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Abstract

We answer some longstanding questions concerning absolutely irre-
ducible representations of compact Lie groups. Such representations
provide the natural setting for steady-state equivariant bifurcation
theory [19]. We prove the existence of maximal isotropy subgroups for
which there are no branches of equilibria or relative equilibria. Also,
we obtain examples of complex and quaternionic maximal isotropy
subgroups. A consequence of this is the existence of primary branches
of nontrivial relative equilibria (rotating waves).
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1 Introduction

Suppose that I' is a compact Lie group acting on R™. A central issue in
equivariant bifurcation theory [19] and in physical theories of spontaneous
symmetry breaking [25] is the problem of determining the symmetries of
branches of equilibria for I'-equivariant vector fields on R". These sym-
metries correspond to isotropy subgroups of the group I'. (More precisely,
branches consist of group orbits of equilibria and associated to each branch
is a conjugacy class of isotropy subgroups.) A natural question to ask is
which isotropy subgroups of I' arise generically as symmetries of these equi-
libria. Early computations suggested the answer to be precisely the maximal
isotropy subgroups. This led to various forms of the Maximal Isotropy Sub-
group Conjecture (MISC) [17], [25] (see also [15] for a precise statement of
the MISC).

There are by now several counterexamples to the MISC: branches of equi-
libria with submaximal isotropy subgroup appear in [2, 4, 16, 21, 22, 23, 27].
Moreover, the examples of [16] show that failure of the MISC is quite common
and not at all exceptional.

In the other direction, examples of maximal isotropy subgroups for which
there is generically no branching of equilibria have proven more elusive. This
paper contains the first such examples. (In the variational context it is
well-known that there exist generically branches of equilibria corresponding
to all maximal isotropy subgroups [6, 26, 28].) In addition, we construct
the first examples of primary steady-state bifurcation to nontrivial relative
equilibria, rotating waves, arising as a consequence of the existence of com-
plex and quaternionic maximal isotropy subgroups. (See [3, 5] for an ulti-
mately unsuccessful attempt to find primary branches of rotating waves in
steady-state bifurcations with O(3)-symmetry.) It is interesting to note that
quaternionic maximal isotropy subgroups yield branches of Hopf fibrations:
invariant 3-spheres foliated by rotating waves.

The remainder of this paper is structured in the following way. In Sec-
tion 2, we describe the relationship between isotropy subgroups for absolutely
irreducible representations and the corresponding steady-state equivariant bi-
furcation problems. Also, we recall the definition of complex and quaternionic
maximal isotropy subgroups and explore the implications for bifurcation to
relative equilibria. In particular, Theorem 2.4 gives a complete description
of the possibilities for branching of relative equilibria associated to maximal
isotropy subgroups. Then Section 3 consists of explicit examples of the phe-



nomena described in this introduction. In particular, we give examples of
each of the following.

(a) A complex maximal isotropy subgroup, and primary bifurcation to ro-
tating waves.

(b) A quaternionic maximal isotropy subgroup, and primary bifurcation to
Hopf fibrations.

(c) A (real) maximal isotropy subgroup for which there are no branches of
relative equilibria (though there is a branch of periodic solutions).

2 Maximal isotropy subgroups and equivari-
ant bifurcation theory

The examples in this paper resolve certain open problems concerning on
the one hand absolutely irreducible representations of compact Lie groups
and their maximal isotropy subgroups, and on the other hand equivariant
steady-state bifurcation theory and the symmetry types of bifurcating equi-
libria and relative equilibria. In this section, we recall these notions and the
interrelationships between them.

We suppose throughout that [' is a compact Lie group acting linearly on
R". Often we shall assume that the action is absolutely irreducible, that
is the linear maps commuting with the action of I' are scalar multiples of
the identity. (We note that absolutely irreducible representations are irre-
ducible.) As shown in [19], absolutely irreducible representations provide the
natural setting for equivariant steady-state bifurcation theory.

