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Abstract

We establish exponential decay in Hölder norm of transfer operators applied
to smooth observables of uniformly and nonuniformly expanding semiflows with
exponential decay of correlations.

1 Introduction

Exponential decay of correlations is well-understood for large classes of uniformly and
nonuniformly expanding maps, see for example [8, 13, 15, 16, 18, 23, 24, 25, 26, 29].
The typical method of proof is to establish a spectral gap for the associated transfer
operator L. Such a spectral gap yields a decay rate ‖Lnv−

∫
v‖ ≤ Cve

−an for v lying
in a suitable function space, where a, Cv are positive constants. Decay of correlations
is an immediate consequence of such decay for Ln.

Results on decay of correlations lead to numerous statistical limit theorems. Al-
though not needed for results such as the central limit theorem, strong norm control
on Lnv is often useful for finer statistical properties. For example, rates of conver-
gence in the central limit theorem [14] and the associated functional central limit
theorem [4] rely heavily on control of operator norms.

In this paper, we consider norm decay of transfer operators for uniformly and
nonuniformly expanding semiflows. Here, the standard method is to deduce decay
of the correlation function from analyticity of Laplace transforms, bypassing spectral
properties of Lt, see [11, 17, 22]. As far as we know, the only result on spectral
gaps for transfer operators of semiflows is due to Tsujii [27]. However, this result is
for suspension semiflows over the doubling map with a C3 roof function, where the
smoothness of the roof function is crucial and very restrictive. A similar result for
contact Anosov flows is proved in [28]. Both of the papers [27, 28] obtain spectral
gaps for Lt acting on a suitable anisotropic Banach space. In addition, a paper of
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Butterley [10] obtains norm decay of transfer operators, but the results are quite
different from ours and the abstract setting there seems not to cover the situation
considered here (see Remark 2.6 below). Apart from these, there are apparently no
previous results on norm decay of transfer operators for semiflows and flows.

Recently, in [20], we showed that spectral gaps are impossible in Hölder spaces
with exponent greater than 1

2
(and in any Banach space that embeds in such a Hölder

space). Nevertheless, our aim of controlling the Hölder norm of Ltv for a large class
of semiflows and observables v remains viable, and our main result is the first in this
direction. We consider uniformly and nonuniformly expanding semiflows satisfying a
Dolgopyat-type estimate [11]. Such an estimate plays a key role in proving exponential
decay of correlations for the semiflow. Theorem 2.3 below shows how to use this
estimate to prove exponential decay of Ltv in a Hölder norm for smooth mean zero
observables satisfying a good support condition. Apart from the Dolgopyat estimate,
the main ingredient is an operator renewal equation for semiflows [21] which enables
consideration of the operator Laplace transform

∫∞
0
e−stLt dt.

The remainder of the paper is organised as follows. In Section 2, we recall the
setup for nonuniformly expanding semiflows with exponential decay of correlations
and state our main result, Theorem 2.3, on decay in norm. In Section 3, we prove
Theorem 2.3.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there are constants C > 0, n0 ≥ 1 such that an ≤ Cbn for all n ≥ n0.

2 Setup and statement of the main result

In this section, we state our result on Hölder norm decay of transfer operators for
uniformly and nonuniformly expanding semiflows.

Let (Y, d) be a bounded metric space with Borel probability measure µ and an at
most countable measurable partition {Yj}. Let F : Y → Y be a measure-preserving
transformation such that F restricts to a measure-theoretic bijection from Yj onto Y
for each j. Let g = dµ/(dµ ◦ F ) be the inverse Jacobian of F .

Fix η ∈ (0, 1). Assume that there are constants λ > 1 and C > 0 such that
d(Fy, Fy′) ≥ λd(y, y′) and | log g(y) − log g(y′)| ≤ Cd(Fy, Fy′)η for all y, y′ ∈ Yj,
j ≥ 1. In particular, F is a Gibbs-Markov map as in [2] (see also [1, 3]) with ergodic
(and mixing) invariant measure µ.

Let ϕ : Y → [2,∞) be a piecewise continuous roof function. We assume that
there is a constant C > 0 such that

|ϕ(y)− ϕ(y′)| ≤ Cd(Fy, Fy′)η (2.1)

for all y, y′ ∈ Yj, j ≥ 1. Also, we assume exponential tails, namely that there exists
δ0 > 0 such that ∑

jµ(Yj)e
δ0|1Yjϕ|∞ <∞. (2.2)
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Define the suspension Y ϕ = {(y, u) ∈ Y × [0,∞) : u ∈ [0, ϕ(y)]}/ ∼ where
(y, ϕ(y)) ∼ (Fy, 0). The suspension semiflow Ft : Y ϕ → Y ϕ is given by Ft(y, u) =
(y, u+ t) computed modulo identifications. We define the ergodic Ft-invariant prob-
ability measure µϕ = (µ× Lebesgue)/ϕ̄ where ϕ̄ =

∫
Y
ϕdµ. 1

Let Lt : L1(Y ϕ) → L1(Y ϕ) denote the transfer operator corresponding to Ft (so∫
Y ϕ
Ltv w dµ

ϕ =
∫
Y ϕ
v w ◦ Ft dµϕ for all v ∈ L1(Y ϕ), w ∈ L∞(Y ϕ), t > 0) and let

R0 : L1(Y )→ L1(Y ) denote the transfer operator for F . Recall (see for example [2])
that (R0v)(y) =

∑
jg(yj)v(yj) where yj is the unique preimage of y under F |Yj, and

there is a constant C > 0 such that

|g(y)| ≤ Cµ(Yj), |g(y)− g(y′)| ≤ Cµ(Yj)d(Fy, Fy′)η, (2.3)

for all y, y′ ∈ Yj, j ≥ 1.

