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Abstract

We study local bifurcation in equivariant dynamical systems from periodic
solutions with a mixture of spatial and spatiotemporal symmetries.

In previous work, we focused primarily on codimension one bifurcations. In this
paper, we show that the techniques used in the codimension one analysis can be
extended to understand also higher codimension bifurcations, including resonant
bifurcations and mode interactions. In particular, we present a general reduction
scheme by which we relate bifurcations from periodic solutions to bifurcations from
fixed points of twisted equivariant diffeomorphisms, which in turn are linked via
normal form theory to bifurcations from equilibria of equivariant vector fields.

We also obtain a general theory for bifurcation from relative periodic solutions
and we show how to incorporate time-reversal symmetries into our framework.

*On leave from Institut fiir Mathematik I, Freie Universitit Berlin, 14195 Berlin, Germany



1 Introduction

Equivariant bifurcation theory is concerned, to a large extent, with local bifurcation
theory for vector fields that are equivariant with respect to the action of a compact Lie
group I, see Golubitsky, Stewart and Schaeffer [16]. In particular, a systematic approach
to bifurcation from equilibria is laid out in [16]. This approach has been generalised to
include bifurcation from relative equilibria (where a single group orbit is flow invariant),
see Krupa [17], and also situations where I" is noncompact but acts properly on a finite
dimensional manifold, see Fiedler, Sandstede, Scheel and Wulff [12].

Recently, the corresponding theory for bifurcation from periodic solutions has been
in development. The simplest case is when the periodic solution has only spatial symme-
tries (symmetries that fix the periodic solution pointwise in phase space). In that case
the bifurcation analysis reduces to bifurcation from a fixed point for an equivariant dif-
feomorphism and has been studied by Chossat and Golubitsky [8] (see also Ruelle [28]).

The more complicated case in which a periodic solution has not only spatial but also
spatiotemporal symmetries has been studied by Fiedler [11] (cyclic spatiotemporal sym-
metry), Buono [6] (abelian spatiotemporal symmetry), and Lamb and Melbourne [21]
(general spatiotemporal symmetry). Further examples and applications involving bifur-
cation from periodic solutions with spatiotemporal symmetry can be found in [5, 27].

In particular, in [21] we studied codimension one bifurcation from a periodic solution.
This reduces to bifurcation from a fixed point for a twisted equivariant diffeomorphism,
which reduces in turn to bifurcation from a fixed point for a diffeomorphism that is
equivariant (through arbitrarily high order) with respect to an enlarged compact sym-
metry group. (See also [22] for a less technical discussion.) The novel ingredient in this
reduction scheme is the systematic treatment of twisted equivariant diffeomorphisms.

In the present paper, we improve the approach of [21] in two ways. First, we con-
sider general bifurcations of arbitrary codimension (including resonances and mode-
interactions). Second, following in spirit the approach of Takens [31] and Lamb [18, 19],
instead of reducing to bifurcation from a fixed point for an equivariant diffeomorphis-
m, we reduce to bifurcation from an equilibrium for an equivariant vector field (again,
through arbitrarily high order).

In Wulff, Lamb and Melbourne [33], we considered bifurcation from relative periodic
solutions. These are flow-invariant sets that reduce to periodic solutions at the I' orbit
space level. (Here, I' is possibly noncompact but is assumed to act properly on a finite
dimensional manifold.) It is shown in [33] how to reduce the problem to bifurcation
from a periodic solution for an equivariant vector field with a compact symmetry group.
This reduces in turn, by the theory outlined above, to bifurcation from an equilibrium
for an equivariant vector field with an enlarged compact symmetry group. Hence, our
present results when combined with [33] yield a systematic theory for bifurcation from
relative periodic solutions.

Summarising, we have the following hierarchy of reductions:



relative periodic solution

!

periodic solution

!

fixed point for twisted equivariant diffeomorphism

1

equilibrium for equivariant vector field

We note that whereas the first two reductions involve no loss of information, the
final step is only valid through arbitrarily high order. Using finite determinacy results of
Field [14], we obtain persistence for certain solutions, such as (relative) periodic solutions
and invariant tori.

This paper is organised as follows. In Section 2, we summarise the main results
of our paper concerning bifurcation from periodic solutions with spatiotemporal sym-
metry. Illustrative examples are given in Section 3. Section 4 contains results about
linear twisted equivariant maps, and Section 5 establishes a normal form theorem for
nonlinear twisted equivariant diffeomorphisms. The results in Section 2 are then proved
in Section 6.

In Section 7, we extend our approach to bifurcations from periodic solutions for
reversible equivariant vector fields (where in addition to equivariance the vector field
possesses time-reversal symmetry).

Finally, the generalisation to bifurcations from relative periodic solutions is described
in Section 8.

2 Statement of the main results

Let I be a compact Lie group acting orthogonally on R". We consider the dynamics for
a ['-equivariant flow on R". Suppose that P = {z(¢),0 < t < T} is a periodic solution
of minimal period 7 with initial condition xzy = z(0). The symmetries that leave P
invariant come in two forms. There is the group of spatial symmetries

A={yeT:9a = 20},

which is by definition the isotropy subgroup of x,. It follows from equivariance that A is
the isotropy subgroup of each point z(t) € P. There is also the group of spatiotemporal
symmetries

Y={yel:yP=P}.

For each o € ¥, there is a unique time-shift T, € [0,T) such that oz(t) = z(t + T,) for
all ¢. Tt is easily verified that A is a normal subgroup of ¥ and that either ©/A = St or
Y /A = Z,, for some m > 1.

When Y./A = S the periodic solution is a rotating wave which is a special case
of a relative equilibrium. Hence, we focus on the case ¥/A = Z,,, where P is called



a discrete rotating wave [11]. (The case ¥ = A was studied in [8] so our interest lies
primarily in the case m > 1.) We assume that dimI" = dim¥. Then without loss we
may suppose that [' = ¥. (The case dimI' > dim ¥ is addressed in [33], and again in
Section 8.)

Now choose o € ¥ such that X is generated by A and ¢. This induces an automor-
phism ¢ € Aut(A) given by

#(8) = o~ 'do. (2.1)

The element o can be chosen [21, Lemma 2.1] so that the automorphism ¢ has finite
order k, for some k£ > 1. Following [21], for each N > 1 we form the semidirect product
A X Zy by adjoining to the group A an element 7 satisfying the relations

™ =1

, Tl = #(9).

(a) Codimension one bifurcation

The main results in Lamb and Melbourne [21] can be encapsulated as follows:

Theorem 2.1 ([21] Codimension one bifurcation) Codimension one bifurcations
from a discrete rotating wave with spatial symmetry A and spatiotemporal symmetry
Y are in one-to-one “correspondence” with codimension one bifurcations from a fully
symmetric equilibrium of a A X Zgg-equivariant vector field.

Remark 2.2 (a) We write “correspondence” in quotes since the proof of the theorem
relies on normal from theory for twisted equivariant maps [18|, and aspects of the bifur-
cations that are beyond all orders are not necessarily preserved by the correspondence.
However, a finite determinacy result of Field [14] ensures that many important features
of the bifurcations are determined at finite order and hence are preserved by the corre-
spondence. These features include the existence, symmetry and stability of branches of
periodic solutions, and in the case of Hopf bifurcation branches of invariant tori.

A precise statement of the correspondence in Theorem 2.1 is deferred until Section 6.
See also Remark 2.6.

(b) Theorem 2.1 is a reformulation of results in [21]. In particular, nonHopf and Hopf
bifurcation in [21] correspond to steady state and Hopf bifurcation of A x Zgg-equivariant
vector fields. (In the case of Hopf bifurcation, there is a further simplification whereby
it is possible to reduce to Hopf bifurcation of a A x Zg-equivariant vector field (see also
Remark 2.4(b)). This fact is useful in doing computations, but for the sake of simplicity
in the statement of our results, we have chosen to retain the factor 2.)

(c) The analysis of codimension one steady state and Hopf bifurcation for A X Zg-
equivariant vector fields involves the computation of absolutely irreducible representa-
tions and irreducible representations of complex type for A X Zgy. In [21], it is shown
how to obtain these representations from the representations of A using induced repre-
sentation theory.



(b) Resonance

The generalisation of Theorem 2.1 to higher codimension bifurcations is complicated by
the possibility of resonances.

