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STATISTICAL LIMIT LAWS FOR THEIR TIME-1 MAPS
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Abstract. We prove that every geometric Lorenz attractor satisfying a strong dissipativity condi-
tion has superpolynomial decay of correlations with respect to the unique SRB measure. Moreover,
we prove the Central Limit Theorem and Almost Sure Invariance Principle for the time-1 map of
the flow of such attractors. In particular, our results apply to the classical Lorenz attractor.

1. Introduction

The statistical point of view on Dynamical Systems is one of the most useful tools available for
the study of the asymptotic behavior of transformations or flows. Statistical properties are often
easier to study than pointwise behavior, since the future behavior of an initial data point can be
unpredictable, but statistical properties are often regular and with simpler description.

One of the main concepts introduced is the notion of physical (or Sinai-Ruelle-Bowen (SRB))
measure for a flow (or transformation). An invariant probability measure µ for a flow Zt is a
physical probability measure if the subset of points z satisfying for all continuous functions w

lim
t→+∞

1

t

∫ t

0
w
(
Zs(z)

)
ds =

∫
w dµ,

has positive volume in the ambient space. These time averages are in principle physically observable
if the flow models a real world phenomenon admitting some measurable features.

In 1963, the meteorologist Edward Lorenz published in the Journal of Atmospheric Sciences [20]
an example of a polynomial system of differential equations

ẋ = 10(y − x)

ẏ = 28x− y − xz (1.1)

ż = xy − 8
3z

as a very simplified model for thermal fluid convection, motivated by an attempt to understand
the foundations of weather forecast.

Numerical simulations performed by Lorenz for an open neighborhood of the chosen parameters
suggested that almost all points in phase space tend to a chaotic attractor, whose well known
picture can be easily found in the literature.

The mathematical study of these equations began with the geometric Lorenz flows, introduced
independently by Afrăımovič et al. [1] and Guckenheimer & Williams [16, 35] as an abstraction of
the numerically observed features of solutions to (1.1). The geometric flows were shown to possess
a “strange” attractor with sensitive dependence on initial conditions. It is well known, see e.g. [6],
that geometric Lorenz attractors have a unique SRB (or physical) measure. Tucker [31] showed
that the attractor of the classical Lorenz equations (1.1) is in fact a geometric Lorenz attractor
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(see Remark 2.3 below). For more on the rich history of the study of this system of equations, the
reader can consult [33, 5].

An invariant probability measure µ for a flow is mixing if

µ(Zt(A) ∩B)→ µ(A)µ(B)

as t→∞ for all measurable sets A,B. Mixing for the SRB measure of geometric Lorenz attractors
was proved in [21] and, by [31], this includes the classical Lorenz attractor [20].

Results on the speed of convergence in the limit above, that is, of rates of mixing for the Lorenz
attractor were obtained only recently: a first result on robust exponential decay of correlations was
proved in [7] for a nonempty open subset of geometric Lorenz attractors. However, this open set
does not contain the classical Lorenz attractor. Also, it follows straightforwardly from [23] that a
C2-open and C∞-dense set of geometric Lorenz flows have superpolynomial decay of correlations
(in the sense of [14]). It is likely, but unproven, that this open and dense set includes the classical
Lorenz attractor.

1.1. Statement of results. In this paper, we introduce an additional open assumption, strong
dissipativity, that is satisfied by the classical Lorenz attractor, under which we can prove super-
polynomial decay of correlations.

We consider C∞ vector fields G on R3 possessing an equilibrium p which is Lorenz-like: the
eigenvalues of DGp are real and satisfy

λss < λs < 0 < −λs < λu. (1.2)

We say that G is strongly dissipative if the divergence of the vector field G is strictly negative:
there exists a constant δ > 0 such that (divG)(x) ≤ −δ for all x ∈ U , and moreover the eigenvalues
of the singularity at p satisfy the additional constraint λu + λss < λs. For the classical Lorenz
equations (1.1), we have

divG ≡ −41
3 , λs = −8

3 , λu ≈ 11.83, λss ≈ −22.83,

so the conditions (1.2) and strong dissipativity are satisfied.
Let U denote the open set of C∞ vector fields having a strongly dissipative geometric Lorenz

attractor Λ; see Section 2 for precise definitions. Given G ∈ U , let Zt denote the flow generated by
G and let µ denote the unique SRB measure supported on Λ.

Theorem A. Let G ∈ U . Then for all γ > 0, there exists C > 0 and k ≥ 1 such that for all Ck

observables v, w : R3 → R and all t > 0,∣∣∣ ∫ v w ◦ Zt dµ−
∫
v dµ

∫
w dµ

∣∣∣ ≤ C‖v‖Ck‖w‖Ckt−γ .
By [19], geometric Lorenz flows satisfy the Central Limit Theorem (CLT) for Hölder observables.

A stronger property is the CLT for the time-1 map Z = Z1 which is only partially hyperbolic. By
Theorem A, Z has superpolynomial decay of correlations. Following [24], we use this information
to prove the CLT for time-1 maps of geometric Lorenz flows thereby verifying Conjecture 4 in [7].

Theorem B. Let G ∈ U . Then there exists k ≥ 1 such that for all Ck observables v : R3 → R
there exists σ ≥ 0 such that

1√
n

[
n−1∑
j=0

v ◦ Zj − n

∫
v dµ

]
D−→ N (0, σ2)

where the convergence is in distribution.
Moreover, if σ2 = 0, then for every periodic point q ∈ Λ, there exists T > 0 (independent of v)

such that
∫ T

0 v(Ztq) dt = 0.

Remark 1.1. Since there are infinitely many distinct periodic solutions in Λ, it follows from the
final statement of Theorem B that the family of Ck observables v : R3 → R for which σ2 = 0 forms
an infinite codimension family in the space of all Ck observables.
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By [19], geometric Lorenz flows satisfy also an Almost Sure Invariance Principle (ASIP) for
vector-valued observables v : R3 → Rd. Such a result is currently unavailable for the time-1 map
Z, but we are able to prove a scalar ASIP.

Theorem C. Let G ∈ U . There exists k ≥ 1 such that for all Ck observables v : R3 → R the
ASIP holds for the time-1 map: passing to an enriched probability space, there exists a sequence
X0, X1, . . . of iid normal random variables with mean zero and variance σ2 (as in Theorem B),
such that

n−1∑
j=0

v ◦ Zj = n

∫
v dµ+

n−1∑
j=0

Xj +O(n1/4(log n)1/2(log log n)1/4), a.e.

Remark 1.2. The ASIP implies the CLT and also the functional CLT (weak invariance principle),
and the law of the iterated logarithm together with its functional version, as well as numerous other
results. See [27] for a comprehensive list.

1.2. Comments and organization of the paper. In Section 2, we recall basic properties of
geometric Lorenz attractors. In Section 3, we define the temporal distortion function and prove a
result about the dimension of its range. This is the main new ingredient in the proof of Theorem A
in Section 4.

In Section 5, we prove a general result on the ASIP for time-1 maps of nonuniformly expanding
semiflows. In Section 6, we prove that the ASIP is typically nondegenerate. In Section 7, we prove
Theorems B and C.

It is natural to extend all these results to more general singular-hyperbolic attractors (formerly
referred to as Lorenz-like flows), that is, transitive attracting sets of three-dimensional flows having
finitely many Lorenz-like singularities and a volume hyperbolic structure; see e.g. [5] for the precise
definitions. Indeed, analogously to the geometric Lorenz case, it is possible to reduce the dynamics
of these attractors to a piecewise expanding C1+ε one-dimensional map; see e.g. [5, Chapter 6]
or [4, Section 4] for a detailed presentation.

Conjecture 1. Let U denote the open set of C∞ vector fields having a singular-hyperbolic attractor
on a given compact three-dimensional manifold. Then the results stated in Theorems A, B and C
are true for all G ∈ U .

There exists a natural generalization of singular-hyperbolicity for higher-dimensional attractors,
known as sectional-hyperbolicity; see e.g. [5, Sections 5.2 & 8.2] and also [25]. In this setting
both the stable and the unstable manifolds of points in the attractor need not be codimension one
embedded submanifolds, which makes analysis of these singular flows challenging.

Conjecture 2. Let U denote the open set of C∞ vector fields having a sectional-hyperbolic attractor
in a given compact finite dimensional manifold. Then the results stated in Theorems A, B and C
are true for all G ∈ U .

Notation. Throughout, C is used to denote a constant whose value may change from line to line.

2. Geometric aspects of Lorenz attractors

2.1. Geometric Lorenz attractors. We define here the open set U of C∞ vector fields exhibit-
ing strongly dissipative geometric Lorenz attractors and we describe the basic structure of such
attractors; see e.g. [5].

Let G be a strongly dissipative C∞ vector field on R3 possessing a Lorenz-like equilibrium,
which we suppose without loss to be at 0. We assume that the flow Zt is C1+ε linearizable in a
neighborhood of 0 which, by a suitable choice of coordinates, can be assumed to contain the cube
[−1, 1]3. (It follows from [17, Theorem 12.1] that smooth linearizability holds for an open and dense
set of such vector fields.) Choose coordinates x1, x2, x3 corresponding to the eigenspaces of λu, λss,
λs respectively. We define the cross-section X = {(x1, x2, 1) : |x1|, |x2| ≤ 1} and the Poincaré map
f : X → X. For x ∈ X we write f(x) = Zr(x)(x) where r : X → R+ is the Poincaré first return
time to X, also referred to as the roof function.
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We assume that there exists a global exponentially contracting f -invariant stable foliation. That
is, there is a compact neighborhood N ⊂ X of (0, 0, 1) satisfying f(N \ {x1 = 0}) ⊂ X and
a partition Ws

f of N consisting of C∞ one-dimensional disks called stable leaves (including the

“singular leaf” {x1 = 0}). Let W s
f (x) denote the stable leaf containing x. Then it is required that

f(W s
f (x)) ⊂ W s

f (f(x)) for all x ∈ N and that there exist constants C > 0, λ0 ∈ (0, 1) such that

|fn(x)− fn(x′)| ≤ Cλn0 for all x, x′ in the same leaf and all n ≥ 1.
Moreover, we assume that Ws

f is a C1+ε foliation, meaning that N can be chosen so that there

is a C1+ε change of coordinates from the interior of N onto (−1, 1) × (−1, 1) transforming stable
leaves into vertical lines.

Shrinking N if necessary, we can arrange that each stable leaf intersects X̄ = {(x1, 0, 1) : |x1| ≤
1} ∼= [−1, 1] in a single point. Define the C1+ε projection π : X → X̄ given by holonomy along
the stable leaves (so π(x) = W s

f (x) ∩ X̄). Quotienting along stable leaves, we obtain a C1+ε

one-dimensional map f̄ : X̄ → X̄ with a singularity at 0: f̄(x1) = π(f(x1, 0, 1)).

Lemma 2.1 (Proposition 2.6 in [19]). Let η = −λs/λu ∈ (0, 1).

(1) f̄ ′ is Hölder on X̄ \ {0}: f̄ ′(x) = |x|η−1g(x) with g ∈ Cηε(X̄), g > 0;
(2) the roof function has a logarithmic singularity at 0: r = h1+h2 with h1(x) = −λ−1

u log |π(x)|
and h2 ∈ Cε(X).

In addition, we assume that f̄ is uniformly expanding : there are constants λ1 > 1 and c > 0
such that |(f̄n)′(x)| ≥ cλn1 for all x ∈ X̄ and n > 1.

As in [21], we assume further that f̄ is locally eventually onto (l.e.o.); namely that for any open
set U ⊂ X̄ \ {0}, there exists k ≥ 0 such that fkU contains (0, 1). (More generally, it suffices that
almost every point in X̄ has dense preimages in X̄. However, the l.e.o. property is standard in the
literature and holds for the classical Lorenz attractor [31].)

Considering U =
⋃
x∈X Z[0,r(x)](x) we obtain a closed neighborhood of [−1, 1]3 and, in what

follows, we denote by Λ =
⋂
t>0 Zt(U) the geometric Lorenz attractor of the vector field G. It can

be shown that Λ is compact, volume hyperbolic, has a dense regular orbit and has zero volume
(Lebesgue measure in R3); see e.g. [5, 2].

2.2. Volume hyperbolicity, dissipativity and consequences. We recall that, in our three-
dimensional setting, volume hyperbolicity means that there exists aDZt-invariant singular-hyperbolic
splitting of the tangent bundle over Λ. That is, there is a vector bundle splitting TΛR3 = E ⊕ F
with dimE = 1, dimF = 2, and there are constants c > 0, λ ∈ (0, 1), such that for all x ∈ Λ, t > 0,

• the splitting is dominated : ‖DZt | Ex‖ · ‖DZ−t | FXt(x)‖ < cλt;

• E is uniformly contracting : ‖DZt | Ex‖ < cλt;
• the area along F is uniformly expanded : | detDZt | Fx| ≥ cλ−t.

The existence of the stable foliation Ws
f of any small cross-section to the flow of G (such as X) is

a consequence of volume hyperbolicity for three-dimensional smooth flows; see e.g. [5, Chapter 3,
Section 3].

An important consequence of domination, uniform contraction along the stable direction E and
strong dissipativity for the attractor Λ is the existence of a C1+ε global exponentially contracting
Zt-invariant foliation Fss, defined in a neighborhood (which we may take to be U) of Λ.

Lemma 2.2. The strong stable foliation Fss is C1+ε for some ε > 0.

Proof. We apply [18, Theorem 6.2] adapted to our setting, since only domination and uniform
contraction is used in its proof. Indeed, a sufficient condition to obtain C1+ε regularity for the
strong stable foliation is that for some t > 0,

‖DZt | Ex‖ · ‖DZt | Fx‖1+ε · ‖DZ−t | FZt(x)‖ < 1 (2.1)

for all x ∈ Λ. (We note that the statement in [18] covers only the case ε = 0, but it is standard
that their result extends to the case ε > 0.)

4



For each t ∈ R we define ηt : Λ→ R,

ηt(x) = log
{
‖DZt|Ex‖ · ‖DZt|Fx‖1+ε‖DZ−t|FZtx‖

}
.

Note that {ηt, t ∈ R} is a continuous family of continuous functions each of which is subadditive,
that is, ηs+t(x) ≤ ηs(x) + ηt(Zs(x)).

Let M denote the set of flow-invariant ergodic probability measures on Λ. We claim that for
ε > 0 sufficiently small, and for each m ∈ M, the limit limt→∞

1
t η(x) exists and is negative for

m-almost every x ∈ Λ. It then follows from [8, Proposition 3.4] that there exists constants C, β > 0
such that exp ηt(x) ≤ Ce−βt for all t > 0, x ∈ Λ. In particular, for t sufficiently large, exp ηt(x) < 1
for all x ∈ Λ. Hence condition (2.1) is satisfied for such ε and t and the result follows.

