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Abstract

In the paper, we prove convergence of moments of all orders for Axiom A
diffeomorphisms and flows. The same results hold for nonuniformly hyperbolic
diffeomorphisms and flows modelled by Young towers with superpolynomial
tails. For polynomial tails, we prove convergence of moments up to a certain
order, and give examples where moments diverge when this order is exceeded.

Nonuniformly hyperbolic systems covered by our result include Hénon-like
attractors, Lorenz attractors, semidispersing billiards, finite horizon planar pe-
riodic Lorentz gases, and Pomeau-Manneville intermittency maps.

1 Introduction

It is well-known that Axiom A diffeomorphisms and flows enjoy strong statistical prop-
erties such as the central limit theorem (CLT) for Hölder observables [7, 34, 37, 32].
Specifically, let Λ be a nontrivial hyperbolic basic set for an Axiom A diffeomorphism
f with equilibrium measure µ corresponding to a Hölder potential. If v : Λ→ R is a
Hölder observable with

∫
Λ
v dµ = 0, then the normalised Birkhoff sum n−

1
2

∑n−1
j=0 v◦f j

converges in distribution to a normal distribution with mean zero and variance σ2 ≥ 0.
Moreover, either

∑n−1
j=0 v ◦ f j is uniformly bounded or σ2 > 0, and the latter is the

typical case.
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The analogous result for Axiom A flows (with Birkhoff sums replaced by integrals)
was proved by Ratner [32] (an unnecessary mixing assumption was removed in [27]).
However, there is a lack of symmetry concerning the formula for σ2. In the diffeomor-
phism case, Λ has exponential decay of correlations (up to a finite cycle) for Hölder
observables and a consequence is existence of the limit

σ2 = lim
n→∞

∫
Λ

(
n−

1
2

n−1∑
j=0

v ◦ f j
)2

dµ.

This is a result on convergence of second moments. Convergence in distribution to
a normal distribution with this variance is proved as a second step. In contrast,
Axiom A flows need not be mixing, and even when they are mixing the decay of
correlations can be arbitrarily slow [30]. The approach of Ratner [32] is to pass to the
Poincaré map and to derive the CLT for the flow from the CLT for diffeomorphisms,
thus bypassing mixing properties and convergence of moments. Convergence of second
moments for Axiom A flows was proved recently in McMullen [23].

In this paper, we give a different proof from [23] which yields convergence of
moments of all orders for Axiom A diffeomorphisms and flows. Moreover, our re-
sult extends to nonuniformly hyperbolic maps and flows that can be modelled by
Young towers with exponential tails [39]. This includes Hénon-like attractors, semi-
dispersing billiards (finite and infinite horizon), finite horizon planar periodic Lorentz
gases, Lorentz gases with cusps, and geometric Lorenz attractors.

For systems with polynomial decay of correlations modelled by Young towers
with polynomial tails [40], there are restrictions on the order of the moments that
can converge. If the Young tower has decay of correlations n−β, β > 1, then we prove
convergence of qth moments for q < 2β (for maps and the associated flows) and give
examples where qth moments diverge for q > 2β.

The remainder of this paper is organised as follows. In Section 2, we prove a
result about convergence of moments for noninvertible maps. In Section 3, we apply
this result to Axiom A and nonuniformly hyperbolic diffeomorphisms. In Section 4,
we consider suspensions flows subject to the requirement that the roof function is
bounded above and below. This covers the case of Axiom A flows and many nonuni-
formly hyperbolic flows. In Section 5, we show how to relax the conditions on the roof
functions following [2, 3], allowing us to treat Lorentz gases with cusps and Lorenz
attractors.

2 Convergence of moments for maps

Let (X,µ) be a probability space and f : X → X an ergodic measure-preserving
map. Let L : L1(X) → L1(X) be the transfer operator, defined by

∫
X
Lv w dµ =

2



∫
X
v w ◦ f dµ for all w ∈ L∞(X). Given an observable v : X → R, define the Birkhoff

sum vn =
∑n−1

j=0 v ◦ f j.