Maximal isotropy subgroups

A standard reference for the material in this subsection is [19]. If z € R,
the isotropy subgroup ¥, is defined to be the subgroup

Ye={y €T, yx =z}

Observe that ¥,, = X,y ' so isotropy subgroups of points lying on a
[-group orbit form a conjugacy class in I'. If ¥ C I', we define the fized-point
subspace of X3,

Fix(X) = {z € R", ox = z for all 0 € X}.
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In the remainder of this subsection we suppose that Fix(I') = {0}. (This
condition is automatically satisfied if I' acts irreducibly and nontrivially.) Let
N(X) denote the normalizer of ¥ in I'. Then N(X) acts on Fix(X) (indeed
N(X) is the largest subgroup of I' with this property). The quotient group
Dy, = N(X)/X acts faithfully on Fix(3). Moreover, if ¥ is a maximal isotropy
subgroup of I' then Dy, acts fixed-point freely. Let DY denote the connected
component of the identity in Dyx. The following is a consequence of the
classification of fixed-point free actions, see for example [1, Theorem III.8.5].

Proposition 2.1 ([17]) Suppose that Fix([') = {0} and that ¥ is a mazimal
isotropy subgroup of T'. Then D2 is isomorphic to 1, S or SU(2).

A maximal isotropy subgroup is said to be real if D% 2 1, compler if
DY = S' and quaternionic if D} = SU(2). It is clear that dimFix(2) is
even if ¥ is complex and that dim Fix(X) = 0 mod 4 if ¥ is quaternionic. It
is easy to construct examples of complex and quaternionic maximal isotropy
subgroups but the examples in this paper are the first for which the action
of I' is absolutely irreducible.

Relative equilibria

Suppose that f : R" — R" is a smooth (C*) I'-equivariant vector field, so
f(yz) = vf(z) for all z € R", v € T'. By equivariance, the equilibria for f lie
on group orbits. When I is not finite, it is natural to generalize the notion of
equilibrium and to define a relative equilibrium to be a flow-invariant group
orbit. We define the isotropy subgroup of a relative equilibrium X to be
the isotropy subgroup of points in X (this is well-defined up to conjugacy).
Recall that the rank, rk G, of a compact Lie group G is the dimension of a
maximal torus in G.

Theorem 2.2 [8, 10, 20] Suppose that X is a relative equilibrium with
1sotropy subgroup Y for a I'-equivariant vector field. Then X is foliated by
flow-invariant k-tori where k = rk Dx. Generically, the flow on each k-torus
18 transitive.

Remark 2.3 (a) This result can be extended to parametrized families of
equivariant vector fields, [12] (see also [20]).

(b) If Fix(T) = {0} and X is a real maximal isotropy subgroup, then
rk Dy, = 0 and relative equilibria with isotropy ¥ consist simply of equilibria.
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However, if 3 is a complex or quaternionic maximal isotropy subgroup, then
rk Dy, = 1 and it follows that generically relative equilibria with isotropy %
are foliated by periodic solutions. Such relative equilibria are called rotating
waves. Moreover, in the quaternionic case the relative equilibria are foliated
by invariant 3-spheres which are themselves foliated by periodic solutions
(of identical period). Recall that the Hopf fibration is the foliation of S* by
circles, the fibration being parametrized by S2. Accordingly, we shall refer to
the relative equilibria arising from quaternionic maximal isotropy subgroups
as ‘Hopf fibrations’.

Steady-state bifurcations

Suppose now that I' acts absolutely irreducibly (and nontrivially) on R" and
that f : R® x R — R" is a smooth one-parameter family of I'-equivariant
vector fields. Denote the bifurcation parameter by A € R. It follows from
absolute irreducibility that f(0,\) = 0, so there is a fully symmetric ‘trivial’
solution z = 0. In addition, (d;f)ox = ¢(A)I where ¢: R — R is smooth. If
¢(0) = 0 we say that f is a steady-state bifurcation problem with T'-symmetry,
or I'-bifurcation problem for short [19].

