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Abstract

Dionne and Golubitsky [10] consider the classification of planforms
bifurcating (simultaneously) in scalar PDEs that are equivariant with
respect to the Euclidean group in the plane. In particular, those
planforms corresponding to isotropy subgroups with one-dimensional
fixed-point space are classified.

Many important Euclidean-equivariant systems of PDEs essen-
tially reduce to a scalar PDE, but this is not always true for gen-
eral systems. We extend the classification of [10] obtaining precisely
three planforms that can arise for general systems and do not exist
for scalar PDEs. In particular, there is a class of one-dimensional
‘pseudoscalar’ PDEs for which the new planforms bifurcate in place of
three of the standard planforms from scalar PDEs. For example the
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usual rolls solutions are replaced by a nonstandard planform called
anti-rolls. Scalar and pseudoscalar PDEs are distinguished by the
representation of the Euclidean group.

1 Introduction

Systems of PDEs such as the Navier-Stokes equations, the Boussinesq equa-
tions (modelling the planar Bénard problem), the Kuramoto-Sivashinsky
equation and reaction-diffusion equations have Euclidean symmetry when
posed on the whole of R". A common approach to such systems of PDEs
is to search for spatially-periodic solutions (often called planforms), for an
overview see Cross and Hohenberg [7]. In the specific case of the pla-
nar Bénard problem, see for example Busse [5], Schliiter et al [17] and
Kirchgéssner [13].

In such systems of PDEs, steady-state spatially-periodic solutions are
found to bifurcate as a ‘trivial’ Euclidean-invariant solution loses (linear)
stability. An important but intractable problem is to classify such bifurcat-
ing solutions. However a large subclass of these solutions has been classified
in Dionne and Golubitsky [10] for n = 2. (For the case n = 3, see Dionne [9].)
An important tool in equivariant bifurcation theory is the so-called equiv-
ariant branching lemma, see for example [12]. This lemma guarantees the
existence of equilibria possessing certain symmetries (the isotropy subgroup
of the solution) provided a certain algebraic criterion is satisfied. Thus the
idea in [10] is to classify those solutions whose existence is guaranteed by
the equivariant branching lemma. Borrowing some terminology from [11]
we refer to such isotropy subgroups as azial and the corresponding spatially
periodic solutions as axial planforms.

The problem of classifying axial planforms now becomes an algebraic
one. Note that the resulting classification is partial since it is well known
that in general there may exist additional solutions whose existence does not
follow from the equivariant branching lemma. Nevertheless, the axial plan-
forms include the usual rolls, rectangles, simple squares and simple hexagons.
Moreover the methods in [10] lead to new solutions: squares, anti-squares
and hexagons (see also [13]). (This terminology is due to [10]. Tradition-
ally, simple squares for example were called squares. The discovery of more
complicated square solutions necessitates the change in terminology.)

There are two main observations in this paper. The first observation is



that there are Euclidean-equivariant systems of PDEs in the plane for which
the classification in [10] is not appropriate. We prove that are precisely ten
different axial planforms: the seven obtained by [10] and three new planforms
which we call anti-rolls, simple anti-squares, and simple oriented hexagons.
These three planforms are analogous to, but different from, rolls, simple
squares and simple hexagons, see Figures 1, 2 and 3.

The second observation concerns the realization of these planforms in
Euclidean-equivariant PDEs. There is a reduction process (which we do not
attempt to make precise) whereby many PDEs, including those in the open-
ing paragraph when n = 2, reduce to a one-dimensional scalar PDE in the
plane. In particular, the seven axial planforms obtained by [10] exist simul-
taneously for any system of PDEs that reduces to a scalar PDE. However,
some Euclidean-equivariant systems of PDEs reduce to a second class of one-
dimensional PDEs which we call pseudoscalar. Again there exist seven axial
planforms for such PDEs, but the standard rolls, simple squares and simple
hexagons are replaced by the three new planforms.

In general, a Euclidean-equivariant system of PDEs need not reduce ei-
ther to a scalar or a pseudoscalar PDE and we may then obtain a different
combination of axial planforms bifurcating simultaneously. A description of
the possible combinations is beyond the scope of this paper. However we
prove, for arbitrary Euclidean-equivariant systems of PDEs, that no further
axial planforms are possible other than the ten planforms that have been
mentioned.

Both scalar and pseudoscalar PDEs are one-dimensional Euclidean-
equivariant PDEs and are posed on a function space consisting of functions
u : R? — R. The distinction lies in the fact that the PDEs are equivari-
ant with respect to different representations of the Euclidean group. In the
scalar case, an isometry ¢ acts on a function u by transforming the domain
variables in R? in the standard way. In symbols

u(@) = u(@™" (z)).

The pseudoscalar action is the same when ¢ is a rotation or a translation but
if ¢ is a reflection the action is given by

u(@) = —u(¢™'(z)).

At first glance, this action might seem quite artificial. However on a purely
theoretical level, the scalar and pseudoscalar actions are on an equal footing.



Moreover, it transpires that the two-dimensional Navier-Stokes equations
reduces to a pseudoscalar PDE rather than a scalar PDE.

Dionne and Golubitsky [10, Theorem 2.3] prove that under reasonable
hypotheses, scalar Euclidean-equivariant PDEs in the plane (and more gener-
ally, systems of PDEs that reduce to such a scalar PDE) undergoing steady-
state bifurcation from a trivial solution admit simultaneously branches of
axial planforms corresponding to each of the following:

1. Rolls, symmetric pitchfork

Rectangles (a continuum), symmetric pitchfork
Simple squares, symmetric pitchfork

Simple hexagons, transcritical

Squares (countably many), symmetric pitchfork
Anti-squares (countably many), symmetric pitchfork
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Hexagons (countably many), transcritical

We show that, under the same hypotheses as in [10], steady-state bifur-
cation for pseudoscalar PDEs in the plane leads to simultaneous bifurcation
of the following axial planforms:

1. Anti-rolls, symmetric pitchfork

Rectangles (a continuum), symmetric pitchfork
Simple anti-squares, symmetric pitchfork

Simple oriented hexagons, symmetric pitchfork
Squares (countably many), symmetric pitchfork
Anti-squares (countably many), symmetric pitchfork

NS Ok W

Hexagons (countably many), asymmetric pitchfork

It is interesting to observe that in the pseudoscalar case there are no longer
any axial planforms bifurcating transcritically. (See Subsection 3.3 for an
explanation of terminology such as symmetric and asymmetric pitchfork.
Roughly speaking, a symmetric pitchfork consists of two half-branches of
equilibria that are related by symmetry. An asymmetric pitchfork consists
of two half-branches bifurcating in the same direction but not related by
symmetry.)

At present there appears to be no physical examples of primary steady-
state bifurcation to nonstandard planforms. We note that the issues discussed
in this paper find a natural context in secondary bifurcations in magnetic
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dynamo problems, see Bosch Vivancos et al [3] (indeed it was this work that
motivated this paper). However pseudoscalar PDEs do arise naturally in
theoretical physics. Moreover, there are much-studied PDEs in which the
basic solution, called the Kolmogorov flow, is a nonstandard planform. We
note that the distinction between standard and nonstandard planforms as
depicted in Figures 1, 2 and 3 is quite natural when seen from the viewpoint
of fluid dynamics. These points are discussed in Section 2. Also we show how
pseudoscalar PDEs give rise to the new planforms, contrasting these results
with the standard results for scalar PDEs and their planforms.