Lemma 2.1 Let p ≥ 2. Suppose that v ∈ Lp(X) with
∫
X
v dµ = 0, and that∑∞

j=1 ‖Ljv‖p <∞. Then

(a) The limit σ2 = lim
n→∞

∫
X

(n−
1
2vn)2 dµ exists.

(b) σ2 = 0 if and only if v = χ ◦ f − χ for some χ ∈ Lp.

(c) n−
1
2vn →d G as n → ∞, where G is normally distributed with mean zero and

variance σ2.

(d) There is a constant C such that ‖n− 1
2vn‖p ≤ C.

(e) lim
n→∞

∫
X

|n−
1
2vn|q dµ = E(|G|q) for all q < p.

Proof Parts (a)–(c) are well-known and are included for completeness. Let χ =∑∞
j=1 L

jv ∈ Lp and write v = w+ χ ◦ f − χ. A calculation shows that Lw = 0 and it

follows that {w◦f j, j ≥ 0} is an orthogonal sequence in L2. Hence
∫
X

(wn)2 dµ = nσ2

where σ2 =
∫
X
w2 dµ. Further,

vn = wn + χ ◦ fn − χ, (2.1)

and part (a) follows. Moreover, σ2 = 0 if and only if w = 0 proving (b).
Let Uv = v ◦ f and note that L is the L2 adjoint of U . Hence LU = I and

it is standard that UL = E(·|f−1M) where M is the underlying σ-algebra on X.
In particular, E(w|f−1M) = 0. Following Gordin [17], we note that the sequence
{w ◦ f j, j ≥ 0} is a reverse martingale increment sequence. (For more details see for
example [16, Remark 3.12].) Passing to the inverse limit f̃ : X̃ → X̃ and the lifted
observable w̃ : X̃ → R, we obtain a forward martingale sequence {w̃◦ f̃−j, j ≥ 0}. By

Billingsley [5], n−
1
2

∑n
j=0 w̃ ◦ f̃−j →d G. By Burkholder’s inequality [9], ‖

∑n−1
j=0 w̃ ◦

f̃−j‖p = O(n
1
2 ). But

∑n−1
j=0 w̃ ◦ f̃−j = {

∑n−1
j=0 w̃ ◦ f̃ j} ◦ f̃−n =d

∑n−1
j=0 w̃ ◦ f̃ j =d wn so

it follows that n−
1
2wn →d G and that ‖wn‖p = O(n

1
2 ). Hence parts (c) and (d) follow

from (2.1).
Finally, by standard probability theory (eg. [15, Exercise 2.5, p. 86]), part (e) is a

direct consequence of parts (c) and (d).

Usually we are interested in L∞ observables. As observed in [26], it is then possible
to use an inequality due to Rio [33, Theorem 2.5] (see [28, Proposition 7]) to obtain
an improved result on the order of converging moments.
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Lemma 2.2 Assume the set up of Lemma 2.1 with p ≥ 2, and suppose further that
v ∈ L∞. Then

(d′) There is a constant C such that ‖n− 1
2vn‖2p ≤ C.

(e′) lim
n→∞

∫
X

|n−
1
2vn|q dµ = E(|G|q) for all q < 2p.

Proof Part (d′) is proved in the course of the proof of [26, Theorem 3.1]
(cf. [26, Equation (3.1)]. Again, part (e′) is an elementary consequence of (d′) and
Lemma 2.1(c).

Remark 2.3 We have focused on the cases v ∈ Lp and v ∈ L∞ since (i) the second
result is sufficient for our applications and (ii) the first result is much simpler and yet
suffices for most of the examples. However, the arguments easily extend to the case
v ∈ La for all a ∈ [p,∞]. Assume the set up of Lemma 2.1 with p ≥ 2, and suppose
further that v ∈ La, a ≥ p. Write 2s−1 = p−1 + a−1. Then

(d′′) There is a constant C such that ‖n− 1
2vn‖s ≤ C.

(e′′) lim
n→∞

∫
X

|n−
1
2vn|q dµ = E(|G|q) for all q < s.