Adapting the terminology of [15] we shall say that an isotropy subgroup
¥ C T is (generically) symmetry breaking if I'-bifurcation problems possess
generically a branch of relative equilibria with isotropy Y bifurcating from
the trivial solution as A passes through zero. A complete summary of the
symmetry breaking properties of maximal isotropy subgroups is as follows:

Theorem 2.4 Suppose that ' is a compact Lie group acting absolutely irre-
ducibly on R"™ and that X is a maximal isotropy subgroup.

(1) If Fix(X) is of odd dimension then X is symmetry breaking.
(i) If ¥ is complex or quaternionic then ¥ is symmetry breaking.

(151) If 3 is real and Fix(X) is of even dimension then X may be, but need
not be, symmetry breaking.

The branches of relative equilibria with isotropy Y consist of equilibria in
cases (i) and (iii) and consist of rotating waves or Hopf fibrations in case (ii).



Proof The proof of case (i) may be found in [7]. (Strictly speaking, for
dim Fix(X) > 1 it is necessary to couple the result of [7] with general the-
ory [15] in order to obtain branches of equilibria.) When dim Fix(X) = 1, the
result is called the equivariant branching lemma [19].

The proof of case (ii) is a slight variation of a technique used in [13]
to obtain a theorem of [9] on equivariant Hopf bifurcation. See also [14,
Section 11] and [14, Example 4.3.10] for the simpler case when Fix(X) is of
minimal dimension. For completeness we sketch the proof for ¥ complex.
The analysis of the quaternionic case is similar. Let m = dimg Fix(X).

Suppose that f is a I'-bifurcation problem on R" and for a € R define
f(z,\) = f(z,\) — a|z|*z. Tt follows from [14, Theorem 4.4.5] (see also [12,
13]) that generically the branching of relative equilibria for f¢ is independent
of a. Consider the restricted vector field g* = f*|pix(x). Since Dy = S', ¢°
is (at least) S'-equivariant. The linear term of g% is a scalar multiple of the
identity (since this was the case for f*) and there are no quadratic terms since
St acts freely. Hence the invariant sphere theorem [12] applies for a > 0 large
enough. In particular, we may assume that there is a branch of flow-invariant
Sl invariant (2m — 1)-spheres bifurcating from the trivial solution.

The orbit space for the free action of S* induced on these invariant spheres
is complex projective space P™ !(C) and has Euler characteristic m > 0. It
follows that for sufficiently small A > 0, the vector field induced on the
orbit space has at least one zero. Consequently f¢, and in particular f, has a
relative equilibrium with isotropy X for each A. It follows that X is symmetry
breaking. (In the notation of [12, Appendix|, we have shown that A% is the
hyperplane ¢; = 0.)

Case (iii) is proved by exhibiting real maximal isotropy subgroups with
the required properties. Examples where there is symmetry breaking are
provided by [11, 23, 24]. Examples where there is no symmetry breaking
appear in Section 3 of this paper.

The last statement of the theorem follows from Remark 2.3. |

All the situations described in Theorem 2.4 can occur. The fact that
dim Fix(X) may be even or odd is well-known, indeed dim Fix(X) may be any
positive integer. In Section 3, we give examples of ¥ complex and quater-
nionic in addition to an example where ¥ is real and non-symmetry breaking
as promised in the proof of the theorem.



3 Examples

A complex maximal isotropy subgroup

We exhibit a compact Lie group I' acting absolutely irreducibly on R® with
a complex maximal isotropy subgroup. The group I' is a semi-direct product
of the symmetric group S; with the 3-torus 77.

Identify R® with C®. The action of § = (01,0,,65) € T° on z =
(21, 29, 23) € C* is given by

0z = (€21, €225, €2 23).

Take as generators of S3 elements p, k acting as
pz = (Z27Z3’Z1)’ Rz = (21523722)-

It is readily verified that this indeed defines an action of I' as a semi-direct
product of Ss and 73, with 7 a normal subgroup of I'.

Proposition 3.1 The group T' acts absolutely irreducibly on C*.