First, we recall some key concepts from [21]. Suppose that ¥/A = Z,, and that X
is generated by A together with an element ¢ € . Suppose also that ¢ induces an
automorphism ¢ € Aut(A) of finite order k as discussed earlier. Let X be a A-invariant
local cross-section to the discrete rotating wave P such that P N X = {z9}. Then
{0’X : j=0,...,m— 1} is a sequence of A-invariant local cross-sections spaced at
time intervals of 1/m’th of the period of P. Define G : X — 07X to be the first
hit map for the flow and define the first hit pullback map f: X — X by f = o~ 'GO.
Observe that

(a) xo is a fixed point for f.
(b) f is twisted equivariant. That is,
f(oz) = ¢(d)f(z) forallz € X andd € A. (2.2)
Here, ¢ € Aut(A) is the automorphism ¢(8§) = o~ 'do introduced in equation (2.1).
(c) GU) = g7 fi for j > 1.

(d) The Poincaré map G : X — X for the periodic solution P is given by G = G(™ =
o™ f™, has xq as a fixed point, and is A-equivariant.

We say that an eigenvalue p of a matrix A is rational if p = exp(2wic/d) where
¢, d € N. Otherwise p is errational.

Definition 2.3 Let L = (df)o be the linearisation of the first hit pullback map f arising
in a bifurcation problem for a discrete rotating wave.

(a) We say that the bifurcation problem is nonresonant if L* has no rational eigenvalues
other than +1. Otherwise the bifurcation problem is resonant. (Similarly, we speak of
the twisted equivariant linear map L being nonresonant and resonant.)

(b) Let u; = exp(2mic;/d;) be the rational eigenvalues of L* and suppose that ¢; and
d; are in their lowest terms for each j. Define ¢ = lem{d;} to be the least common
multiple of the denominators d; (if there are no rational eigenvalues, set ¢ = 1). Then
the bifurcation problem (and the twisted equivariant linear map L) is resonant of order £.

Note that the nonresonant bifurcation problems are precisely those with order ¢ = 1.

Remark 2.4 (a) In systems without symmetry, resonances arise in Hopf bifurcation
from periodic solutions for flows (or Hopf bifurcation from fixed points for diffeomor-
phisms), see Ruelle [28]. This phenomenon is identical to the issue that we are addressing
in Definition 2.3, but the details are not identical. In particular, our order of resonance
£ need not match up with the ‘standard’ order of resonance in nonequivariant systems,
and some cases that one might normally think of as being resonant are swallowed up in
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the integer 2k. (See the example in Subsection 3(c).)

(b) The factor of 2 in the integer 2k¢ is sometimes unnecessary. In fact, when (the
centre subspace component of) L* is A-equivariantly isotopic to the identity (which is
certainly the case if L* has no eigenvalues at —1) it is possible to redefine £ in terms
of the eigenvalues of L* (instead of L%) and to replace A X Zogs by A X Zyy. We have
chosen not to take this approach in developing the general theory, since the statement of
our results become considerably more complicated. However, in applying the theory, for
example when studying Hopf bifurcation as in Section 3(b,c), it is often more convenient
to remove the factor of 2 when possible.

(c) Our definition of nonresonance permits resonances between irrational eigenvalues of
LF (or L?*) that lie on the unit circle. (For example, it is permissible to have eigenvalues
e, e?@ where w &€ 1Q.)

(d) Preliminary versions of these results were announced in [23]. Although our approach
has not changed, some of the details have been improved. In particular, the definition
of the order of resonance ¢ has been altered.

(c) Higher codimension bifurcation

The main result in the paper is the following theorem, where we relate bifurcations from
a discrete rotating wave to bifurcations from an equilibrium for a A X Zog-equivariant
vector field.

Theorem 2.5 (a) Nonresonant bifurcations from a discrete rotating wave with spatial
symmetry A and spatiotemporal symmetry ¥ are in one-to-one “correspondence” with
bifurcations from a fully symmetric equilibrium of a A X Zoy-equivariant vector field.

(b) In the case of resonance of order £, bifurcations from a discrete rotating wave “reduce”
to bifurcations from a fully symmetric equilibrium of a A X Zoge-equivariant vector field.

See Section 6 for a detailed formulation and proof of this result.

Remark 2.6 In Section 5, it is shown that the twisted equivariant first hit pullback map
f can be transformed by A-equivariant near-identity polynomial changes of coordinates
into the form

f~T1lexph (2.3)

where h is a A X Zgyp-equivariant vector field (and exp h is the time-one map). Here, ~
denotes equality through arbitrarily high, but finite, order. In particular, h commutes
with 7 so that the dynamics of f can be recovered modulo flat terms (cf. Remark 2.2(a)).
Again, the results of Field [14] guarantee that many important features are finitely
determined and hence preserved by the correspondence.

In the nonresonant case (¢ = 1), we have a one-to-one correspondence modulo flat
terms just as in the codimension one case in Theorem 2.1. In the resonant case (£ > 1),
the correspondence is not one-to-one, but bifurcations reduce (again modulo flat terms)
to bifurcations from an equilibrium for a vector field with enlarged symmetry group.



Resonant bifurcations have codimension at least two, so codimension one bifurcations
have ¢ = 1. Hence, Theorem 2.1 is a special case of Theorem 2.5(a), which is in turn a
special case of Theorem 2.5(b).

Remark 2.7 Resonant bifurcations in the nonequivariant context (A = 1) lead to Z,-
equivariant vector fields. See for example Arnold [2] or Arrowsmith and Place [3] for
discussions of the use of equivariant vector fields in the study of resonant bifurcations.

There is the usual distinction between strong and weak resonances [2, 3]. Roughly
speaking, the resonance corresponding to an eigenvalue j = e*™°/? is strong if d is small
and weak if d is large. In general, this distinction depends on the number of nonresonant
and resonant eigenvalues (taking into account algebraic and geometric multiplicities) and
also depends on the desired completeness of the analysis of the dynamics.

The simplest solutions that occur in Hopf bifurcation are branches of invariant two-
tori. It follows from Field [14] (building upon work of Ruelle [28]) that in most cases
the branching and stability of two-tori are the same for bifurcations with resonance as
for nonresonant bifurcations — only resonances of a specified low order are “strong” in
this context. In particular, if one focuses on such aspects of the theory, it often suffices
to consider bifurcation of A x Zo,-equivariant vector fields.

More delicate dynamics such as phaselocking on the invariant tori is influenced by
resonances of all orders.

(d) Existence and symmetry of bifurcating solutions

Let h denote the A X Zgyp-equivariant vector field in Theorem 2.5 (and Theorem 2.1).
In this subsection, we describe the precise correspondence between certain solutions of
h and the corresponding solutions for the underlying I'-equivariant flow.

Branches of periodic solutions for the underlying flow

The fully symmetric equilibrium for the AxZoy-equivariant vector field 4 in Theorem 2.5
corresponds to the original periodic solution P for the underlying flow.

Similarly, bifurcating equilibria z® for the vector field h correspond to bifurcating
periodic solutions PP for the underlying flow. As in [21], we define J C A X Zoy to be
the isotropy subgroup of z":

J = {7 € A X TLugyy - v = 2T},

Note that elements of .J can be written in the form 77§ where 5 = 0,1,...,2kf — 1 and
d € A.

Proposition 2.8 Suppose that P is a bifurcating equilibrium with isotropy J C A x
Zioge for the vector field h. Let p > 1 be least such that TP6y € J for some 6y € A and
define o®f = oP4.



Then there is a bifurcating periodic solution P for the underlying flow, and PP
has spatial symmetry

AP = JNA ={6e€A: sz ="}

and spatiotemporal symmetry SP generated by AP and o,

Proof We make use of the relation (2.3). By Remark 2.6, detailing Field’s determinacy
result, we may suppose throughout that f = 77'¢ = 7" 'exph where h is A X Zgy-
equivariant and ¢ is the time-one map of h. In particular, A commutes with 7.

Since 2P is a point of intersection of PP with the Poincaré cross-section, it is
immediate that AP = J N A.

Next, we note that the equilibrium 2P for A corresponds to a fixed point 2" for the
time-one map g and hence a periodic point for f. Indeed, f7(x®f) = 7=9gPi,

The spatiotemporal symmetry group X is a cyclic extension of AP and so we
search for the least p > 1 such that the first hit map G® : X — o?X satisfies GP) (z"if) =
o 2P where oPf € 3. It then follows that XP is generated by AP and oPif.