Function space on Y ϕ Let Y ϕ
j = {(y, u) ∈ Y ϕ : y ∈ Yj}. Fix η ∈ (0, 1], δ > 0.

For v : Y ϕ → R, define |v|δ,∞ = sup(y,u)∈Y ϕ e
−δu|v(y, u)| and

‖v‖δ,η = |v|δ,∞ + |v|δ,η, |v|δ,η = sup
j≥1

sup
(y,u),(y′,u)∈Y ϕj , y 6=y′

e−δu
|v(y, u)− v(y′, u)|

d(y, y′)η
.

Then Fδ,η(Y ϕ) consists of observables v : Y ϕ → R with ‖v‖δ,η <∞.
Next, define ∂uv to be the partial derivative of v with respect to u at points (y, u) ∈

Y ϕ with u ∈ (0, ϕ(y)) and to be the appropriate one-sided partial derivative when
u ∈ {0, ϕ(y)}. For m ≥ 0, define Fδ,η,m(Y ϕ) to consist of observables v : Y ϕ → R such
that ∂juv ∈ Fδ,η(Y ϕ) for j = 0, 1, . . . ,m, with norm ‖v‖δ,η,m = maxj=0,...,m ‖∂juv‖δ,η.

Definition 2.1 Given r > 0, we consider the subset {(y, u) ∈ Y ×R : u ∈ [r, ϕ(y)−
r]} viewed as a subset of Y ϕ. We say that a function v : Y ϕ → R has good support if
there exists r > 0 such that supp v ⊂ {(y, u) ∈ Y × R : u ∈ [r, ϕ(y)− r]}.

For functions with good support, ∂uv coincides with the derivative ∂tv =
limh→0(v ◦ Fh − v)/h in the flow direction.

Remark 2.2 It is standard to restrict to observables with good support when con-
sidering decay of correlations for semiflows, see for instance [12, 27].

Let
F0
δ,η,m(Y ϕ) = {v ∈ Fδ,η,m(Y ϕ) :

∫
Y ϕ
v dµϕ = 0}.

We write Fδ,η(Y ϕ) and F0
δ,η(Y

ϕ) when m = 0.

1We call such semiflows “nonuniformly expanding” since they are the continuous time analogue of
maps that are nonuniformly expanding in the sense of Young [29]. “Uniformly expanding” semiflows
are those with ϕ bounded; they have bounded distortion as well as uniform expansion.
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Function space on Y For v : Y → R, define

‖v‖η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
y,y′∈Yj , y 6=y′

|v(y)− v(y′)|/d(y, y′)η.

Let Fη(Y ) consist of observables v : Y → R with ‖v‖η <∞.

Dolgopyat estimate Define the twisted transfer operators

R̂0(s) : L1(Y )→ L1(Y ), R̂0(s)v = R0(e−sϕv).

We assume that there exists γ ∈ (0, 1), ε > 0, m0 ≥ 0, A,D > 0 such that

‖R̂0(s)n‖Fη(Y )7→Fη(Y ) ≤ |b|
m0γn (2.4)

for all s = a+ ib ∈ C with |a| < ε, |b| ≥ D and all n ≥ A log |b|. Such an assumption
holds in the settings of [5, 6, 7, 11].

Now we can state our main result on norm decay for Lt.

Theorem 2.3 Under these assumptions, there exists ε > 0, m ≥ 1, C > 0 such that

‖Ltv‖δ,η,1 ≤ Ce−εt‖v‖δ,η,m for all t > 0

for all v ∈ F0
δ,η,m(Y ϕ) with good support.

Remark 2.4 Since the norm applied to v is stronger than the norm applied to Ltv,
Theorem 2.3 does not imply a spectral gap for Lt. We note that the norm on Fδ,η,1(Y ϕ)
gives no Hölder control in the flow direction when passing through points of the form
(y, ϕ(y)). This lack of control is a barrier to mollification arguments of the type
usually used to pass from smooth observables to Hölder observables. In fact, such
arguments are doomed to fail at the operator level by [20, Theorem 1.1] when η > 1

2

and hence seem unlikely for any η.

Remark 2.5 Usually, we can take m0 ∈ (0, 1) in (2.4) in which case m = 3 suffices
in Theorem 2.3.

There are numerous simplifications when {Yj} is a finite partition. In particular,
conditions (2.1) and (2.2) are redundant and we can take δ = 0.

Remark 2.6 At first glance, Theorem 2.3 has some similarities with [10, The-
orem 1]. In particular, we mention formula (2.4) therein which takes the form
‖Ptµ‖A ≤ C`e

−`t‖Zµ‖B where Z = ∂t. However, ‖ ‖A corresponds to a “weak”
norm which would just be the L∞ norm in our setting. Moreover, the hypothesis
in [10] that the operators Tt : B → B (Lt : Fδ,η,1(Y ϕ) → Fδ,η,1(Y ϕ) in our notation)
are bounded looks to be unverifiable in our setting even for fixed t. On the other
hand, the expansion in equation (2.3) of [10] is beyond our methods.
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Remark 2.7 Numerous (non)uniformly hyperbolic flows are modelled (after induc-
ing and quotienting along stable leaves) by “Gibbs-Markov semiflows” Ft : Y ϕ → Y ϕ

of the type considered here with the exponential tail condition (2.2). These include
basic sets for Axiom A flows, Lorentz gases with finite horizon, and Lorenz attractors
(see for instance [19, Section 1.1]). Whenever the Dolgopyat estimate (2.4) is verified
in such examples, as in [5, 6, 7, 11], Theorem 2.3 guarantees exponential decay for
the norm of the transfer operator for the corresponding Gibbs-Markov semiflow.