The remainder of the paper is concerned with extending the classifica-
tion in [10] and so obtaining a complete description of axial planforms for
Euclidean-equivariant systems of PDEs in the plane. In Section 3 we describe
the formulation of the classification as an algebraic problem, largely follow-
ing [10]. Then in Section 4 we recall the classification in [10] for scalar PDEs
while in Section 5 we obtain the analogous classification for pseudoscalar
PDEs. Finally, in Section 6, we prove that for general Euclidean-equivariant
systems of PDEs there are no further axial planforms other than those that
arise for scalar and pseudoscalar PDEs.

2 New planforms in the plane

In this section we give a concrete illustration of how nonstandard planforms
arise in Euclidean-equivariant systems of PDEs in the plane. In order to
fix ideas we begin with a simple scalar PDE known as the Swift-Hohenberg
equation [7] and recall how this leads to standard planforms such as rolls
solutions. Then we make a slight modification to the Swift-Hohenberg equa-
tion but leaving the linear terms unchanged. The new equation is called a
pseudoscalar equation and the branching for such equations is analogous to
that for scalar equations — except that the symmetries of the bifurcating
solutions are changed. For example, the standard planform rolls is replaced
by a new nonstandard planform that we call anti-rolls.

We go on to discuss how pseudoscalar equations arise naturally in theo-
retical physics. In particular, the standard reduction of the two-dimensional
Navier-Stokes equations leads not to a scalar PDE but to a pseudoscalar
PDE. Moreover, the Kolmogorov flows associated to certain symmetry-
breaking forcing terms are nonstandard planforms.



(a) A scalar PDE and rolls solutions
The Swift-Hohenberg equation is given by
Ou = M — (A +1)%u + fu’ — v?, (2.1)

where u : R? — R. Here A € R is the bifurcation parameter and 3 € R.
We denote points in the plane by z = (z1,z5) € R%. Let E(2) denote the
Euclidean group acting on the plane by translation, rotation and reflection.
The PDE is equivariant under the action of E(2) defined by

6-u(z) = u(¢™z), ¢€EQ). (2.2)

Indeed equivariance with respect to this action of E(2) may be taken as the
definition of a scalar E(2)-equivariant PDE. We note that often § is taken
to be zero. We demand that 3 # 0 so that the PDE is not equivariant under
the transformation v — —u.

A steady-state bifurcation occurs when the trivial solution u = 0 loses
stability as A varies. The linear stability of the trivial solution is computed
by looking for solutions of the linear equation

Lyu=Xu— (A+1)%u=0,

in the form of Fourier modes, or wave functions, u = e**. The vector k € R?
is called the wave vector and |k| is the wave number. Substituting this form
of u into the equation L) = 0 yields the ‘neutral stability curve’

A— (k22— 12 =0.

In particular, the spectrum of L, consists of the real interval (—oo, A). It
follows from the principle of linear stability that the solution u = 0 is asymp-
totically stable for A < 0 and unstable for A > 0. Observe that the ‘most
unstable’ wave functions are those with critical wave number |k| = 1. Hence
there is a circle of critical wave vectors. The corresponding wave functions
are also called critical.

We search for branches of planforms bifurcating from the trivial solution
as A passes through zero. Since wave functions with wave number bounded
away from 1 are damped, it is usual to look for solutions consisting of sums
of critical wave functions. The simplest of such planforms is the rolls solution
which at leading order has the form

u(z) = a(e™ +e ), a> 0.
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Substituting v into the full equations and ignoring terms consisting of non-
critical wave functions we obtain the branching equation

Aa —3a® = 0.
This yields a (symmetric) pitchfork bifurcation of rolls solutions,

u(z) = £4/A/3(e + 7)) 4 O(X*?). (2.3)

(We note that this formal analysis can be completely justified by a center
manifold or Liapunov-Schmidt reduction.)

(b) A pseudoscalar equation and anti-rolls solutions

Now we make an at first sight insignificant change to the Swift-Hohenberg
equation: we replace the quadratic term Su? by 8Q(u) where

Q(u) = Oy, (Audz,u) — Opy (Audy, u).

(In the next subsection we shall see that this quadratic term is not as unnat-
ural as it first appears.) Hence we obtain the modified PDE

O = Au— (A +1)%u + BQ(u) — u®. (2.4)

The first thing to notice is that since the linear terms are unchanged, the lin-
ear stability analysis is unaltered. Moreover the solutions that we previously
called rolls bifurcate exactly as before.

In fact things have changed but in a subtle manner. The PDE is no longer
equivariant with respect to the action of E(2) given in equation (2.2). It is
clear that equivariance under translations in E(2) is preserved. Rotation-
equivariance is also preserved. However if k is a reflection, for example the
reflection acting on z € R? as (z1,22) — (—1,72), then the PDE (2.4) is
equivariant with respect to the action u(z) — —u(kz). To sum up, the PDE
is E(2)-equivariant if we define the action of E(2) as follows:

u(¢p™'z), ¢ € E(2) a translation or a rotation.
¢ u(z) = { —u(¢™'z), ¢ € E(2) a reflection. (2:5)
We say that a PDE is pseudoscalar if it is E(2)-equivariant with the action
of E(2) as defined in (2.5).



Now consider the symmetry properties of the solution branch (2.3) viewed
as a rolls solution for the scalar PDE (2.1). Rolls are invariant under discrete
translation by multiples of 27 parallel to the z;-axis. The corresponding
subgroup of E(2) is isomorphic to the integers Z. In addition, there is the
continuous group (isomorphic to R) of all translations parallel to the z,-axis.
Hence, the translation symmetry of rolls is given by the subgroup Z xR. The
subgroup of rotations and reflections that leaves the rolls solution invariant is
isomorphic to Dy, rotation through 7 and reflection in each of the coordinate

axes. The full symmetry group of rolls can be represented by the subgroup
of E(2)

D, + (Z x R).

(We shall say more about subgroups of E(2) in Section 3.1.)

Now consider the same solution but as a planform for the pseudoscalar
PDE (2.4). Invariance under translations and rotations is unchanged, but
there are no reflections that leave the planform invariant. It is necessary to
combine the reflections in Dy with a translation by m parallel to the x1-axis.
The symmetries are therefore given by

D; + (Z x R),

where I, is a ‘twisted’ version of Dy. We call these planforms anti-rolls.

It is not completely straightforward to see how the differences in the
symmetry of rolls and anti-rolls are manifested in physical space. This is due
to the fact that at first order the rolls and anti-rolls that we have computed
are identical. This is no longer the case for systems of PDEs. Systems are
discussed later on in this section and the corresponding visualizations of rolls
and anti-rolls are strikingly different, see Figure 1.