Proof Observe that C* decomposes into a sum of three two-dimensional
nonisomorphic irreducible subspaces under the action of 7. These subspaces
are permuted cyclically by p so that the action of I' is irreducible. Moreover,
the subgroup generated by T° and & acts like O(2) on one of these subspaces,
so the overall action is absolutely irreducible. |

Let T} denote the subgroup of T? isomorphic to S! defined by setting 6, =
03 = 0. Define ¥ to be the semi-direct product of the subgroup generated by
Kk with T7.

Proposition 3.2 The subgroup ¥ is a complex mazimal isotropy subgroup
of T and dim Fix(X) = 2.

Proof It is easily checked that Fix(3) = (0,2,Z) 2 C and that ¥ is the
isotropy subgroup of all points in Fix(3)—{0}. In particular, ¥ is a maximal
isotropy subgroup. The circle T = {(0, 8, —6)} C T? acts fixed-point freely
on Fix(X) and hence ¥ is complex. [



Corollary 3.3 Generically there is a branch of rotating waves with isotropy
¥ in T'-equivariant bifurcation problems.

Propositions 3.1 and 3.2 and Corollary 3.3 can be verified directly by
performing routine computations. We list all the isotropy subgroups of I' in
Table 1. We also explicitly compute the branch of rotating waves. To do this
we write down the I'-bifurcation problem f : R® x R — R® through third
order. Proposition 3.1 follows from the computation of the linear terms.

Generators | Fix(X) Dy,

for X

r 0,0,0) 1

K, (0,92,93) .’L‘,0,0) ZQ

S z,2,2) | Do
z

T, 2,Z) St % Zs
0, Z1, ZQ) T2 X Z2
ZlaZ27'Z3) r

(

(

(
K, (61,0,0) | (0,2,2) |S*
K (

(

(

Table 1: Isotropy subgroups ¥ C T' = S;3 4+ T°, together with Fix(X) and
Dy (z € R, 21, 22,23 € C)

Suppose that f : C* — C? is a '-equivariant vector field, in components
f = (fi1, fo, f3). Equivariance with respect to p implies that fo(z) = fi1(p2),
f3(2) = f1(p%2), so it suffices to write down f;. By T3-equivariance, f(z) =
219(|21]%, |22|?, | 23]?) where ¢ : R* — C is an arbitrary smooth map. Let go
denote the truncation of g at leading order, gy = p + |21 + B|22]* + 7| 23/%,
where u, «, 3,7 € C. The restrictions from x-equivariance are that u, a € R,
v = . We may identify p with the bifurcation parameter so that

go = A+ alz >+ (b+ic)|zl* + (b —ic)|zs?,

where a, b, c € R.

Next we compute branches of rotating waves for the ODE 2 = f(z, A). We
shall work formally; the existence of branches can be established rigorously
by a standard application of the implicit function theorem, and follows in any
case from Theorem 2.4. Write z;(t) = r;e®i?, j = 1,2,3, where rj,w; € R,
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r; > 0. Substituting this ansatz into the second equation 2z, = fao(2,A) we
obtain

_ 2 2 2 (2 2 2
0 = roRg(ry,r3,77), wory = 198g(15, 73, 77)-

At lowest order, these equations become

0 = ro(\ +ars + b(r2 + 1)), wory = cro(rs — 12).
To compute branches of relative equilibria with isotropy ¥ we set r; = 0,
ro =713 > 0 and ws = —w,. It is sufficient to solve the equation Zy = fo(z, \)
which reduces to

0= XA+ (a+b)rs, Wy = cr3,

at lowest order. In particular, provided a + b # 0, ¢ # 0, we have a branch
of rotating waves in Fix(X). Moreover the rotating waves are normally hy-
perbolic in Fix(X). The branch is supercritical if a + b < 0 and subcritical if
a+b>0.

Remark 3.4 From the point of view of dynamics, this example is not par-
ticularly interesting. It can be shown that generically the local asymptotic
dynamics consists of the relative equilibria corresponding to the three maxi-
mal isotropy subgroups. Moreover, the rotating waves in Fix(X) are generi-
cally unstable so that almost every trajectory that remains local in forward
time is asymptotic to an ordinary equilibrium.