It remains to verify the claim. Let m0 denote the Dirac delta concentrated at 0 and let M1 =
M\ {m0}. We deal with the cases m ∈M1 and m = m0 separately.

Each m ∈ M1 has a zero Lyapunov exponent in the flow direction and two further Lyapunov
exponents λE(m) < 0 and λF (m) > 0 associated with the vector bundles E and F respectively.
Fix m ∈M1. For m-a.e. x ∈ Λ we have

lim
t→∞

1

t
log |detZt(x)| = λE(m) + λF (m), (2.2)

lim
t→∞

1

t
log ‖DZt|Ex‖ = λE(m), (2.3)

lim
t→∞

1

t
log ‖DZt|Fx‖ = λF (m), (2.4)

lim
t→∞

1

t
log ‖DZ−t|FZtx‖ = 0. (2.5)

On the other hand, it follows from dissipativity that lim supt→∞
1
t log | detZt(x)| ≤ −δ for all x.

Hence we deduce from (2.2) that λE(m) + λF (m) ≤ −δ. Moreover, λF (m) ≤ supΛ ‖DG‖, so for
ε > 0 sufficiently small (uniformly in m) λE(m) + (1 + ε)λF (m) < 0. Using (2.3), (2.4) and (2.5)
together with the definition of ηt, it follows that limt→∞

1
t ηt(x) < 0 for m-almost every x ∈ Λ.

It remains to consider the Dirac measure m0. By strong dissipativity, for ε sufficiently small,
1
t ηt(0) = λss + (1 + ε)λu − λs < 0 for all t as required. �

By Lemma 2.2, we may consider the cross-section X =
⋃
{F ss(x) : x ∈ X̄} in the place of the

original cross-section X. Since the strong stable foliation is C1+ε and the cross-section X is foliated
by stable leaves over the smooth disk X, it follows that X is a C1+ε embedded surface in R3. All
the properties described so far are retained, with the useful advantage that W s

f (x) = F ss(x) for all
x ∈ X and

(C): the first return time r : X → R+ of any given point in X \ {x1 = 0} (where {x1 = 0}
now represents the leaf of Ws

f through the point 0 ∈ X̄) to X is constant on the leaves of

Ws
f , that is, r(x) = r(π(x)) for all x ∈ X \ {x1 = 0}. Since the cross-section X is a C1+ε

embedded surface in R3, the roof function r : X → R+ retains the properties mentioned in
Lemma 2.1(2); in particular r is a C1+ε function with a logarithmic singularity at {x1 = 0}.

We keep the notation π : X → X̄ for the holonomy along the leaves of Ws
f to X̄ and also f̄ for the

one-dimensional C1+ε quotient map of f : X \ {x1 = 0} → X over Ws
f .

Another consequence of volume hyperbolicity is that there exists a field of cones C̃b(x) = {(u, v) ∈
Ex × Fx : b‖v‖ ≥ ‖u‖} having width b > 0 containing the F subbundle over Λ which admit a

continuous DZt-invariant extension Ĉb(x) to a neighborhood of Λ. For the geometric Lorenz flow
we can assume without loss that this neighborhood coincides with U .

The invariance means that DZt · Ĉb(x) ⊂ Ĉb(Zt(x)) for x in an open neighborhood U of Λ

and t > 0, where b > 0 is small enough. Then the cones Cb(x) = Ĉb(x) ∩ TxX on TxX are also
Df̄ -invariant and defined on the whole of X ∩ U .

We say that a C1 curve γ in X is a u-curve if γ′(s) ⊂ Cb(γ(s)) for all parameter values s. The
Df̄ -invariance of the field of cones Cb ensures that the image by f of every u-curve is sent into
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another u-curve. Moreover, the tangent direction to the stable leaves TxWs
f (x) is not contained in

the Cb(x) cone and makes an angle bounded away from zero with any vector inside Cb(x), for all
x ∈ X, by the volume hyperbolicity assumption; see [6, 5].

Remark 2.3. Tucker [31] showed that the classical Lorenz equations have a robust nontrivial at-
tractor Λ containing the equilibrium at the origin. It follows from Morales et al. [26] that Λ is a
singular hyperbolic attractor that (in their words) “resembles a geometric Lorenz attractor”. In
particular, it is immediate that all of the properties listed above are satisfied except possibly for
(i) strong dissipativity, (ii) the l.e.o property, and (iii) smoothness (class C1+ε) of the contracting
foliations Fss and Ws

f for the flow and Poincaré map respectively. We note that property (i) is

immediate for the classical Lorenz equations and condition (ii) was verified in [31]. Regarding (iii),
it is claimed in [31, Section 2.4] that Ws

f is a smooth foliation but no details are provided.
Smoothness of the contracting foliations Fss and Ws

f is not part of the definition of singular

hyperbolic attractor, and hence is not discussed in [26]. However, proofs of existence of an SRB
measure with good statistical properties rely heavily on the smoothness of Ws

f . Although this
foliation is of codimension one, the fact that the Poincaré map f is singular means that an extra
argument is required; see for example Robinson [28] and Rychlik [29, Section 4]. In particular, our
results apply to the open set of flows considered by [28, 29], but these do not include the classical
Lorenz equations. However, as shown above in Lemma 2.2, the properties established by [26, 31]
combined with strong dissipativity guarantee smoothness of Fss, and hence ofWs

f , for the classical
parameters and nearby parameters.

2.3. Inducing and quotienting. The geometric Lorenz attractor can be written as a suspension
flow St : Xr → Xr given by St(x, s) = (x, s+ t) on the space

Xr = {(x, t) ∈ X × R : 0 ≤ t ≤ r(x)}/ ∼

where (x, r(x)) ∼ (f(x), 0). Indeed, we can take the conjugacy as Φ : Xr → U, (x, s) 7→ Zs(x)
(which is smooth) and the roof function r : X → R+ has a logarithmic singularity at all points of
X ∩ {x1 = 0}, is smooth elsewhere and f is a non-uniformly hyperbolic map with invariant stable
foliation Ws

f . We denote also by 0 the point π({x1 = 0}) in what follows and since r ◦ π = r we

also write r for the restriction r : X̄ → R+.
In particular, since f̄ : X̄ → X̄ is a C1+ε-piecewise nonuniformly expanding map, there exists a

subset Ȳ ⊂ X̄ and an inducing time τ : Ȳ → Z+ such that F̄ = f̄ τ : Ȳ → Ȳ is a C1+ε-piecewise
expanding Markov map with partition α0; see e.g. [7, Theorem 4.3].

Since f̄ is l.e.o., for any specified point x ∈ X̄ we can choose Ȳ to be an arbitrarily small open
interval containing x; see e.g. [3], where an inductive construction procedure is described showing
that we can build a full branch Markov map F̄ : Ȳ → Ȳ as long as Ȳ is a neighborhood of a point
with dense preimages.

During the paper, we will consider various inducing schemes. All of these are full branch on an
interval except for the one constructed in Section 3.1 which is the combination of two such inducing
schemes.

Let αn0 =
∨n−1
i=0 (F̄ i)−1(α0) denote the nth refinement of α0, and set τn(y) =

∑n−1
j=0 τ(f̄ j(y)), so

that F̄n(y) = f̄ τn(y)(y).
The most important features of f̄ are the following backward contraction and bounded distortion

properties. There exist constants c0 > 0, λ ∈ (0, 1) such that for each n ≥ 1

backward contraction: F̄n |αn0 (y): α
n
0 (y) → Ȳ is a C1+ε diffeomorphism and if y′ ∈ αn0 (y),

then

|f̄ i(y′)− f̄ i(y)| ≤ c0λ
τn(y)−i|F̄n(y′)− F̄n(y)|, i = 0, . . . , τn(y)− 1, (2.6)

Moreover there is slow recurrence to the singular point

|f̄ i(y)| ≥
√
λ
τn(y)−i

, i = 0, . . . , τn(y)− 1; (2.7)
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bounded distortion: if y′ ∈ αn0 (y), then∣∣∣∣DF̄n(y)

DF̄n(y′)
− 1

∣∣∣∣ ≤ c0|F̄n(y)− F̄n(y′)|. (2.8)

We note that the induced map can be obtained by the methods presented in [3] and conditions
(2.6) and (2.7) follow from the definition of hyperbolic times (c.f. Definition 10 in [3] with b = 1/2).

Next we construct a piecewise uniformly hyperbolic map F : Y → Y with infinitely many
branches, which covers F̄ , as follows: Define Y =

⋃
{W s

f (y) : y ∈ Ȳ } to be the union of the stable

leaves through Ȳ and define the Poincaré return map F (y) = f τ(π(y))(y) for y ∈ Y . We let α denote
the measurable partition of Y whose elements are

⋃
{W s

f (x) : x ∈ a} with a ∈ α0. Also, we extend

τ : Ȳ → Z+ to a function on Y by setting τ(y) = τ(πy).
Let µȲ be the unique F̄ -invariant absolutely continuous probability measure on Ȳ . It is well-

known that r ∈ L1(µȲ ). It is then standard that there exist unique invariant measures µY for
F : Y → Y , µX for f : X → X and µX̄ for f̄ : X̄ → X̄ satisfying π∗(µY ) = µȲ , π∗(µX) = µX̄
and also µX =

∑
n≥1

∑n−1
j=0 f

j
∗ (µY |{τ ◦ π = n}) and µX̄ =

∑
n≥1

∑n−1
j=0 f̄

j
∗ (µȲ |{τ = n}). We have

µY � µX and µY (Y ) = 1, hence µX(Y ) > 0; see e.g. [7, Section 3] for more details.

2.4. Local product structure. Here we obtain an almost everywhere defined local product struc-
ture for the induced hyperbolic map F : Y → Y . We have already seen that the Poincaré map
f : X → X has a stable foliation Ws

f with leaves that cross X, and hence the induced map

F : Y → Y has stable manifolds W s
F (y) = W s

f (y) that cross Y . In the next proposition, we
construct local unstable manifolds for F of uniform size, defined almost everywhere.

Proposition 2.4. For µY -almost every y ∈ Y , there exists a local unstable manifold W u
F (y) ⊂

W u
loc,f (y) that crosses Y . In particular, π(W u

F (y)) = Ȳ for µY -almost every y ∈ Y .

Proof. We begin with the local unstable manifolds W u
loc for the flow Zt. It follows from Pesin

theory (see e.g. [13]) that almost every point p of Λ with respect to the SRB measure µ admits a
local unstable manifold W u

loc(p) which is a C1+ε-curve containing p in its interior. By definition,
p′ ∈ W u

loc(p) if and only if |Zt(p′) − Zt(p)| ≤ Cpλ
−t for all t < 0 (recall that λ ∈ (0, 1) and also

that the constant Cp depends on the leaf); see e.g. [6]. Since Λ is an attractor, unstable leaves are
contained in Λ.

The smooth conjugacy Φ−1 sends these leaves into unstable leaves for the suspension flow St,
which can be written locally as W̃ u

loc(Φ
−1(p)) = {(γ(s), t(s)) : s ∈ [−1, 1]}, where γ : [−1, 1] → X

and t : [−1, 1]→ R are C1+ε diffeomorphisms into their images. By its definition, the curve γ is the
local unstable manifold W u

loc,f (x) through x = γ(0) with respect to f , that is, x′ ∈W u
loc,f (x) if and

only if |fn(x′)−fn(x)| ≤ C ′xλ−n, for all n < 0. We observe that the inverse images of x and x′ are all
well defined since these points belong to the attractor Φ−1(Λ) which is St-invariant. Moreover, the
curve γ is a graph γ(s) = (x(s), y(x(s))) and γ′ is contained in a cone {(x′, y′) ∈ R2 : |y′| < ξ|x′|}
for some 0 < ξ < 1 by the domination condition on f , consequence of the existence of dominating
splitting for the flow on the attractor.

We remark that W u
loc,f (x) is a u-curve which coincides with W u

F (x) if x also belongs to Y , and so

the statements above hold for µY almost every point y ∈ Y . Indeed, on the one hand, W u
loc,f (x) is

formed by points whose preorbit is asymptotic to the preorbit of x, hence these preorbits contain the
preorbits with respect to F , and soW u

loc,f (x) ⊂W u
F (x). On the other hand, this inclusion shows that

W u
loc,f (x) and W u

F (x) coincide in a neighborhood of x inside W u
F (x). Since these unstable manifolds

are contained in the attractor then, repeating the argument around each point z ∈ W u
loc,f (x), we

see that the two manifolds coincide.
In addition, the stable leaves through points y ∈ W u

F (x) are transverse to W u
F (y) and the angle

between TyW
s
F (y) and TyW

u
F (y) is bounded away from zero. Hence π(W u

F (y)) is a neighborhood of
y0 = π(y) in Ȳ for µY -a.e. y.
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Let αn0 (y0) denote the element of the nth refinement αn0 that contains y0. This is well-defined
for all n ≥ 1 for µȲ -a.e. y0 ∈ Ȳ . Moreover, π(W u

F (y))∩αn0 (y0) is a neighborhood of y0 for all n ≥ 1
for µY -a.e. y. Since F̄ is full-branch, F̄n(αn0 (y0)) = Ȳ for all n.

By the Poincaré Recurrence Theorem, we may assume without loss that y is recurrent: there
exists ni →∞ such that Fniy → y. Therefore, for all large enough i we have F̄ni(y0) ∈ π(W u

F (y))
and hence the iterate of a connected piece of the unstable manifold of y defined by

Wni = Fni
(
(π |W u

F (y))−1αni0 (y0)
)

is a u-curve that crosses Y . The sequence Wni has a convergent subsequence to W by the Arzelá-
Ascoli Theorem and by the recurrence assumption on y we have y ∈W .

We claim that W = W u
loc,f (y), which completes the proof that µY -almost every point has an

unstable manifold crossing Y . The last statement of the proposition is a simple restatement of this
conclusion.

To prove the claim, we consider y′ ∈ W and sequences yi, y
′
i ∈ Wni such that (yi, y

′
i) → (y, y′).