By definition, o®f maps X into 0?X and hence P € 0P A. That is, o®f = oP§, for
some &y € A. In addition,

G(j)(aibif) — O'jfj(aibif) — O'jT_j.’Ebif.

Hence G®) (2Pf) = 676,21 if and only if 778,z = xPif, n

Remark 2.9 We have the following correspondence between the symmetry J of the
equilibrium z"f and the spatiotemporal symmetry X" of the periodic solution P":

715 € J C A X Liggy +— 076 € TP

Absolute and relative periods of periodic solutions

A periodic trajectory z(t) has (absolute) period T if T > 0 is least such that z(T") = z(0).
In a dynamical system with symmetry group I', the periodic trajectory has relative period
T if T > 0 is least such that z(T") € I'z(0). Write T,,s and 71 to denote these periods.
Note that Typs is an integer multiple of Ti;. Moreover, Tyns/Tre = |X/A].

In our set up, the underlying periodic solution P has spatiotemporal symmetry > =T°
and we defined the positive integer m = [3/A|. So

m = |9/A| = Tus/Trar (2.4)

Let THI and TP denote the relative and absolute periods of the bifurcating periodic

solution PP, Corresponding to m, we define the positive integer mPf to be

mbif — |Zbif/Abif‘ — Tbif/Tbif (25)

abs/ “rel *



Proposition 2.10 As the bifurcation point is approached,

Tbif/ Trel — D, T;:)tig/ Tabs — q,

rel

where p is as in Proposition 2.8 and ¢ = pmPf/m.

Proof It is clear that T;’gg is approximately an integer multiple of T,;,s and similarly for

the relative periods. Moreover, it follows from the proof of Proposition 2.8 that Tr‘;ilf Trel

converges to the integer p. The expression for ¢ follows from (2.4) and (2.5). |

The integer ¢ corresponds to the occurrence of a period g-tupling bifurcation. In
certain simple situations (codimension one nonHopf bifurcations considered in [21,
Proposition 4.5]) the only possibilities are ¢ = 1 (period-preserving bifurcation) and
g = 2 (period-doubling bifurcation). This corresponds to the case where the A X Zoy-
equivariant normal form vector field A undergoes a codimension one steady-state bifur-
cation — (dh)y has no eigenvalues on the imaginary axis except at 0, and the kernel of
(dh)o is absolutely irreducible under the action of A X Zgy.

Branches of invariant 2-tori for the underlying flow

Let C' be a bifurcating periodic solution for the normal form vector field h. Then C
corresponds to an invariant 2-torus 7 for the underlying flow. Associated to the 2-torus,
we define the symmetry groups

ATCZTCF,

where Ar fixes the individual points in 7" and Y1 fixes T as a set. These can be read
off from the corresponding symmetry groups for C' as follows (cf. [21]).

Define J C Jo C A X Zsoy to be the spatial and spatiotemporal symmetry groups of
the periodic solution. Then Ar = J N A. Define p > 1 to be least such that 770y C Jo
for some d; € A. Then X7 is generated by A¢ and oPdy, where Ag = Jo N A. (For an
interpretation of the subgroup A¢ = Jo N A, we refer to [21].)

The periodic solution C' for the normal form vector field h either has discrete spa-
tiotemporal symmetry (dimJe = dim J) or is a rotating wave (dim Je = dim J + 1).
It follows that the invariant torus 7' for the underlying flow either has discrete spa-
tiotemporal symmetry (dim X7 = dim A7) or is a modulated rotating wave (dim Xy =

When there is phase-locking to a periodic solution PP C T, then AP = A; and
P can be computed as in Proposition 2.8 and satisfies A C XY € &

3 Examples

To illustrate our results, we discuss some examples of local bifurcation from a periodic
solution z(t) in a system with D, symmetry. By scaling time, we may suppose that z(t)
has minimal period one. Suppose that x(¢) has spatiotemporal symmetry ¥ = D, =



(k, Ry/2) and spatial symmetry A =, = (k, R;), where R, denotes rotation by angle
¢. We can write ¥ = (A, 0), where 0 = R, /;x. The periodic solution z(t) is pointwise
invariant under A, §z(t) = z(t) for all ¢ and 6 € A, and o is a spatiotemporal symmetry,
ox(t) = z(t+1/2). From the group structure it follows that £ = 2. This example is one
of the simplest in which £ > 1 arises.

In Subsections (a) and (b), we recall how our approach applies to the analysis of
generic codimension one nonHopf bifurcation (that reduce to generic codimension one
steady-state bifurcations of the normal form vector field) and generic codimension one
nonresonant Hopf bifurcation (cf. Lamb and Melbourne [21]). In Subsections (c) and (d),
we show our approach extends to codimension two resonant Hopf bifurcation and non-
Hopf/nonHopf mode interactions.

(a) Codimension one nonHopf bifurcation

NonHopf bifurcations correspond to steady-state bifurcations of a Dy x Z4-equivariant
vector field. Generically, the group Dy x Z, acts absolutely irreducibly on the centre
subspace of the linearised vector field [16]. For the steady-state bifurcation problem
we may invoke the equivariant branching lemma, asserting the existence of branches of
equilibria with axial isotropy subgroups within Dy % Z, (isotropy subgroups whose fixed
point subspaces are one-dimensional). These equilibria correspond to periodic solutions
for the underlying flow, and the symmetry properties of these periodic solutions can be
computed as in Section 2(d).

We concentrate on the case where Dy x Z, acts as the standard two-dimensional
absolutely irreducible representation of ;. In particular, we suppose that the action of

A =1, is given by
1 0 -1 0
n—<0_1> andRﬂ—<0 _1).

There are two possibilities for the action of the element 7 generating Z:

(01 (0 -1
=11 oo T=\| . 4 |-
Corresponding to these two choices, the kernel of the action is given by Zy(7?) and
Zo(T? R, respectively.

The results corresponding to the two choices of 7 are summarised in Tables 1 and 2
respectively. We verify the entries of Table 1 where 7 = ( (1) (1) ) For the standard
action of Dy, generated by the fourfold rotation Rz and reflection x, the axial isotropy
subgroups are A = Dy (k) and A = Dy (Rzk). Corresponding to A = Dy (x) we have
the isotropy subgroup J C D, x Z, generated by x and 72 (including the kernel).
Corresponding to A = Dy (Rx«) we have the subgroup J generated by 7 (since 7 is the
element of Dy x Z, playing the role of Rz« € Dy) and 72 (the kernel). The remaining

entries of Table 1 are now easily read off as in Section 2(d).
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A 7 ABT [ 3bif P T [mP [plg
Dy (k) Dy (k, 7%) | Dy (k) | Dy (k) 1
K) | Zy(T) 1 Dy(Rzk) |[Rzk |2 | 2 |1]1

[\>]
—
]
—_

s
2

Table 1: Symmetry types of bifurcating solutions in nonHopf bifurcation from a periodic
solution with spatial symmetry A = D, and spatiotemporal symmetry ¥ = ;. The
case where 72 = I

A J Abif Ebif O.bif m mbif plq
Di(r) |Ds(k 72Rs) |Dy(x) | Ds(r, Ry) | R
D, (Rz) | Dy(k, 7°Ry) | 1 Zy(Rz) |Rz|2 | 4

[\V]
V]
("]

Table 2: Symmetry types of bifurcating solutions in nonHopf bifurcation from a periodic
solution with spatial symmetry A = D, and spatiotemporal symmetry ¥ = D,. The
case where 72 = —1

(b) Codimension one Hopf bifurcation

Along the same lines, codimension one Hopf bifurcation of the periodic solution reduces
to codimension one Hopf bifurcation of a symmetric equilibrium of a Dy, X Z, equivariant
vector field. (Recall that £ = 1 for all codimension one bifurcations.) By Remark 2.4(b),
we can remove a factor of 2 and reduce to a Dy X Zsy-equivariant vector field. Note that
Dy X Zy is isomorphic to Dy. We deduce the existence of branches of invariant tori as in
Section 2(d).