There are modifications of this example which do produce interesting
dynamics. Asymptotically stable rotating waves exist when I' is taken to be
a suitable semi-direct product of D, and T* acting absolutely irreducibly on
C*. See also Remark 3.10(a). It seems highly likely that further modifications
will lead to primary bifurcations to rather exotic dynamics. This will be the
subject of future work.

A maximal isotropy subgroup that is not symmetry
breaking

This is a slight variation on the previous example. Start with the semi-direct
product of S; and T° acting on C*, but replace T° by the finite subgroup
(Z,)® where the action of Z, on C is generated by z — €*"/Pz. Provided
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p > 3, Z, acts irreducibly on C and the semi-direct product I of S5 with
(Z,)? acts absolutely irreducibly on C*. Again there is a maximal isotropy
subgroup ¥’ with Fix(¥') = {(0, 2, %) }.

Since I" is finite, maximal isotropy subgroups are real. In particular,
Y’ is real. In addition, the only relative equilibria possible are ordinary
equilibria. We show that provided p > 5, there are no branches of equilibria
with isotropy ¥’ for I'-equivariant bifurcation problems. Again we argue
formally, but see Remark 3.5 below. The main point is that terms that are
["-equivariant but not I'-equivariant enter only at order p — 1 and higher.
Hence for p > 5, the bifurcation equations truncated at cubic order are
unchanged. Moreover, the dynamics in Fix(X) are completely determined at
cubic order. In particular, the branch of normally hyperbolic rotating waves
with isotropy X persists as a branch of normally hyperbolic invariant circles
with isotropy subgroup Y. Finally, the flow on the invariant circles remains
nontrivial so that the branch consists of periodic solutions and there are no
equilibria as required.

Remark 3.5 This formal argument can be made rigorous by a simple scaling
argument. This is possible since the dynamics in Fix(Y') is determined by a
weighted homogeneous vector field (where z has weight 1 and ) has weight 2).

A quaternionic maximal isotropy subgroup

We take I' to be a semi-direct product of a finite group G' and eight copies
(SU(2))® of the unit quaternions acting on H® = R*2. The group G is itself
a semi-direct product of Z, and D3.

First identify Dy as the subgroup of the symmetric group S, generated
by the permutations x = (12)(34) and 7 = (13)(24). Denote points in H® by
w = (u,v) where u,v € H* and define an action of D, on H® by

(u,v) — i(u, kv)i, (3.1)
(u,v) = j(u,Tv)j. (3.2)
(This notation means perform the required permutation of the v-coordinates
and then multiply all coordinates on the left and the right by the given

quaternion.)
Next let a second copy of Dy act on H?,

(u,v) — i(ku,v)i, (u,v)— j(Tu,v)].
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Combined with the transformations (3.1,3.2), this defines an action of Dj.
To complete the definition of the finite group G, add the copy of Z,
generated by

(u,v) — (v, u). (3.3)

Since this transformation is in the normalizer of D2 it follows that G is a
semi-direct product of Z, with the normal subgroup Dj.

Finally, the standard action of SU(2) by left multiplication on H induces
an action of (SU(2))® on H® where each copy of SU(2) acts in the standard
way on one copy of H and trivially on the remaining seven copies. Let " be
the semi-direct product of G and (SU(2))3.

Remark 3.6 The finite group G is generated by the transforma-
tions (3.1,3.2,3.3). We can think of I as generated by (SU(2))® together
with these three transformations. Note that inside of T", left multiplication
by i and j in the generators (3.1,3.2) is redundant. However, to realize I' as
a semi-direct product it is convenient to work with the generators as given.

Proposition 3.7 The group T acts absolutely irreducibly on HE.

Proof The standard action of SU(2) on H (by left multiplication) is ir-
reducible and since G permutes the eight copies of H transitively, it follows
that the action of T’ on H® is irreducible. We shall recover this information
in the following calculation which shows that the action is in fact absolutely
irreducible.

