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Abstract

We obtain the first results on convergence rates in the Prokhorov metric for
the weak invariance principle (functional central limit theorem) for determin-
istic dynamical systems. Our results hold for uniformly expanding/hyperbolic
(Axiom A) systems, as well as nonuniformly expanding/hyperbolic systems
such as dispersing billiards, Hénon-like attractors, Viana maps and intermit-
tent maps. As an application, we obtain convergence rates for deterministic
homogenization in multiscale systems.

1 Introduction

There is considerable interest in proving statistical properties for large classes of
dynamical systems. The central limit theorem (CLT) was proved for uniformly
hyperbolic (Axiom A) diffeomorphisms and flows in [42] and for various nonuni-
formly expanding/hyperbolic maps in [27].! The latter reference also established the
weak invariance principle (WIP), otherwise known as the functional CLT, general-
izing the classical result of Donsker [15] for independent and identically distributed
random variables. See also [14] for the WIP for uniformly hyperbolic flows. More
recently, the WIP was obtained for large classes of nonuniformly hyperbolic maps
and flows [5, 19, 35, 39, 40]. The WIP was applied in [18, 37| to obtain results on
homogenization for deterministic fast-slow systems.

An important question, especially bearing in mind applications to fast-slow sys-
tems, is to obtain convergence rates for these statistical limit laws. In the case of the
CLT, these convergence rates are called Berry-Esseen estimates; sharp results have
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(non)uniformly expanding/hyperbolic.



been obtained for uniformly hyperbolic diffeomorphisms [11] and nonuniformly hy-
perbolic systems [20]. However, there are few results on convergence rates in the WIP
for dependent random variables in the probability theory literature and apparently
none in the dynamical systems literature. In this paper, we obtain convergence rates
in the WIP for uniformly and nonuniformly hyperbolic dynamical systems.

For uniformly hyperbolic dynamical systems (including Axiom A diffeomorphisms
but also maps with infinitely many branches such as the Gauss map), we obtain the
convergence rate n=(i=9 in the WIP for & arbitrarily small. This result also applies
to certain nonuniformly hyperbolic systems (those modelled by a Young tower with
exponential tails [49]) such as dispersing planar periodic billiards, unimodal maps,
and Hénon-like maps [8].

More generally, for nonuniformly hyperbolic systems the rate depends on the
degree of nonuniformity. As an indicative example, we consider Pomeau-Manneville
intermittent maps [41], specifically the map

14277 clo,i

T:[0,1] = [0,1], T(z)= w(l+277) @ [1 2) (1.1)
20 — 1 x € [5, 1

studied in [34]. Here v > 0 is a real parameter and there is a unique ergodic absolutely

continuous invariant probability measure p for v < 1. Moreover, Holder observables

satisfy the CLT and WIP provided v < . By [20], the convergence rate in the CLT

1

—3 € (0,1

is njifl) 7 (1 31) . For the WIP, we obtain the rate n_(%(l_%)_‘s), v € (0, %)
2 = =

n o= Y€ (3’ 2)

Remark 1.1 (a) The closest previous result that we could find for dynamical systems

is due to Grama et al. [23]. Their method, is based on a result of Gouézel [22] which

applies to dynamical systems with spectral gaps, so it is plausible that [23] yields

the convergence rate n~(17% in the WIP for uniformly hyperbolic maps (though no

such claim is explicitly made in their paper). The results in [23] do not apply to
nonuniformly hyperbolic systems such as (1.1).

(b) The convergence rates that we obtain are certainly not optimal, but this is the
typical situation even in the probability literature as soon as one moves outside of
the iid setting, see Remark 2.3 and references therein.

Next, we consider applications to fast-slow systems of the form

ze(n +1) = ze(n) + €ac(z(n), y(n)) + eb(z(n)v(y(n), z(0)=¢  (1.2)

where a, : Rx A — R, b: R — R, v : A — R satisfy mild conditions, £ € R,
and the fast variables y(n) € A are generated by iterating a nonuniformly hyperbolic
dynamical system. In [18], it was shown that the slow variables z.(n), suitably scaled
in time, converge to the solution of the stochastic differential equation (SDE) given
in (2.2). In this paper, we obtain the first estimates of the rate of convergence. For
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uniformly hyperbolic fast dynamics, we obtain the convergence rate esd (note that €
is identified with n~2 so this corresponds to n_(é_‘s)). We also obtain convergence
rates for nonuniformly hyperbolic fast dynamics including the intermittent map (1.1)
for all v € (0,3). Moreover, for v € [5(11 — v/73),1) we obtain the same rate
2172070 a5 in the WIP,

Remark 1.2 This paper is based on results of the first author in his Ph. D. the-
sis [4] which concentrates on uniformly expanding maps but via a method which, as
demonstrated in this paper, generalizes to nonuniformly hyperbolic transformations.