There is a simple reason why we cannot distinguish between rolls and
anti-rolls at first order in scalar and pseudoscalar PDEs. Odd order terms
of a PDE commute with the transformation v +— —wu. Given this addi-
tional symmetry, there is no longer any distinction between the actions (2.2)
and (2.5). In particular, any linear scalar PDE is automatically pseudoscalar
and vice versa. (It should now be clear why we demand § # 0 in (2.1).)

If instead of rolls we look for (simple) square solutions, we obtain the
branching equation

U(x)::t /)\/3(ei:1:1 +e—i$1+ei.’L‘2+e—iz‘2)+O(}\3/2).
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As before, we obtain a standard planform simple squares and a nonstandard
planform simple anti-squares with symmetries D, + Z* and D, + 7Z? respec-
tively, see Figure 2. The discrete subgroup (or lattice) of translations Z*
consists of translation by 27 parallel to each of the coordinate axes.

The situation for hexagons is slightly different. In the scalar PDE (2.1)
the branching equation is determined at quadratic order and so we obtain a
transcritical branch

u(x) — (—/\/Qﬂ)(eim + ez’(\/gm—mz)/Q + ei(—\/ﬁxl—xz)p + C.C.) + O()\Q),

where c.c. denotes complex conjugates. However, a calculation shows that in
the pseudoscalar PDE (2.4) the branching is determined at cubic order (even
though there are nontrivial quadratic terms) and we have the supercritical
branch

u(@) = /A3(e7 4+ VI | VIR ) L O(N2),

The standard planform simple hezagons has symmetries Dg + Z?. However
the nonstandard planform does not have symmetry Dy, + Z? as might be
expected, but Zg + Z%. It is no longer possible to cancel out the extra minus
sign coming from the pseudoscalar action of the reflections. We call the
nonstandard planform in this case simple oriented hexagons, see Figure 3.

Remark 2.1 The quadratic term @(u) in the pseudoscalar PDE (2.4) can
be written as

0(Au) Ou  0(Au) Ou

Qu) = or, O0ry  Oxo Ox,

If u is a sum of critical wave functions then Au = —u and it follows that
Q(u) = 0. In particular, all planforms undergo pitchfork bifurcations.

It remains to show that these results do not depend on the particular
quadratic term that we have used. In fact a tedious calculation shows that
Q(u) is a combination of terms such as

O(A™u) 0(A%u)  O(A"u) I(Au)

Q(U) - 8951 8$2 B 8952 8331 ’

where 7 > s > 0. (We have taken the simplest case r = 1, s = 0.) The
same argument as before shows that Q(u) = 0 if u is a sum of critical wave
functions.



(c) Pseudoscalar equations in physics

Partial differential equations for pseudoscalar fields occur naturally in
physics. For example, it is a well known fact that the two-dimensional
Navier-Stokes equations reduce to a single PDE for a quantity called the
stream function. It transpires that this PDE is pseudoscalar.

The Navier-Stokes equations (in the plane) have the form

ovV+(V-V)V = vVAV+VP+F (2.6)

V-V =0
where V : R? — R? is the velocity of an incompressible fluid, P : R* — R
is the pressure, F : R? — R? is a force which may depend on V, and v is

the kinematic viscosity of the fluid. With the possible exception of F, this
system is equivariant under the standard action of E(2) on vector fields

¢-V(r)=¢V(¢'z), ¢ € E(2) arotation or a reflection. (2.7)
¢-V(r)=V(p~'z), ¢ €E(2)a translation.

We shall assume that F, and hence the system (2.6), is equivariant with re-

spect to this action of E(2). (Strictly speaking, the PDE (2.6) is an equation

in V and P and we should include the scalar action of E(2) on P as in (2.2).

However this is of no consequence since P is eliminated shortly.)
The stream function 1 is defined by the equation

oV, 0V,
Ay = curl(V) = (9—33? - 3—:E;

Conversely, given 1 we can recover a divergence-free vector field V with
stream function v from the equations

o _ oY
afg, Vé N 81‘1 ’

A calculation shows that if V transforms under E(2) as a vector field,
then curl(V) transforms as a pseudoscalar. More precisely,

¢-curl(V) =curl(¢- V), ¢ € E(2),

where the actions of E(2) on the left-hand and right-hand sides are those
in (2.5) and (2.7) respectively. Hence it follows from elementary vector cal-
culus that the system (2.6) reduces to the single pseudoscalar PDE

Oy A + curl[AyY V] = vA%y + curl(F). (2.8)

Vi=
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Note that the quadratic term curl[Ay V] is precisely the term Q(u) in the
pseudoscalar equation (2.4). (It is traditional to use 1 rather than u for the
stream function curl(V).)

We can proceed as in the previous subsection to compute branches of anti-
rolls, simple anti-squares and simple oriented hexagons. (But note by Re-
mark 2.1 that the forcing term F must include cubic terms for nondegenerate
branching to occur.) Again these nonstandard planforms are indistinguish-
able from the standard planforms for scalar PDEs at first order. However the
difference becomes significant if we return to the vector field V from which 1
was derived. For example, the rolls solution 1 (z) = a(e’®* + e~**1) becomes
V(z) = a(0,ie®® —ie *1). Applying the translation z; — z; — /2 we can
work with the more convenient representative V(z) = a(0, et +e 1), The
visualization of rolls and anti-rolls in Figure 1 is obtained by plotting the
planar vector fields

V(z) = (e" +e 1,0, V(z) = (0, +e ).

Only the second of these vector fields corresponds to a solution of the two-
dimensional Navier-Stokes equations. The first vector field can be viewed as
the horizontal section of a solution of the three-dimensional Navier-Stokes
equations for a fluid in a horizontally unbounded domain with prescribed
conditions at the upper and lower boundaries (as for example in Rayleigh-
Bénard convection). The planforms in Figure 1 and also in Figures 2 and 3
thus have a natural interpretation in terms of the flow of an incompressible
fluid — the standard planforms correspond to the flow of a ‘real’ three-
dimensional fluid. In two dimensions, there is not room to flow in this way,
and so a two-dimensional fluid flow would correspond to a nonstandard plan-
form. On the other hand, a three-dimensional fluid could in principle corre-
spond to a nonstandard planform but clearly does not behave that way (at
least for planar convection problems)!

Although physical fluid flows must correspond to standard rather than
nonstandard planforms, there are a priori no such restrictions on physical
objects that are not fluids. Thus pseudoscalar equations and nonstandard
planforms may well arise in applications that do not come from fluid dynam-
ics.

Similar observations apply in problems with spherical symmetry. In such
problems, steady-state bifurcation leads generically to a (2¢+ 1)-dimensional
O(3)-equivariant system of ODEs where ¢ is any nonnegative integer. The
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action of SO(3) is irreducible and is the action on spherical harmonics of
degree £. In addition, the element —I in O(3) acts as plus or minus the
identity. See Chossat et al [6] for details. Many physical problems lead to
the so-called ‘natural’ representations where —I acts as (—I)‘. However,
it can be shown that the two-dimensional Navier-Stokes equations reduces
instead to the ‘unnatural’ representations where —I acts as (—I)“*!. Again
we expect that unnatural representations of O(3) may arise in applications
that do not come from fluid dynamics.