To see this define

bi,n = max
i≤u≤n

‖v ◦ f i
u∑
k=i

E(v ◦ fk|Fi)‖s/2,

where Fi is the filtration associated with the process v ◦ f i. Rio’s inequality implies
that boundedness of ‖n− 1

2vn‖s follows from bounded of bi,n. By Hölder’s inequality

bi,n ≤ ‖v‖a max
i≤u≤n

‖
u∑
k=i

E(v ◦ fk|Fi)‖p,

and boundedness follows as in [26].

3 Uniformly and nonuniformly hyperbolic diffeo-

morphisms

We begin this section by recasting the main assumption of Lemmas 2.1 and 2.2 in
terms of decay of correlations against a class of test functions. Such a criterion is
equivalent but perhaps more familiar, and is standard in the literature for noninvert-
ible dynamical systems.
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Proposition 3.1 Let p ∈ [1,∞] and let v : X → R be an Lp observable with∫
X
v dµ = 0. Suppose 1

p
+ 1

p′
= 1. Then ‖Ljv‖p = sup |

∫
X
v w ◦ f j dµ| where the

supremum is over all w ∈ Lp′ with ‖w‖p′ = 1.

Proof Since
∫
X
Ljv w dµ =

∫
X
v w ◦ f j dµ, the result follows from the duality of Lp

and Lp
′
.

Example 3.2 (Uniformly expanding maps) If X is a mixing one-sided subshift
of finite type and v is Lipschitz with respect to a symbolic metric, then v has expo-
nential decay of correlations against all L1 observables w (see for example [29]), so
that

∑∞
j=1 ‖Ljv‖∞ < ∞. By Lemma 2.1, we obtain convergence of qth moments for

all q.

Example 3.3 (Nonuniformly expanding maps) The situation is slightly differ-
ent for nonuniformly expanding (quotient) Young towers [39, 40]. Let v be a Lips-
chitz observable (again with respect to a suitable symbolic metric). In the case of
exponential tails [39], exponential decay of correlations holds against all L∞ observ-
ables. By Proposition 3.1, ‖Ljv‖1 ≤ Ce−aj where C = C(v) > 0, a > 0. Hence∫
X
|Ljv|p dµ ≤ ‖Ljv‖p−1

∞ ‖Ljv‖1 ≤ ‖v‖p−1
∞ ‖Ljv‖1 so ‖Ljv‖p ≤ ‖v‖

1− 1
p

∞ C
1
p e−(a/p)j which

is summable for all p < ∞. By Lemma 2.1, we again obtain convergence of qth
moments for all q.

In the case of polynomial tails µ(r > n) = O(n−(β+1)), β > 1, Young [40]
proved that v has polynomial decay of correlations against L∞ observables and fur-
ther ‖Ljv‖1 ≤ Cj−β. (This correlation decay rate is optimal by Sarig [35] and
Gouëzel [18].) The same interpolation argument as in the exponential case shows

that ‖Ljv‖p ≤ ‖v‖
1− 1

p
∞ C

1
p j−β/p which is summable for all p < β. By Lemma 2.2, we

obtain convergence of qth moments for all q < 2β.

Theorem 3.4 (Uniformly hyperbolic diffeomorphisms) Suppose that Λ is a
hyperbolic basic set for an Axiom A diffeomorphism f . We suppose that Λ is non-
trivial (not a periodic orbit). Let µ be the equilibrium measure corresponding to a
fixed Hölder potential. Let v : Λ → R be a Hölder observable with

∫
Λ
v dµ = 0.

Then n−
1
2vn →d G where G is normal with mean zero and variance σ2 ≥ 0, and

lim
n→∞

∫
Λ

|n−
1
2vn|q dµ = E(|G|q) for all q ≥ 0.

Proof We use a number of standard facts about hyperbolic basic sets (see for ex-
ample [29]). Basic sets are mixing up to a finite cycle, so it is easy to see that we may
suppose without loss that f : Λ→ Λ is mixing. By Bowen [6], Λ can be modelled by
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a subshift of finite type, and v lifts to a observable (which we also denote by v) that
is Lipschitz with respect to a suitable symbolic metric. An argument of Sinai [37]
shows that v is cohomologous to an observable that depends only on future coordi-
nates and hence is well-defined on the associated one-sided subshift of finite type.
The cobounding function is Lipschitz (with respect to a weaker symbolic metric) and
in particular is in L∞.