The remainder of the paper is organized as follows. In Section 2, we define a class
of nonuniformly expanding maps and state precisely our results on convergence rates
in the WIP and for homogenization of fast-slow systems. In Section 3, we summarize
some recent results of [30] on martingale approximations. The main result for the
WIP is proved in Section 4 and the main result for fast-slow systems is proved in
Section 5. The extension to nonuniformly hyperbolic systems is covered in Section 6.
In Section 7, we discuss examples where our results apply.

Notation We use “big O” and < notation interchangeably, writing a,, = O(b,,) or
a, < b, if there is a constant C' > 0 such that a, < Cb,, for all n > 1.

Recall that v : A — R is a Holder observable on a metric space (A,d) with
exponent € (0,1], written v € C"(A), if ||v]|,, = |v|e + V], < 00 Where |v]s =

/

sup, [v] and |v[, = sup W

We denote by C'0, 1] the Banach space of continuous functions on [0, 1] equipped
with the supnorm.

2 Statement of the main results

Let (A,d) be a bounded metric space with Borel probability measure p and let T :
A — A be a nonsingular transformation (so p(T~'E) = 0 if and only if p(E) = 0 for
all Borel sets E C A). We assume that p is ergodic (p(E) = 0 or 1 for all Borel sets
E C Awith T7'E = F).

Suppose that Y C A is a subset of positive measure, and that « is an at most
countable measurable partition of Y. Let 7 : Y — ZT be an integrable function,
constant on partition elements, and define F(y) = T (y). We assume that F'Y C Y;
then 7 is called a return time and F' : Y — Y is the corresponding induced map.

We suppose that that there are constants A > 1, n € (0,1], C > 0 such that for
alla € o, y,y €a,0</l<7(a) -1,

(i) F =TT restricts to a measure-theoretic bijection from a onto Y.

(ii) d(Fy, Fy') > Md(y,y').



(i) g = dply/dply o F satisfies |log g(y) —logg(y')| < Cd(Fy, Fy')".
(iv) d(T*y, T') < Cd(Fy, Fy').

Such a dynamical system T is called nonuniformly expanding. We say that T is
nonuniformly expanding of order p if 7 € LP. A standard consequence of (i)—(iii) is
that there is a unique absolutely continuous ergodic T-invariant probability measure u
on A.

Let CJ(A) = {v € C"(A) : [,vdu = 0}. Given v € CJ(A), we define v, =
Z;L:_Ol voT7 for n > 1. Also, define

Wo(t) = N2, fort= %, 0<j<n,

and linearly interpolate to obtain a process W, € C[0,1]. The following result is
well-known, see for example [19, 30, 35]:

Lemma 2.1 Suppose that T : A — A is nonuniformly expanding of order 2 and let
v e CJ(A). Then

(a) The limit 0® = limy, oo n™" [, v2 dp exists. If in addition ged{7(a) :a € a} =1
(quaranteeing that T is mizing), then o is given by the absolutely summable
series

02:/v2du+22/vvoT"du. (2.1)
A = Ja

(b) Typically 0® > 0. Indeed, there is a closed subspace S C C{(A) of infinite
codimension such that 0® > 0 whenever v € S.

(¢) The CLT holds: N2, —y N(0,0%) as n — oo on the probability space (A, ).

(d) The WIP holds: W, —, W in C[0,1] as n — oo on the probability space (A, i),
where W is Brownian motion with variance o>. [ |

2.1 Rates in the WIP

So far, we assumed only that 7 € L% For 7 € L?, p > 2, Gouézel [20] obtained
convergence rates (Berry-Esseen estimates) in the CLT. Our first main result is a
convergence rate in the WIP.