(d) The Kolmogorov flow

We have shown that the two-dimensional Navier-Stokes equations reduces to
a pseudoscalar equation provided the forcing term F is appropriately equiv-
ariant. Although this situation does not appear to have been considered in
the literature, there has been much interest in the case when F is partially
equivariant, but breaks most of the symmetry, see for example [14], [1] and
the references therein.

Consider the force F(z) = (sinz,,0) (after normalization). The corre-
sponding one-dimensional PDE has a ‘trivial’ solution with stream function
¥(z) = —v 'coswy. This solution is called the Kolmogorov flow associ-
ated with this particular forcing. The velocity representation is V(z) =
(—v~!sin sy, 0) so the solution is nothing other than anti-rolls. Similarly, if
we take the force F(z) = (sinzy, —sinz) then the associated Kolmogorov
flow has the symmetry of simple anti-squares.

These examples show that nonstandard planforms in two-dimensional sys-
tems have already been studied in the physics literature. However the fact
that the associated Kolmogorov flows in these cases are anti-rolls and sim-
ple anti-squares rather than rolls and simple squares appears to have been
overlooked. This is probably due to the fact that the distinction between
standard and nonstandard planforms is only at high order in the reduced
PDE for the stream function.

3 The algebraic formulation
By restricting to axial planforms, Dionne and Golubitsky [10] were able to

reduce the problem of classifying planforms to an algebraic problem. In this
section, we describe this reduction, largely following [10]. In Subsection 3.1
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we describe the class of representations of E(n) that we shall consider. Also
we consider the structure of the isotropy subgroups for these representations,
particularly for spatially periodic solutions. The analytic side of the problem
is considered in Subsection 3.2 and we describe the procedure for the classi-
fication of axial planforms. Branching of planforms occurs via three distinct
bifurcations: transcritical, symmetric pitchfork and asymmetric pitchfork.
This terminology is explained in Subsection 3.3.

It is worth pointing out where our exposition differs from that of [10].
It is well known that in searching for spatially periodic solutions with a
given spatial periodicity, it is is possible to reduce the noncompact group
of symmetries E(n) to a compact group I'. This is crucial for technical
reasons (such as applying the implicit function theorem) and we consider the
reduced problem in Subsection 3.2. However in general we work inside of
E(n) as much as possible. There are several advantages to this approach:

(i) The symmetries of spatially periodic solutions in physical space cor-
respond to noncompact isotropy subgroups of E(n). Moreover, the
connection with crystallographic groups becomes apparent. Another
point is that the procedure followed by [10] cannot distinguish anti-
rolls from rolls. (Here we are resisting the temptation to reduce from
E(2) to E(1).)

(ii) The I'-equivariant vector fields for the reduced problem need not extend
to E(n)-equivariant vector fields. A graphic illustration when n = 2
is provided by (nonsimple) hexagons which generically bifurcate trans-
critically in scalar PDEs but sub/supercritically in pseudoscalar PDEs.
There is a unique I'-equivariant quadratic which extends for the scalar
action of E(2) but not for the pseudoscalar action.

3.1 Isotropy subgroups and spatial periodicity

Consider the Euclidean group E(n) acting on R" in the usual way. We can
write E(n) as a semidirect product E(n) = O(n) + T(n) where O(n) is
the orthogonal group and T(n) = R" is the normal subgroup consisting of
translations. Let IT: E(n) — O(n) denote the natural projection.

A lattice in R" is defined to be a nontrivial discrete subgroup of R", hence
isomorphic to Z* for some p. The lattice is then said to be p-dimensional. For
our purposes it is more convenient to work with arbitrary closed subgroup of
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R" and to use the symbol £ to denote a closed subgroup. By the next well
known result, £ differs from a lattice only by a factor of R.

Proposition 3.1 Any closed subgroup L C R™ has the form L = ZP x RY.
The quotient R"™/L is compact if and only if p + ¢ = n in which case the
quotient is an r-torus T" with r = n — q.

If £ is a closed subgroup, we can define its dual
L'={keR" k-LteZforalleL},

(where we use the standard inner product on R"). It is clear that £* is also
a closed subgroup, in particular if £ = 7ZP x R? then £* =2 ZP x R" P79 If L
is an n-dimensional lattice, then so is £*. In this case £* is called the dual
lattice. More generally, £* is a lattice precisely when R"/L is compact.

Identifying T(n) with R", we let O(n) act in the usual way on T(n)
(indeed this is the action in the semidirect product description of E(n)).
Then we can define the holohedry of a closed subgroup £ C T(n)

H={A€O(n), Ale Lforall £ € L}.

This generalizes the usual notion of holohedry of a lattice. Note that H is a
closed (but not necessarily finite) subgroup of O(n) and that the holohedries
of £ and L£* coincide (since O(n) acts orthogonally). If £ is an n-dimensional
or (n — 1)-dimensional lattice, then H is finite.

Now suppose that v : R® — R™ is a continuous function. We define the
spatial periodicity of u to be

Ly, ={t € T(n), u(z+1t) =u(zr) for all x € R"}.

Clearly, L, is a closed subgroup of T(n). Denote the holohedry of £, by H,.
Let Z be the vector space of continuous functions u : R® — R™. There
are various ways that E(n) can act on Z depending on the value of m. We
shall restrict to a class of representations that includes those encountered in
applications.
First, let p : O(n) — GL(R™) denote a representation of O(n) on R™
and let ps denote the image of A € O(n) under p. Then for ¢ € E(n), set

(6 u)(@) = pa-u(¢™ (z)),
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where A = II(¢). This defines an action of E(n) on Z. Note that the action
on the domain R" is just the standard one and that T(n) acts trivially on
the range R™. The most commonly encountered actions on the range R™ are
as follows:

m =1 and p4 = I in scalar PDEs such as reaction diffusion equations
and the Kuramoto-Sivashinsky equation,

m = n and py = A in vector field PDEs such as the Navier-Stokes
equations.

The pseudoscalar case corresponds to m = 1 and py = det A.
The isotropy subgroup of u € Z is

I, ={¢ € E(n), ¢ -u=u}.
Theorem 3.2 (a) [, NT(n) = L,,
(b) 11(1,) C H,, and so I, C H, + T(n).

Proof Part (a) is immediate from the definitions. To prove part (b),
suppose that ¢ € I,. We can write ¢ = (A,t) where A € O(n) and ¢t € T(n).
It is more convenient to write ¢~! = (A, t). We show that A € H,. Since H,,
is a group it then follows that II(¢) = A~ € H, as required.

Since ¢ - u = u we compute that for each £ € L,

pau(Az+1t) = u(z)
= u(z+Y)
= pyu(A(x+0) +1)
= pilu(Az +t+ AL).