After these reductions, we may suppose without loss that f : Λ → Λ is a mixing
one-sided subshift of finite type and that v : Λ → R is a Lipschitz observable of
mean zero. We are now in the situation of Example 3.2 and the result follows from
Lemma 2.1.

Next, we consider the case when f : Λ → Λ is a nonuniformly hyperbolic map
modelled by a Young tower [39, 40]. Roughly speaking, a Young tower f : ∆ → ∆
is a discrete suspension of a “uniformly hyperbolic” base map F : Y → Y with an
integrable return time function r : Y → Z

+ (so ∆ = Y × Z/ ∼ where (y, r(y)) ∼
(Fy, 0) and f(y, `) = (y, `+ 1) computed modulo ∼). Invariant probability measures
µ on ∆ and µY on Y are related by µ = (µY × counting)/r̄ where r̄ =

∫
Y
r dµY .

Theorem 3.5 (Nonuniformly hyperbolic maps) Suppose that Λ is a nonuni-
formly hyperbolic map modelled by a Young tower with return time r ∈ L2(Y ) (equiv-
alently nµY (r > n) is summable). Let v : Λ → R be a Hölder observable with∫

Λ
v dµ = 0. Then

(a) n−
1
2vn →d G where G is normal with mean zero and variance σ2 ≥ 0.

(b) If µY (r > n) decays exponentially, then lim
n→∞

∫
Λ

|n−
1
2vn|q dµ = E(|G|q) for all

q ≥ 0.

(c) If µY (r > n) = O(n−(β+1)), β > 1, then lim
n→∞

∫
Λ

|n−
1
2vn|q dµ = E(|G|q) for all

q ∈ [0, 2β).

Proof As in the proof of Theorem 3.4 we can make a number of simplifying steps.
Young towers are mixing up to a finite cycle, so we may suppose without loss that f
is mixing. A version of the Sinai argument [25, Lemma 3.2] shows that the observable
is cohomologous to a Lipschitz observable that depends only on future coordinates,
and the cobounding function is in L∞. Hence we can pass to a quotient tower which
is nonuniformly expanding.

We are now in the situation of Example 3.3. Parts (a) and (b) follow from
Lemma 2.1 and part (c) follows from Lemma 2.2.
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Example 3.6 (Nonuniformly hyperbolic maps) Part (b) of Theorem 3.5 in-
cludes Hénon-like attractors [4], and planar periodic dispersing billiards with both
finite [39] and infinite [10] horizon.

Theorem 3.5(c) is illustrated by Pomeau-Manneville intermittency maps [31]. In
particular, the example of [21] is a Markov map with an indifferent fixed point at
0 and fx ≈ x1+α, α ∈ (0, 1). These maps can be modelled by Young towers with
µY (r > n) ≈ n−(β+1) where β = α−1−1. If α ∈ (0, 1

2
) then we can apply Theorem 3.5

to obtain convergence of all moments of order q < 2β.
More generally, Zweimüller [41, 42] studied a class of non-Markovian maps with

indifferent fixed points (called AFN maps), and our results apply to these maps when
the return time function r is square-integrable.

Bunimovich flowers [8] are a class of billiards modelled by Young towers with
polynomial tails and β = 2 (at least up to a logarithmic term) [13]. By Theorem 3.5(c)
we obtain convergence of qth moments for q < 4.

Chernov & Zhang [12] introduced a class of planar periodic dispersing billiards
with scatterers having points of vanishing curvature. Such billiards are modelled by
Young towers with polynomial tails, and every value of β ∈ (2,∞) is achieved. These
examples are covered by Theorem 3.5(c).

Remark 3.7 Our result on the order of converging moments is essentially optimal.
Consider the example in [26] where v ≡ 1 on the right-hand-side of a Young tower
with µY (r > n) ∼ n−(β+1). More precisely, v is taken to be a mean zero observable
satisfying v(y, `) = 1 for all (y, `) with 0 ≤ ` < r(y) and r(y) > N0 for some fixed

N0. Then µ(vn = n) ≥ cn−β where c > 0. Hence ‖n− 1
2vn‖q ≥ c1/qn1/2n−β/q which

diverges for q > 2β.