The commuting linear maps for the action of SU(2) on H are given by
g — qa where a € H (right multiplication). It follows that the commuting
linear maps for the action of (SU(2))® have the form

Lw = (Ulala U0y, U3A3, U4, V1b1, Vaby, U3bs, U4b4);

where a,, b, € H.

Next we take into account the additional constraints coming from the
action of G. As noted previously (and as is easily checked), it follows from
commutativity with G' that L is determined by a; and that if a; is real then
L = a1 so that the action is absolutely irreducible. Hence it suffices to show
that a; commutes with the quaternions ¢ and j. Commutativity with (3.1,3.2)
yields the equations for the first component of Lw:

’iU1a1i = iulial, julalj = jU1ja1,
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and taking u; # 0 we have a7 = ia1, a1j = ja;. |

Let (SU(2))% denote the subgroup of (SU(2))® obtained by deleting the
copies of SU(2) that act on the first components of v and v. Define X

to be the semi-direct product of the subgroup Z, (generated by (3.3)) and
(SU(2))°.

Proposition 3.8 The subgroup ¥ is a quaternionic mazrimal isotropy sub-
group of T' and dim Fix(X) = 4.

Proof As was the case for Proposition 3.2 it is easily checked that
¥ is a maximal isotropy subgroup with fixed-point subspace Fix(¥) =
(u1,0,0,0,u1,0,0,0) = H. The diagonal subgroup of (SU(2))® acts fixed-
point freely on Fix(X):

(u1,0,0,0,u1,0,0,0) — (qui,0,0,0,qui,0,0,0), ¢ € SU(2),

and hence X is quaternionic. |

Corollary 3.9 Generically there is a branch of Hopf fibrations with isotropy
¥ in I'-equivariant bifurcation problems.

Remark 3.10 (a) A computation shows that the branch of Hopf fibrations
is asymptotically stable for an open set of cubic order coefficients in the Tay-
lor expansion of the I'-bifurcation problem f. Indeed, our example gives rise
to maximal isotropy subgroups of all three types and to branches of asymp-
totically stable equilibria, rotating waves and Hopf fibrations corresponding
to these subgroups.
(b) The space of commuting linear maps for a real irreducible representations
is a real division ring and hence is isomorphic to R, C or H. As pointed out
in [17], the classification of maximal isotropy subgroups into those of real,
complex and quaternionic type is reminiscent of, but different from, this tri-
chotomy. Our examples confirm the viewpoint that these trichotomies are
unrelated.

Indeed, for any pair of real division rings D; and D, it is possible to find
a compact Lie group I' acting irreducibly such that the commuting linear
maps are isomorphic to D; and so that there is a maximal isotropy subgroup
Y of type D,. (We are making the obvious correspondence between the
possibilities D% = 1, S1, SU(2) and D, = R, C, H.) This is easy if D; = D,
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and to obtain Dy C D; we discretize the group I'. For example if ' = S*
acting in the standard way on C with ¥ = 1 then D; = Dy = C. Now replace
St by Z, where p > 3 and we have D; = C, D, = R.

The most difficult cases occur when D is a proper subset of Dy. We have

given examples when D; = R and Dy = C or D, = H. To obtain D; = C,
Dy, = H we can change the example in this subsection by removing the left
and right multiplication by j in the generator (3.2). However we note that
much simpler examples can be found, in particular with T' acting on H3.
(c) Several people have pointed out that there is a ‘twisted” wreath product
structure in the examples in this section. Each group I' is a semi-direct
product of a finite group G and n copies of a group H acting on a vector
space V. The full group I' acts on V" and G is isomorphic to a subgroup of
Sp. Moreover, G acts on the n copies of V' as a permutation corresponding
to the permutation in S, combined with a ‘twist’. In our examples, the
twist takes the form of complex conjugation or quaternionic multiplication.
Without this twist, [' is a standard wreath product. See [18] for an overview
of the occurrence of wreath products in equivariant dynamical systems.
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