The centre subspace consists of the direct sum of two isomorphic absolutely irre-
ducible representations of Dy x Zy = D, [16]. We consider the standard representation
0 1
10/

The analysis of Hopf bifurcation leads to further phase shift normal form symmetry
so that h can be assumed to be (D, % Zjy) x S'-equivariant through arbitrarily high
order. The equivariant Hopf theorem [16] guarantees the existence of branches of pe-
riodic solutions with C-axial isotropy subgroups of (D, x Z,) x S! (isotropy subgroups
whose fixed point subspaces are two-dimensional). It is well known [16] that the C-axial
subgroups (A) of the I; x S* action on the centre manifold are D ((k,0)) x Zs((Rx, 3)),
D ((Rzk,0)) X Zy((Rx, 3)), and Zy((Rg, 7)). From these subgroups we obtain .J and
Jeo, the pointwise and setwise symmetry groups of the periodic solution in the normal
form vector field. From there, we proceed as in Section 2(d) to we obtain the pointwise

and setwise symmetries A7 and Y, of the bifurcating tori.!

of Dy, so 7=

'In [21] it was erroneously claimed that in case A = Z4((Rgz, 1)) we have £ = ;. This has been
corrected here.
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Swift [30] has carried out a more detailed analysis of Hopf bifurcation with D, symme-
try, in particular establishing the existence and asymptotic stability of primary branches
of periodic solutions and invariant two-tori with minimal isotropy type (trivial spatial
symmetry and Zs(R,) spatiotemporal symmetry). These results carry over directly
to our situation. In particular, Swift’s solutions correspond to (asymptotically stable)
branches of invariant 2-tori and invariant 3-tori with spatial symmetry A = 1 and set-
wise symmetry X = Zs(R,) as shown in Table 3. The actual dynamics on the invariant
3-tori may be complicated [25] and are beyond the scope of this paper.

A J | Je Ap X

D ((£,0)) X Zo((Rx, 3)) | (k) | (K, Be) | D1 (k) | Da(k, Ry)
Di ((R5k,0)) X Zo((Re, 1)) | (7) [ (1, Ra) [1 | Dy(Rsk, Ry)
Za((Rsz, 7)) Lo () |1 | Zy(R3)
Z>((Rx, 3)) L [(R) |1 [Za(Re)

Table 3: Symmetry types of bifurcating solutions in Hopf bifurcation from a periodic
solution with spatial symmetry A = D, and spatiotemporal symmetry ¥ = D,

(c) Codimension two resonant Hopf bifurcation

We consider the same situation as in Subsection (b), but now include the possibility of
resonance. This means that 7% = 72 acts as an element of order ¢ and the normal form
vector field h is Dy X Zop-equivariant. As described in Remark 2.7, the analysis for the
nonresonant case still applies provided / is large enough — so that h is S'-equivariant
through sufficiently high order. This situation is called weak resonance.

In particular, it can be shown that if / > 5 or if £ = 3, then the results on exis-
tence and stability of the flow-invariant 2-tori and 3-tori computed in Subsection (b)
for nonresonant Hopf bifurcation are retained by the resonant Hopf bifurcation. Hence,
the only strongly resonant case is £ = 4 (corresponding to the situation when 72 has
eigenvalues =+i).

To verify these values of £, we note first that the dynamics computed by Swift [30] are
3-determined. Since the Dy x Zy = Dy-equivariance precludes even terms, it is sufficient
to check that there is sufficient normal form symmetry to avoid cubic order resonance
terms. In the context of D,-equivariant Hopf bifurcation it is straightforward to check
that this means avoiding a resonance of order 4 (where the eigenvalues lie at +7).

The detailed analysis of resonant Hopf bifurcation (weak or strong resonance) leads
to issues such as phase-locking, Arnold tongues and prevalence of irrational toral flows,
which are outside the scope of this paper. Some of these issues are touched upon in
Swift [30, Section 4] and the calculations there apply equally to our context.
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(d) Codimension two nonHopf/nonHopf mode interaction

NonHopf/nonHopf-mode interactions reduce to steady-state/steady-state mode interac-
tions of a Dy % Zy-equivariant normal form vector field. Generically, the centre subspace
is the direct sum of two (not necessarily isomorphic) absolutely irreducible representa-
tions. Again, we consider the case where each representation is effectively the standard
two-dimensional representation of . It is convenient to use complex coordinates writ-
ing the centre subspace as C? so that the action of I, is given by

K(21,22) = (21, 22), Ri(21,22) = (—21, —22).
There are three cases corresponding to the possibilities
T(21,29) = (i21,129), T(21,29) = (i21,129), T(21, 29) = (i21,122).

The first two possibilities for 7 lead to an action of Dy % Z4 on C? that is the direct
sum of two isomorphic representations of the type in Subsection (a). After factoring out
the two element kernel, we are left with the direct sum of two copies of the standard
action of ;. Hence, modulo terms in the tail that break the normal form symmetry,
the bifurcation analysis reduces to Takens-Bogdanov bifurcation with Iy symmetry.
This bifurcation has been studied previously by Armbruster et al. [1] (see also [26]
and references therein). The details of the bifurcation are rather complicated, and we
content ourselves here with the observation that the isotropy subgroups are the same
as in Subsection (a), but the fixed-point subspaces are two-dimensional. Although the
equivariant branching lemma does not apply, branches of equilibria with these symmetry
types exist and correspond to periodic solutions with the same spatiotemporal symmetry
properties as in Subsection (a).
We now turn to the third possibility

T(Zl, Zz) = (Z'Zl, 7/Z2)

There are four axial isotropy subgroups as shown in Table 4 (with fixed-point subspaces
{(z1,0)}, {(e™*z1,0)}, {(0,22)}, {(0, e/*x5)} respectively, where z; € R, j = 1,2).
The equivariant branching lemma guarantees existence of branches of solutions for these
isotropy subgroups. There are also four submaximal isotropy subgroups with two-
dimensional fixed-point subspaces. The remaining entries of Table 4 are computed as
before. It turns out that the axial solutions are the union of the axial solutions in the
individual representations (but it should be clear that this is not a general principle;
this could not have been deduced without carrying out the computations).

4 Linear twisted equivariant maps

We present some elementary, but crucial, results about twisted equivariant linear maps,
which rely on ideas in Lamb [18, Lemma 2.2] and Wulff et al. [33, Lemma 2.2]. Our
main result is the following decomposition theorem.
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7 ABT [ ybif O T [m¥ [ plq
(12, K) D, (k) | Dy (k) 1 2 | 1 (21
(1) 1 Di(Rzk) [Rzk |2 | 2 (1)1
(2R, k) | Di(k) | Do(k,Ry) |Re |2 | 2 [2]2
(T?R,, k) | 1 ZsR7) |Rr |2 | 4 |12
(k) Di (k) | Dy (k) 1 211 (4]2
(T2kK) 1 D, (k) K 2| 2 |2]2
(T?R;) 1 Zo(R;) |R: |2 ] 2 |2]2
(r2) 1 1 1 |2 1 |21

Table 4: Symmetry types of bifurcating solutions in nonHopf/nonHopf bifurcation from
a periodic solution with spatial symmetry A = D, and spatiotemporal symmetry > = I,

Theorem 4.1 Let L : R* — R" be a twisted equivariant linear map with eigenvalues
on the unit circle. Suppose that L is resonant of order £ as in Definition 2.3. Then

L = LyeBtN
where the linear maps Lo, B and N have the following properties:

(a) Lo, B and N all commute with each other,
(b) Ly is twisted equivariant, and B, N are equivariant,
(c) Ly, B are semisimple, and N is nilpotent,
(d) L3¢ = I; moreover L has order precisely ¢,
(e) B has no eigenvalues in miQ — {0}.
Corollary 4.2 Let S = Lye®. Then
(S) 2 K X Zoy,

where Loy is generated by Ly and K is the torus K = {etB : t € R}.
Proof It is standard that (eB) = K thanks to Theorem 4.1(e). Hence it follows from
Theorem 4.1(a,d) that Lo and e” generate the group K x Zoy,. Moreover, it is immediate
that S = Loe” lies in this group and hence that (S) C K X Zoge.

To prove the reverse inclusion, it suffices to verify that e? C (S). But, 28

(LoeP)?*t c (S), and again by Theorem 4.1(e), (e2k/B) = K so it follows that e”

K C(S).