Setting y = Az + t, we have u(y + A¢) = u(y) and since y is arbitrary,
Al € L,. Hence A € H,. [ |

When L, is an n-dimensional lattice, that is £, = Z", Theorem 3.2
is simply stating that I, is a crystallographic group (see Armstrong [2] and
Miller [15] for information on crystallographic groups). The group J = II(1,)
is called the crystal class of I,. We are interested more generally in the case
where £, 2 ZP x R? and p + ¢ = n (so that T(n)/L, is compact). In this
case, we say that v is spatially periodic.
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In the crystallographic classification, it is necessary to identify certain
crystallographic groups — if only to make the classification finite! Such
identifications are too severe for our purposes, for example it makes sense to
talk about a continuum of rectangle planforms. Nevertheless it is convenient
to make two identifications. We classify only up to (i) conjugacy of I and (ii)
scaling of £. The first identification is standard: we classify conjugacy classes
of isotropy subgroups. This in particular implies that two closed subgroups
L, L' C T(n) are identified if one can be transformed into the other by an
element of O(n). However, we identify these subgroups also if one is a scaled
version of the other: there is a real number p # 0 such that

L={ut, teL)

In this case, we write £' = uL.

In general, suppose that I,I' C E(n) are closed subgroups and
I=H+L, I' = H + £'. We say that I and I’ are equivalent if I is
conjugate to H' 4+ pL' for some p # 0.

3.2 Fixed-point spaces and the equivariant branching
lemma

Here we follow for the most part [10, Subsection 1(a)]. Write the PDE for
steady solutions in (nonlinear) operator form between two suitably chosen
function spaces X and Y:

F:XxR—Y, F(u\ =0,

where A € R is a bifurcation parameter and u : R®™ — R™ (unlike [10] we
do not specify m = 1). Since the underlying PDE is Euclidean-equivariant,
we expect that the action of E(n) on Z described in the previous subsection
induces actions on X and Y and that F' is equivariant with respect to these
actions.

Suppose that there is a trivial solution v = 0 (so F(0,\) = 0). We in-
vestigate the bifurcation of solutions from the trivial solution as A passes
through 0 say. To overcome difficulties related to the noncompactness of
E(n), we restrict attention to spatially periodic solutions — this leads natu-
rally to a compact group of symmetries.

To find spatially periodic solutions, fix a lattice £ C T(n). More gener-
ally, we take £ to be any closed subgroup of T(n) such that T(n)/L = T" is
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a torus (so L 2 ZP x R? where p+ g =n, and r =n — q). Let X consist of
the functions uv € X that have isotropy at least £. In other words,

Xe={ue X, ulx+{) =u(z) for all £ € L}.
Then Euclidean equivariance of F' implies that F restricts to an operator
F: X xR—),. (3.9)

The largest subgroup of E(n) that preserves X is H + T(n) where H is the
holohedry of £. Since the normal subgroup £ acts trivially, we quotient out
to arrive at the compact group I' = H + T". Note that F' in equation (3.9)
is I'-equivariant.

If u € X; we can define the isotropy subgroup >, C I' to be

Yu={yerl, v -u=u}.

We have already defined the isotropy subgroup I, of u in E(n). It follows
from Theorem 3.2 that

Y.=1,/LC
and that I, can be recovered from X,. In the case £ = £, we have
Y.NT" =1. (3.10)

Such a subgroup X, C I' is said to be translation-free in [10].
Suppose that there is a steady-state bifurcation at A = 0 in (3.9), that is

U= ker(dF)()’o 7é {0}

The kernel U is [-invariant and branches of planforms may be found using
the equivariant branching lemma as follows. Fix a subgroup ¥ C I' and
compute dim Fixy(X) where the fized-point subspace is defined by

Fixp(X) ={u € U, ou =u for all 0 € ¥}.

In this notation, Xy = Fixy(L). The equivariant branching lemma states
that if dim Fixy(X) = 1 then generically there is a unique branch of steady-
state solutions to (3.9) with isotropy X.
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Since I' is compact, we can write U = U; @ --- @ U, as a direct sum
of I'-irreducible spaces. Then Fixy(X) = Fixy, (X) @ - - - @ Fixy,(X). When
dim Fixy (X) = 1 it follows that dim Fixy, (¥) = 1 for some U;. In particular,
U, is absolutely irreducible (the linear I'-commuting maps are real scalar mul-
tiples of the identity). Hence it is sufficient to consider absolutely irreducible
representations V' of I' for which

dim Fixy () = 1. (3.11)

Our aim in this paper is to classify the set of equivalence classes of axial
isotropy subgroups I C E(2), namely those isotropy subgroups corresponding
to spatially periodic steady-state solutions whose existence can generically
be deduced from the equivariant branching lemma. We shall proceed in the
following manner which is justified by the previous discussion.

(a) List (up to equivalence) the closed subgroups £ C T(2) with T" =
T(2)/L compact, 7 > 1 and in each case set I' = H + T" where H is
the holohedry of L.

(b) Enumerate the absolutely irreducible representations V' for I" that occur
in scalar and pseudoscalar PDEs.

(c) Classify (up to conjugacy) those isotropy subgroups X C T' that
are translation-free and axial (that is, they satisfy conditions (3.10)
and (3.11)).

(d) Prove that there are no further absolutely irreducible representations
for I other than those considered in (b).

The required (equivalence classes of) isotropy subgroups I can then be re-
covered from the isotropy subgroups ¥ classified in (c).

In the remainder of this subsection, we carry out step (a). Steps (b)
and (c) were performed for scalar PDEs in [10]. We recall these results in
Section 4. Then in Section 5 we carry out the corresponding procedure for
pseudoscalar PDEs. Step (d) is dealt with in Section 6.

As promised, we end this subsection with step (a). Up to a notion of
equivalence that is weaker than ours, there are five two-dimensional lattices,
see Armstrong [2]. In addition, we must consider the closed subgroup Z x R
(which we shall refer to as the roll lattice). This leads to the six closed sub-
groups listed in Table 1 (cf [10, Table 1]). Since we are more restrictive in our
definition of equivalence, we have continuous families of rhombic, rectangular
and oblique lattices.
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3.3 Types of branching

Suppose that I' is a compact Lie group acting on R" and that ¥ is an ax-
ial isotropy subgroup. Generically a branch of equilibria with isotropy X
will undergo either a transcritical bifurcation or a pitchfork (supercritical
or subcritical) bifurcation. The transcritical case occurs when there is a I'-
equivariant quadratic map @ : R" — R" such that Q|pixx) # 0. Otherwise,
the branch is a pitchfork. In this case, the branch consists of two ‘half-
branches’ of equilibria. These two halves may be related by equivariance, in
which case we say that the branch is a symmetric pitchfork. If the two halves
are unrelated by symmetry, the branch is an asymmetric pitchfork.

A sufficient and necessary, criterion for a symmetric pitchfork is that
there is an element v € T" that acts as —1 on Fix(X). More technically, the
normalizer N(X) of ¥ in I' acts on Fix(X). The quotient group N(X)/X
acts faithfully on Fix(X) and since dimFix(X) = 1 either N(X)/¥ = 1 or
N(X)/X =2 Zy. Symmetric pitchforks correspond to the case N(X)/X = Zs.

The above discussion is formalized in the following definition.

Definition 3.3 Suppose that X is an axial isotropy subgroup of I'.

(i) If there is a ['-equivariant quadratic @ : R" — R" such that
Q|rix(x) # 0 then X is transcritical.