3 Proof of Theorem 2.3

Our proof of norm decay is broken into three parts. In Subsection 3.1, we recall a
continuous-time operator renewal equation [21] which enables estimates of Laplace
transforms of transfer operators at the level of Y . In Subsection 3.2, we show how
to pass to estimates of Laplace transforms of Lt. In Subsection 3.3, we invert the
Laplace transform to obtain norm decay of Lt.

3.1 Operator renewal equation

Let Ỹ = Y × [0, 1] and define

F̃ : Ỹ → Ỹ , F̃ (y, u) = (Fy, u),

with transfer operator R̃ : L1(Ỹ )→ L1(Ỹ ). Also, define

ϕ̃ : Ỹ → [2,∞), ϕ̃(y, u) = ϕ(y).

Define the twisted transfer operators

R̂(s) : L1(Ỹ )→ L1(Ỹ ), R̂(s)v = R̃(e−sϕ̃v).

Let Ỹj = Yj × [0, 1]. For v : Ỹ → R, define

‖v‖η = |v|∞ + |v|η, |v|η = sup
j≥1

sup
(y,u),(y′,u)∈Ỹj , y 6=y′

|v(y, u)− v(y′, u)|/d(y, y′)η.

Let Fη(Ỹ ) consist of observables v : Ỹ → R with ‖v‖η <∞. Let

F0
η (Ỹ ) = {v ∈ Fη(Ỹ ) :

∫
Ỹ
v dµ̃ = 0}

where µ̃ = µ× Leb[0,1].

Lemma 3.1 Write s = a+ ib ∈ C. There exists ε > 0, m1 ≥ 0, C > 0 such that

(a) s 7→ (I − R̂(s))−1 : F0
η (Ỹ )→ Fη(Ỹ ) is analytic on {|a| < ε};
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(b) s 7→ (I − R̂(s))−1 : Fη(Ỹ )→ Fη(Ỹ ) is analytic on {|a| < ε} except for a simple
pole at s = 0;

(c) ‖(I − R̂(s))−1‖Fη(Ỹ )7→Fη(Ỹ ) ≤ C|b|m1 for |a| ≤ ε, |b| ≥ 1.

Proof It suffices to verify these properties for Z(s) = (I − R̂0(s))−1 on Y . They

immediately transfer to (I−R̂(s))−1 on Ỹ since (R̂v)(y, u) = (R̂0v
u)(y) where vu(y) =

v(y, u).
The arguments for passing from (2.4) to the desired properties for Z(s) are stan-

dard. For completeness, we sketch these details now recalling arguments from [5].
Define Fη(Y ) with norm ‖ ‖η by restricting to u = 0 (this coincides with the usual
Hölder space on Y ). Let A, D, ε and m0 be as in (2.4). Increase A and D so that
D > 1 and |b|m0γ[A log |b|] ≤ 1

2
for |b| ≥ D. Suppose that |a| ≤ ε, |b| ≥ D. Then

‖R̂0(s)[A log |b|]‖η ≤ |b|m0γ[A log |b|] ≤ 1
2

and ‖(I − R̂0(s)[A log |b|])−1‖η ≤ 2.

As in [5, Proposition 2.5], we can shrink ε so that s→ R̂0(s) is continuous on Fη(Y )

for |a| ≤ ε. The simple eigenvalue 1 for R̂0(0) = R0 extends to a continuous family
of simple eigenvalues λ(s) for |s| ≤ ε. Hence we can choose ε so that 1

2
< λ(a) < 2

for |a| ≤ ε. By [5, Corollary 2.8], ‖R̂0(s)n‖η � |b|λ(a)n ≤ |b|2n for all n ≥ 1, |a| ≤ ε,
|b| ≥ D. Hence

‖Z(s)‖η ≤
(
1 + ‖R̂0(s)‖η + · · ·+ ‖R̂0(s)[A log |b|]−1‖η

)
‖(I − R̂0(s)[A log |b|])−1‖η

� (log |b|) |b| 2A log |b| ≤ |b|m1 ,

with m1 = 1 + A log 2. This proves analyticity on the region {|a| < ε, |b| > D} with
the desired estimates for property (c) on this region.

For |a| ≤ ε, |b| ≤ D, we recall arguments from the proof of [5, Lemma 2.22] (where

R̂0(s) is denoted Qs). For ε sufficiently small, the part of spectrum of R̂0(s) that is

close to 1 consists only of isolated eigenvalues. Also, the spectral radius of R̂0(s) is
at most λ(a) and λ(a) < 1 for a ∈ [0, ε], so s 7→ Z(s) is analytic on {0 < a < ε}.

Suppose that R̂0(ib)v = v for some v ∈ Fη(Y ), b 6= 0. Choose q ≥ 1 such that

q|b| > D. Since R̂0(s) is the L2 adjoint of v 7→ esϕv ◦F , we have eibϕv ◦F = v. Hence

eiqbϕvq ◦ F = vq and so R̂0(iqb)vq = vq. But ‖Z(iqb)vq‖η < ∞, so v = 0. Hence

1 6∈ spec R̂0(ib) for all b 6= 0. It follows that for all b 6= 0 there exists an open set

Ub ⊂ C containing ib such that 1 6∈ spec R̂0(s) for all s ∈ Ub, and so s 7→ Z(s) is
analytic on Ub.