Fix l ≥ 1 and choose L ∈ Z+ so that τni(y
′) > l for all i ≥ L. By the definition of Wni and since

W u
loc,f (y′) = W u

F (y′), we have uniform backwards contraction. Thus

|yi − y′i| = |f l(f τni (y
′)−l(zi))− f l(f τni (y

′)−l(y′))| ≥ λ−l

c′0
|f τni (y′)−l(zi)− f τni (y

′)−l(y′)| (2.9)

where zi ∈W u
loc,f (y′) is such that yi = Fni(zi). Hence |f−l(yi)− f−l(y′i)| ≤ c′0λl|yi − y′i|. To obtain

c′0 we have used that all the iterates Wn of W u
loc,f (y′) are u-curves and so their length is comparable

to the length of their projection π(Wn) on X̄; and then take advantage of the backward contraction
property (2.6) associated to the partition α0 with the same contraction rate λ. Finally, since these
constants are independent of i, letting i→∞ gives |f−l(y)− f−l(y′)| ≤ c′0λl|y − y′| for each given
fixed l ≥ 1. This completes the proof of the claim and finishes the proof of the proposition. �

Using this geometric structure we can also prove the following:

Proposition 2.5. The induced map F : Y → Y has a local product structure: for any partition
element a ∈ α there exists a measurable map [·, ·] : Y × a→ a defined for all y′ ∈ a and µY almost
every y ∈ Y such that

[y, y′] ∈W u
F (y) tW s

F (y′)

consists of a unique point. In addition, the map [·, ·] is constant along unstable manifolds in the
first coordinate, and constant along stable manifolds in the second coordinate. Furthermore, [·, ·] is
C1+ε in the second coordinate.

Proof. From Proposition 2.4 we have that for µY almost every point y the local unstable manifold
W u
F (y) crosses Y . From the definition of geometric Lorenz attractor, W s

F (y′) crosses a transversely
to W u

F (y), for every y′ ∈ Y . Hence [y, y′] is well defined for µY -almost every y ∈ Y and every
y′ ∈ Y . Since a is a union of local stable manifolds, it is immediate that if y′ ∈ a then [y, y′] ∈ a.

We note that if [y, y′] is defined, then

w ∈W u
F (y) 7→ [w, y′] = [y, y′] and w ∈W s

F (y′) 7→ [w, s] = [y, y′]

which shows that [y, y′] is constant along unstable manifolds on the first coordinate and stable
manifolds on the second coordinate. In addition, the stable manifolds W s

F (y′) depend continuously
in the C1+ε topology on the base point y′ (by the partial hyperbolicity of the attractor) and the
unstable manifolds W u

F (y) depend measurably on y (by nonuniform hyperbolicity). Hence [·, ·] is a
measurable map and is C1+ε along the second coordinate. �

Proposition 2.6. Suppose that y, y′ ∈ Y are such that [y, y′] is well-defined. Then, there is a
sequence of periodic points zi ∈ Y for F such that (i) zi → y, (ii) [zi, y

′] is well-defined for all i,
and (iii) [zi, y

′]→ [y, y′].
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Proof. We use Proposition 2.4: we can assume without loss that y is recurrent. Let us fix a
neighborhood U of y given by U1 × U2, where U1 is an open subinterval of [−1, 1] \ {0} and U2 is
an open subset of [−1, 1]. We fix a similar smaller neighborhood V = V1 × V2 such that closure of
Vj is contained in Uj , j = 1, 2. We can regard V1 as a neighborhood of πy.

In our setting, this ensures the existence of a sequence ni →∞ such that Fniy → y, παni(y) is
a neighborhood of πy and πFni(αni(y)) = Ȳ ; see the proof of Proposition 2.4.

Figure 1. The density of periodic points for F .

Hence, there exists a stable leaf ξi = π−1(x̄i) ⊂ αni(y) for some x̄i ∈ παni(y) which is sent inside
itself by Fni , by the uniform contraction of the stable leaves of Ws

F . Since we can assume without
loss that Fniy ∈ V , then taking ni big enough, we claim that Fni(ξi ∩ U) ⊂ U . Indeed, due to
the domination assumption on f , the unstable manifold W u

F (Fniy) crosses Y and its angle with
respect to the horizontal direction is uniformly bounded from above, so W u

F (Fniy) t ξi ⊂ U , and
the claim follows by uniform contraction of the stable leaves; see Figure 1.

Thus we have a fixed point zi of Fni in ξi ∩ U . Since U belongs to a fundamental system of
neighborhoods of y, this proves item (i) in the statement of the Proposition.

All periodic points of f are hyperbolic of saddle type, thus W u
F (zi) is well-defined and πW u

F (zi)
is a neighborhood of πzi = x̄i.

If πW u
F (zi) ⊃ παni(y), then clearly W u

F (zi) crosses a and so [zi, y
′] is well-defined. We claim

that this is always the case. For otherwise, if πW u
F (zi) ⊂ αni(y), then since F̄ni | παni(y) :

παni(y) → πα(y) is an expanding diffeomorphism and W u
F (zi) is Fni-invariant, the length of

F̄ kni(πW u
F (zi)), k ≥ 1 grows while this set is contained in αni(y). Thus πW u

F (zi) covers παni(y),
as claimed.

Finally, for the continuity statement (iii), since zi → y as i→∞ with zi periodic points of F , it
is enough to show that W u

F (zi) ∩ a → W u
F (y) ∩ a as smooth curves that cross a. Since each curve

W u
F (zi) ∩ a is a u-curve, then there exists a accumulation point γ which is also a u-curve (by the

Arzelá-Ascoli Theorem). We show that γ contains W u
F (y) ∩ a.

Indeed, γ contains y. By uniform backward contraction, if z0
i , z̃

0
i ∈ W u

F (zi) ∩ a converge to

z, z̃ ∈ γ ∩ a, then we can argue similarly to (2.9) since there are zki , z̃
k
i ∈ W u

F (zi) ∩ a so that

z0
i = F k(zki ) and z̃0

i = F k(z̃ki ), k ≥ 1. Hence, for a given fixed k we get

|z0
i − z̃0

i | = |F k(zki )− F k(z̃ki )| ≥ λ−k

c′0
|zki − z̃ki |,

and for limit points zk, z̃k ∈ γ of (zki )i≥1 and (z̃ki )i≥1 letting i→∞, we obtain (since F is smooth
in a)

|z − z̃| = |F k(zk)− F k(z̃k)| ≥
λ−k

c′0
|zk − z̃k|.
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Hence, because k ≥ 1 was arbitrary, we see that γ ⊂W u
F (y), as needed. The proof is complete. �

2.5. The induced roof function R. We define the induced roof function R : Y → R+, R(y) =∑τ(y)−1
`=0 r(f `y). Since r, and hence R, is constant along stable leaves, we also denote by R the

quotient induced roof function R : Ȳ → R+.
It follows in a completely analogous way to [7, Section 4.2.2] that R : Ȳ → R+ satisfies

sup
h∈H

sup
y∈Ȳ
|D(R ◦ h)(y)| <∞ (2.10)

where H is the set of all inverse branches of F̄ : a0 → Ȳ , a0 ∈ α0.
Indeed, let h ∈ H, h : Ȳ → a0 be an inverse branch of F̄ with inducing time l = τ(a0) ≥ 1 and

let us fix y ∈ a0. Then

|D(R ◦ h)(y)| = |DR(h(y))| · |Dh(y)| = |DR(h(y))|
|DF̄ (h(y))|

=

∣∣∣∣∣
l−1∑
i=0

(Dr ◦ f̄ i) ·Df̄ i

DF̄
◦ h(y)

∣∣∣∣∣ .
Recall from the construction of the inducing partition using hyperbolic times that conditions (2.6)
and (2.7) are satisfied (here we require these conditions only with n = 1). By (2.6),∣∣∣∣Df̄ iDF̄

∣∣∣∣ ◦ h(y) ≤ c0λ
l−i, i = 0, . . . , l − 1.

Moreover, by (2.7), |f̄ i(h(y))| ≥
√
λ
l−i

and so, by Lemma 2.1(2),

|(Dr ◦ f̄ i) ◦ h(y)| ≤ c1/
√
λ
l−i
, i = 0, . . . , l − 1,

for some c1 > 0 depending only on f . Altogether this implies that |D(R◦h)(y)| ≤ c1
∑∞

i=0 λ
i/2 <∞

establishing (2.10).

Proposition 2.7. There exists c > 0 such that µY (R > t) = O(e−ct).

Proof. By [7, Section 4.2.1], Leb(R > t) = O(e−ct). The result follows since dµY /dLeb is bounded,
see for example [7, Proposition 4.5]. (We caution that our R : Y → R+ is denoted by r : ∆→ R+

in [7]). �

Remark 2.8. Proposition 2.7 is not necessary for the results in this paper but simplifies the expo-
sition, see Remark 4.5.

For y, y′ ∈ Ȳ define the separation time s(y, y′) to be the least integer n ≥ 0 such that
F̄n(y), F̄n(y′) are in distinct partition elements of α0. For any given θ ∈ (0, 1) we define the

symbolic metric dθ(y, y
′) = θs(y,y

′) on Ȳ . Let |R|θ = supy 6=y′ |R(y) − R(y′)|/dθ(y, y′) denote the

Lipschitz constant of the quotient induced roof function R : Ȳ → R+ with respect to dθ.

We write rk(y) for the sum
∑k−1

i=0 r(f
i(y)) in what follows.

Lemma 2.9. There exists C > 0 such that for all y, y′ ∈ Ȳ with s(y, y′) ≥ 1 and 0 ≤ k ≤ τ(y) =
τ(y′) we have |rk(y) − rk(y′)| ≤ C|F̄ (y) − F̄ (y′)|ε. As a consequence, there exists θ ∈ (0, 1) such
that |R|θ <∞ and also |F̄ (y)− F̄ (y′)| ≤ Cdθ(y, y′).

Proof. Let us consider y, y′ ∈ Ȳ such that s(y, y′) = n ≥ 1. Then y′ ∈ αn0 (y) and so τ(F̄ i(y)) =
τ(F̄ i(y′)), i = 0, . . . , n − 1. Thus, from the choice of the cross-section, ensuring that r is constant
on stable leafs, together with Lemma 2.1(2), we can write

R(y)−R(y′) =

τ(y)−1∑
`=0

[r(f̄ `(y))− r(f̄ `(y′))]

=

τ(y)−1∑
`=0

[
− λ−1

u (log |f̄ `(y)| − log |f̄ `(y′)|) + h(f̄ `(y))− h(f̄ `(y′))
]
.
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Combining (2.6) together with (2.7) we obtain

|R(y)−R(y′)| ≤ C
τ(y)−1∑
`=0

[
|f̄ `(y)− f̄ `(y′)|

max{|f̄ `(y)|, |f̄ `(y′)|}
+ ‖h‖ε|f̄ `(y)− f̄ `(y′)|ε

]

≤ C
τ(y)−1∑
`=0

[
c0

λτ(y)−`

√
λ
τ(y)−` |F̄ (y)− F̄ (y′)|+ ‖h‖ελε(τ(y)−`)|F̄ (y)− F̄ (y′)|ε

]

≤ κλε/2 · 1− λ
ε
2
·τ(y)

1− λε/2
|F̄ (y)− F̄ (y′)|ε,

for some constant κ > 0 depending on the flow only. This implies in particular the first statement
of the lemma.

Finally, because τ is at least 1, we also have

|F̄ (y)− F̄ (y′)|ε ≤ c0λ
ετn−1(F̄ (y))|F̄n(y)− F̄n(y′)|ε ≤ c0λ

ε(n−1)|F̄n(y)− F̄n(y′)|ε

which, combined with the previous inequality, gives another constant K > 0 depending only on the
flow satisfying

|R(y)−R(y′)| ≤ Kλnε/2|F̄n(y)− F̄n(y′)|ε.

We can find λε/2 < θ < 1 and a constant C0 > 0 so that Kλnε/2 ≤ C0θ
n = C0dθ(y, y

′) for all n ≥ 1
and, since |F̄n(y)− F̄n(y′)|ε is bounded above, the proof is complete. �

2.6. Expansion for the flow. We are now ready to prove a useful consequence of backward
contraction for the quotient map and expansion of the flow in the linearizable region. We keep the
choice of θ from Lemma 2.9. Also, we define dθ(y, y

′) for points y, y′ ∈ Y by setting dθ(y, y
′) =

dθ(πy, πy
′).

Lemma 2.10. There exist constants C, κ > 0 such that for all y, y′ ∈ Y satisfying dθ(y, y
′) < κ

and all u ∈ (0,min{R(y), R(y′)}), we have |Zu(y)− Zu(y′)| ≤ Cdθ(y, y′).

Proof. Taking κ < 1, we have τ(y) = τ(y′). There exist k, k′ ∈ {1, . . . , τ(y)} such that

u ∈ [rk−1(y), rk(y)] and u ∈ [rk′−1(y′), rk′(y
′)].

From Lemma 2.9 we know that |rk(y) − rk(y′)| ≤ Cdθ(y, y
′). Hence for dθ(y, y

′) small enough,
|rk(y)− rk(y′)| < inf r for all 0 ≤ k ≤ τ(y). It follows that |k − k′| ≤ 1, and we may suppose that
k ≥ k′. Hence, there are two cases to consider.

Figure 2. Estimating the distance between Zuy and Zuy
′.
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The case k = k′ + 1: We have rk′(y) ≤ u ≤ rk′(y
′) and so the orbit of y has already had k′

returns to the cross-section X, while the orbit of y′ has only returned k′ − 1 times. We estimate
the distance between the points with the distance between the k′th returns of both orbits to X as
follows. Setting ξ = u− rk′(y) and ξ′ = rk′(y

′)− u, we get

|Zuy − Zuy′| ≤ |ξ + ξ′|+ |fky − fky′|

≤ |rk′(y)− rk′(y′)|+ |fky − f̄kπy|+ |f̄kπy − f̄kπy′|+ |f̄kπy′ − fky′|

≤ Cdθ(y, y′) + cλk(|y − πy|+ |y′ − πy′|) + c0λ
τ(y)−k|F̄ y − F̄ y′|

where we have used the uniform contraction of the stable foliation of the attractor, together with
Lemma 2.9 and the uniform backward contraction of iterates of f̄ ; see Figure 2. Again from
Lemma 2.9 and the choice λε/2 < θ < 1 we obtain

|Zuy − Zuy′| ≤ (C + 2`+ c0C)dθ(y, y
′)

where ` is the length of the largest stable leaf in the cross-section X.
The case k = k′: Now both points are past their (k − 1)’th return and we again estimate the
distance comparing with the distance of their (k − 1)’th returns. Setting ξ = u − rk−1(y) and
ξ′ = u− rk−1(y′) and assuming without loss that ξ′ ≥ ξ we get

|Zuy − Zuy′| ≤ |ξ − ξ′|+ |Zξ(fk−1y)− Zξ(fk−1y′)|

and |ξ − ξ′| ≤ Cdδ(y, y′) as before, while

|Zξ(fk−1y)− Zξ(fk−1y′)| ≤ |Zξ(fk−1y)− Zξ(πfk−1y)|

+ |Zξ(πfk−1y)− Zξ(πfk−1y′)|+ |Zξ(πfk−1y)− Zξ(fk−1y′)|.