The Prokhorov metric 7y is given by

m(X,Y)=inf{e > 0:P(X € A) <P(Y € A°) + ¢ for all closed A € B}.

Here, B is the Borel o-algebra on C[0,1] and A€ is the e-neighbourhood of A. The
WIP in Lemma 2.1(d) can be rewritten as lim,, ., w1 (W,, W) = 0.
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Theorem 2.2 Let T : A — A be nonuniformly expanding of order p > 2 and suppose
that v € CJ(A). Then there is a constant C > 0 such that m(W,,, W) < Cn~"® for
—2
all n > 1, where r(p) = 7=
Remark 2.3 The exact formula for the function r : (2, 00) — (0, i) can probably be
improved slightly using more careful arguments. However, it is known that the main
feature, namely supr = }1, is essentially optimal under the methods used.
Specifically, we use a result of Kubilius [31] which builds upon [24, 25]. These
results use the martingale version of the Skorokhod embedding theorem; by [9, 43],

this method cannot yield rates better than O(n™1).

2.2 Rates for fast-slow systems

Next, we consider fast-slow dynamical systems of the form (1.2). Here z. € R denotes
the slow variables and the fast y-variables are generated by a nonuniformly expanding
map T : A — A, so y(n) = T™yo where yg is chosen randomly from (A, p).

We continue to assume that v € CJ(A) and also that a. : R x A — R and
b: R — R, satisfy the following regularity conditions:

Regularity conditions: There are constants C' > 0, Lip ag > 0, such that

(1) sup, |@e|s < 00. (ii) sup,, . lac(7,y) — ao(x,y)| < Ces.
(iii) ag is Lipschitz in x uniformly in y. That is, |ag(z,y) — ao(2’, y)| < Lipag |x — /|
for all z,2" € R, y € A.
Moreover, b is C? and nonvanishing with b,',6”,1/b € L*°. (It is clear from the proof
that C2 can be reduced to C'3.)

Let Z.(t) = x(te™?) for t = 0,¢% 2¢%, ... and linearly interpolate to obtain Z. €
C[0,1]. By [18, Theorem 1.3] (see also [30, Section 6]), z. —,, X in C[0,1] for T
nonuniformly expanding of order 2, where X is the solution of the Stratonovich SDE

dX = {a(X) . %b(X)b/(X)/

| V2 du} dt +b(X)odW, X(0)=E¢. (2.2)

Here W is Brownian motion with variance ¢? as in Lemma 2.1 and a(z) =
[y a(z,y)du(y). Our second main result gives an estimate for the rate of conver-
gence (%, X) in the Prokhorov metric.

Theorem 2.4 Let T : A — A be nonuniformly expanding of order p > 2. Suppose
that a. and b satisfy the above reqularity conditions. Suppose further that v € CJ(A)
and that sup,cg |ao(z, )|, < co. Then there is a constant C' > 0 such that

where p, = 1(11 4 /73) ~ 4.89.



Remark 2.5 When 7T is mixing, we have the alternative representation of the
SDE (2.2) in It6 form

dxX = {a(X) + (XY (X) i/ vvoT" du} dt +b(X)dW, X(0) = ¢.

This is immediate from formula (2.1) and the Ito-Stratonovich conversion formula.
The nature of the drift coefficient and the departure from It6 or Stratonovich is
discussed further in [16, 18, 32].

3 Martingale approximation

In this section, we recall some results of Gordin-type [17] on martingale approxi-
mation from [30]. The key advantage of [30] over other martingale approximation
methods [17, 33, 45] is that it gives good control over sums of squares of the approx-
imating martingale, see Proposition 3.5 below.

Recall that a measure-preserving transformation f : A — A on a probability
space (A, M, ua) is called an extension of T : A — A if there is a measure-preserving
map wa : A — A such that ma o f =T oma. The map 7a is called a semiconjugacy.

Throughout this section, we suppose that T': A — A is a nonuniformly expanding
map of order p > 2 and that n € (0,1]. By [30, Propositions 2.4 and 2.5, and
Corollary 2.8], we can form the following “martingale-coboundary decomposition”:

Proposition 3.1 There is an extension f: A — A of T : A — A such that for any
v € CJ(A) there exists m € LP(A) and x € LP~H(A) with

voma=m+xof—x, E(m|f*M) = 0.
Moreover, there is a constant C' > 0 such that for all v € Cf/(A), n > 1,

- 1
ml, < Cllolly, and |max|xo f' —x|| <Clvlnr. ? N
j<n p

Remark 3.2 The extension A is called the Young tower [50] associated to the
nonuniformly expanding map 7. The definition and properties of A are not required
in this paper; the current section summarizes all the results that we need.