In the remainder of this section, we prove Theorem 4.1.

m N
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Proposition 4.3 ([18]) Suppose that L : R* — R" is a nonsingular linear map. Then

(a) L can be written uniquely in the form L = SeV where S is semisimple, N is
nilpotent, and SN = NS.

(b) L is equivariant if and only if S and N are equivariant.

(c) L is twisted equivariant if and only if S is twisted equivariant and N is equivariant.

Proof The Jordan-Chevalley decomposition L = Se” in (a) is standard. Moreover,
one direction in each of (b) and (c) is trivial. We prove the nontrivial directions in (b)
and (c).

Suppose L is A-equivariant, and let 6 € A. Then

L=0"1L6=6"155e""N9,

Conjugation by 4§ is a similarity transformation, and hence 1S4 is semisimple, § N6
is nilpotent, and these two linear maps commute. It follows from the uniqueness of the
decomposition L = Se” that 6 '1S6 = S and 6 'N§ = N. Since § € A is arbitrary, S
and N are equivariant matrices, proving (b).

Finally, suppose that L is twisted equivariant. Note that LF = S*e*V where S*
is semisimple, kN is nilpotent and S* commutes with kN. Since L* is equivariant, it
follows from part (b) that S* and kN are equivariant. In particular, N is equivariant.
Hence e” is equivariant, and S = Le™ is twisted equivariant, proving (c). |

Proof of Theorem 4.1 By Proposition 4.3, we have the decomposition L = SeV =
eV'S. In particular, S is semisimple and twisted equivariant. Let i denote an eigenvalue
of S* with eigenspace E,. Since the matrices L, S and e” commute with S¥, they
restrict to linear maps on E,. Moreover, it follows from equivariance of S* that A acts
on E,. Hence, we may reduce without loss to E,,.

We divide into the cases where p is rational or irrational on the unit circle. If p is
rational (so y? = exp(2wic/d) where d divides £) then we simply take Ly = S and B = 0.

If p is irrational, choose v so that v* = p and take Ly = (1/v)S, e® = vI. (In fact,
B =40l where € = v.) u

5 Normal forms for twisted equivariant maps

Theorem 4.1 gives a decomposition of nonsingular twisted equivariant linear maps. This
decomposition property forms the basis of the following nonlinear normal form theorem
which extends a classical result of Takens [31] and its twisted equivariant version [18].

We restrict attention to twisted equivariant diffeomorphisms f satisfying f(0) = 0,
whose eigenvalues of (df)o all lie on the complex unit circle. The order of resonance £ of
(df )o is defined as in Definition 2.3.
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Theorem 5.1 Let f : R® — R" be a A twisted equivariant diffeomorphism satisfying
f(0) =0 and set L = (df)o. Suppose that all eigenvalues of L lie on the compler unit
circle and write L = LyeB™N as in Theorem 4.1 (so in particular L2* =1)

Then there exists a A-equivariant coordinate transformation T such that the Taylor
expansions of

TfT™' and Log

agree through arbitrarily high order where g is the time-one map of a A X Zoye-equivariant
autonomous vector field h : R* — R" satisfying h(0) = 0 and (dh)y = B+ N.

Lemma 5.2 Let f : R — R" be a A twisted equivariant diffeomorphism satisfying
f(0) =0 and set L = (df)o. Suppose that all eigenvalues of L lie on the compler unit
circle and write L = Se¥ as in Proposition 4.3.

Then there exists a A-equivariant coordinate transformation T such that the Taylor
expansions of

TfT—' and S¢'

agree through arbitrarily high order where g' is the time-one map of a A-equivariant and
S-equivariant autonomous vector field h' in R™ satisfying h'(0) = 0 and (dh')y = N.

Proof We follow Takens [31], who proved this result in the case A = 1.

Given a smooth map f, we let f,,, denote the Taylor expansion of f up to order m.

Then, we can write

Jm = Lgm = L(eXp i’/)m = L(eXp(ilm))m
where A,,(0) = 0 and (dhy)o = I. Here h,y, is the unique [31] polynomial vector field
whose time-one map agrees with g through order m. It follows from uniqueness of iy,
twisted equivariance of f and L, and naturality of exp, that A, is A-equivariant.

Takens [31] showed how to choose T so that h,, is transformed into a S-equivariant
vector field. It was pointed out in Lamb [18] that 7" could be chosen to be A-equivariant.
Then iAzm is A-equivariant as well as S-equivariant. For completeness, we provide here
the details of this argument.

We suppose inductively that PBum—1 is A- and S-equivariant and derive the same result
for hy,. The result is trivially true when m = 1, so we suppose m > 2. Following [31],
we consider near-identity coordinate transformations of the form 7" = exp P where P is
a homogeneous polynomial vector field P of degree m. Ignoring terms of order higher
than m, we obtain

Le" s ePLefe? = L(L_lePL)eﬁe_P = Lexp{L™'PL+ h — P}.

Hence,

~

Py > hm + Ad,-1(P) — P, (5.1)
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where Ad;-1(P) = L7'PL. Since P is homogeneous of degree m, this transformation
does not affect A, 1.

It is well known [31], that the complement of the image of (Ad;-1 — I) in the vector
space P,, of homogeneous polynomial vector fields of degree m can be chosen to be
S-equivariant. Hence, we can choose P € P,, so that o is S-equivariant.

Next we average the right-hand-side of (5.1) over the compact Lie group A to obtain

B + Ad-1(Q) — Q, (5.2)

where @ is the polynomial P averaged over A. In particular, @ (and hence T') is now a
A-equivariant change of coordinates. Moreover, since S is twisted equivariant, it follows
that S-equivariance of (5.2) is preserved in the averaging process. Hence the transformed
and averaged vector field hum is both A- and S-equivariant.

To arrive at the normal form proposed by Takens in [31], we merge N with the vector
field expansion, writing (modulo higher order terms)

exp(N) exp(hn) = exp(h'),

where b/ is A- and S-equivariant (because N and h,, are), and (dh')g = (dhy)o + N =
N. n

Remark 5.3 Having established the normal form 7= !exph for f, one can now apply
standard procedures for transforming A itself into normal form, as in for example [10].

Proof of Theorem 5.1 By Lemma 5.2, we can transform f through arbitrarily high
order into the normal form S¢' where ¢’ = exph'. By Theorem 4.1, S = Lye® and so
Sg¢' = LyeBe" . Since b is S-equivariant, it follows from Corollary 4.2 that A’ commutes
with e'® for all ¢ € R and hence A’ commutes with B. In particular, we can write
eBel = ePt" . This means that we can replace the normal form Sg’ by the normal form
Log where ¢ is the time-one map of the vector field h = B + h'. By Theorem 4.1 and
Lemma 5.2, B and A’ are A- and S-equivariant, so h is A- and S-equivariant. Finally,

Zigre-equivariance follows from Corollary 4.2. |

Remark 5.4 Let K be the torus K = T7 = {¢!? : t € R} defined in Corollary 4.2. The
proof of Theorem 5.1 shows that the normal form vector field h is actually S-equivariant
and hence TV x Zgy-equivariant by Corollary 4.2. Altogether, h is (A X Zoge) X T7-
equivariant.

The TV-equivariance is precisely the normal form symmetry expected for a A X Zoy,-
equivariant vector field h with linearisation (dh)o = B + N.

Remark 5.5 As a consequence of merging B into the normal vector field A, the linear
part of A has the same codimension within the class of A X Zo-equivariant linear vector
fields, as the linear part of f has in the class of linear twisted equivariant diffeomor-
phisms.
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6 Proof of the results in Section 2

Suppose that f: X — X is a A-twisted equivariant map with a fixed point (which we
normalise so that f(0) = 0). Then the centre manifold of f is A-invariant. By centre
manifold reduction, we may reduce by restricting f to the centre manifold in which case
the eigenvalues of (df)o all lie on the complex unit circle. Locally, we may identify the
centre manifold with R", where n is the dimension of the centre manifold.

Recall that L = (df ) has the decomposition L = LyeB™" described in Theorem 4.1.
Since L is twisted equivariant,

LoSLy' = ¢(6) = 77167,

Moreover, by Theorem 4.1(iv), L2* has order precisely £. Hence, the linear map L, may
be identified with 7= where 7 is the generator of Zg, in Section 2. We rewrite the
decomposition of L as

L = 771€B+N
7
In the nonresonant case, we have £ = 1 and hence 72% = I. Theorem 5.1 states that
through arbitrarily high order we can write

f=r"lg=1""e",
where g is the time-one map of a A X Zgy-equivariant vector field h and (dh)o = B+ N.
Moreover, (dh)y has no eigenvalues in 7iQ — {0} so that A is a nonresonant vector field.