The uniform contraction along stable leaves and the relation πf = f̄π allows us to write

|Zξ(fk−1y)− Zξ(fk−1y′)| ≤ cλξ · cλk−1 · 2`+ |Zξ(πfk−1y)− Zξ(πfk−1y′)|

and since λk−1 ≤ dθ(y, y′), we are left to prove that

|Zξ(πfk−1y)− Zξ(πfk−1y′)| ≤ Cdθ(y, y′). (2.11)

For this we use the construction of the geometric Lorenz attractor with the linearizable Lorenz-like
singularity to explicitly calculate trajectories. In this way, we easily see that the distance between
the pair of stable leaves ζ = π−1(πfk−1y) and ζ ′ = π−1(πfk−1y′) (on X) is expanded by eλ1t, that
is,

d(Ztζ, Ztζ
′) ≥ eλ1td(ζ, ζ ′),

as long as Zs(πf
k−1y) and Zs(πf

k−1y′) remain in the linearizable region around the singularity,
for 0 ≤ s ≤ t.

The flight time from X to X ′ (the boundary of the linearizable region) is given by − log |πfk−1y|
and − log |πfk−1y′|, and their difference is uniformly bounded since, by the backward contraction
(2.6) and slow recurrence (2.7) properties,∣∣∣∣log

|πfk−1y|
|πfk−1y′|

∣∣∣∣ ≤ |f̄k−1(πy)− f̄k−1(πy′)|
max{|f̄k−1(πy)|, |f̄k−1(πy′)|}

≤ c0
λτ(y)−k+1

√
λ
τ(y)−k+1

= c0λ
(τ(y)−k+1)/2.

Hence, we have expansion of the distance between ζ, ζ ′ in the linear region, and the flow from X ′

back to X is performed in a uniformly bounded time for all points of the attractor. Thus, this last
non-linear action of the flow distorts the distance by at most some constant factor (a bound on the
norm of the derivative of the flow on a bounded interval of time). Therefore, we have shown that
the left hand side of (2.11) is bounded by a constant factor of |f̄ky − f̄ky′|. This last difference

is bounded by c0λ
τ(y)−k|F̄ y − F̄ y′| which is bounded by the expression on the right hand side of

(2.11). The proof is complete. �
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2.7. Suspension flow. In Subsection 2.3, we saw that the geometric Lorenz flow can be modelled
as a suspension flow St : Xr → Xr where X is the Poincaré section and r is the first hit time.

Shrinking the cross-section to Y and using the induced roof function R (which need not be the
first hit time), we have the alternative model of the geometric Lorenz flow as the suspension flow
St : Y R → Y R over a uniformly hyperbolic map F : Y → Y with integrable but unbounded return
time function R : Y → R+. Again the suspension flow is given by St(y, u) = (y, u + t) computed
modulo identifications, and the probability measure µ = µY × Lebesgue/

∫
RdµY is St invariant.

Similarly, we define the quotient suspension semiflow S̄t : Ȳ R → Ȳ R with invariant probability
measure µ̄ = µȲ × Lebesgue/

∫
RdµȲ .

The next result enables us to pass from the ambient manifold R3 to Y R by means of the projection
p : Y R → R3, p(y, u) = Zuy.

Proposition 2.11. Let (y, u), (y′, u′) ∈ Y R. Then

|p(y, u)− p(y′, u′)| ≤ C{dθ(y, y′) + |u− u′|}.

Proof. Without loss, we can suppose that u ≤ u′. By the mean value theorem, there is a u′′ between
u and u′ such that

|p(y′, u)− p(y′, u′)| = |Zuy′ − Zu′y′| ≤ |∂tZt(y′)|t=u′′ ||u− u′| = |G(Zu′′y
′)||u− u′|,

where G is the underlying vector field. Since G is continuous and we are restricting to y lying in
the compact attractor Λ, we obtain that there is a constant C > 0 such that |p(y′, u)− p(y′, u′)| ≤
C|u− u′|.

Also by Lemma 2.10, |p(y, u)− p(y′, u)| = |Zu(y)− Zu(y′)| ≤ Cdθ(y, y′).
The result follows by the triangle inequality. �

3. Temporal distortion function

In this section, we introduce the temporal distortion function and prove a result about the
dimension of its range.

For all y, z ∈ Y belonging to the same unstable manifold for F : Y → Y , we define

D0(y, z) =

∞∑
j=1

[r(f−jy)− r(f−jz)].

We remark that each term in the sum makes sense since f is invertible on the attractor. Moreover
we note that property (C) ensures that the roof function can be seen as a C1+ε function on X̄ with
a logarithmic singularity at 0. We now prove that D0 is well-defined.

Lemma 3.1. The function D0 is measurable and D0(y, z) is finite for µY -almost every y and every
z ∈W u

F (y).
Moreover, D0 is continuous in the following sense. Suppose that D0(y, z) is well-defined and

ε > 0 is given. Then, there exists δ > 0 such that |D0(y′, z′) − D0(y, z)| < ε for all pairs (y′, z′)
satisfying (i) D0(y′, z′) is well-defined, (ii) |y′ − y| < δ, |z′ − z| < δ, and (iii) dθ(y

′, y) < δ,
dθ(z

′, z) < δ.

Proof. Although the iterates f−jy, f−jz are close by backward contraction, the values r(f−jx)
and r(f−jy) need not be close. Hence, we consider the induced map F : Y → Y and the induced

roof function R : Y → R+ given by R(y) =
∑τ(y)−1

`=0 r(f `y). Note however that F is not invertible
(unlike f) so some care is needed in the following argument.

Write y0 = y, z0 = z. By ergodicity of µY under F , we may suppose that there exist yi ∈ Y , and
ai ∈ α, i ≥ 1, such that yi ∈ ai and Fyi = yi−1 for all i ≥ 1. Since F̄ is full branch, F (a1∩W u

F (y1))
covers Y and in particular covers W u

F (y0). Hence there exists z1 ∈ a1∩W u
F (y0) such that Fz1 = z0.

Inductively, we obtain zi ∈ ai ∩W u
F (yi), i ≥ 1, such that Fzi = zi−1.
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By construction, yi = f−τ(yi)yi−1. Inductively, yi = f−(τ(y1)+···+τ(yi))y. Hence

R(yi) =

τ(yi)−1∑
`=0

r(f `f−(τ(y1)+···+τ(yi))y) =

τ(y1)+···+τ(yi)∑
`=τ(y1)+···+τ(yi−1)+1

r(f−`y).

Formally summing up the contributions from yi and similarly zi, we obtain the equivalent definition
D0(y, z) =

∑∞
i=1[R(yi) − R(zi)]. Moreover, since R is constant along stable leaves, writing ȳi =

πyi, z̄i = πzi,

D0(y, z) =
∞∑
i=1

[R(ȳi)−R(z̄i)]. (3.1)

To justify these formal manipulations, it suffices to prove that the series in (3.1) converges. In
the process, we verify the first statement of the lemma. Recall from Lemma 2.9 that we can choose
θ ∈ (0, 1) so that R is dθ-Lipschitz with Lipschitz constant |R|θ. We have s(yi, zi) = i+ s(y, z) for
i ≥ 0 and so

|D0(y, z)| ≤
∞∑
i=1

|R(ȳi)−R(z̄i)| ≤
∞∑
i=1

|R|θdθ(yi, zi)

= |R|θ
∞∑
i=1

θidθ(y0, z0) = |R|θθ(1− θ)−1dθ(y, z) <∞

as required.
It remains to prove the last statement of the lemma. Let N ≥ 1. By the above argument,

D0(y, z)−D0(y′, z′) = A(y, z)−A(y′, z′) +B(y, y′)−B(z, z′),

where

A(y, z) =

∞∑
i=N

|R(ȳi)−R(z̄i)|, B(y, y′) =

N−1∑
i=0

|R(ȳi)−R(ȳ′i)|.

Moreover, A(y, z), A(y′, z′) ≤ CθN .
For (y′, z′) sufficiently close to (y, z), the sequences of partition elements ai containing yi, zi and

a′i containing y′i, z
′
i coincide for i = 1, . . . , N . Hence s(yi, y

′
i) = i+ s(y, y′) and s(zi, z

′
i) = i+ s(z, z′)

for i = 1, . . . , N and so

B(y, y′) ≤ Cdθ(y, y′), B(z, z′) ≤ Cdθ(z, z′).

Given ε > 0, we choose N so that CθN < ε/4. Then we choose (y′, z′) so close to (y, z) that
(i) a′i = ai for i = 1, . . . , N , (ii) Cdθ(y, y

′) < ε/4, and (iii) Cdθ(z, z
′) < ε/4. Then |D0(y, z) −

D0(y′, z′)| < ε as required. �

3.1. A double inducing scheme. As in [21], the second iterate y1 = f2(0+) plays an important
role in establishing mixing properties. With that in mind, we consider two inducing schemes
Fi = f τi : Yi → Yi, i = 1, 2, whose quotients F̄i : Ȳi → Ȳi are C1+ε piecewise expanding maps
with full branches. By the l.e.o. condition, we can choose Ȳ0 and Ȳ1 to be disjoint open intervals
containing 0 and y1 respectively. Setting Y = Y0∪Y1, we obtain a combined (nonergodic) inducing
scheme F = f τ : Y → Y where F |Yi = Fi, τ |Yi = τi. The partition α on Y is the union of the
partitions on Y0 and Y1.

By Proposition 2.4, for almost every y ∈ Y0 there is a local unstable manifold WF (y) that covers
Y0, and then by Proposition 2.5 the product [y, y′] is defined for every y′ ∈ Y0. The same statement
holds with Y0 changed to Y1. In particular, Lemma 3.1 goes through for this inducing scheme by
considering points in Y0 and Y1 separately. (By convention, D0(y, z) is never defined for y, z lying
in distinct connected components of Y .)

Throughout most of the remainder of this section, until Subsection 3.5, we work with this
inducing scheme.
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3.2. Young tower from the inducing scheme. To the inducing scheme F = f τ : Y → Y
constructed in Subsection 3.1, we associate the Young tower [36] f̂ : ∆→ ∆ where ∆ = {(y, `) : y ∈

Y, ` = 0, 1, . . . , τ(y)−1} and f̂(y, `) =

{
(y, `+ 1), ` ≤ τ(y)− 2

(Fy, 0), ` = τ(y)− 1
. Note that F = f̂ τ is a first return

map to Y . The projection π : ∆ → Y , π(y, `) = f `y, defines a semiconjugacy between f̂ : ∆ → ∆
and f : X → X. Let r̂ = r◦π : ∆→ R denote the lifted roof function. The partition α of Y extends
to a partition α̂ = {a× ` : a ∈ α, 0 ≤ ` < τ |a} of ∆. Let ∆` = {(y, `) : y ∈ Y, 0 ≤ ` < τ(y)} denote
the `’th level of the tower. We write ∆` = ∆`,0 ∪∆`,1 where ∆`,i = {p = (y, `) ∈ ∆` : y ∈ Yi}.

Fix ` ≥ 0, i ∈ {0, 1}. For p = (y, `) ∈ ∆`,i we define the stable and unstable manifolds
W s(p) = W s

F (y) × `, W u(p) = W u
F (y) × ` ∈ ∆`,i. For p = (y, `), q = (z, `) ∈ ∆`,i we define

[p, q] = ([y, z], `) ∈ ∆`,i. Again if q ∈ â for some â ∈ α̂, then [p, q] ∈ â.
We say that p, q ∈ ∆ lie in the same unstable manifold if p = (y, `), q = (z, `) lie in ∆`,i for some

`, i, and y, z lie in the same unstable manifold. In that case we define

D0(p, q) =
∞∑
j=1

[r̂(f̂−jp)− r̂(f̂−jq)].

Note that

D0(p, q) = D0(y, z) +

`−1∑
j=0

[r(f jy)− r(f jz)], (3.2)

so the considerations in Lemma 3.1 for D0 restricted to points in Y apply also to D0 on ∆.
For â, â′ ∈ α̂ with â, â′ ⊂ ∆`,i for some `, i, we define the temporal distortion function D :

â× â′ → R by setting

D(p, q) =

∞∑
j=−∞

[r̂(f̂ jp)− r̂(f̂ j [p, q])− r̂(f̂ j [q, p]) + r̂(f̂ jq)],

for p ∈ â, q ∈ â′. We note that

D(p, q) =
−1∑

j=−∞

[
r̂(f̂ jp)− r̂(f̂ j [p, q])− r̂(f̂ j [q, p]) + r̂(f̂ jq)

]
= D0(p, [p, q]) +D0(q, [q, p]),

where the first equality follows since r is constant on stable manifolds and the second is by definition
of D0; see Figure 3. Hence, D is almost everywhere well defined by Proposition 2.5, Lemma 3.1
and (3.2).

Figure 3. The definition of the temporal distortion function.

3.3. Integrability and locally constant roof functions. This section follows closely [14, Ap-
pendix]. Our purpose is to show that the temporal distortion function is non-zero for geometric
Lorenz attractors.

Proposition 3.2. Let â, â′ ∈ α̂ with â, â′ ⊂ ∆`,i for some `, i. Suppose that D|â×â′ ≡ 0. Then for
all p ∈ â, q ∈ â′, the function D0(p, [p, q]) is constant along the stable manifolds of p and q.
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Proof. By Proposition 2.5, w 7→ [p, w] = [p, q] is constant along stable manifolds of q. Hence,
w 7→ D0(p, [p, w]) is constant along the stable manifold of q. Similarly, w 7→ D0(q, [q, w]) is
constant along the stable manifold of p. But D|â×â′ ≡ 0 implies that these two expressions are
equal up to a minus sign and the result follows. �

For each â ∈ α̂ with â ⊂ ∆`,i, we associate a point qâ ∈ ∆`,i. Then [p, qâ(p)] is defined for almost
every p ∈ ∆ (here, â(p) is the partition element in α̂ containing p). Define χ, u : ∆→ R by setting

χ(p) = D0(p, [p, qâ(p)]) =
∞∑
j=1

{r̂(f̂−jp)− r̂(f̂−j [p, qâ(p)])}, (3.3)

u(p) =

∞∑
j=1

{r̂(f̂−j [f̂p, qâ(Fp)])− r̂(f̂−j [p, qâ(p)])}. (3.4)

It follows from the definitions that r̂ = χ ◦ f̂ − χ+ u on ∆.

Proposition 3.3. If D ≡ 0, then χ : ∆ → R is continuous (indeed C1) on Y ∼= Y × 0 and u is
constant on partition elements of ∆.

Proof. By definition, u is constant along local unstable manifolds W u(p) ∩ a for all p ∈ â, â ∈ α̂.
But if D ≡ 0, then by Proposition 3.2 we have that χ is constant along stable manifolds. Hence
the same holds for χ ◦ f̂ . But r̂ is already constant along stable manifolds, so we deduce that
u = r̂ − χ ◦ f̂ + χ is constant along stable manifolds.

