy defined in Section 3 is
generated by R, 7 and p).

It follows again from standard theory [7] that there is a pitchfork bifurcation
from equilibrium convection rolls &; to equilibrium dynamos &] that have a large
(V,0)-component with symmetry 3,5 together with a small B-component with
Ypie-symmetry. Here, Yy is the proper subgroup of ¥,15 generated by R, together
with the kernel K of the action of ¥,,s on Yy. We compute that K = Zo, X Zo(T)
where Zj, C T' X Zy(p) is generated by p = po(0,7/n). Hence

Zbif = ]D)Zn X Z2(7-)7

where Dy, denotes the dihedral group of order 4n generated by R, and p. In
particular, the dynamo solutions have discrete symmetry and hence depend non-
trivially on all spatial variables in accordance with the antidynamo theorems.
Again, it follows from equivariance that there is a group orbit of equilibrium
dynamos & obtained by translating in the plane and reversing the direction of the
magnetic field. In principle, there could be nontrivial drift along this group orbit.
However, a calculation using results of [11] shows that the symmetry R, € Yy
obstructs any drift. Hence, the bifurcating dynamos & are genuine equilibria.
Finally, we note that the usual exchange of stability holds in this context.
Since the convection rolls are asymptotically stable, the dynamos are (orbitally)
asymptotically stable if and only if the bifurcation is supercritical.



(ii) Hopf bifurcation from stable rolls

The standard theory here is Hopf bifurcation with X5 symmetry which is analo-
gous to Hopf bifurcation with O(2) symmetry [7]. There are pitchfork bifurcations
to two families of periodic magnetic dynamos: traveling waves and standing waves.
If both of these branches of dynamos bifurcate supercritically, then precisely one
of the branches is asymptotically stable (which one depends on a coefficient which
can be computed from the PDE). Otherwise, both dynamos are unstable. The
standing wave has spatial symmetries Yy together with a space-time symmetry
where shifting by half a period in time is the same as reversing the direction of the
magnetic field. The traveling wave breaks the R, rotation symmetry in ;s and
(neglecting drift) time evolution corresponds to translation with uniform speed
parallel to the z,-axis.

Again, there is the possibility of nontrivial drift along the group orbits of pe-
riodic solutions. This possibility is realized for the traveling wave (but not the
standing wave). Indeed, the traveling wave solutions are quasiperiodic relative
to the hexagonal lattice with generically two independent frequencies: a fast fre-
quency from the Hopf bifurcation together with a slow drift frequency. Taking
this drift into account, we conclude that time evolution of the traveling wave
corresponds to translation with uniform speed almost parallel to the z,-axis.

(iii) Steady-state bifurcation from the Busse-Heikes cycle

We now consider the case where the primary instability of the pure conduction
solution leads to a branch of asymptotically stable homoclinic cycles with trajec-
tories connecting rolls solutions. Suppose as in case (i) that the rolls undergo a
secondary magnetic instability in the form of a steady-state bifurcation. An anal-
ysis in the neighborhood of a single rolls solution leads to a pitchfork bifurcation
of Ypie-symmetric equilibrium dynamos as before, except that now the bifurcat-
ing equilibria are automatically unstable. Hence, it is necessary to analyze the
bifurcation in a neighborhood of the full homoclinic cycle as in [5].

Our analysis follows Type B in [5] but there are added complications. In
particular, our results depend on the positive integer n introduced in (4.1). Let S
denote the flow-invariant subspace S = Fix Z3(R,, 7). (This subspace corresponds
to the subspace @' in [5, Proof of Theorem 3.2].)

Proposition 4.1 The convection rolls &, & (and the heteroclinic connection
from & to &) lie in S. In addition, the bifurcating equilibrium dynamo &) lies
in S. However, &, lies in S if and only if n is even.

Proof Observe that Z2(R,,7) = Y N Xpn and hence it is immediate that &,
&, the heteroclinic connection between &; and &, and &/ lie in S.
It remains to determine whether &, € S. Clearly, R, fixes &, so & € S if and

only if 7 € B, = Ror/3Suit Ry 5. That is, Ry Ly 7 Rors € S



A computation shows that R;Wl/?,(ﬂ', T)Ror/3 = (m,0). (An easy way to check
this is to use the (faithful) representation of (Zg+T?) on Wy.) It follows that
R;WI/S%RQW/?, = 7o(0, 7). (This is true regardless of whether 7 = 7o(m,7) or 7 =
To(m,m)op). But 7 € Xy so it remains to determine whether (0,7) € Yp;. Now
p = po(0,7/n) € Ly so that p"o(0,7) € Xpir. Since p € Jpir we deduce that
(0,7) € Xy if and only if n is even. |

Our analysis now splits into the two cases n even and n odd.