Conversely, if h is a A X Zgg-equivariant vector field satisfying (dh)o = B + N, then
f is a twisted equivariant vector field with linear part LoeZ*". If h is nonresonant, then
so is f. Hence, h is a general nonresonant A X Zso-equivariant vector field. Theorem 5.1
extends to diffeomorphisms with parameters and we obtain Theorem 2.5(a). (Actually,
it follows from our construction that (dh), has no eigenvalues on i7Q other than at 0,
but this is not important for the bifurcations of h.)

Next, we consider the resonant case. Since A and 7 generate A X Zgg, we obtain
Theorem 2.5(b). As discussed in Remark 2.6, there are further restrictions on the A x
Zoye-equivariant normal form vector field h. By Theorem 4.1(d), we may suppose that
7 = Ly has the property that 72 has order precisely £. Because the resonant part of
(df )o has been absorbed inside Ly, it follows that B has zero eigenvalues corresponding
to the resonances. There are no other restrictions on the linear and nonlinear terms.

7 Reversible equivariant systems

In this section, we show how the normal form approach applies not only to equivariant
systems, but also to reversible equivariant systems.

We say that the differential equation & = F(z) is ['-reversible equivariant if there
exists a group homomorphism

x: T — {+1},
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so that whenever z(t) is a solution, then so is yz(x(y)t). In case I' acts as a linear
representation on R", F' is I'-reversible equivariant if

Fy=x(y)vF, Vyer.

The elements 7 of I" for which x(y) = —1 are called time-reversal symmetries of f. A
dynamical system possessing a time-reversal symmetry is usually called reversible.

Now suppose we have a periodic orbit z(¢) that is setwise invariant with respect to
agroup X C I'. Let ¥t = {y € £ | x(v) = +1}. and A C ¥ be the subgroup of &
that fixes z(t) pointwise. Assume furthermore that the periodic orbit is reversible, so
Y # 3. Then it is easily verified that ¥ has the following structure:

ALYt AN, /8T 2Z, S/AZD,, ST/AXZ,.

As the equivariant context, we set up a cross-section V' to the periodic orbit, invariant
under A and at least one time-reversal symmetry p (this can be obtained without loss of
generality). Let Xy = (A, p) = AUpA. The first hit pullback map f = 07 'GM : V - V
is Xy twisted reversible equivariant:

f6=0(0)f, VoeA
where ¢ : A — A is defined as in (2.1), and

fr=o(f, V¥yepA
where ¢ : pA — pA is defined by

$(v) =070
Thus the automorphism ¢ : A — A is extended to a map on Xy . In general, ¢ : ¥y —
Yy is no longer an automorphism, and we refer to it as the twist morphism.
We may assume without loss that the order of ¢ is finite [21] and hence the twist
morphism ¢ has finite order k. We now define the abstract group = generated by A and
an element 7 such that

7T = ¢(6) VS € A, Ty = ¢(y) Vy € pA, and 7% = 1.
We note that 7 and A generate the group =t = A X Zg,. We have A < EF < =2, with
E/A = ]D)ng and E+/A = ngg.
Given this structure, Theorem 5.1 extends naturally to the twisted reversible equiv-
ariant context. Define the order of resonance ¢ of (df), as in Definition 2.3.

Theorem 7.1 Let f : R* — R" be a Xy twisted reversible equivariant diffeomorphism
satisfying f(0) = 0 and set L = (df)o. Suppose that all eigenvalues of L lie on the
complex unit circle and write L = Loe®*N where L2 =1,

Then there exists a Xy -equivariant coordinate transformation T such that the Taylor
expansions of

TfT™! and Lyg
agree through arbitrarily high order where g is the time-one map of a Z-reversible equiv-

ariant autonomous vector field h : R* — R" satisfying h(0) =0 and (dh)g = B+ N.
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Proof The strategy of the proof is essentially similar to that of the proof of Theorem 5.1.
We provide a sketch.

First, there exists a decomposition property of the linear part analogous to the one
given in Theorem 4.1:

L= (df)o = L0€B+N,

where L, is a Xy -twisted reversible equivariant map, L%M = I, B is semisimple and
generates a torus 77, and N is nilpotent. Moreover, B and N commute and are =-
reversible equivariant (as linear vector fields), where x : = — {41} so that x(&) = 1 if
and only if € € =*. Here = = (Lo, Xy) = (=1, p), where EF = (L, A) = A X Zogy.

As before, we write f = Lg, where L = (df)o. Importantly [20], because L is Xy -
twisted reversible equivariant, the diffeomorphism g is (A, pL)-reversible equivariant,
where (A, pL). That is, 6g = gd for all § € A, and pLg = g~ pL. Writing g = exp(h), it
follows by uniqueness that the Taylor expansion of h is (A, pL)-reversible equivariant.

We now note that T fT~! is Yy -twisted reversible equivariant provided that 7" is ¥y -
equivariant. Writing 7' = exp(P), h transforms according to (5.2). One readily verifies
that Adz-1(P) — P is indeed (A, pL)-reversible equivariant if P is 3y -equivariant.

Let S = Loe? denote the semisimple part of (df)y. As before, the complement to
Im(Adz-1 —I) can be chosen to consist of S-equivariant homogeneous polynomial vector
fields, and averaging over Xy shows that this complement can be chosen to consist of S-
equivariant vector fields when the domain is restricted to Xy -equivariant homogeneous
polynomial vector fields P.

Hence, after an appropriate coordinate transformation, the normal form vector field
h can be made (S, A)-equivariant and pL-reversible. Again we write - modulo higher

order terms - exp(NN) exp(h) = exp(h') where k' is (S, A)-equivariant. By well-known
composition properties of reversible maps (see for example [20]), as exp(N) and exp(h)
are both (pL, S, A)-reversible equivariant, exp(h') and A’ are (pLe=N,S, A)-reversible

equivariant,? where

(pLe=N S, A) = (p,S,A) = {p, Ly, A) x T? = = x TV,

Finally, we merge e with ¢”. As B commutes with A/, this yields e” which is Xy -
reversible equivariant, where h = B 4+ h' and (dh)o = B + N. |

Branches of periodic solutions for the underlying flow

Bifurcating equilibria 2P for the vector field h correspond to bifurcating periodic solu-
tions PP for the underlying flow. As in Section 2(d), we define J C Z to be the isotropy
subgroup of z":

J = {y € Z:qaPl = gPf}

Note that elements of J can be written in the form 77p°§ where j = 0,1,...,2kf — 1,
e€{0,1} and 0 € A.

2Note the different notions of reversibility for vector fields and diffeomorphisms: a vector field F is
R-reversible if RF = —FR whereas a diffeomorphism f is called R-reversible if Rf = f'R.
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Proposition 7.2 Suppose that xP is a bifurcating equilibrium with isotropy J C Z for
the vector field h. Let p > 1 be least such that ™0y € J for some oy € A and define
O.bif = oP§

= oPd,.

Then there is a bifurcating periodic solution PP for the underlying flow, and P!
has spatial symmetry

AP = JNA ={6e€A:dz" =2}

If 77p5 € J for some j and 6 € A, then let p®f = 79p5 (not unique), and PP has
spatiotemporal symmetry L2 generated by APF and o®f and pPHf.
Otherwise P* has spatiotemporal symmetry S°F generated by AP and o,

Remark 7.3 We have the following correspondence between the symmetry J of the
equilibrium zf and the spatiotemporal symmetry X% of the periodic solution PPif:

s € JCE+— olps e XL

We adopt the definition of the relative period T} of a periodic solution as the smallest
T > 0 so that z(T) = £*x(0). Then we have m = |XF/A| = Typs/Tre1, and mP defined
analogously. As the bifurcation point is approached,
T;’éﬁ / Tabs — D, Tbif / Trel — g,

rel

where p is as in Proposition 7.2 and ¢ = pmP/m. Again. the integer ¢q corresponds to
the occurrence of a period g-tupling bifurcation.