We have shown that u is constant along stable and unstable manifolds and hence is constant on
partition elements.

On Y , we obtain R =
∑τ−1

`=0 r̂◦ f̂ ` = χ◦F −χ+ ũ, where ũ =
∑τ−1

`=0 u◦ f̂ ` is constant on partition
elements. Since R, χ and u are constant along stable manifolds and hence are well-defined on Ȳ
we have that R = χ ◦ F̄ − χ+ ũ on Ȳ .

Restricting to Ȳi for i = 0, 1, and recalling (2.10), we note that the map F̄i : Ȳi → Ȳi satisfies all
the requirements of [9, Proposition 7.4] allowing us to conclude that χi|Ȳi has a C1 version. Hence

χ|Ȳ has a C1 version. �

However, this property contradicts the structure of geometric Lorenz attractors, as follows.

Theorem 3.4. For any geometric Lorenz flow, the temporal distortion function D is not identically
zero.

Proof. We adapt the strategy in [21]. Let y1 = f2(0+). Recall that 0 and y1 lie in the interior of Ȳ0

and Ȳ1 respectively. Choose disjoint subsets U0, U1 ⊂ Y that are the closure of unions of partition
elements such that W s(y1) ⊂ IntU1 while U0 contains a rectangle of the form [0, δ] × [−1, 1].
Shrinking U0 if necessary, we can ensure that τ |U0 > 2 and that f2U0 ⊂ U1. Fix z∗ ∈ U0 and note
that f2z∗ ∈ U1.

Let y ∈ U0. We claim that f2[y, z∗] = [f2y, f2z∗]. It is clear that f2(W s(z∗)) ⊂ W s(f2z∗), so
f2[y, z∗] ∈W s(f2z∗). We need to show that f2[y, z∗] ∈W u

F (f2y).
Now W u

F (y) ⊂ W u
loc,f (y) and so f2(W u

F (y)) ⊂ f2(W u
loc,f (y)) and also W u

F (f2y) ⊂ W u
loc,f (f2y) ⊂

f2(W u
loc,f (y)). Moreover, both f2(W u

F (y)) and W u
F (f2y) cross f2U0, since W u

F (y) crosses Y0 ⊃ U0

and W u
F (f2y) crosses Y1 ⊃ f2U0. Therefore we conclude that f2[y, z∗] ∈ f2(W u

F (y) ∩ U0) =
W u
F (f2y) ∩ f2U0. This proves the claim.
Define χ and u as in (3.3) and (3.4) stipulating q(a,2) = (z∗, 2) and q(f2a,0) = (f2z∗, 0) for a ∈ U0.
Suppose for contradiction that D ≡ 0. By Proposition 3.3, for y ∈ Y we have

r(y) + r(fy) = r̂(y, 0) + r̂(y, 1) = χ(y, 2)− χ(y, 0) + ũ(y, 0), (3.5)

where χ is continuous on Y ∼= Y ×0 and ũ(y, 0) = u(y, 0)+u(y, 1) is constant on partition elements.
We claim that χ is continuous on U0 × 2 and that limy→0+ χ(y, 2) = χ(y1). It then follows

from (3.5) that ˜̀ is constant on U0 × 0 and moreover that all terms in (3.5) converge as y → 0+

with the exception of r(y) which diverges to +∞. This is the desired contradiction.
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It remains to verify the claim. For y ∈ a, a ⊂ U0 we compute that

[(y, 2), qâ(y,2)] = [(y, 2), (z∗, 2)] = ([y, z∗], 2)

and

[(f2y, 0), qâ(f2y,0)] = [(f2y, 0), (f2z∗, 0)] = ([f2y, f2z∗], 0)

so that

π[(y, 2), qâ(y,2)] = f2[y, z∗] = [f2y, f2z∗] = π[(f2y, 0), qâ(f2y,0)].

Hence

χ(y, 2) =
∞∑
j=1

{
r̂(f̂−j(y, 2))− r̂(f̂−j [(y, 2), qâ(y,2)])

}
=
∞∑
j=1

{
r(f−jπ(y, 2))− r(f−jπ[(y, 2), qâ(y,2)])

}
=

∞∑
j=1

{
r(f−jf2y)− r(f−jπ[(f2y, 0), qâ(f2y,0)]

}
=
∞∑
j=1

{
r̂(f̂−j(f2y, 0))− r̂(f̂−j [(f2y, 0), qâ(f2y,0)]

}
= χ(f2y, 0).

The claim follows from continuity of χ on Y . �

3.4. Smoothness of the temporal distortion function.

Proposition 3.5. There exists â, â′ ∈ α̂ with â, â′ ⊂ ∆`,i for some `, i, and there exists p = (y, `) ∈
â, p′ = (y′, `′) ∈ â′, such that

(a) y lies in the unstable manifold of a periodic point, and similarly for y′.
(b) D(p, p′) 6= 0.

Proof. According to Theorem 3.4 there exist p = (y, `), p′ = (y′, `) such that D(p, p′) 6= 0. Let
zn → y be a sequence of periodic points as in Proposition 2.6 and let yn = [zn, y] so yn → y. Also
by Proposition 2.6, [yn, y

′] = [zn, y
′]→ [y, y′]. We have

D(yn, y
′) = D0(yn, [yn, y

′]) +D0(y′, [y′, yn]) = D0(yn, [yn, y
′]) +D0(y′, [y′, y]).

By Lemma 3.1, D0(yn, [yn, y
′])→ D0(y, [y, y′]).

Now let qn = (zn, `) and pn = [qn, p] = (yn, `). Since D0((a, `), (b, `)) −D0(a, b) is a finite sum
(with 2` terms) of continuous functions, it follows that D0(pn, [pn, p

′]) → D0(p, [p, p′]) and hence
that D(pn, p

′) → D(p, p′). Hence there exists n such that D(pn, p
′) 6= 0 and so we can replace

p by the point pn = (yn, `) where yn lies in the unstable manifold of the periodic point zn while
maintaining condition (b). Similarly, we can replace p′ by a point (y′n, `) where y′n lies in the
unstable manifold of a periodic point. �

Now we fix the points p = (y, `), p′ = (y′, `) from Proposition 3.5 and consider the map g :
W u(p)→ R given by

g(q) = D(q, p′) = D0(q, [q, p′]) +D0(p′, [p′, q]).

Since W u(p) is naturally identified with f `W u
F (y) it makes sense to speak of smoothness of g.

Proposition 3.6. The one-dimensional map g : W u(p)→ R is C1.

Proof. Let g1(q) = D0(q, [q, p′]) =
∑∞

j=1 r(f
−jq) −

∑∞
j=1 r(f

−j [q, p′]). Since [q, p′] = [p, p′] is

independent of q ∈ W u(p), the second sum consists of constant functions. For the first sum, note
that each z ∈ W u(y) converges in backwards time to the periodic orbit y. Since p = f `y and
q = f `z, the backwards trajectory {f−jq, j ≥ 1} is bounded away from the singularity at 0. It
follows that along this trajectory f−1 is uniformly contracting and r is uniformly C1. (The constants
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are uniform in j but are allowed to depend on q.) Hence the series for (dg1)q : TqW
u(p) → R is

absolutely convergent and g1 is C1.
A similar argument applies to g2(q) = D0(p′, [p′, q]) =

∑∞
j=1 r(f

−jp′)−
∑∞

j=1 r(f
−j [p′, q]). This

time, it is the first sum that consists of constants. The second sum is like the first sum in g1 with
q replaced by [p′, q] which converges in backwards time to the periodic orbit y′. It follows that the
dependence of g2 on [p′, q] is C1. But z 7→ [y′, z] is C1 by the last statement of Proposition 2.5 and
so q 7→ [p′, q] is C1. Hence g2 is C1 and so g = g1 + g2 is C1. �

Corollary 3.7. There exists a nonempty open set V ⊂ W u(p) ∼= W u
F (f `y) on which g restricts to

a C1 diffeomorphism.

Proof. By Proposition 3.6, g is a C1 map on W u(p). Since g([p, p′]) = 0 and g(p) 6= 0 by assumption,
it follows that g′ is not identically zero and the result follows. �

3.5. Dimension of the range of the temporal distortion function. If necessary, we now
choose a new inducing scheme F ∗ : Y ∗ → Y ∗ with Y ∗ ⊂

⋃
v∈V W

s
f (v) and such that the properties in

Sections 2.3 and 2.4 remain valid. (For this part of the argument it suffices to take Y ∗ connected and
F ∗ full branch.) The definition of D, and hence g, is unchanged since this is defined in terms of r and
f , independent of the choice of inducing scheme. Let α∗ denote the associated partition of Y ∗ and
choose two partition elements a1, a2 ∈ α∗. Define the finite subsystem A0 =

⋂
n≥0(F ∗)−n(a1 ∪ a2).

Proposition 3.8. For the finite subsystem A0 constructed above, the set D(A0 ×A0) has positive
lower box dimension.

Proof. At the level of the quotient dynamics, the map F̄ ∗ : Ȳ ∗ → Ȳ ∗ is uniformly expanding.
Moreover, F̄ ∗ai = Ȳ ∗ for i = 1, 2 and the derivative of F̄ ∗ is bounded on the closure of a1 ∪ a2. It
follows (see for example [30, p. 203]) that the Cantor set A0 has positive Hausdorff dimension. Since
g|V is a C1 diffeomorphism and A0 ⊂ V , it follows that g(A0) has positive Hausdorff dimension.
Hence the larger set D(A0 ×A0) has positive lower box dimension. �

4. Fast mixing decay of correlations

We are now ready to complete the proof of Theorem A. According to [22, 23], the result is
immediate from Proposition 3.8. Unfortunately, the precise formulation of the result we require is
not written down there. If the roof function were bounded then we would have all the ingredients
required to directly apply [23, Corollary 5.6]. The case of unbounded roof functions is considered
in [22, Proposition 3.6] and [23, Section 6.5] for semiflows and flows respectively, but omitting the
crucial ingredient provided by the dimension of the range of the temporal distortion function.

Hence, to apply the results in [22, 23] it is necessary to recall several of the definitions and
intermediate steps. This is done for semiflows in Subsection 4.1. In Section 4.2, we pass from the
semiflow to the flow; here it turns out to be particularly convenient to use a recent approach of [9],

4.1. Fast mixing for the semiflow. We assume that F̄ : Ȳ → Ȳ is a uniformly expanding
map with partition α0 covered by a uniformly hyperbolic map F : Y → Y with partition α as
in Section 2.3. We continue to suppose that R : Y → R+ is a possibly unbounded roof function,
constant along stable leaves, that is locally Lipschitz in the symbolic metric dθ on Ȳ . Moreover, R
is bounded below and has exponential tails.

Given v : Ȳ R → R continuous, we define |v|θ = sup |v(y, u) − v(y′, u)|/dθ(y, y′) where the
supremum is over distinct points (y, u), (y′, u) ∈ Ȳ R. (Recall that Ȳ R is an identification space so
observables v : Ȳ R → R satisfy v(y,R(y)) = v(F̄ y, 0).) Define Fθ(Ȳ

R) to be the space of continuous
observables v : Ȳ R → R such that ‖v‖θ = |v|∞ + |v|θ <∞.

Let ∂tv = d
dt S̄tv|t=0 denote the derivative of v in the flow direction. So ∂tv(y, u) = ∂

∂uv(y, u)
when 0 < u < R(y), ∂tv(y, 0) = limt→0+(v(y, t)−v(y, 0))/t and ∂tv(y,R(y)) = limt→0+(v(y,R(y))−
v(y,R(y) − t))/t. Provided that ∂tv(y,R(y)) = ∂tv(F̄ y, 0) for all y ∈ Ȳ , this defines a function
∂tv : Ȳ R → R. If in addition v, ∂tv ∈ Fθ(Ȳ R) then we write v ∈ Fθ,1(Ȳ R).
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Similarly, define the space Fθ,k(Ȳ
R) of observables v : Ȳ R → R that are Ck in the semiflow

direction with derivatives ∂jt v ∈ Fθ(Ȳ R) for j = 0, . . . , k. Define ‖v‖θ,k =
∑k

j=0 ‖∂
j
t v‖θ.

We require some further definitions from [22, 23] based on [14]. A subset Ā0 ⊂ Ȳ is a finite
subsystem of Ȳ if Ā0 =

⋂
n≥1 F̄

−nĀ where Ā is a finite union of elements of α0. Similarly, a subset

A0 ⊂ Y is a finite subsystem of Y if A0 =
⋂
n≥1 F

−nA where A is a finite union of elements of α0.

Such a finite subsystem projects to a finite subsystem Ā0 ⊂ Ȳ .

Definition 4.1. For b ∈ R define Mb : L∞(Ȳ ) → L∞(Ȳ ), Mbv = e−ibRv ◦ F̄ . We say that Mb has
approximate eigenfunctions on a subset Ā0 ⊂ Ȳ if there exist constants α, β > 0 arbitrarily large
and C ≥ 1, and sequences bk ∈ R with |bk| → ∞, ϕk ∈ [0, 2π), uk : Ȳ → C with |uk| ≡ 1 and
|uk|θ = supy 6=y′ |uk(y)− uk(y′)|/dθ(y, y′) ≤ C|bk|, such that setting nk = [β ln |bk|],

|(Mnk
bk
uk)(y)− eiϕkuk(y)| ≤ C|bk|−α,

for all y ∈ Ā0 and all k ≥ 1.

Theorem 4.2. Let S̄t : Ȳ R → Ȳ R be a suspension semiflow over a uniformly expanding map
F̄ : Ȳ → Ȳ , where the roof function R : Ȳ → R+ has exponential tails.

Suppose that there exists a finite subsystem Ā0 ⊂ Ȳ such that there are no approximate eigen-
functions on Ā0. Then the semiflow has superpolynomial decay for sufficiently smooth observables.
That is, for any γ > 0, there exists C > 0 and k ≥ 1 such that for all observables v ∈ Fθ,k(Ȳ R),

w ∈ L∞(Ȳ R) and all t > 0,∣∣∣ ∫ v w ◦ S̄t dµ̄−
∫
v dµ̄

∫
w dµ̄

∣∣∣ ≤ C‖v‖θ,k|w|∞t−γ . (4.1)

Proof. For the quotient suspension Ȳ R, we are in the situation of [22, Section 3]. (The induced roof
function R is denoted by H in [22].) The exponential tail condition in [22, Definition 3.1] follows
from Proposition 2.7 and Lemma 2.9. Hence, in principle, the result follows from [22, Lemma 3.5,
Proposition 3.6]. There are two caveats that need to be mentioned.