Next, we recall that for s near to zero, λ(s) = 1 + cs + O(s2) where c < 0.
Hence s 7→ Z(s) has a simple pole at zero. It follows that there exists ε > 0 such
that s 7→ Z(s) is analytic on {|a| < ε, |b| < 2D} except for a simple pole at s = 0.
Combining this with the estimates on {|a| < ε, |b| ≥ D} we have proved properties (b)
and (c) for Z(s).
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Finally, the spectral projection π corresponding to the eigenvalue λ(0) = 1 for

R̂0(0) = R is given by πv =
∫
Y
v dµ. Hence the pole disappears on restriction to

observables of mean zero, proving property (a) for Z(s).

Next define
Ttv = 1ỸLt(1Ỹ v), Utv = 1ỸLt(1{ϕ̃>t}v)

and

T̂ (s) =

∫ ∞
0

e−stTt dt, Û(s) =

∫ ∞
0

e−stUt dt.

By [21, Theorem 3.3], we have the operator renewal equation

T̂ = Û(I − R̂)−1.

Proposition 3.2 There exists ε > 0, C > 0 such that s 7→ Û(s) : Fη(Ỹ ) → Fη(Ỹ )

is analytic on {|a| < ε} and ‖Û(s)‖Fη(Ỹ )7→Fη(Ỹ ) ≤ C|s| for |a| ≤ ε.

Proof By [21, Proposition 3.4],

(Utv)(y, u) =

{
v(y, u− t)1[t,1](u) 0 ≤ t ≤ 1

(R̃vt)(y, u) t > 1

where vt(y, u) = 1{t<ϕ(y)<t+1−u}v(y, u− t+ ϕ(y)). Hence Û(s) = Û1(s) + Û2(s) where

(Û1(s)v)(y, u) =

∫ u

0

e−stv(y, u− t) dt, Û2(s)v =

∫ ∞
1

e−stR̃vt dt.

It is clear that ‖Û1(s)v‖η ≤ eε‖v‖η. We focus attention on the second term

(Û2(s)v)(y, u) =
∑

jg(yj)

∫ ∞
1

e−stvt(yj, u) dt =
∑

jg(yj)V̂ (s)(yj, u),

where V̂ (s)(y, u) =
∫ 1

u
es(t−u−ϕ)v(y, t) dt. Clearly, |1Yj V̂ (s)|∞ ≤ eε|1Yjϕ|∞|v|∞. Also,

V̂ (s)(y, u)− V̂ (s)(y′, u) = I + J,

where

I =

∫ 1

u

(es(t−u−ϕ(y)) − es(t−u−ϕ(y′)))v(y, t) dt,

J =

∫ 1

u

es(t−u−ϕ(y′))(v(y, t)− v(y′, t)) dt.

For y, y′ ∈ Yj,

|I| ≤ |v|∞
∫ 1

u

eε(|1Yjϕ|∞+u−t)|s||ϕ(y)− ϕ(y′)| dt� |s||v|∞ eε|1Yjϕ|∞d(Fy, Fy′)η
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by (2.1), and

|J | ≤
∫ 1

u

eε(|1Yjϕ|∞+u−t)|v(y, t)− v(y′, t)| dt ≤ eε|1Yjϕ|∞|v|η d(y, y′)η.

Hence |V̂ (s)(y, u)− V̂ (s)(y′, u)|η � |s|eε|1Yjϕ|∞‖v‖η d(Fy, Fy′)η.

It follows from the estimates for 1Yj V̂ (s) together with (2.3) that ‖Û2(s)v‖η �∑
j|s|µ(Yj)e

ε|1Yjϕ|∞‖v‖η. By (2.2), ‖Û2(s)v‖η � |s|‖v‖η for ε sufficiently small. We

conclude that ‖Û(s)v‖η � |s|‖v‖η.

3.2 From T̂ on Ỹ to L̂ on Y ϕ

Lemma 3.1 and Proposition 3.2 yield analyticity and estimates for T̂ = Û(I − R̂)−1

on Ỹ . In this subsection, we show how these properties are inherited by L̂(s) =∫∞
0
e−stLt dt on Y ϕ. Recall that Ỹ = Y × [0, 1] which we view as a subset of Y ϕ.

Remark 3.3 The approach in this subsection is similar to that in [9, Section 5] but
there are some important differences. The rationale behind the two step decomposi-
tion in Propositions 3.4 and 3.5 below is that the discreteness of the decomposition in
Proposition 3.4 simplifies many formulas significantly. In particular, the previously
problematic term Et in [9] becomes elementary (and vanishes for large t when ϕ is
bounded). The decomposition in Proposition 3.5 remains continuous to simplify the
estimates in Proposition 3.8.

Since the setting in [9] is different (infinite ergodic theory, reinducing) we keep the
exposition here self-contained even where the estimates coincide with those in [9].

Define

An : L1(Ỹ )→ L1(Y ϕ), (Anv)(y, u) = 1{n≤u<n+1}(Lnv)(y, u), n ≥ 0,

Et : L1(Y ϕ)→ L1(Y ϕ), (Etv)(y, u) = 1{[t]+1≤u≤ϕ(y)}(Ltv)(y, u), t > 0.