The above normal form result may be used to study nonHopf bifurcation from isolat-
ed periodic solutions, reducing to steady-state bifurcation in the reversible equivariant
normal form vector field. A detailed discussion of steady-state bifurcation in reversible
equivariant vector fields can be found in Buono et al. [7]. As an illustration of the
general procedure, we discuss how codimension one bifurcation reduces to codimension
one reversible equivariant (and in fact, equivariant) steady-state bifurcations. We con-
sider two elementary cases: Zso-reversible and IDy-reversible equivariant systems. Note
that they strongly resemble the well-studied subject of subharmonic branching of (non-
isolated) periodic solutions in Zs-reversible systems, cf. [29, 32]. See also Ciocci and
Vanderbauwhede [9], for a related study of subharmonic bifurcation of Zy-reversible
diffeomorphisms.

Example 7.4 (Bifurcation from Z,-symmetric periodic solutions) We consider
a Zy(R)-reversible vector field in R***! where the fixed point subspace of R has dimen-
sion n. We consider the case that this vector field has an R-reversible symmetric periodic
solution xz(t), satisfying z(¢) = z(t + 1) and Rxz(t) = x(—t). It is not difficult to verify
that such solutions generically arise persistently and are isolated [29]. The return map
f for this periodic solution may be chosen to be a diffeomorphism of a 2n-dimensional
section V, satisfying R(V) = V. Then f is R-reversible: fR = Rf~! (where we consider,
naturally, the action of R restricted to V). Moreover, f has an R-invariant fixed point
in V| corresponding to the periodic solution, which we choose to have coordinates 0.
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By reversibility, after restriction to the centre manifold, the eigenvalues of (df ), arise
in pairs {\, \"'} with X on the unit circle in C, and isolated pairs of such eigenvalues
(if not equal to £1) are forced to move on the unit circle if parameters are varied. For
simplicity, we assume that the centre manifold is two-dimensional and hence admits one
pair of eigenvalues on the complex unit circle.

We now consider a bifurcation point, at which L = 1 for some £. It is clear that
this is a codimension one phenomenon. By Theorem 7.1, the corresponding normal form
vector field is Dys-reversible equivariant.

In particular, if £ = 1, the representation of D, is the direct sum of two nonisomorphic
absolutely irreducible representations, either acting faithfully or acting unfaithfully as
D;. The latter situation corresponds to the case when A\ = 1, with R acting as diag(1, —1)
and 7 acting trivially. The former situation refers to the case when A = —1, with R
acting in the same way, but now with 7 acting as —1.

If £ > 2, we need to consider the absolutely irreducible representations of Dy, on V
that act faithfully, or unfaithfully as D,: all other representation reduce to cases covered
in the analysis with lower values of £. namely, Dy, acts faithfully if and only if A = ¢*7%/%
and that it acts like D, if A = e2™/¢,

Conveniently, the Dy,-reversible equivariant normal form vector field A is related to
a Dyy-equivariant vector field g [7]:

0 -1
h = Ag, WhereA—(1 0 )

Hence, since A is invertible, the equilibrium solutions of the reversible equivariant vector
field h coincide exactly with those of the equivariant vector field g. This means that we
can infer the steady-state bifurcation theory directly from that of the equivariant vector
field g.

We first consider the case ¢ > 1. Let the action of Dy, on the centre manifold be
generated by the reflection R and rotation R;/, or Ry, the latter depending on the
representation of Dy,. In order to avoid duplication of results, we note that in case of
the representation with generator Ry, it suffices to consider the case that £ is odd.
Namely, the corresponding case with £ even is in fact a resonance of order ¢/2.

As usual, by the equivariant branching lemma we have branches of equilibria with
axial isotropy Iy (R) and I (RR; ) or D (RRy,/,). To obtain J, we identify R,/ —
T or Roy — 7. Finally, in order to obtain X", we identify 7 — I. The results
are summarised in Table 5. Note that the branches of new solutions correspond to
periodic solutions with approximately g-times the period of the reference solution. Such
bifurcations are usually referred to as ¢-tupling when ¢ > 3. Note that in contrast
to periodic solutions in equivariant vector fields [21], reversible periodic solutions can
display generic codimension one ¢-tupling, with ¢ > 3.

If £ = 1, we have to consider two cases: D, acting as Zs (7 = +1), or Dy acting
faithfully (r = —1). In both cases, V is the direct sum of two nonisomorphic irreducible
representations. In case 7 = +1, one of the bifurcations that arises involves a turning
point bifurcation in which the periodic solution collides with another one (with the same
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/ TE J Abif Ebif bif bif bif P q

o P m|m

odd/even | —1 | Dy (R) 1 Di(R)|1 |R |1 |1 20| 2¢
odd/even | —1 | Dy (RT 1 [Di(R)[1 |R |1 |1 |2¢]2
odd +1 | Dy (R, 7% |1 Dy(R)|1 |R |1 |1 1Ay
odd +1|Dy(Rr, 7 |1 |Dy(R)|1 |R |1 |1 |£ |¢

Table 5: Symmetry types of bifurcating solutions in codimension one nonHopf (sub-
harmonic) bifurcation from a reversible periodic solution with spatiotemporal symme-
try ¥ = Zy(R), spatial symmetry A = 1), and normal form symmetry Dy, (R, 7) =
de(’/’) A ZQ(R) with £ > 2.

symmetry properties) after which both cease to exist. The results are summarised in
Table 6. Note that of the solutions listed for 7 = +1 and 7 = —1, only one of the
two branches appears at a codimension one bifurcation. It depends on the nilpotent
part of (df )o which branch arises. Namely, in this case, (df)o is not semi-simple and the
symmetry property of the proper eigenvector determines which case arises.

T 17 ABT ST [ BT [ BT [ 7 [P | p ] ¢ | comment
+1 | Dy(R,7) | 1 D;(R)|1 |R |1 |1 1|1 ] turning point
+1|Di(r) |1 |1 11 |11 |11

“1|D(R) |1 |Di@®|1 |R |1]1 |2]|2

~1|Dy(Rr) |1 |DI@®|1 |R |1]1 |2]|2

Table 6: Symmetry types of bifurcating solutions in codimension one nonHopf bifur-
cation from a reversible periodic solution with spatiotemporal symmetry ¥ = Zy(R),
spatial symmetry A = 1, and normal form symmetry Zs(R) x Zo(7) (¢ =1). Of each of
the two possible branches listed for 7 = +1, only one appears at the bifurcation point.
The nilpotent part of the linear part selects which branch appears.

Example 7.5 (Bifurcation from D,-symmetric periodic solutions) We consider
a Dy (R, S)-reversible equivariant vector field in R®*"*' with R and RS having n-
dimensional fixed point subspaces, the latter to guarantee the typically persistent ex-
istence of isolated Dy-symmetric periodic solutions [19]. We consider such an isolated
periodic solution with spatiotemporal symmetry 3 = Dy, so that Rz(t) = z(—t) and
Sz(t) = z(t + %), and consequently A = 1. Also, since S commutes with R, the twist
morphism has order £ = 1.

We are led to study a first hit pullback map f that is R-reversible and f(0) = 0. As
in Example 7.4, we consider the fixed point 0 with (df)o being such that ¢ is least such
that L2%¢ = I, which is a codimension one phenomenon.

Accordingly, the normal form symmetry is Dy, (R, 7), and as in Example 7.4 the
steady-state bifurcation problem reduces to that of a Dys-equivariant vector field (with
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/ TE Abif Ebif bif pbif bif

J o m|m”™ |p |q
odd/even | —1 | Dy (R) 1 Dy (R) 1 |R |21 204
odd/even | —1 | Dy (R7) 1 Di(RS) |1 |RS|2 |1 2004
odd +1 | Dy(R, 7% |1 |Dy(R,S)|S |R |2 |2 |£ |¢
odd +1 | Dy (R, 78 |1 |Dy(R,S)|S |R |2 |2 |£ |¢

Table 7: Symmetry types of bifurcating solutions in codimension one nonHopf (subhar-
monic) bifurcation from a reversible periodic solution with spatiotemporal symmetry
Y =Du(R,S) = Zy(R) X Zs(S), spatial symmetry A = 1, and normal form symmetry
]D)Qg (R, T) = ZQ@(T) A ZQ(R) with £ > 2.