The first caveat is that the definition of approximate eigenfunctions in [22] is slightly weaker
than in Definition 4.1 since the constraint |uk|θ ≤ C|bk| is not mentioned. However, as is easily
checked, the argument in [22] shows that the failure of fast mixing implies the existence of approx-
imate eigenfunctions that actually satisfy the stronger requirements of Definition 4.1. Only [22,
Lemma 3.5] is possibly affected, and it is a consequence of [22, Corollary 3.11 and Lemmas 3.12
and 3.13]. Of these, only [22, Lemma 3.12] is possibly affected by the change in definition. More-
over, this lemma gives a criterion for the existence of approximate eigenfunctions (called w and
eventually w1) and these are shown to satisfy the extra constraint |w1|θ ≤ C11|b|.

The second caveat is that [22, Proposition 3.6] has an additional hypothesis, namely that S̄t
is mixing. We claim that if S̄t is not mixing, then there exist approximate eigenfunctions on the
whole of Ȳ ; hence this extra hypothesis is redundant. It remains to verify the claim. A standard
characterisation of mixing for suspension semiflows over a mixing transformation F̄ is that for
each c 6= 0 the functional equation u ◦ F̄ = eicRu has no measurable solutions u : Ȳ → S1 where
S1 ⊂ C is the unit circle. Suppose that c 6= 0 and u : Ȳ → S1 measurable satisfy such a functional
equation. Since |eicR(y)− eicR(y′)| ≤ |c||R(y)−R(y′)|, the exponential tail condition on R certainly
implies that the hypothesis on f = eicR in [15, Theorem 1.1] is satisfied. Hence u has a version
with |u|θ < ∞. For any α, β > 0, we let uk = uk, bk = kc, nk = [β ln |bk|], ϕk = 0. In particular,
|uk|θ ≤ k|u|θ ≤ C|bk| with C = |u|θ/|c|. Moreover, Mnk

bk
uk ≡ eiϕkuk so the requirements in

Definition 4.1 are satisfied. This completes the proof. �

Proposition 4.3. Let A0 ⊂ Y be a finite subsystem and suppose that D(A0 × A0) has positive
lower box dimension. Then there are no approximate eigenfunctions on Ā0.

Proof. Suppose that there are approximate eigenfunctions on Ā0. The calculation in the proof
of [23, Theorem 5.5] (with ωk = 0) shows that for all α > 0, there is a sequence bk ∈ R with

|bk| → ∞ and a constant C > 0 such that |eibkD(y1,y4) − 1| ≤ C|bk|−α for all y1, y4 ∈ A0. It then
follows from [23, Corollary 5.6] that D(A0 ×A0) has lower box dimension zero. �
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Corollary 4.4. Let G ∈ U be a vector field defining a strongly dissipative geometric Lorenz flow.
Let S̄t : Ȳ R → Ȳ R denote the corresponding suspension semiflow. Then for all γ > 0, there exists
C > 0 and k ≥ 1 such that for all observables v ∈ Fθ,k(Ȳ R), w ∈ L∞(Ȳ R), and all t > 0,∣∣∣ ∫ v w ◦ S̄t dµ̄−

∫
v dµ̄

∫
w dµ̄

∣∣∣ ≤ C‖v‖θ,k|w|∞t−γ .
Proof. In Proposition 3.8, we constructed a finite subsystem A0 ⊂ Y such that D(A0×A0) has posi-
tive lower box dimension. Hence there are no approximate eigenfunctions on Ā0 by Proposition 4.3.
The result follows from Theorem 4.2. �

Remark 4.5. As mentioned in Remark 2.8, the full strength of Proposition 2.7 is not required in
this paper. A standard and elementary argument using the exponential tails for r and τ implies

the stretched exponential estimate µY (R > n) = O(e−ct
1/2

) which suffices for the methods in [23].
However, the analogue of Theorem 4.2 is not stated explicitly in [23] so for ease of exposition we
have made use of Proposition 2.7.

4.2. Fast mixing for the flow. We continue to assume the structure from Subsection 4.1 and in
addition that there is a C1+ε global exponentially contracting stable foliation.

In Subsection 4.1, we defined the space Fθ(Ȳ
R) of observables on Ȳ . To define the corresponding

space Fθ(Y
R) it is convenient to choose coordinates (y, z) on Y where y ∈ Ȳ and vertical lines

correspond to stable leaves (recall that this can be achieved by a C1+ε change of coordinates).
Then we define Fθ(Y

R) to be the space of continuous observables v : Y R → R respecting the
identifications (y, z,R(y)) ∼ (F (y, z), 0) and such that ‖v‖θ = |v|∞ + |v|θ <∞ where

|v|θ = sup
(y,z,u)6=(y′,z′,u)

|v(y, z, u)− v(y′, z′, u)|
dθ(y, y′) + |z − z′|

.

Again, we define the space Fθ,k(Y
R) of observables v : Y R → R that are Ck in the flow direction

with derivatives ∂jt v ∈ Fθ(Y R) for j = 0, . . . , k. Define ‖v‖θ,k =
∑k

j=0 ‖∂
j
t v‖θ.

Lemma 4.6. There is a continuous family of probability measures {ηy, y ∈ Ȳ } on Y with supp ηy ⊂
π−1(y) such that

∫
Y v dµY =

∫
Ȳ

∫
π−1(y) v dηy dµȲ (y) for all v : Y → R continuous.

Moreover, there is a constant C1 > 0 such that if v ∈ Fθ,k(Y R), and v̄ : Ȳ R → R is defined to be

v̄(y, u) =
∫
π−1(y) v(y′, u) dηy(y

′), then v̄ ∈ Fθ,k(Ȳ R) and ‖v̄‖θ,k ≤ C1‖v‖θ,k.

Proof. A proof of the existence of the continuous disintegration µY =
∫
Ȳ ηy dµ̄Y (y) in the first

statement of the lemma can be found for instance in [10].
Suppose that v : Y R → R is continuous. In particular v(y,R(y)) = v(Fy, 0) for all y ∈ Y .

Define v̄(y, u) =
∫
π−1(y) v(y′, u) dηy(y

′). As shown below, v̄(y,R(y)) = v̄(F̄ y, 0) for all y ∈ Ȳ , so

that we have a well-defined function v̄ : Ȳ R → R. The estimate ‖v̄‖θ ≤ C1‖v‖θ follows from [10,
Proposition 10]. The case of general k follows since

∂jt v̄(y, u) =

∫
π−1(y)

∂jt v(y′, u) dηy(y
′) = ∂jt v(y, u), for all j.

It remains to prove that v̄(y,R(y)) = v̄(F̄ y, 0) for y ∈ Ȳ . Throughout, we regard {ηy, y ∈ Ȳ }
as a family of probability measures on Y . In particular, F∗ηy denotes the pushforward of ηy (so
(F∗ηy)(E) = ηy(F

−1E)).
Define v0 : Y → R by setting v0(y) = v(y, 0). Then v̄(y, 0) = ηy(v0), and so v̄(F̄ y, 0) = ηF̄ y(v0).

Also, using that R is constant along the stable foliation, we obtain

v̄(y,R(y)) =

∫
Y
v(y′, R(y)) dηy(y

′) =

∫
Y
v(y′, R(y′)) dηy(y

′)

=

∫
Y
v(Fy′, 0) dηy(y

′) = ηy(v0 ◦ F ) = (F∗ηy)(v0).

By continuity of v̄, it remains to show that F∗ηy = ηF̄ y for µȲ -a.e. y ∈ Ȳ .
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We claim that ∫
Ȳ
F∗ηy dµȲ (y) =

∫
Ȳ
ηF̄ y dµȲ (y).

By uniqueness of a family of conditional measures with respect to a given measure and measurable
partition, we deduce from the claim that F∗ηy = ηF̄ y for µȲ -a.e. y ∈ Ȳ as required.

It remains to prove the claim. Since µȲ is F̄ -invariant, we have on the one hand∫
Ȳ
ηF̄ y dµȲ (y) =

∫
Ȳ
ηy d(F̄∗µȲ )(y) =

∫
Ȳ
ηy dµȲ (y).

On the other hand, by F -invariance of µY ,∫
Ȳ
ηy dµȲ (y) = µY = F∗µY =

∫
Ȳ
F∗ηy dµȲ (y),

completing the proof of the claim. �

Proof of Theorem A We follow the argument in [9, Section 8].
Given γ > 0, choose C > 0 and k ≥ 1 as in Corollary 4.4. We suppose that v ∈ Ck(R3) and that

w ∈ Cα(R3) for some α > 0.
Recall that p : Y R → R3 is the semiconjugacy p(y, u) = Zuy. It suffices to prove the result

for observables v ◦ p and w ◦ p at the level of the suspension flow on Y R. By Proposition 2.11,
v ◦ p ∈ Fθ,k(Y R).

Without loss, we may suppose that
∫
Y R v ◦ p dµ = 0. Define the semiconjugacy πR : Y R → Ȳ R,

πR(y, u) = (πy, u), so S̄t ◦ πR = πR ◦ St.
Define wt : Y R → R by setting

wt(y, u) =

∫
π−1(y)

w ◦ p ◦ St(y′, u) dηy(y
′).

Then
∫
Y R v ◦ p w ◦ p ◦ S2t dµ = I1(t) + I2(t), where

I1(t) =

∫
Y R

v ◦ p w ◦ p ◦ S2t dµ−
∫
Y R

v ◦ p wt ◦ S̄t ◦ πR dµ

I2(t) =

∫
Y R

v ◦ p wt ◦ S̄t ◦ πR dµ.

Now I1(t) =
∫
Y R v ◦ p {(w ◦ p ◦ St − wt ◦ π

R) ◦ St} dµ, so |I1(t)| ≤ |v|1|w ◦ p ◦ St − wt ◦ πR|∞.

Using the definitions of πR and wt,

w ◦ p ◦ St(y, u)− wt ◦ πR(y, u) = w ◦ p ◦ St(y, u)− wt(πy, u)

=

∫
π−1(y)

(w ◦ p ◦ St(y, u)− w ◦ p ◦ St(y′, u)) dηπ(y)(y
′).

Since St contracts exponentially along stable manifolds, there are constants C2, a > 0 (dependent
on α) such that |w ◦ p ◦ St(y, u) − w ◦ p ◦ St(y′, u)| ≤ C2|w|αe−at for all y′ ∈ π−1(y), (y, u) ∈ Y R,
and so |w ◦ p ◦ St − wt ◦ πR|∞ ≤ C2|w|αe−at. Hence

|I1(t)| ≤ C2|v|1|w|αe−at.

Next, define v̄ : Ȳ R → R by setting v̄(y, u) =
∫
π−1(y) v ◦ p(y

′, u) dηy(y
′). Since

∫
Y R v ◦ p dµ = 0,

it follows from Lemma 4.6 that
∫
Ȳ R v̄ dµ̄ = 0. Moreover, I2(t) =

∫
Ȳ R v̄ wt ◦ S̄t dµ̄. By Lemma 4.6,

v̄ ∈ Fθ,k(Ȳ R) and ‖v̄‖θ,k ≤ C1‖v ◦p‖θ,k. Clearly, |wt|∞ ≤ |w|∞. Hence it follows from Corollary 4.4
that |I2(t)| ≤ C‖v̄‖θ,k|wt|∞ t−γ ≤ CC1‖v‖θ,k|w|∞ t−γ completing the proof. �

21



5. ASIP for time-1 map of a nonuniformly expanding semiflow

In this section, we prove the ASIP for time-1 maps of a general class of sufficiently mixing
nonuniformly expanding semiflows.

Suppose that F̄ : Ȳ → Ȳ is a Gibbs-Markov map (uniformly expanding with bounded distortion
and big images – for notational convenience we assume full branches) with ergodic invariant measure
µȲ . Let dθ denote a symbolic metric on Ȳ for some θ ∈ (0, 1). Let R : Ȳ → R+ be a possibly
unbounded roof function satisfying

(i) R is bounded below,
(ii) µȲ (R > t) = O(t−β) for some β > 1,

(iii) |R|θ = supy 6=y′ |R(y)−R(y′)|/dθ(y, y′) <∞.

(This includes the case of uniformly expanding semiflows where R is bounded.) Define the suspen-
sion semiflow S̄t : Ȳ R → Ȳ R with ergodic invariant measure µ̄ = µȲ ×Leb/

∫
Ȳ RdµȲ . Let Fθ,k(Ȳ

R)
be the space of observables introduced in Section 4.1.

Remark 5.1. Condition (iii), although satisfied for geometric Lorenz flows, is unnecessarily restric-
tive. At the end of the section, we show how this condition can be relaxed.

Theorem 5.2. Suppose that (4.1) holds with β > 2
√

2 + 1. Let v ∈ Fθ,k+1(Ȳ R) be an observable
with mean zero. Then the ASIP holds for the time-1 map S̄ = S̄1: passing to an enriched proba-
bility space, there exists a sequence X0, X1, . . . of iid normal random variables with mean zero and
variance σ2, such that

n−1∑
j=0

v ◦ S̄j =

n−1∑
j=0

Xj +O(n1/4(log n)1/2(log log n)1/4), a.e.

The variance is given by

σ2 = lim
n→∞

1

n

∫
(
n−1∑
j=0

v ◦ S̄j)2 dµ̄ =
∞∑

n=−∞

∫
v ·
(
v ◦ S̄n

)
dµ̄.

The degenerate case σ2 = 0 occurs if and only if v = χ ◦ S̄−χ for some χ ∈ L2. Moreover, for any
finite p we have χ ∈ Lp for k sufficiently large.

Remark 5.3. (a) The CLT and functional CLT can be proved more directly under weaker assump-
tions: it suffices that β > 1, see [32, Theorem 1]. Also, the statements about the variance in
Theorem 5.2 are a standard consequence of the methods there.

(b) An ASIP with weaker error term can be proved for smaller values of β. However, in our
application to the geometric Lorenz attractor, we can obtain any desired value of β by increasing the
smoothness of the observable, and there is no easy relationship between the degree of smoothness
and the size of β, so there seems little point in pursuing this here.

First, we relate the transfer operators for the semiflow and the induced map F̄ . Let Lt be
the transfer operator corresponding to the semiflow S̄t, so

∫
Ȳ R Ltv w dµ̄ =

∫
Ȳ R v w ◦ S̄t dµ̄ for all

v ∈ L1(Ȳ R), w ∈ L∞(Ȳ R). In particular, Ln is the transfer operator for S̄n. Let P denote the
transfer operator for F̄ : Ȳ → Ȳ , so

∫
Ȳ Pv w dµȲ =

∫
Ȳ v w ◦ F̄ dµȲ for all v ∈ L1(Ȳ ), w ∈ L∞(Ȳ ).