Proposition 3.4 Lt =

[t]∑
j=0

Aj1ỸLt−j + Et for t > 0.

Proof For y ∈ Y , u ∈ (0, ϕ(y)),

(Ltv)(y, u) =

[t]∑
j=0

1{j≤u<j+1}(Ltv)(y, u) + 1{[t]+1≤u≤ϕ(y)}(Ltv)(y, u)

=

[t]∑
j=0

(AjLt−jv)(y, u) + (Etv)(y, u).
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Now use that An = An1Ỹ .

Next, define

Bt : L1(Y ϕ)→ L1(Ỹ ), Btv = 1ỸLt(1∆tv),

Gt : L1(Y ϕ)→ L1(Ỹ ), Gtv = Bt(ω(t)v),

Ht : L1(Y ϕ)→ L1(Ỹ ), Htv = 1ỸLt(1∆′
t
v),

for t > 0, where

∆t = {(y, u) ∈ Y ϕ : ϕ(y)− t ≤ u < ϕ(y)− t+ 1}
∆′t = {(y, u) ∈ Y ϕ : u < ϕ(y)− t}, ω(t)(y, u) = ϕ(y)− u− t+ 1.

Proposition 3.5 1ỸLt =

∫ t

0

Tt−τBτ dτ +Gt +Ht for t > 0.

Proof Let y ∈ Y , u ∈ [0, ϕ(y)]. Then∫ t

0

1∆τ (y, u) dτ =

∫ t

0

1{ϕ(y)−u≤τ≤ϕ(y)−u+1} dτ

= 1{t≥ϕ(y)−u+1} + 1{ϕ(y)−u≤t<ϕ(y)−u+1}(t− ϕ(y) + u)

= 1− 1{t<ϕ(y)−u+1} + 1{ϕ(y)−u≤t<ϕ(y)−u+1}(t− ϕ(y) + u)

= 1− 1∆′
t
(y, u) + 1∆t(y, u)(t− ϕ(y) + u− 1).

Hence
∫ t

0
1∆τ dτ = 1− 1∆tω(t)− 1∆′

t
. It follows that∫ t

0

Tt−τBτv dτ = 1Ỹ

∫ t

0

Lt−τ1ỸBτv dτ = 1Ỹ

∫ t

0

Lt−τBτv dτ

= 1Ỹ

∫ t

0

Lt−τLτ (1∆τv) dτ = 1ỸLt

(∫ t

0

1∆τv dτ
)

= 1ỸLtv −Gtv −Htv

as required.

We have already defined the Laplace transforms L̂(s) and T̂ (s) for s = a+ ib with
a > 0. Similarly, define

B̂(s) =

∫ ∞
0

e−stBt dt, Ê(s) =

∫ ∞
0

e−stEt dt,

Ĝ(s) =

∫ ∞
0

e−stGt dt, Ĥ(s) =

∫ ∞
0

e−stHt dt.

Also, we define the discrete transform Â(s) =
∞∑
n=0

e−snAn.
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Corollary 3.6 L̂(s) = Â(s)T̂ (s)B̂(s) + Â(s)Ĝ(s) + Â(s)Ĥ(s) + Ê(s) for a > 0.

Proof By Proposition 3.4,

L̂(s)− Ê(s) =

∫ ∞
0

e−st
[t]∑
j=0

Aj1ỸLt−j dt =
∞∑
j=0

e−sjAj1Ỹ

∫ ∞
j

e−s(t−j)Lt−j dt

= Â(s)1Ỹ

∫ ∞
0

e−stLt dt = Â(s)1Ỹ L̂(s).

Hence L̂ = Â1Ỹ L̂+ Ê. In addition, by Proposition 3.5, 1Ỹ L̂ = T̂ B̂ + Ĝ+ Ĥ.

Proposition 3.7 Let δ > ε > 0. Then there is a constant C > 0 such that

(a) ‖Â(s)‖Fη(Ỹ )→Fδ,η(Y ϕ) ≤ 1,

(b) ‖Ê(s)‖Fδ,η(Y ϕ)→Fδ,η(Y ϕ) ≤ C,

(c) ‖Ĥ(s)‖Fδ,η(Y ϕ)→Fη(Ỹ ) ≤ eδ,

for |a| ≤ ε.

Proof (a) Let v ∈ Fη(Ỹ ). Let (y, u), (y′, u) ∈ Y ϕ
j , j ≥ 1. Since (Anv)(y, u) =

1{n≤u<n+1}v(y, u− n),

(Â(s)v)(y, u) =
∞∑
n=0

e−sn1{n≤u<n+1}v(y, u− n) = e−s[u]v(y, u− [u]).

Hence

|(Â(s)v)(y, u)| ≤ eεu|v|∞, |(Â(s)v)(y, u)− (Â(s)v)(y′, u)| ≤ eεu|v|η d(y, y′)η.

That is, |Â(s)v|ε,∞ ≤ |v|∞, |Â(s)v|ε,η ≤ |v|η. Hence ‖Â(s)v‖δ,η ≤ ‖Â(s)v‖ε,η ≤ ‖v‖η.
(b) We take C = 1/(δ − ε). Let v ∈ Fδ,η(Y ϕ). Let (y, u), (y′, u) ∈ Y ϕ

j , j ≥ 1. Note
that (Etv)(y, u) = 1{[t]+1≤u}v(y, u− t), so

(Ê(s)v)(y, u) =

∫ ∞
0

e−st1{[t]+1≤u}v(y, u− t) dt.