4 Uniformly and nonuniformly hyperbolic flows

Let (X,µ) be a probability space and f : X → X an ergodic measure preserving
transformation. Given an integrable roof function h : X → R

+, we form the sus-
pension Xh = X × R/ ∼ where (x, h(x)) ∼ (fx, 0). The suspension flow is given by
ft(x, u) = (x, u+ t) computed modulo ∼, with ergodic invariant probability measure
µh = (µ× Lebesgue)/h̄ where h̄ =

∫
X
h dµ.

Let φ : Xh → R be an L1 observable with
∫
Xh φ dµ

h = 0. We define φt =∫ t
0
φ ◦ fs ds. Also, we define the induced observable Φ(x) =

∫ h(x)

0
φ(x, u) du, and as

usual set Φn =
∑n−1

j=0 Φ ◦ fn.

Lemma 4.1 Assume that h, h−1 ∈ L∞(X). Let p > 2 and γ ∈ [1
2
, 1]. Let φ : Xh → R

be an observable in Lp(Xh) with
∫
Xh φ dµ

h = 0, and define Φ as above. (In particular,
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Φ ∈ Lp(X).) If ‖Φn‖Lp(X) = O(nγ), then ‖φt‖Lp(Xh) = O(tγ).

Proof Passing to the natural extension if necessary, we may suppose without loss
that f is invertible. Set Φ−n =

∑n−1
j=0 Φ ◦ f−j for n ≥ 0.

Define the lap number N [·, t] to be the largest integer n such that hn(x) ≤ t.
By [27, Remark 2.2], φt(x, u) = ΦN [x,t](x) + O(1) uniformly in (x, u) ∈ Xh, t > 0.
Note that ΦN [·,t] can be regarded as a function on Xh (independent of the second
variable) or as a function on X. Such a function g(x, u) = g̃(x) has the property that

‖g‖Lp(Xh) ≤ h̄−1/p‖h‖1/p
∞ ‖g̃‖Lp(X). Hence it suffices to show that ‖ΦN [·,t]‖p = O(tγ)

where from now on Lp means Lp(X).
By assumption, ‖Φn‖p = O(nγ) and hence by Serfling [36, Corollary B1],∥∥∥max

|j|≤n
|Φj|

∥∥∥
p

= O(nγ).

Since h is bounded below, |N [·, t]| ≤ at where a = ‖h−1‖−1
∞ . Hence ‖ΦN [·,t]‖p ≤∥∥max|j|≤at |Φj|

∥∥
p

= O(tγ) as required.

Corollary 4.2 Assume the hypotheses of Lemma 4.1 and suppose that t−γφt →d G

on (Xh, µh) for some random variable G. Then lim
t→∞

∫
Xh

|t−γφt|q dµh = E(|G|q) for

all q < p.

Proof Again we can apply [15, Exercise 2.5, p. 86]), so this is an immediate conse-
quence of Lemma 4.1.

Example 4.3 (Uniformly hyperbolic flows) Suppose that Λ is a nontrivial hy-
perbolic set for an Axiom A flow ft. Then Λ can be modelled as a suspension Xh of
a subshift of finite type with Lipschitz roof function h : X → R

+ bounded above and
below. Let µ be an equilibrium measure on X (corresponding to a Lipschitz poten-
tial) and construct µh on Xh, with corresponding measure ν on Λ. Let φ : Λ → R

be a Hölder observable with
∫

Λ
φ dν = 0. By [32, 27], t−

1
2φt →d G where G is normal

with mean zero and variance σ2 ≥ 0. By Theorem 3.4 and Corollary 4.2 we obtain

that lim
n→∞

∫
Λ

|n−
1
2vn|q dν = E(|G|q) for all q ≥ 0.

Example 4.4 (Nonuniformly hyperbolic flows) Similarly our results apply for
certain nonuniformly expanding/hyperbolic flows, namely those that can be regarded
as suspension flows over Young towers with Hölder roof functions that are bounded
above and below. Provided the return time function r for the Young tower is square
integrable, it follows from [27] that the CLT holds for Hölder observables.
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If r has exponential (or at least superpolynomial) tails, then qth moments converge
for all q ≥ 0. This includes finite horizon planar periodic Lorentz gases and suspended
Hénon-like attractors.