Theorem 4.2 (The case n even) Suppose that the Busse-Heikes cycle is asymp-
totically stable and that the rolls solutions & undergo pitchfork bifurcations to

equilibrium dynamos f;-. If the action of Y.ous on the critical eigenspace Yy is

given by (4.1) with n even, then generically there is a pitchfork bifurcation from

the Busse-Heikes cycle to a homoclinic cycle connecting the equilibrium dynamos.

This magnetic cycle is asymptotically stable if and only if the pitchfork bifurcation

18 supercritical.

Proof The proof is completely analogous to the proof of [5, Theorem 3.2]. (We
note that the extension from four dimensions to infinite dimensions is immediate
in this case.) We consider the case when the bifurcation is supercritical; the
subcritical case is similar.

First, we restrict attention to the invariant subspace S. Before the bifurcation,
there is a saddle-sink connection in S from &; to &. After the bifurcation, £ is a
saddle with a one-dimensional unstable manifold in S and &} is a sink. (Of course,
there is a pair of equilibria in S corresponding to &| and similarly for &.)

In a neighborhood of &, we can apply the center manifold theorem. On the
center manifold, all trajectories except for & are asymptotic to &,. Moreover,
there is a neighborhood U C S of & so that trajectories in U are attracted to the
center manifold. (Note that the remaining unstable directions associated with &,
do not lie in S.) Hence, almost every trajectory in U is asymptotic to &).

Before criticality, trajectories starting near & are asymptotic to &. By con-
tinuity, after criticality the unstable manifold of &| intersects U and hence is
generically asymptotic to &,. Hence we have the desired saddle-sink connection
from & to &,. By symmetry, we obtain connections also from &), to & and from &}
to &}, resulting in a robust homoclinic cycle connecting the equilibrium dynamos.

Finally, the stability of the Busse-Heikes cycle and of the new cycle is gov-
erned by the ratio of the contracting and expanding eigenvalues at & and &
respectively. It follows easily as in [5] that the bifurcating cycle is asymptotically
stable supercritically. |

Schematically, we have a pitchfork bifurcation from the Busse-Heikes cycle
& —&6—86—4
to the magnetic cycle

§—86—&G— & (4.2)
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Theorem 4.3 (The case n odd) Suppose that the Busse-Heikes cycle is asymp-
totically stable and that the rolls solutions &; undergo pitchfork bifurcations to equi-
librium dynamos f;-. If the action of Y.ons on the critical eigenspace Yy is given
by (4.1) with n odd, then generically there is a bifurcation from the Busse-Heikes
cycle to a heteroclinic network connecting the rolls and the equilibrium dynamos.
This magnetic network is asymptotically stable if and only if the pitchfork bifur-
cation is supercritical.

Proof The difference from the case n even is that &, does not lie in S. Hence
& remains a sink in § after criticality and we obtain a saddle-sink connection
from & to &. Of course, the saddle-sink connection from &; to & persists and in
addition there is a connection in the center manifold from & to £]. By symmetry,
we have a heteroclinic network connecting the ¢; and the &;.

Sufficient conditions for asymptotic stability of heteroclinic cycles are given
in [13, Theorem 2.7] and such arguments generalize easily to heteroclinic net-
works. Moreover, the sufficient conditions for the network near the transverse bi-
furcation are a small perturbation of the sufficient conditions for the Busse-Heikes
cycle. In the case of the Busse-Heikes cycle, the sufficient conditions of [13] are
also necessary [13, Theorem 3.1] (see also [12]). Hence the assumption that the
Busse-Heikes cycle is stable before the transverse bifurcation guarantees that the
sufficient conditions for the cycle and hence the network are valid. |

Schematically, we have the heteroclinic network

§1— & — & — & -
NN NS
3 & &
The network is an indecomposable asymptotically stable attractor (indecompos-
able in the sense that no proper flow-invariant subset is asymptotically stable).

(iv) Hopf bifurcation from the Busse-Heikes cycle

This case is analogous to case (iii), the differences being almost identical to the
differences between cases (i) and (ii). For simplicity, we suppose that both the
traveling waves and the standing waves bifurcate supercritically.