Hence

|(Ê(s)v)(y, u)| ≤
∫ ∞

0

eεt|v|δ,∞ eδ(u−t) dt = C|v|δ,∞ eδu,

and

|(Ê(s)v)(y, u)− (Ê(s)v)(y′, u)| ≤
∫ ∞

0

eεt|v|δ,η d(y, y′)ηeδ(u−t) dt = Ceδu|v|δ,η d(y, y′)η.
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That is, |Ê(s)v|δ,∞ ≤ |v|δ,∞ and |Ê(s)v|δ,η ≤ |v|δ,η.
(c) Let v ∈ Fε,η(Y ϕ). Let (y, u), (y′, u) ∈ Ỹj, j ≥ 1. Then (Htv)(y, u) = 1{t<u}v(y, u−
t) and (Ĥ(s)v)(y, u) =

∫ u
0
e−stv(y, u− t) dt. Hence,

|Ĥ(s)v|∞ ≤ eδ|v|δ,∞ and |(Ĥ(s)v)(y, u)− (Ĥ(s)v)(y′, u)| ≤ eδ|v|δ,η d(y, y′)η.

The result follows.

Proposition 3.8 There exists δ > ε > 0, C > 0 such that

‖B̂(s)‖Fδ,η(Y ϕ)→Fη(Ỹ ) ≤ C|s| and ‖Ĝ(s)‖Fδ,η(Y ϕ)→Fη(Ỹ ) ≤ C|s| for |a| ≤ ε.

Proof Let v ∈ L1(Y ϕ), w ∈ L∞(Ỹ ). Using that Ft(y, u) = (Fy, u + t − ϕ(y)) for
(y, u) ∈ ∆t,∫

Ỹ

Btv w dµ̃ = ϕ̄

∫
Y ϕ
Lt(1∆tv)w dµϕ = ϕ̄

∫
Y ϕ

1∆tv w ◦ Ft dµϕ

=

∫
Y

∫ ϕ(y)

0

1{0≤u+t−ϕ(y)<1}v(y, u)w(Fy, u+ t− ϕ) du dµ

=

∫
Y

∫ t

t−ϕ(y)

1{0≤u<1}v(y, u+ ϕ(y)− t)w(Fy, u) du dµ

=

∫
Ỹ

vtw ◦ F̃ dµ̃ =

∫
Ỹ

R̃vtw dµ̃

where vt(y, u) = 1{0<u+ϕ(y)−t<ϕ(y)}v(y, u+ ϕ(y)− t).
Hence Btv = R̃vt and it follows immediately that Gtv = R̃(ω(t)v)t. But

(ω(t)v)t(y, u) = 1{0<u+ϕ(y)−t<ϕ(y)}(ω(t)v)(y, u+ ϕ(y)− t) = (1− u)vt(y, u),

so (Gtv)(y, u) = (1− u)(Btv)(y, u).

Next, B̂(s)v = R̃V̂ (s) where

V̂ (s)(y, u) =

∫ ∞
0

e−stvt(y, u) dt =

∫ u+ϕ(y)

u

e−stv(y, u+ ϕ(y)− t) dt

=

∫ ϕ(y)

0

e−s(ϕ(y)+u−t)v(y, t) dt.

It is immediate that

(Ĝ(s)v)(y, u) = (1− u)(B̂(s)v)(y, u). (3.1)
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Suppose that δ > ε > 0 are fixed. Let v ∈ Fδ,η(Y ϕ). Let (y, u), (y′, u) ∈ Ỹj, j ≥ 1.
Then

|V̂ (s)(y, u)| ≤
∫ ϕ(y)

0

e−a (ϕ(y)+u−t)|v|δ,∞ eδt dt� eδϕ(y)|v|δ,∞

and so |1Yj V̂ (s)|∞ � eδ|1Yjϕ|∞|v|δ,∞.
Next, suppose without loss that ϕ(y′) ≤ ϕ(y). Then

V̂ (s)(y, u)− V̂ (s)(y′, u) = J1 + J2 + J3

where

J1 =

∫ ϕ(y)

0

(e−s(ϕ(y)+u−t) − e−s(ϕ(y′)+u−t))v(y, t) dt,

J2 =

∫ ϕ(y)

0

e−s(ϕ(y′)+u−t)(v(y, t)− v(y′, t)) dt,

J3 =

∫ ϕ(y)

ϕ(y′)

e−s(ϕ(y′)+u−t)v(y′, t) dt.

For notational convenience we suppose that a ∈ (−ε, 0) since the range a ≥ 0 is
simpler. Using (2.1),

|J1| ≤
∫ ϕ(y)

0

eε(|1Yjϕ|∞+1−t)|s||ϕ(y)− ϕ(y′)||v|δ,∞ eδt dt

� |s|ϕ(y)eδ|1Yjϕ|∞ d(Fy, Fy′)η|v|δ,∞ � |s|e2δ|1Yjϕ|∞ d(Fy, Fy′)η|v|δ,∞,

|J2| ≤
∫ ϕ(y)

0

eε(|1Yjϕ|∞+1−t)|v|δ,η eδtd(y, y′)η dt� eδ|1Yjϕ|∞ d(y, y′)η|v|δ,η,

|J3| ≤
∫ ϕ(y)

ϕ(y′)

eε(|1Yjϕ|∞+1−t)|v|δ,∞ eδt dt� e2δ|1Yjϕ|∞|v|δ,∞ d(Fy, Fy′)η.