In the case of polynomial tails µY (r > n) = O(n−(β+1)), we obtain convergence
of qth moments for all q < 2β. This applies for instance to the Lorentz gas flow
corresponding to the examples of Chernov & Zhang [12] described in Example 3.6.

5 More general flows

In Section 4, we assumed that the roof function h satisfies h, h−1 ∈ L∞(X). We now
discuss how to relax these assumptions.

Suppose that f : X → X is nonuniformly hyperbolic (modelled by a Young tower)
and that h : X → R

+ is a Hölder roof function. (More generally, we allow h to have
discontinuities provided that h is in L∞(X) and is piecewise Hölder on partition
elements of the Young tower with uniform Hölder constant.) As shown in Bálint &
Melbourne [2], when h is not bounded below a useful approach is to choose a new
cross-section X ′ to the flow with modified roof function h′ such that Xh = (X ′)h

′
. If

this is done in such a way that h′ is (piecewise) Hölder and h′, (h′)−1 ∈ L∞(X ′) then
Lemma 4.1 and Corollary 4.2 may apply.

Example 5.1 (Lorentz gases with cusps) For example, consider a Sinai billiard
with cusps. Then the billiard map Xh is slowly mixing with β = 1 [11, 14], and
Theorem 3.5 does not apply. Moreover, h is not bounded below. However there is
an alternative cross-section X ′ bounded away from the cusps such that the Poincaré
map f ′ : X ′ → X ′ is modelled by a Young tower with exponential tails. Theorem 3.5
applies to the moments for this modified map. More importantly, the roof function h′

can be shown to be bounded above and below [2]. In this way, [2] proved the CLT (and
almost sure invariance principle) for the Lorentz flow with cusps. By Corollary 4.2,
qth moments converge for the flow for all q <∞.

Example 5.2 (Bunimovich flowers) A second example considered in [2] is Buni-
movich flowers. Here the billiard map f : X → X is mixing with β ≈ 2 (see
Example 3.6) so moments converge for the map for q < 4. Again, the roof function h
is not bounded below, so Corollary 4.2 does not apply directly. However, there is a
different choice of Poincaré map f ′ : X ′ → X ′ which still has β ≈ 2. In addition h′ is
bounded above and below, and moments converge for the flow for q < 4.

There are many ways to deal with unbounded roof functions, for example (i) mod-
ify the construction of the Young tower [20] so as to keep control of the unboundedness
of h, (ii) approximate the dynamics by a truncated tower on which the roof function
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is bounded [24]. An alternative approach of Bálint & Melbourne [3] is to work with
a fixed tower model, but to modify the return time function r of the tower and the
roof function h of the flow in such a way that the Poincaré map to the base Y of the
tower is unchanged. More precisely, define the induced roof function H : Y → R

+

by H(y) =
∑r(y)−1

`=0 h(y, `). Define modified versions r′ and h′ of r and h in such a
way that H ′ = H. Then the modified suspension flow is still an extension of the
original flow. The aim is to do this in such a way that h′ is (piecewise) Hölder and h′,
(h′)−1 ∈ L∞(X). This approach seems to give optimal results in situations where the
other methods do not (for instance, decay of correlations for infinite horizon Lorentz
gases [3]).

Example 5.3 (Geometric Lorenz attractors) The geometric Lorenz attrac-
tor [1, 19] can be modelled as a suspension flow over a Young tower with exponential
tails, but the roof function h is unbounded with a logarithmic singularity. By [3], the
return time function r and roof function h can be modified in such a way that the
Poincaré map to the base of the tower is unchanged, and the modified roof function h′

is (piecewise) Hölder with h′, (h′)−1 ∈ L∞(X). The modified return tails µY (r′ > n)
decay at a stretched exponential rate. This recovers the CLT (and almost sure in-
variance principle) proved by [20]. By Example 4.4, qth moments converge for the
flow for all q <∞.

By Tucker [38], our result applies in particular to the classical Lorenz equa-
tions [22].
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