The analogue of Theorem 4.2 is that there is a pitchfork bifurcation to an
asymptotically stable magnetic homoclinic cycle, of the form shown schematically
in (4.2). The cycle connects either three sets of traveling waves or three sets of
standing waves (depending as in (ii) on a coefficient computed from the PDE).

Next, we describe the analogue of Theorem 4.3. There is a bifurcation to
a single heteroclinic network containing equilibrium convection rolls, magnetic
traveling waves and magnetic standing waves. On the center manifold in a neigh-
borhood of &;, there is a saddle-sink connection between the traveling waves @-TW
and the standing waves ffW (the direction of this connection depending again on
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the coefficient computed from the PDE). Schematically, we have

&1 \/‘52\7(53\/‘5

& 13 &3

where the notation & stands for either £ — 5" or £/ «— &7V, As in (iii),
the heteroclinic network is an indecomposable asymptotically stable attractor.

5 Conclusions

In this paper, we have taken the proposed kinematic dynamo solution of Childress
and Soward [4] and deduced some of the implications for the full hydromagnetic
dynamo problem. In principle, our results hold rigorously for the PDE (1.1) once
the instability of [4] is verified. Following such a verification, it is a relatively
straightforward calculation to determine which of the cases (i) to (iv) occur and
to determine directions of branching. For ease of exposition, we assume from now
on that all bifurcations are supercritical.

Subject to these provisos, and subject also to our restriction to the class of
functions that are spatially periodic with respect to the hexagonal lattice, we have
the following conclusions for bifurcation of magnetic dynamos from stable rolls:

(i)  Pitchfork bifurcation of attracting equilibrium magnetic dynamos.

(ii)  Pitchfork bifurcation of periodic and traveling magnetic dynamos. The
periodic solutions are standing waves and the magnetic field reverses direction each
half-period. The traveling solutions are quasiperiodic relative to the hexagonal
lattice and time evolution corresponds to translation almost parallel to the axis
of the rolls solution. Precisely one of these solutions is an attracting dynamo.

The conclusions for bifurcation from the Busse-Heikes cycle (cases (iii) and (iv))
depend on the symmetry that is broken in the bifurcation from convection rolls
to equilibrium dynamos. Recall that the convection rolls & are invariant under
translation parallel to the xs-axis. Most of this symmetry is broken in the bifur-
cation to equilibrium dynamos, but there remains at least the periodicity due to
the translations in the hexagonal lattice £. Additional discrete translation sym-
metry parallel to the xo-axis is possible depending on the integer 7 in (4.1). In
particular, there is a half-period translation symmetry parallel to the x,-axis if
and only if n is even.

When the equilibrium dynamos have the half-period translation symmetry par-
allel to the xy-axis, we obtain pitchfork bifurcations from the purely convective
Busse-Heikes cycle to magnetic homoclinic cycles. These are attracting intermit-
tent magnetic dynamos connecting equilibria in case (iii) and magnetic travel-
ing/standing waves in case (iv).

When the equilibrium dynamos break the half-period translation symmetry
parallel to the xy-axis, bifurcation leads to heteroclinic networks consisting of
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convection rolls together with equilibrium dynamos in case (iii) and together with
traveling/standing waves in case (iv). In Section 4, we showed that these net-
works are indecomposable asymptotically stable magnetic dynamos. Moreover,
the Busse-Heikes cycle, which is the pure convection part of the network, is not
asymptotically stable after the secondary bifurcation.

We have not attempted a detailed analysis of the dynamics on these hetero-
clinic networks. One reason is that there appear to be many distinct situations to
consider. However, preliminary investigations suggest that our description above,
in terms of asymptotic stability, is somewhat simplistic. There is at least one sit-
uation (we omit the details) when the Busse-Heikes cycle X is ‘essentially asymp-
totically stable’ [16] — most trajectories in a neighborhood of X are attracted
to X. It is thus conceivable that, for realistic definitions of attractor, there is no
attracting dynamo in some cases.

Actually, there is a further complication since we should take into account the
effects of forced symmetry breaking, where some or all of the symmetry is broken
slightly. It is likely (though difficult to prove) that after such a perturbation, there
are genuine (though very weak) magnetic dynamos.

Finally, we emphasize that these complications apply only to some subcases of
cases (iii) and (iv). In cases (i) and (ii), and in the ‘half-period symmetric’ subcases
of (iii) and (iv), we obtain straightforward pitchfork bifurcations to equilibrium,
periodic, traveling and intermittent attracting magnetic dynamos.
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