Hence
|V̂ (s)(y, u)− V̂ (s)(y, u)| � |s|e2δ|1Yjϕ|∞‖v‖δ,η d(Fy, Fy′)η.

Now, for (y, u) ∈ Ỹ ,

(B̂(s)v)(y, u) = (R̃V̂ (s))(y, u) =
∑

jg(yj)V̂ (s)(yj, u),

where yj is the unique preimage of y under F |Yj. It follows from the estimates for

V̂ (s) together with (2.3) that

‖B̂(s)v‖η � |s|
∑

jµ(Yj)e
2δ|1Yjϕ|∞‖v‖δ,η.

Shrinking δ, the desired estimate for B̂ follows from (2.2). Finally, the estimate for

Ĝ follows from (3.1).
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Proposition 3.9
∫
Ỹ
B̂(0)v dµ̃ = ϕ̄

∫
Y ϕ
v dµϕ for v ∈ L1(Y ϕ).

Proof By the definition of B̂,∫
Ỹ

B̂(0)v dµ̃ =

∫
Ỹ

∫ ∞
0

Lt(1∆tv) dt dµ̃ = ϕ̄

∫ ∞
0

∫
Y ϕ
Lt(1∆tv) dµϕ dt

= ϕ̄

∫ ∞
0

∫
Y ϕ

1∆tv dµ
ϕ dt = ϕ̄

∫
Y ϕ

∫ ∞
0

1{ϕ−u<t<ϕ−u+1}v dt dµ
ϕ = ϕ̄

∫
Y ϕ
v dµϕ,

as required.

Lemma 3.10 Write s = a+ ib ∈ C. There exists ε > 0, δ > 0, m2 ≥ 0, C > 0 such
that

(a) s 7→ L̂(s) : F0
δ,η(Y

ϕ)→ Fδ,η(Y ϕ) is analytic on {|a| < ε};

(b) s 7→ L̂(s) : Fδ,η(Y ϕ) → Fδ,η(Y ϕ) is analytic on {|a| < ε} except for a simple
pole at s = 0;

(c) ‖L̂(s)v‖δ,η ≤ C|b|m2‖v‖δ,η for |a| ≤ ε, |b| ≥ 1, v ∈ Fδ,η(Y ϕ).

Proof Recall that

L̂ = ÂT̂ B̂ + ÂĜ+ ÂĤ + Ê, T̂ = Û(I − R̂)−1

where Û , Â, B̂, Ĝ, Ĥ and Ê are analytic by Propositions 3.2, 3.7 and 3.8. Hence
part (b) follows immediately from Lemma 3.1(b). Also, part (c) follows using
Lemma 3.1(c).

By Proposition 3.9, B̂(0)(F0
δ,η(Y

ϕ)) ⊂ F0
η (Ỹ ). Hence the simple pole at s = 0

for (I − R̂)−1B̂ disappears on restriction to F0
δ,η(Y

ϕ) by Lemma 3.1(a). This proves
part (a).

3.3 Moving the contour of integration

Proposition 3.11 Let m ≥ 1. Let v ∈ Fδ,η,m(Y ϕ) with good support. Then L̂(s)v =∑m−1
j=0 (−1)js−(j+1)∂jt v + (−1)ms−mL̂(s)∂mt v for a > 0.

Proof Recall that supp v ⊂ {(y, u) ∈ Y ϕ : u ∈ [r, ϕ(y) − r]} for some r > 0. For
h ∈ [0, r], we can define (Ψhv)(y, u) = v(y, u− h) and then (Ψhv) ◦ Fh = v.

Let w ∈ L∞(Y ϕ) and write ρv,w(t) =
∫
Y ϕ
v wt dµ

ϕ where wt = w ◦ Ft. Then for
h ∈ [0, r],

ρv,w(t+ h) =

∫
Y ϕ
v wt ◦ Fh dµϕ =

∫
Y ϕ

(Ψhv) ◦ Fhwt ◦ Fh dµϕ =

∫
Y ϕ

Ψhv wt dµ
ϕ.
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Hence h−1(ρv,w(t+ h)− ρv,w(t)) =
∫
Y ϕ
h−1(Ψhv − v)wt dµ

ϕ so

ρ′v,w(t) = −
∫
Y ϕ
∂tv wt dµ

ϕ = −
∫
Y ϕ
∂tv w ◦ Ft dµϕ = −ρ∂tv,w(t).

Inductively, ρ
(j)
v,w(t) = (−1)jρ∂jt v,w

(t).

Now
∫
Y ϕ
L̂(s)v w dµϕ =

∫∞
0
e−st

∫
Y ϕ
Ltv w dµ

ϕ dt =
∫∞

0
e−stρv,w(t) dt, so repeat-

edly integrating by parts,∫
Y ϕ
L̂(s)v w dµϕ =

m−1∑
j=0

s−(j+1)ρ(j)
v,w(0) + s−m

∫ ∞
0

e−stρ(m)
v,w (t) dt

=
m−1∑
j=0

(−1)js−(j+1)ρ∂jt v,w
(0) + (−1)ms−m

∫ ∞
0

e−stρ∂mt v,w(t) dt

=

∫
Y ϕ

m−1∑
j=0

(−1)js−(j+1)∂jt v w dµ
ϕ + (−1)ms−m

∫ ∞
0

e−stρ∂mt v,w(t) dt.