(ii) If N(X)/%X 2 Z, then X is a symmetric pitchfork.

(iii) If ¥ is not transcritical and is not a symmetric pitchfork, then ¥ is an
asymmetric pitchfork.

Remark 3.4 (a) Possibilities (i), (ii) and (iii) all arise for the standard ac-
tion of D,, on R?, m > 3. If m is odd, there is a unique axial isotropy
subgroup and this is transcritical for m = 3 and an asymmetric pitchfork for
m > 5. If m is even, D, contains —I and all axial isotropy subgroups (there
are two of them) are symmetric pitchforks.

(b) Suppose that ¥ is an axial isotropy subgroup for two representations V;
and V, of I'. Then ¥ is a symmetric pitchfork for V; if and only if it is a sym-
metric pitchfork for V5 (since N(X)/% is independent of the representation
of I'). In contrast, ¥ may be transcritical for V; and an asymmetric pitchfork
for V4. An example is provided by (nonsimple) hexagons.

(c) The above discussion goes through for general actions of a group G on
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a vector space X (provided the branch of equilibria actually exists). In par-
ticular, Definition 3.3 makes sense in this generality and we will use this
terminology for infinite-dimensional E(2)-equivariant problems.

4 Planforms in scalar PDEs

Recall that a Euclidean-equivariant PDE is said to be scalar if it is posed on
a function space consisting of functions v : R® — R and the action of E(n)
on v is given by

(6 u)(@) = u(é™ ().

Dionne and Golubitsky [10] carried out the procedure described in the previ-
ous section for classifying axial planforms for scalar PDEs in the case n = 2.
It is these results that we describe in this section. (The case n = 3 can be
found in Dionne [9].)

Let £ be one of the closed subgroups of T(2) listed in Table 1. Associated
to £ we have the dual £*, the holohedry H, the torus 77 = T(2)/L, r =1
or r = 2, and the compact group I' = H + T". We give, for each £, a list
of I'-irreducible representations V' and the corresponding axial translation-
free subgroups ¥ C I'. (It transpires that all -irreducible representations
that arise in the context of scalar and pseudoscalar PDEs are absolutely
irreducible.)

To describe the irreducible representations we recall some notation
from [10]. First, if u is a scalar function on R? (real or complex valued),
we let I' act on u by (y-u)(z) = u(y 'z). For k € R? define the wave
function wy with wave vector k to be the complex-valued function

Wy (37) — e27rik-w'

Observe that wy(z + £) = wg(x) for all £ € L if and only if k € L*.
For k € L*, k # 0 define the two-dimensional space

Vi = {Re(zwy), 2 € C} 2 C.

Then T" acts irreducibly on V},. Moreover, V_, = V}, and the representations
of T" on V}, and V}s are distinct unless k = +&'.

Let S, consist of the vectors in L* of a fixed length ¢ > 0. Since £* is a
lattice, S, is finite (possibly empty). Define U to be the direct sum of the
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subspaces Vj, with & € S.. Then U is a finite-dimensional vector space, and
it is easily checked that H + T(2) acts on U. Moreover, £ acts trivially on U
so that there is an induced action of the compact group I' = H + 77 on U.

It follows from the construction of U as a sum of distinct T"-irreducibles
Vi, that if V' C U is ['-invariant, then

V=V @8 Vi, 2 C° (4.1)

for some set of wave vectors Ki,... , K, € L*. A computation shows that if
h € H, then h-Vj = Vj; and hence the space V in (4.1) is [-irreducible if and
only if H acts transitively on the set of 2s wave vectors {+K;,...,+K,}.
The orbits of H in S, are of size |H| or |[H|/2 (since H N SO(2) acts freely
on S.) and it follows that dimV = |H| or dimV = |H|/2.

It is now a relatively easy matter to list the irreducible representations
V of the form (4.1) for each £ in Table 1 and for each ¢ > 0. (In practice,
the value of ¢ is determined by the linear stability analysis around the trivial
solution; in the examples in Section 2 we had ¢ = 1. Then consider all lattices
of the form uL, where 4 > 0 and L is taken from Table 1. Our approach
of letting ¢ vary and fixing 4 = 1 is clearly equivalent, and leads to slightly
simpler arithmetic.)

An important simplification follows from the observation in [10] that it is
sufficient to consider only the translation-free irreducible representations.

Definition 4.1 A I'-invariant subspace V as in (4.1) is translation-free if T"
acts faithfully on V, that is there are no translations in 7" that fix all points
in V.

Clearly, if V' is not translation-free, then I' contains no translation-
free isotropy subgroups. Hence we can eliminate such representations V.
Translation-free representations are easily characterized and often easily rec-
ognized.

Proposition 4.2 If V in (4.1) is T'-invariant, then V is translation-free if
and only if the wave vectors Ky, ... , Ky generate L*.

Proof Let M* denote the lattice generated by Ki,..., K;. Then M* is
the dual of a closed subgroup M C T(2). Moreover, if we compute the
isotropy subgroup I, C E(2) of a point v € V, then we find that M C I, for
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all v. It follows that 3, = I,/L contains M /L for each v. Hence there are
nontrivial translations fixing every v if and only L is a proper subset of M
or, equivalently, M* is properly contained in L£*. |

The translation-free I'-irreducible representations V' of the form (4.1) are
listed in Table 2. Then, for each such V we list in Table 3 the (conjugacy
classes of) isotropy subgroups ¥ C I satisfying conditions (3.10) and (3.11).

Most of the work required to obtain Tables 2 and 3 appears in [10] (cf
Tables 2 and 3 in [10]). For more details, see [8]. The only differences are
that we include the roll lattice (as previously discussed) and we state the type
of branching (transcritical, symmetric pitchfork or asymmetric pitchfork) in
Table 3. To give a flavor of the required computations, we give the details
for these additional features.

The dual £* of the roll lattice is one-dimensional and (up to our notion of
equivalence — conjugacy plus scaling) we can choose as generator k; = (1, 0).
We have the compact group I' = Dy + T Let V = Vi, ®--- @ Vg, be I'-

irreducible where Ki,..., K, € L*. Then Dy must act transitively on the
vectors {£K;,..., 2K} so that s = 1 or s = 2. Now D, is generated by
the 2 x 2 matrices F' = ( (1) _(1) ) and —I. But F' fixes every vector in L*

so that s = 1. Hence the I'-irreducible representations are given by V' = Vi,
where K; = ak; for some integer o # 0. Since Vi, = V_g, we can take
a > 0.

Next, observe that the lattice generated by K; = ak; is the scaled dual
lattice aL*. By Proposition 4.2, Vk, is translation-free if and only if o = 1.
This accounts for the entry in Table 2.

We can write this unique translation-free I'-irreducible representation ex-
plicitly in the form

V = {ze?"hre 4 ge2mikiT € C}.
The action of I" on V = C is given by

—IEDQ 2=z
FeDy, : z—z
teT! @ z— ez 0<t<1

Next we compute the isotropy subgroups ¥ C I' satisfying (3.10) and (3.11).
Since we work with conjugacy classes of isotropy subgroups, we need only
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compute the isotropy subgroup ¥ of representatives of groups orbits of points
z € V. By applying a suitable transformation in 7" we can take z = a € R.
If a = 0, ¥ is the whole of " (which is not translation-free) but if a # 0, we
have ¥ = D, (which is translation-free). Moreover

Fixy(Dy) = {z € V, z real},

and has dimension one. Thus D, is axial and we obtain the entry in Table 3.