Proposition 5.4. Let t > 0. The transfer operator Lt is given by a finite sum of the form

(Ltv)(y, u) =

∞∑
j=0

(P j ṽt,u,j)(y), with ṽt,u,j(y) = v(y, u− t+Rj(y)).

The number of nonzero terms in the sum is bounded by t/ inf R+ 1.
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Proof. Let R̄ =
∫
Y RdµȲ and write∫

Ȳ R
v w ◦ S̄t dµ̄ = (1/R̄)

∫
Y

∫ R(y)

0
v(y, u)w ◦ S̄t(y, u) du dµȲ

= (1/R̄)

∞∑
j=0

∫
Y

∫ Rj+1(y)−t

Rj(y)−t
1[0,R(y)](u)v(y, u)w(S̄t(y, u)) du dµȲ .

For the j’th term to give a nonzero contribution to the sum, it is necessary that Rj+1(y)− t < R(y)
for some y, equivalently Rj(F̄ y) < t, leading to the condition that 0 ≤ j ≤ t/ inf R. Now∫

Ȳ

∫ Rj+1(y)−t

Rj(y)−t
1[0,R(y)](u)v(y, u)w(S̄t(y, u)) du dµȲ

=

∫
Ȳ

∫ Rj+1(y)−t

Rj(y)−t
1[0,R(y)](u)v(y, u)w(F̄ jy, u+ t−Rj(y)) du dµȲ

=

∫
Ȳ

∫ R(F̄ky)

0
1[0,R(y)](u− t+Rj(y))v(y, u− t+Rj(y))w(F̄ ky, u) du dµȲ

=

∫ ∞
0

∫
Ȳ

1[0,R(F̄k(y))](u)1[0,R(y)](u− t+Rj(y))v(y, u− t+Rj(y))w(F̄ ky, u) dµȲ du

=

∫ ∞
0

∫
Ȳ
ṽt,u,j(y) 1[0,R(F̄k(y))](u)w(F̄ ky, u) dµȲ du

=

∫ ∞
0

∫
Ȳ

(P j ṽt,u,j)(y) 1[0,R(y)](u)w(y, u) dµȲ du

=

∫
Ȳ

∫ R(y)

0
(P j ṽt,u,j)(y)w(y, u) du dµȲ ,

as required. �

Theorem 5.2 is a consequence of Cuny & Merlevède [12, Theorem 3.2]. To apply [12], we are
required to check that the following three conditions hold:

∞∑
n=1

(log n)3n5/2|Lnv|44 <∞, (5.1)

∞∑
n=1

(log n)3n|Lnv|22 <∞, (5.2)

∞∑
n=1

(log n)3n−2
( n∑
i=1

n−i∑
j=0

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2

)2
<∞. (5.3)

Proposition 5.5. Let p ∈ [1,∞). Then there is a constant C > 0 such that |Ltv −
∫
v dµ̄|p ≤

C‖v‖θ,kt−β/p for all v ∈ Fθ,k(Ȳ R).

Proof. Following [24], we set w = sgnLtv in (4.1) to obtain |Ltv|1 ≤ C‖v‖θ,kt−β. Since v ∈ L∞

and |Ltv|∞ ≤ |v|∞, we obtain |Ltv|pp ≤ |v|p−1
∞ |Ltv|1 ≤ C‖v‖pθ,kt

−β. �

Lemma 5.6. There exists a constant C1 (depending on k and θ) such that

‖vLtv‖θ,k ≤ C1(t+ 1)(|R|θ + 1)‖v‖2θ,k+1, (5.4)

for all t ≥ 0.

Proof. It is clear that ‖vLtv‖θ,k ≤ C‖v‖θ,k‖Ltv‖θ,k where C depends only on k. It remains to
estimate ‖Ltv‖θ,k. By Proposition 5.4, it suffices to estimate ‖P j ṽt,u,j‖θ,k uniformly in j and t,
since there are at most t/ inf R+ 1 elements in the sum.
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Note also that ∂tP
j ṽ = P j (̃∂tv). Hence it suffices to prove that ‖P j ṽt,u,j‖θ,0 ≤ C(|R|θ + 1)‖v‖θ,1

uniformly in j and t.
For general reasons, |P j ṽt,u,j |∞ ≤ |ṽt,u,j |∞ = |v|∞. Next we recall that (Pv)(y) =

∑
a∈α e

p(ya)v(ya)

where α is the underlying partition, ya is the unique preimage F̄−1y lying in a (this is where we
assume full branches; otherwise there may be no preimage and the term is simply omitted) and p
is the potential. Iterating, we obtain

(P j ṽt,u,j)(y) =
∑
a∈αj

epj(ya)v(ya, u− t+Rj(ya))

where αj is the partition of j-cylinders and pj =
∑j−1

i=0 p ◦ F̄ i, Rj =
∑j−1

i=0 R ◦ F̄ i. (Again ya
denotes the unique preimage F̄−jy lying in a.) We recall the standard estimate for Gibbs-Markov
expanding maps: there is a constant C > 0 such that

|epn(y) − epn(y′)| ≤ Cepn(y)dθ(F̄
ny, F̄ny

′), for all y, y′ ∈ a, a ∈ αn, n ≥ 1. (5.5)

Also, an easy calculation shows that (see the proof of Lemma 2.9)

|Rn(y)−Rn(y′)| ≤ (1− θ)−1|R|θdθ(F̄ny, F̄ny′), for all y, y′ ∈ a, a ∈ αn, n ≥ 1. (5.6)

Let (y, u), (y′, u′) ∈ Ȳ R. We suppose without loss that u′ ≤ u. Then

(P j ṽt,u,j)(y)− (P j ṽt,u′,j)(y
′) = I + II + III + IV, (5.7)

where

I =
∑
a∈αj

(epj(ya) − epj(y′a))v(ya, u− t+Rj(ya)),

II =
∑
a∈αj

epj(y
′
a) · [v(ya, u− t+Rj(ya))− v(y′a, u− t+Rj(ya))],

III =
∑
a∈αj

epj(y
′
a) · [v(y′a, u− t+Rj(ya))− v(y′a, u− t+Rj(y

′
a))],

IV =
∑
a∈αj

epj(y
′
a) · [v(y′a, u− t+Rj(y

′
a))− v(y′a, u

′ − t+Rj(y
′
a))].

Using (5.5) and (5.6), |I| ≤ C
∑

a∈αj e
pj(ya)|v|∞ = C|v|∞, and

|III| ≤
∑
a∈αj

epj(y
′
a)|∂tv|∞|Rj(ya)−Rj(y′a)| ≤ (1− θ)−1|∂tv|∞|R|θdθ(y, y′).

Also |II| ≤
∑

a∈αj e
pj(y

′
a)|v|θdθ(ya, y′a) = θj |v|θdθ(ya, y′a) and |IV | ≤ |∂tv|∞|u− u′|. Hence

‖P j ṽt,u,j‖θ,0 ≤ C(|R|θ + 1)‖v‖θ,1 as required. �

Corollary 5.7. There exists a constant C (depending on k, θ and |R|θ) such that

n∑
i=1

n−i∑
j=0

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2 ≤ C(n

√
2+1−β/2 + 1)‖v‖2θ,k+1,

for all mean zero v ∈ Fθ,k(Ȳ R).

Proof. On one hand, by Proposition 5.5 and Lemma 5.6,

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2 ≤ Ci

−β/2‖vLjv‖θ,k ≤ C ′i−β/2(j + 1)‖v‖2θ,k+1.

On the other hand,

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2 ≤ |vLjv −

∫
Ȳ RvLjv dµ̄|2

≤ 2|vLjv|2 ≤ 2|v|∞|Ljv|2 ≤ C(j + 1)−β/2‖v‖2θ,k.
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Using the first estimate,

n∑
i=1

i1/
√
2∑

j=0

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2 ≤ C‖v‖

2
θ,k+1

n∑
i=1

i1/
√

2∑
j=0

(j + 1)i−β/2 ≤ C ′‖v‖2θ,k+1(n
√

2−β/2+1 + 1).

Using the second estimate,

n∑
j=0

j
√
2∑

i=1

|Li(vLjv)−
∫
Ȳ RvLjv dµ̄|2 ≤ C‖v‖

2
θ,k+1

n∑
j=0

j
√

2∑
i=1

(j + 1)−β/2 ≤ C ′‖v‖2θ,k+1(n
√

2−β/2+1 + 1).

Combining these gives the required estimate. �

Now we can complete the proof of Theorem 5.2.

Proof of Theorem 5.2. By Proposition 5.5, |Lnv|pp ≤ Cp‖v‖pθ,kn
−β. Hence conditions (5.1) and (5.2)

are satisfied for β > 7
2 . By Corollary 5.7, condition (5.3) is satisfied for β > 2

√
2 + 1. �

Finally, as promised in Remark 5.1, we show how condition (iii) can be relaxed. Indeed it suffices
that

(iii1)
∑

a∈α µȲ (a) LipaR <∞,

where LipA g = supx,y∈A, x 6=y |g(x)− g(y)|/dθ(x, y) for g : Ȳ → R, A ⊂ Ȳ .
We begin by recalling a standard estimate for Gibbs-Markov maps which we did not explicitly

make use of earlier: there is a constant C > 0 such that |1aepj |∞ ≤ CµȲ (a) for all a ∈ αj , j ≥ 1.
Note that condition (iii) was only used in the estimate of term III in the proof of Lemma 5.6.

But alternatively, we compute that |III| ≤ |∂tv|∞
∑j−1

i=0 Ai,j where

Ai,j =
∑
a∈αj

epj(y
′
a)|R ◦ F̄ i(ya)−R ◦ F̄ i(y′a)| ≤ C

∑
a∈αj

µȲ (a) LipF̄ iaRdθ(F̄
iya, F̄

iy′a)

= Cθj−idθ(y, y
′)
∑
a∈αj

µȲ (a) LipF̄ iaR.

Now∑
a∈αj

µȲ (a) LipF̄ iaR =
∑

b∈αj−i

∑
a∈αj :F̄ ia=b

µȲ (a) LipbR =
∑

b∈αj−i

µȲ (F̄−ib) LipbR =
∑

b∈αj−i

µȲ (b) LipbR

=
∑
c∈α

∑
b∈αj−i:b⊂c

µȲ (b) LipbR ≤
∑
c∈α

∑
b∈αj−i:b⊂c

µȲ (b) LipcR =
∑
c∈α

µȲ (c) LipcR.

Hence Ai,j ≤ Cθj−idθ(y, y′)
∑

a∈α µȲ (a) LipaR and

|III| ≤ Cθ(1− θ)−1|∂tv|∞
∑
a∈α

µȲ (a) LipaRdθ(y, y
′).

Hence, assuming condition (iii1) instead of (iii), we obtain an estimate analogous to the one in
Lemma 5.6 with the conclusion (5.4) replaced by the estimate

‖vLtv‖θ,k ≤ C1(t+ 1)
(∑
a∈α

µȲ (a) LipaR+ 1
)
‖v‖2θ,k+1,

for all t ≥ 0.
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6. Nondegeneracy in the CLT and ASIP

In this section, we prove that the degenerate case σ2 = 0 in Theorem 5.2 is of infinite codimension.
Suppose as in Theorem 5.2 that v = χ ◦ S̄ − χ for some χ ∈ L2. Following [24, Proposition 2], we

define ψt =
∫ t

0 v ◦ S̄s ds and h =
∫ 1

0 χ ◦ S̄s ds. Then ψt is a continuous cocycle for the semiflow S̄t;

that is ψt+s = ψs ◦ S̄t + ψt for all s, t ≥ 0. Moreover, h ∈ L2 and ψt = h ◦ S̄t − h, so ψt is an L2

coboundary.
In the Axiom A setting of [24] it now follows from a Livšic regularity theorem of [34] that

h has a Hölder version. Hence if q is a periodic point of period T for S̄t, then
∫ T

0 v(S̄tq) dt =

ψT (q) = h(S̄T q)−h(q) = 0. Since S̄t has infinitely many periodic orbits, this places infinitely many
restrictions on v.

In the nonuniformly expanding case, the situation is similar once we have a Livšic regularity the-
orem for nonuniformly expanding semiflows. As we now show, this is a straightforward combination
of results of [15] for Gibbs-Markov maps and [34] for uniformly expanding semiflows.

In the remainder of this section, we suppose as in Section 5 that F̄ : Ȳ → Ȳ is a full-branch
Gibbs-Markov map and that R : Ȳ → R+ is a roof function satisfying conditions (i), (ii) and (iii1).
(The full-branch condition is relaxed in Remark 6.3.)

Given a continuous cocycle ψt on Ȳ R, we define Iψ : Ȳ → R
Iψ(y) = ψR(y)(y, 0).

Lemma 6.1. Let ψ be a cocycle for S̄t such that Iψ : X → G satisfies∑
a∈α

µȲ (a) Lipa Iψ <∞.

Suppose that there exists h : Ȳ R → R measurable such that for all t ≥ 0: ψt = h ◦ S̄t − h a.e. Then
h has a version that is continuous.

Proof. We begin by following the proof of [34, Theorem 3.3]. Note that the set of zero measure
where ψt = h ◦ S̄t − h fails for each t ≥ 0 can be made independent of t; see e.g. [11, p. 13]. Hence
for almost every (y, u) ∈ Ȳ R,

ψR(y)(y, u) = h(S̄R(y)(y, u))− h(y, u). (6.1)

Then Ψ(y, u) = ψR(y)(y, u)− h(S̄R(y)(y, u)) + h(y, u) = 0, µ̄-a.e. and so by Fubini’s Theorem there

exists 0 < u0 < inf R such that Ψ(y, u0) = 0 for µȲ -a.e y ∈ Ȳ . Since ψ is a cocycle,

ψR(y)(y, u0) = ψR(y)(S̄u0(y, 0)) = ψR(y)+u0(y, 0)− ψu0(y, 0)

= ψu0(S̄R(y)(y, 0)) + ψR(y)(y, 0)− ψu0(y, 0)

= ψu0(S̄R(y)(y, 0)) + Iψ(y)− ψu0(y, 0).

Substituting in (6.1) with u = u0 and using S̄R(y)(y, u0) = (F̄ y, u0) we obtain

Iψ(y) = h(F̄ y, u0)− ψu0(F̄ y, 0)− (h(y, u0)− ψu0(y, 0)) = g(F̄ y)− g(y),

where g(y) = h(y, u0)− ψu0(y, 0) is measurable.
We have shown that Iψ = g ◦ F̄ − g satisfies the hypotheses of [15, Theorem 1.1]. It follows that

g has a version that is continuous (even Lipschitz) on Ȳ .
Let us now define

h̃(y, u) = ψu(y, 0) + g(y).