Finally,
∫∞

0
e−stρ∂mt v,w(t) dt =

∫
Y ϕ
L̂(s)∂mt v w dµ

ϕ and the result follows since w ∈
L∞(Y ϕ) is arbitrary.

We can now estimate ‖Ltv‖δ,η.

Corollary 3.12 Under the assumptions of Theorem 2.3, there exists ε > 0, m3 ≥ 1,
C > 0 such that

‖Ltv‖δ,η ≤ Ce−εt‖v‖δ,η,m3 for all t > 0

for all v ∈ F0
δ,η,m3

(Y ϕ) with good support.

Proof Let m3 = m2 + 2. By Lemma 3.10(a), L̂(s) : F0
δ,η,m3

(Y ϕ) → Fδ,η(Y ϕ) is
analytic for |a| ≤ ε. The alternative expression in Proposition 3.11 is also analytic on
this region (the apparent singularity at s = 0 is removable by the equality with the

analytic function L̂). Hence we can move the contour of integration to s = −ε + ib
when computing the inverse Laplace transform, to obtain

Ltv =

∫ ∞
−∞

est
(m3−1∑

j=0

(−1)js−(j+1)∂jt v + (−1)m3s−m3L̂(s)∂m3
t v
)
db

= e−εt
m3−1∑
j=0

(−1)j∂jt v

∫ ∞
−∞

eibts−(j+1) db+ (−1)m3e−εt
∫ ∞
−∞

eibts−m3L̂(s)∂m3
t v db.

The final term is estimated using Lemma 3.10(b,c):∥∥∥∫ ∞
−∞

eibts−m3L̂(s)∂m3
t v db

∥∥∥
δ,η
�
∫ ∞
−∞

(1+|b|)−(m2+2)(1+|b|)m2‖∂m3
t v‖δ,η db� ‖v‖δ,η,m3 .
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Clearly, the integrals
∫∞
−∞ e

ibts−(j+1) db converge absolutely for j ≥ 1, while the in-
tegral for j = 0 converges as an improper Riemann integral. Hence altogether we
obtain that ‖Ltv‖δ,η � e−εt‖v‖δ,η,m3 .

For the proof of Theorem 2.3, it remains to estimate ‖∂uLtv‖δ,η. Recall that the
transfer operator R0 for F has weight function g. We have the pointwise formula
(Rk

0v)(y) =
∑

Fky′=y gk(y
′)v(y′) where gk = g . . . g ◦ F k−1. Let ϕk =

∑k−1
j=0 ϕ ◦ F j.

Proposition 3.13 Let v ∈ L1(Y ϕ). Then for all t > 0, (y, u) ∈ Y ϕ,

(Ltv)(y, u) =

[t/2]∑
k=0

∑
Fky′=y

gk(y
′)1{0≤u−t+ϕk(y′)<ϕ(y′)}v(y′, u− t+ ϕk(y

′)).

Proof Recall that the roof function ϕ is bounded below by 2. The lap number
Nt(y, u) ∈ [0, t/2]∩N is the unique integer k ≥ 0 such that u+t−ϕk(y) ∈ [0, ϕ(F ky)).
In particular, Ft(y, u) = (FNt(y,u)y, u+ t− ϕNt(y,u)(y)). For w ∈ L∞(Y ϕ),∫

Y ϕ
Lt(1{Nt=k}v)w dµϕ =

∫
Y ϕ

1{Nt=k}v w ◦ Ft dµϕ

= ϕ̄−1

∫
Y

∫ ϕ(y)

0

1{0≤u+t−ϕk(y)<ϕ(Fky)}v(y, u)w(F ky, u+ t− ϕk(y)) du dµ

= ϕ̄−1

∫
Y

∫ ϕ(Fky)

0

1{0≤u−t+ϕk(y)<ϕ(y)}v(y, u− t+ ϕk(y))w(F ky, u) du dµ.

Writing vut,k(y) = 1{0≤u−t+ϕk(y)<ϕ(y)}v(y, u− t+ ϕk(y)) and wu(y) = w(y, u),∫
Y ϕ
Lt(1{Nt=k}v)w dµϕ = ϕ̄−1

∫ ∞
0

∫
Y

1{u<ϕ◦Fk}v
u
t,k w

u ◦ F k dµ du

= ϕ̄−1

∫ ∞
0

∫
Y

1{u<ϕ}R
k
0v

u
t,k w

u dµ du =

∫
Y ϕ

(Rk
0v

u
t,k)(y)w(y, u) dµϕ.

Hence,

(Ltv)(y, u) =

[t/2]∑
k=0

(Lt(1{Nt=k}v)(y, u) =

[t/2]∑
k=0

(Rk
0v

u
t,k)(y).

The result follows from the pointwise formula for Rk
0 .

Proof of Theorem 2.3 Let m = m3+1. By Corollary 3.12, ‖Ltv‖δ,η � e−εt‖v‖δ,η,m.
Recall that ∂u denotes the ordinary derivative with respect to u at 0 < u < ϕ(y)

and denotes the appropriate one-sided derivative at u = 0 and u = ϕ(y). Since v
has good support, the indicator functions in the right-hand side of the formula in
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Proposition 3.13 are constant on the support of v. It follows that ∂uLtv = Lt(∂uv).
By Corollary 3.12,

‖∂uLtv‖δ,η = ‖Lt(∂uv)‖δ,η � e−εt‖∂uv‖δ,η,m3 ≤ e−εt‖v‖δ,η,m.

Hence, ‖Ltv‖δ,η,1 � e−εt‖v‖δ,η,m as required.
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tions.
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