Finally, we verify the entries in the last column of Table 3. First we
observe that for many of the translation-free I'-irreducible representations
V in Table 2, there is an element of [' that acts as —Iy. For these repre-
sentations it is immediate that all axial isotropy subgroups are symmetric
pitchforks. For example, in the case of the square lattice we take the trans-
lation z +— (21 +1/2, 29+ 1/2). (It is precisely this translation that leads to
the restriction o + 4 odd for translation-free representations, else the trans-
lation acts trivially on V'.) The exception is the case of the hexagonal lattice.
Moreover it is easily checked that the quadratic equivariant Su? in the scalar
PDE (2.1) satisfies the condition in Definition 3.3(i) for the isotropy sub-
groups corresponding to the axial planforms simple hexagons and hexagons.

5 Planforms in pseudoscalar PDEs

In this section, we repeat the classification in Section 4 except that we now
work with pseudoscalar PDEs. The action of E(2) on a function u : R* — R
is given by

(6 u)(z) = (det A)u(¢™ (2)),

where A = TI(9).

The description of the translation-free I'-(absolutely) irreducible repre-
sentations V' in Table 2 is unchanged, but the actual action of I on V' can
be different — leading to different planforms as shown in Table 4.

Again we give the details for the roll lattice. Everything is unchanged
up the point where we describe the action of I' on V' = C. The translations
in T' and the rotation —I € D, act on z € V as before but the flip F
transforms z into —z. Again taking z = a € R we see that when a # 0
the isotropy subgroup Y does not contain F', but rather F' combined with
the translation ¢ = 1/2. Thus ¥ = Dy, the twisted group generated by
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(=1,0), (F,1/2) € D, + T?%. The group D, replaces the group D, as the
only isotropy subgroup satisfying the required conditions. Indeed D, is no
longer an isotropy subgroup.

Finally, we comment on the last column in Table 4. Except for plan-
forms on the hexagonal lattice, all bifurcations are symmetric pitchforks as
for the scalar case. In Remark 2.1 we observed that all branching was su-
per/subcritical in pseudoscalar PDEs. It remains to determine whether sim-
ple oriented hexagons and hexagons are symmetric pitchforks or asymmetric
pitchforks. Also in Section 2 we observed that reflections in Dg act as —1
on the planform simple oriented hexagons so this is a symmetric pitchfork.
On the other hand, it follows from Remark 3.4(b) that hexagons undergo an
asymmetric pitchfork bifurcation.

6 Completeness of the classification of plan-
forms

Let £ be a closed subgroup of T(n) with T(n)/L = T" compact and
r > 1. Let H denote the holohedry of £ and construct the compact group
I = H + T". We show that when n = 2 all translation-free absolutely irre-
ducible representations of I' are accounted for by those arising in scalar and
pseudoscalar PDEs.

There are at least three ways to proceed. The most direct approach is to
start with the irreducible representations (from now on abbreviated to irreps)
of T" and to build up I'-irreps as a sum of 7"-irreps. We note that even in the
simplest case I' = O(2) = Z, + T* this turns out to be surprisingly tedious
(though elementary). A second method is to compute the characters of the
representations in Sections 4 and 5 and to use the orthogonality relations to
show that we have a complete set of characters. However it soon becomes
clear that this is more tedious than the first method.

We shall use a third approach which requires heavier machinery (in partic-
ular the Peter-Weyl Theorem [4]) but has the advantage that the dependence
of the computations on the semi-direct product structure in I' is kept to a
minimum. One disadvantage is that we may lose information on the irreps
of I' that are not absolutely irreducible. Of course it is only the absolutely
irreducible representations that we are interested in since these are the ones
that support axial isotropy subgroups. (It seems likely that all irreps are
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absolutely irreducible.)

We use the fact that real absolute irreps when complexified correspond
to complex irreps. It follows from general theory (primarily the Peter-Weyl
Theorem, orthogonality of characters and so on) that irreps of the compact
group I' are finite-dimensional and that the Hilbert space V' = L?(T,C)
decomposes into a ‘direct sum’ of complex I'-irreps in which each irrep of
dimension d occurs with multiplicity d (see for example [16, Corollary 5.7]).

We split the classification of (complex) I'-irreps into two steps. First we
compute the isotypic decomposition of V' under 7". Then we compute the
irreps of T'.

Isotypic decomposition of V' under 7" Since 77" is abelian, the irreps of
T are one-dimensional and can be described explicitly, see for example [12].
For k € L*, let Z;, denote the vector space spanned by the map w;, : R* — C,
wy(z) = 2™ 2 Then Z;, = C is an irrep and the 7" irreps are in one-to-one
correspondence with vectors k € L*.

Identify the holohedry H as a subgroup of the n x n orthogonal matrices
O(n). Write elements of I" in the form (h,t) where h € H and ¢t € T". Recall
that the multiplication in I' is defined by

(9,5) - (h,t) = (gh, gt + 5).

Here, we are using multiplicative notation in H and additive notation
(mod £) in T". Also gt means the n x n matrix g applied to the vector
t. We can write each function f € V in a Fourier expansion

f(h, t) — Z ax (h)€2m'k-t

keL*

and the action of I on V is given by
((g,9) - f)(h,t) = f(gh, gt + ).
For each k € L*, define
Vi = {f(h,t) = a(h)e*™™** o: H — C} = C!H,

Note that Vj is T"-invariant and is a sum of |H| T"-irreps each of which is
isomorphic to Z;. Hence we have the isotypic decomposition V = @V}, under
the action of 717.
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Irreducible representations of I' If £ € £* then we define Q(k) C L* to
be the H-group orbit Q(k) = {hk, h € H}. If Q = Q(k) for some k, set

Vo = ®OreqVk-
Then V = @gVj is a decomposition of V' into I'-invariant subspaces.

Proposition 6.1 Each I'-isotypic component of V is contained in Vg for
some (.

Proof Suppose that W C V is an irrep for I'. We prove that (i) W C Vg
for some @, and (ii) Vg contains all irreps that are isomorphic to W. The
subspace W is T"-invariant so we can choose a T"-irrep Z C W. Then Z lies
in a unique T"-isotypic component Vj, for some k € £*. Also V;, C V) and
so Z C W N Vyw). Hence W N V) is a nontrivial I'-invariant subspace of
W. Since W is irreducible W C Vg, proving (i).

Now observe that if W' is isomorphic to W then W' contains a T"-irrep
Z' isomorphic to Z. Hence Z' C Vi so that again we have W' C Vg, as
required for (ii). [

Proposition 6.2 Let Q = Q(k) for k € L* and define ¢ = |Q)|.
(a) q divides |H|.
(b) dim Vg = ¢|H|.

(¢) If W C Vg is I'-invariant then q divides dim W' .