As in the proof of [34, Theorem 3.3], it follows from the definitions that h̃ is a well-defined function

on Ȳ R (ie h̃(y,R(y)) = h̃(F̄ , 0)) and that h̃ is a version of h. Since ψu and g are continuous, it

follows that h̃ is continuous as required. �

Corollary 6.2. Suppose that v ∈ Fθ,0(Ȳ R) satisfies v = χ ◦ S̄ − χ for some χ ∈ L2. Then∫ T
0 v(S̄tq) dt = 0 for all periodic points q ∈ Ȳ R of period T .
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Proof. Define ψt =
∫ t

0 v◦S̄s ds and h =
∫ 1

0 χ◦S̄s ds, so ψt = h◦S̄t−h. We claim that Iψ satisfies the
assumption in Lemma 6.1. Then h has a continuous version. Hence it follows as in the Axiom A

setting that
∫ T

0 v(S̄tq) dt = 0 for all periodic points q ∈ Ȳ R of period T .

It remains to verify the claim. For y ∈ Ȳ , we compute that Iψ(y) = ψR(y)(y, 0) =
∫ R(y)

0 v ◦
S̄s(y, 0)ds =

∫ R(y)
0 v(y, u) du. For a ∈ α, x, y ∈ a, and taking R(y) ≥ R(x),

|Iψ(x)− Iψ(y)| =
∣∣∣∫ R(x)

0

(
v(x, u)− v(y, u)

)
du+

∫ R(y)

R(x)
v(y, u) du

∣∣∣
≤ R(x)|v|θdθ(x, y) + |R(y)−R(x)||v|∞ ≤ (supaR+ LipaR)‖v‖θdθ(x, y).

Hence Lipa Iψ ≤ (supaR+ LipaR)‖v‖θ and so∑
a∈α

µȲ (a) Lipa Iψ ≤ ‖v‖θ
∑
a∈α

µȲ (a)(supaR+ LipaR) <∞,

as required. �

Remark 6.3. The condition that F̄ : Ȳ → Ȳ is full-branch can be relaxed as in [15]. The function
g : Ȳ → R constructed in the proof of Lemma 6.1 will no longer be continuous in general, but it is
continuous on each partition element of the partition α∗ generated by the images F̄ a of the elements
of α. We conclude that h has a version that is continuous on {(y, u) ∈ a∗ × [0,∞) : u ≤ R(y)} for

each a∗ ∈ α∗. Hence in Corollary 6.2 we obtain that
∫ T

0 v(S̄tq) dt = 0 for periodic points q ∈ Ȳ R of
period T such that the orbit of q intersects one of the partition elements a∗.

7. CLT and ASIP for the time-1 map of geometric Lorenz flows

In this section we prove Theorem C (and as a consequence Theorem B), by reducing from the
geometric Lorenz flow to the quotient flow, enabling the application of Theorem 5.2.

To achieve this reduction, we modify the argument in [24, Appendix A] which deals with the
Axiom A case and bounded roof function. We note that the argument in [24] is unnecessarily
complicated, since having reduced without loss to the situation where r depends only on future
coordinates, the quantity ∆ in [24, Proposition 5] is identically zero.

On the other hand, the situation for geometric Lorenz attractors is made complicated since (a)
there is no convenient metric on the symbolic flow Y R, and (b) the roof function is unbounded.
To deal with (a), we reduce directly to Ȳ R. For (b), we make crucial use of Lemma 2.9 and
Proposition 2.11.

Theorem 7.1. Let v : R3 → R be a Ck+1 observable of mean zero. There exists v̂, χ̂ : Y R → R
continuous and bounded such that

(i) v ◦ p = v̂ + χ̂− χ̂ ◦ S,
(ii) v̂ depends only on future coordinates and hence projects to a mean zero observable v̄ : Ȳ R →

R,
(iii) v̄ ∈ Fθ′,k(Ȳ R) for some θ′ ∈ (0, 1).

We recall that p : Y R → R3 denotes the measure-preserving semiconjugacy between the flows
St : Y R → Y R and Zt : R3 → R3. Recall also that the projection π : X → X̄ along stable manifolds
restricts to a projection π : Y → Ȳ . Also, we defined π(y, u) = (πy, u) provided that u ∈ [0, R(y)).
This induces a measure-preserving semiconjugacy π : Y R → Ȳ R between the flow St : Y R → Y R

and the semiflow S̄t : Ȳ R → Ȳ R.
We now show how Theorem C follows from Theorem 7.1.

Proof of Theorem C. Let v : R3 → R be a Ck+2 mean zero observable. By Theorem 7.1,
∑n−1

j=0 v ◦
Zj ◦p =

∑n−1
j=0 v̂◦Sj + χ̂− χ̂◦Sn =

∑n−1
j=0 v̄◦Sj ◦π+O(1) uniformly on Y R, where v̄ ∈ Fθ′,k+1(Ȳ R).

Hence the ASIP for v is equivalent to the ASIP for v̄ and follows from Theorem 5.2.
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It remains to verify the statement about the degenerate case σ2 = 0 in Theorem B. By The-

orem 5.2, v̄ = χ ◦ S − χ for some χ ∈ Lp(Ȳ R). Working still on Ȳ R, define ψt =
∫ t

0 v̄ ◦ Ss ds,
h =

∫ 1
0 χ ◦ Ss ds, so ψt = h ◦ S̄t − h. By Lemma 6.1, h has a continuous version.

Lifting to Y R, we have that
∫ t

0 v̂ ◦ Ss ds = ĥ ◦ St − ĥ where ĥ = h ◦ π is continuous. Hence using
Theorem 7.1(i),∫ t

0
v ◦ Zs ◦ p ds = ĥ ◦ p ◦ St − ĥ ◦ p+

∫ t

0
χ̃ ◦ Ss ds−

∫ t

0
χ̃ ◦ Ss+1 ds = h̃ ◦ St − h̃, (7.1)

where h̃ = ĥ ◦ p−
∫ 1

0 χ̃ ◦ Ss ds is continuous.
Now suppose that q is a periodic point of period T1 for the geometric Lorenz flow Zt. Then

q = Zu0(y0) = p(y0, u0) for some y0 ∈ Y , u0 ∈ [0, R(y0)]. Since R is not necessarily the first return
time to Y it need not be the case that (y0, u0) has period T1 under St. However, certainly there

exists T > 0, an integer multiple of T1, such that ST (y0, u0) = (y0, u0). By (7.1),
∫ T

0 v(Ztq) dt =

h̃(ST (y0, u0))− h̃(y0, u0) = 0 as required. �

In the remainder of this section, we prove Theorem 7.1.
Recall that the projection p : Y R → R3 is given by p(y, u) = Zu(y). Note that if (y, u) ∈ Y R

then πZuy = Zuπy. However, we caution that for general t > 0, x ∈ R3 it is not the case that πZtx
and Ztπx coincide.

Proof of Theorem 7.1. Define χ̂ : Y R → R by setting

χ̂(y, u) =

∞∑
n=0

{v(ZnZuy)− v(ZnπZuy)}.

It follows from exponential contraction along stable manifolds that there are constants C, a > 0
such that

|v(Zn(Zuy)− v(Zn(πZuy))| ≤ |Dv|∞|Zn(Zuy)− Zn(πZuy)|
≤ C|Dv|∞e−an|Zuy − πZuy| ≤ C ′|Dv|∞e−an, (7.2)

so that χ̂ is continuous and bounded.
Define v̂ : Y R → R by setting

v̂ = v ◦ p+ χ̂ ◦ S − χ̂,

so that (i) is satisfied by definition. Also

v̂(y, u) = v(πZuy) +

∞∑
n=0

{v(Zn(ZπZuy))− v(Zn(πZu+1y))},

and so (ii) is satisfied.

When proving (iii), we note that the formula for ∂jt v̂ is identical to that for v̂ with v replaced by

∂jt v throughout. Hence it suffices to consider the case k = 0 and to prove that v̄ ∈ Fθ′,0(Ȳ R) for
v ∈ C1(R3).

By the triangle inequality it suffices to show that

|v̄(y, u)− v̄(y, u′)| ≤ C|Dv|∞|u− u′|, (7.3)

|v̄(y, u)− v̄(y′, u)| ≤ C|Dv|∞(1 + |R|θ)dθ′(y, y′). (7.4)

First we prove (7.3). The n’th term of ṽ is given by

wn(u) = v(Zn(ZπZuy))− v(Zn(πZu+1y)).

We have |wn(u)− wn(u′)| ≤ |Dwn|∞|u− u′|. But

|Dwn(u)| ≤ |Dv|∞|Zn(ZπZuy)− Zn(πZu+1y)|
≤ C|Dv|∞e−an|ZπZuy − πZu+1y| ≤ C ′|Dv|∞e−an.
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Hence

|wn(u)− wn(u′)| ≤ C ′′|Dv|∞e−an|u− u′|,
and (7.3) follows.

It remains to prove (7.4). For the initial term in the formula for v̂, we note that

|v(πZuy)− v(πZuy
′)| ≤ |Dv|∞|πZuy − πZuy′| = |Dv|∞|p(πy, u)− p(πy′, u)|
≤ C|Dv|∞dθ(y, y′), (7.5)

by Proposition 2.11.
Let N ≥ 1. We write the remainder of v̂(y, u)− v̂(y′, u) as

A(ZπZuy, ZπZuy
′) +A(πZu+1y, πZu+1y

′) +B(y) +B(y′),

where

A(x, x′) =
N−1∑
n=0

{v(Znx)− v(Znx
′)},

B(y) =

∞∑
n=N

{v(Zn(ZπZuy))− v(Zn(πZu+1y))}.

We again use exponential contraction along stable directions as in (7.2) to show that

|B(y)|, |B(y′)| ≤ C|Dv|∞e−aN . (7.6)

Let j = j(y, t) be the lap number for y ∈ Y under Zt, so t ∈ [Rj(y), Rj+1(y)) and Zt(y, 0) =
p(F jy, t−Rj(y)). Then the n’th term of A(ZπZuy, ZπZuy

′) = A(Zu+1πy, Zu+1πy
′) has the form

an = v ◦ p(F jπy, n+ u+ 1−Rj(y))− v ◦ p(F j′πy′, n+ u+ 1−Rj′(y′)),

where

j = j(y, n+ u+ 1), j′ = j(y′, n+ u+ 1). (7.7)

Note that j, j′ ≤ (n+ 1)/ inf R ≤ N/ inf R.
Let q = [1/r̄] + 2. Suppose that s(y, y′) = qN . Choose N so large that (1− θ)−1|R|θθN < inf R.

Then

|Rj(y)−Rj(y′)| ≤ (1− θ)−1|R|θθ−j+1θNq ≤ (1− θ)−1|R|θθN(q−1/ inf R)

≤ (1− θ)−1|R|θθN < inf R,

for all 0 ≤ j ≤ [N/ inf R]. Hence for this range of j, the intervals [Rj(y), Rj+1(y)] and [Rj(y
′), Rj+1(y′)]

almost coincide (the initial points are within distance inf R, as are the final points). It follows that
the lap numbers j and j′ in (7.7) satisfy |j− j′| ≤ 1 for all 0 ≤ n ≤ N . The estimation of the terms
in A(ZπZuy, ZπZuy

′) now splits into three cases.
When j = j′, we obtain the term

an = v ◦ p(F jπy, n+ u+ 1−Rj(y))− v ◦ p(F jπy′, n+ u+ 1−Rj(y′)).

Hence by Proposition 2.11,

|an| ≤ C|Dv|∞{θs(F
jπy,F jπy′)|+ |Rj(y)−Rj(y′)|}

≤ C ′|Dv|∞(1 + |R|θ)θs(y,y
′)−j ≤ C ′|Dv|∞(1 + |R|θ)θqN−n/ inf R. (7.8)

If j′ = j + 1, then

an =v ◦ p(F jπy, n+ u+ 1−Rj(y))− v ◦ p(F jπy,R(F jy))

+ v ◦ p(F j+1πy, 0)− v ◦ p(F j+1πy′, n+ u+ 1−Rj+1(y′)),
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so that

|an| ≤ C|Dv|∞{Rj+1(y)− n− u− 1}

+ C|Dv|∞{θs(F
j+1y,F j+1y′) + n+ u+ 1−Rj+1(y′)}

= C|Dv|∞{θs(F
j+1y,F j+1y′) +Rj+1(y)−Rj+1(y′)},

yielding the same estimate as in (7.8). Similarly for the case j′ = j − 1. Hence in all three cases,
we obtain the estimate (7.8). Summing over n, we obtain that

|A(ZπZuy, ZπZuy
′)| ≤ C|Dv|∞(1 + |R|θ)θ(q−1/ inf R)N ≤ C|Dv|∞(1 + |R|θ)θN . (7.9)

To deal with the n’th term A(πZu+1y, πZu+1y
′) we need to introduce four lap numbers. First

let j1 ≤ 1/ inf R be the lap number corresponding to Zu+1y, so

πZu+1y = πZu+1−Rj1 (y)(F
j1y) = Zu+1−Rj1 (y)(πF

j1y).

Then let j = j1 + j2 where j2 ≤ n/ inf R is the lap number corresponding to Zu+1−Rj1 (y)(F
j1y)

under Zn. Altogether, we obtain

ZnπZu+1y = Zn+u+1−Rj1 (y)−Rj2 (F j1y)(F
j2πF j1y) = p(F j2πF j1y, n+ u+ 1−Rj(y)).

Similarly, we write

ZnπZu+1y
′ = p(F j

′
2πF j

′
1y′, n+ u+ 1−Rj′(y′)).

Again, we consider the three cases j = j′, j = j′+1, j = j′−1 separately. For example, if j′ = j+1,
then

|ZnπZu+1y − ZnπZu+1y
′|

= |p(F j2πF j1y, n+ u+ 1−Rj(y))− p(F j′2πF j′1y′, n+ u+ 1−Rj′(y′))|
≤ |p(F j2πF j1y, n+ u+ 1−Rj(y))− p(F j2πF j1y,R(F jy)|

+ |p(F j2+1πF j1y, 0)− p(F j′2πF j′1y′, n+ u+ 1−Rj+1(y′))|

≤ C{Rj+1(y)− n− u− 1}+ C{θs(F j2+1πF j1y,F j
′
2πF j

′
1y′) + n+ u+ 1−Rj+1(y′)}

= C{θs(F j+1y,F j+1y′) +Rj+1(y)−Rj+1(y′)},

and the calculation proceeds as for (7.9). Hence we obtain

|A(πZu+1y, πZu+1y
′)| ≤ C|Dv|∞(1 + |R|θ)θN . (7.10)

Combining (7.5), (7.6), (7.9), (7.10), we obtain that |v̄(y, u) − v̄(y′, u)| ≤ C|Dv|∞{e−aN + (1 +

|R|θ)θN/q}. Hence (7.4) holds with θ′ = max{e−a, θ1/q} completing the proof. �
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