- 17 ADT [ 525 o™ T 5 T [P [ p [ ¢ | comment
+1 | Dy(R,7) |1 Dy(R,S)|S |R |2 |2 1|1 | turning point
+1D(r) |1 |D(S) |S |1 |22 |[1]1

“1|D(R) |1 |Dy® |1 |R |2]1 |2]1

~1|Dy(Rr) |1 |Dy(RS) |1 |RS|2 |1 |2]1

Table 8: Symmetry types of bifurcating solutions in codimension one nonHopf bifurca-
tion from a reversible periodic solution with spatiotemporal symmetry ¥ = Dy (R, S) =
Zo(R) x Zo(S), spatial symmetry A = 1, and normal form symmetry Zy(R) X Zo(T)
(£ =1). Of each of the two possible branches listed for 7 = 1, only one appears at the
bifurcation point. The nilpotent part of the linear part selects which branch appears.

the same map A). The bifurcation analysis runs parallel to that of Example 7.4, the
only difference being the symmetry properties of the periodic solution branches. The
analysis of the cases £ > 2 and ¢ = 1 is summarised in Table 7 and Table 8.

Hamiltonian systems

In the case of Hamiltonian flows, supposing that T' acts (anti)symplectically, one ob-
tains an iso-energetic first hit pullback map f that is a diffeomorphism which preserves
or reverses the symplectic form (symplectomorphism or anti-symplectomorphism). The
above normal form result extends with the normal form vector field now being Hamil-
tonian, as Hamiltonian vector fields form a Lie subalgebra of vector fields on R?".

Theorem 7.6 Let f : R?" — R?" be a ¥ twisted reversible equivariant (anti-)symplectic
diffeomorphism satisfying f(0) = 0, and set L = (df )o. Suppose that all eigenvalues of
L lie on the complex unit circle and write L = Loe®™ where L = 1.

Then there exists a Y-equivariant symplectic coordinate transformation T such that
the Taylor expansions of

TfT' and Lyg
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agree through arbitrarily high order where g is the time-one map of a Z-reversible equiv-
ariant autonomous Hamiltonian vector field h : R2" — R®™ satisfying h(0) = 0, and
(dh)y = B+ N.

Proof If f is (anti)symplectic twisted reversible equivariant, then L and L, are too,
and ¢ = L7'f is symplectic reversible equivariant. If we have an (anti-)symplectic
diffeomorphism that is (twisted) equivariant but not reversible, the result follows directly
from Takens [31], using the Lie algebra structure of equivariant Hamiltonian vector
fields. The reversible Hamiltonian vector fields do not form a Lie algebra, however, so
we need to verify whether the argument in the proof of Theorem 7.1 carries over. It is
straightforward to verify that it does, with iL, B and N now being reversible equivariant
Hamiltonian vector fields. |

Analogous results can be obtained for first hit pullback maps with other structures,
such as for instance volume preserving diffeomorphisms yielding divergence free normal
form vector fields.

8 Relative periodic solutions

In this section, we recall (certain aspects of) the framework established in [33] for s-
tudying bifurcation from relative periodic solutions and we show how to incorporate our
main results of this paper.

We continue to assume (for the moment) that I' is a compact Lie group acting or-
thogonally on R". However, we drop the assumption that dimI" = dim ¥. As before, we
consider the dynamics for a smooth I'-equivariant flow. Instead of restricting attention
to periodic solutions, we consider general solutions that are periodic modulo the group
action.

Recall that a trajectory u(t) is said to be relatively periodic if there exists a 7" > 0
least such that u(7) € T'u(0). By scaling time, we may suppose that ug has relative
period T = 1. The corresponding relative periodic solution P is defined to be

P ={yu(t):y €T, t€[0,1)}.

By definition, P is both flow-invariant and I'-invariant. Under the flow induced on the
orbit space, P/T" 2 S! is an ordinary periodic solution of period 1.
Again, we define the group of spatial symmetries

A={yel:vu(0)=u(0)}.

By construction, there is an element o € I" such that u(1) = ou(0). The spatiotemporal
symmetry group X corresponding to the trajectory u(t) is defined to be the closed
subgroup of I" generated by A and o (so X/A is a topologically cyclic group of the form
TP x Zg). The element o generates an automorphism ¢ € Aut(A) and can be chosen so
that ¢ has finite order k.
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We form the semidirect product A x Zg, as before, adjoining to A an element 7
satisfying the relations

™ =1, 7767 = ¢(6).

Theorem 8.1 ([33]) The dynamics in a neighbourhood of P is equivalent, modulo slow
drifts along group orbits, to the dynamics in the neighbourhood of an isolated discrete
rotating wave y(t) with spatial symmetry A and spatiotemporal symmetry A X Zoy,.

More precisely, there is a I'-invariant neighbourhood U of P and a A X Zoy-invariant
neighbourhood V' of y(t) such that the dynamics on the orbit spaces U/T and V /(A X Zayy)
are topologically conjugate.

Moreover, each symmetry 7 € A X Zgy acting on V' corresponds to a symmetry of
the form yo € I' acting on U, where 7y is near identity.

In particular, there is a one-to-one correspondence between (group orbits of) periodic
solutions lying close to y(t), and relative periodic solutions lying close to P.

At an abstract level, Theorem 8.1 reduces bifurcation from a relative periodic solution
for a I'-equivariant flow to bifurcation from an isolated discrete rotating wave for a
A X Zgp-equivariant flow. This in turn reduces (modulo terms of arbitrarily high order)
to bifurcation from an equilibrium for a A X Zg-equivariant vector field.

For a more precise statement of Theorem 8.1, we refer to [33]. However, the following
discussion illustrates what the theorem is saying. Suppose that y"f(¢) is a periodic
solution bifurcating from y(t). Suppose that y"f(¢) has spatial symmetry AP and let
p > 1 be least such that 77, is a spatiotemporal symmetry of y"i(¢) for some J, € A.
Then there is a relative periodic solution P bifurcating from P with spatial symmetry
AP and spatiotemporal symmetry S where P is the closed group generated by APif
and yoP§, where v is near identity. Moreover, + lies in the centraliser of AP

The periodic solution yP(¢) and PP have the same relative period T’ (which is close
to the integer p) and satisfy y(T) = 775,y (0) and uP(T) = y0P5,uPf(0) respectively.

Remark 8.2 Combining the results of Section 2 with Theorem 8.1, we have shown
that relative periodic solutions PP that arise through bifurcation from a relative peri-
odic solution for a I'-equivariant flow correspond to equilibria 2P bifurcating from an
equilibrium for a A X Zsy,-equivariant vector field A.

Moreover, if J C A X Zgg is the isotropy subgroup of z°" and p > 1 is least such
that 778, € J for some &, € A, then P has spatial symmetry APf = J N A and
spatiotemporal symmetry X% generated by AP¥ and yoPd; where 7 is near identity.
More generally, we have the correspondence

bif

Tj5 eJCAx Liogy > ’Yj,(sdj(s erl,
where 7, 5 is a near identity element in Z(API).

Remark 8.3 Theorem 8.1 represents only part of the theory given in Wulff et al. [33].
For example, Theorem 8.1 does not provide a means of computing the element ~ in the
spatiotemporal symmetry voPd,. We note that v is a general near identity element in
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Z(APY), and hence the results of Krupa and Field [17, 13] can be used to determine the
expected drift on the bifurcating relative periodic solutions.

In addition, the implications of such drifts in phase space for phenomena viewed in
physical space has been studied recently [15] in the context of bifurcation from relative
equilibria. The corresponding analysis for bifurcation from relative periodic solutions
requires the full strength of the results in [33].

More generally, the results in [33] hold for many noncompact Lie groups I, including
the Euclidean group. Hence, Theorem 8.1 is valid for such symmetry groups. We note
that the computation of the slow drift v is particularly important in this context, since
the value of v determines whether the drift is compact or unbounded. (The genericity
results of [17, 13] generalise to the noncompact group setting, see [4] and [33, Section 4.2],
but do not predict the actual value of v.) Again, v may be determined using the results
in [33].

As in the equivariant case, the bifurcation theory for reversible periodic solutions
can also be applied to understand bifurcation from reversible relative periodic solutions.
However, we will not expand on any details here. For discussions on the bundle structures
in the reversible equivariant, and reversible equivariant Hamiltonian contexts, see [24,
34].
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