Proof Since Q is an H-orbit, g divides |H|. Also dim Vg = ¢dim V;, = ¢|H|.
It remains to prove part (c). For k' € Q, define Wy, = W N Vj,. Then

hWkl =Wn thl =Wn Vhflk.l = thlkl

for each h € H. It follows that dim W}, = dim Wj. Since |@Q| = ¢ there are ¢
distinct spaces Vi and so dim W = ¢gdim Wj,. |

Corollary 6.3 Suppose that |H| = jq and j = 1,2 or 3. Then Vg contains
precisely j nonisomorphic irreps each of dimension (and multiplicity) q.
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Proof By Proposition 6.2(c), any irrep W C Vi has dimension sq where s is
a positive integer. The multiplicity of the irrep W in V' is also sq. Moreover,
by Proposition 6.1 all of these isomorphic irreps lie in Vi and so account for
(sq)? dimensions in V. But by Proposition 6.2(b), dim Vg = jg*. Therefore
s? < j and since j < 4 we have s = 1. It follows that the irrep W accounts
for precisely ¢® of the jg® dimensions available in V. We require j such
irreps to account for all of the dimensions. |

Now we specialize to the case n = 2 concentrating on the case when
L C T(2) is the square lattice. The remaining cases in Table 1 are similar, the
arguments for the rectangular, rhombic and hexagonal lattices are identical
while the oblique and roll cases are slightly simpler.

Proposition 6.4 Suppose that L is the square lattice so that I’ = D, + T2
The I'-irreps can be enumerated as follows. The D4-group orbits Q C L* have
length g =1, ¢ =4 and g = 8 The case ¢ = 1 corresponds to the irreps of I’
where T? acts trivially. There are countably many orbits Q of length ¢ = 4
and g = 8. Corresponding to each @) with ¢ = 8 there is a single I'-irrep of
dimension 8. Corresponding to each QQ with ¢ = 4 there are two I'-irreps of
dimension 4.

Proof When ¢ =1, Q = {0} and T? acts trivially on the corresponding
elements of V. (Indeed all that is left is the finite vector space L*(Dy, C)
and hence the irreps of D4.) Otherwise, it follows as in Section 4 that ¢ = 8
or ¢ = 4 (the s in Section 4 satisfies s = ¢/2). It is not difficult to see that
each possibility is realized in a countable family. Corresponding to ¢ = 8
and ¢ = 4 we have 7 = 1 and j = 2 in Corollary 6.3 and the required result
follows directly from the corollary. |

We are primarily interested in finding those irreps that support
translation-free subgroups (subgroups ¥ C I satisfying (3.10)). Hence,
by the same argument used to prove Proposition 4.2 we can restrict to
those translation-free orbits () C L* that have the property that () gen-
erates L*. The translation-free orbits () are precisely the ones of the form
Q ={xK,...,+K,} listed in Table 2.

Proposition 6.5 The translation-free irreps in Proposition 6.4 (those corre-

sponding to translation-free orbits Q) are in one-to-one correspondence with
the translation-free irreps in Sections 4 and 5 for the square lattice.
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Proof The action of T? distinguishes each of the orbits @ and so to identify
isomorphic irreps we can work one orbit ) at a time. The unique translation-
free @ with ¢ = 4is Q = Qy, = {+k1,Lko}. We considered two irreps
corresponding to (), one in each of the Sections 4 and 5. Clearly these
irreps are nonisomorphic (they have different isotropy subgroups) and so
these correspond to the two irreps in Proposition 6.4. Similarly we have in
Table 2 an irrep of dimension 8 for each translation-free ) with ¢ = 8. Hence
the irreps in Sections 4 and 5 account for all the translation-free irreps in
Proposition 6.4. |

Remark 6.6 It is not the case that all irreps of I' arise in the context of
scalar and pseudoscalar PDEs. However, it is easily checked that if an irrep
is omitted, then 72 acts trivially. Thus, all translation-free irreps and nearly
all irreps that are not translation-free occur (but not all of these produce
planforms).
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Figure 1: Rolls (schematic) Anti-Rolls (schematic)

Figure 2: Simple squares Simple anti-squares
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Figure 3: Simple hexagons Simple oriented hexagons
L Holohedry Basis of £ Basis of L*
Hexagonal | Dg = (1/4/3,1) k1 (0,1)

= (2/V/3,0) = (V3/2,-1/2)
Square D, = (1,0) k1 =(1,0)
( > ) ko = (01 1)
Rhombic D, = (1, —cot 6) ki = (1,0)
= (0, csc ) ks = (cos 6, sin )
0<0<7r/2,9767r/3
Rectangular | Dy ¢ = (1,0) ki = (1,0)
EQ = (O, C) ]CQ = (0, 1/6)
0<exl1
Oblique Lo |01| # | s
by -ly #0
Roll ]DQ El = (1,0) kl = (1, 0)
{0} xR

Table 1: Closed subgroups £ C T(2) with T(2)/L£ =T". Here r = 1 for the
roll lattice, and r = 2 in all other cases.
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L Basis for £* dim | Vi, & --- @ Vi,

Roll Dy |k = (1,0) 3 | K, =k

Rhombic | k; = (1,0) 4 | Ky =k, Ky = ks

D, ke = (cos ,sinf)

0<0<m/2,0#7/3

Square ki = (1,0) 4 | K=k, Ky=k

]D)4 kg = (0, 1) 8 Kl = O!kl + ﬂkz, K2 = —5k1 + OZkQ
K3 = Bky + aks, Ky = —ak, + Bk,
a>03>0,2,a+p)=1

Hexagonal | k; = (0,1) 6 | Ki=ki+ky Koy=—ky, K3=—-k

Ds ko = (vV/3/2,—1/2) 12 | Ky = aky + Bke, Ko = (8 — )k — aks
K3 = =Bk + (a — B)k2
K4 = O{kl + (OJ —_ ﬂ)kg
K5 = =k, — aky, K¢ = (8 — o)k + Bk
a>p>a/f>0,3,a+p)=1

Table 2: Scalar translation-free ['-irreducible representations. « and 3 are

coprime integers

L dimV | ¥ | Planform Branch
Roll 2 D, | Rolls Symmetric pitchfork
Rhombic 4 Dy | Rectangles Symmetric pitchfork
Square 4 D, | Simple squares | Symmetric pitchfork
8 D4 | Squares Symmetric pitchfork
D, | Anti-squares Symmetric pitchfork
Hexagonal 6 Dg | Simple hexagons | Transcritical
12 | Dg | Hexagons Transcritical

Table 3: Axial planforms for scalar PDEs in the plane
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L dimV | ¥ | Planform Branch
Roll 2 D; | Anti-rolls Symmetric pitchfork
Rhombic 4 Dy | Rectangles Symmetric pitchfork
Square 4 D, | Simple anti-squares Symmetric pitchfork
8 D4 | Squares Symmetric pitchfork
D, | Anti-squares Symmetric pitchfork
Hexagonal 6 Zg | Simple oriented hexagons | Symmetric pitchfork
12 | Dg | Hexagons Asymmetric pitchfork

Table 4: Axial planforms for pseudoscalar PDEs in the plane
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