Let A ) ‘
gnvj _ f—(N—])M, gw —n" 20" mo .

Proposition 3.3 {£,;,G,;; 1 <j <n} is a martingale difference array.

Proof See for example [30, Proposition 2.9]. |

2By [30], x o f7 — x € LP(A) for j > 1 even though Yy is generally only LP~1.
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Proposition 3.4 There is a constant C > 0 such that

‘I}lgiqijz( < Cloll,n> for allve CI(A), n> 1.

p—1)

Proof This result is due to [36, 38]. For the formulation stated here, see for exam-
ple [30, Corollary 2.10]. |

Proposition 3.5 There is a constant C > 0 such that

k-1

’nfl S E(m® - o’[f M) o f .

J=0

| < C’HUH%n’% for allv e Cf/(A), n > 1.
1

Proof Thisis [30, Corollary 3.2]. For some reason, the result is stated there only with
an L? bound, but the superior L*®=Y bound here is immediate from the argument
used in [30] (specifically [30, Corollary 2.10, Remark 2.16 and Proposition 3.1]). &

4 Convergence rates in the WIP

In this section, we prove Theorem 2.2. Recall that 7" : A — A is a nonuniformly
expanding map of order p > 2 and v € C{/(A). Let r(p) = ”4;;)2.
We let C' denote constants that may depend on p and ||v||,. Also, C" denotes
constants that may depend on p but not v.
Define voma = m+yo f —y and the martingale difference array {&, ;, f~ ") M}
as in Section 3.

For ¢ > 1, define V,,, = 25:1 E(&2 1Gn,j-1)-

Proposition 4.1 | maxj<, [V, — %]‘2@71) < C”HUH%n—%.

Proof We have
b k
Vn _ Y 52,1 E 2 n—j| £—(n—j+1) v
5 =0T Rt o POl

k—1
=0 ! ZE(m2 —a?|f*M)o fi.
=0

The result follows from Proposition 3.5. |

For each n > 1, define

k
Xo(t) = &njy for t =V, /Vin, 0< k<, (4.1)

j=1



and linearly interpolate to obtain a process X,, € C[0, 1]. We use the following result
of [31] for martingale difference arrays to estimate the rate of convergence of X, to
the unit Brownian motion B.

Theorem 4.2 ( Kubilius [31, Theorem 1] ) Let § € [0,3]U{1}. There is a con-
stant C' > 0 such that m1(X,, B) < CA|llog A| where A = A\; + Ay and

: 1 - 5
M= nf {e (EZ; 6l L, 2) "),
=
A= inf {e+P(|V,, — 1] > €} N

0<e<1

Lemma 4.3 7(X,,B) < Cn™"®,

Proof Let A = A\; + Xy be as in Theorem 4.2. We claim that

AL < oy ) Ny & [[u]| =4/ Ep=8) ~(p—1)/C4p—5)
w3 2<P<3
where r1(p) = ¢ 2% 1 <p<4. Then A < A; and it follows from Theorem 4.2
p=2 p>4

4p—6
that 7, (X, B) < n~"*® logn. In all cases, r(p) > 7(p) so the result follows.
First, we verify the estimate for \;. Choose § € [0,2] U {1} greatest such that

4
-2 7
- 2<p<j;
2+ 20 < p. In other words, § = % g < p < 4. By stationarity,
1 p>4

=

EY 16l e, 20 = 0PI B(m L s con/2)-
j=1

By Holder’s inequality, and then Markov’s inequality,

n
PR & P e 12 < 070 mlT p(lm] > eon'/?) 0220
j=1

mly

—8|, |24+26
sn \m]p (67’01’711’/2

— J—(p—2—25)|m|£ ¢~ (p—2-26),, —(p=2)/2

)(p—2—25)/p

Hence
A < inf {61/2 + Hv"p/(3+26)67(p72726)/(3+25)nf(pr)/(6+46)}
! 0<e<1 n

< 2”U‘|1:’]/(210726—1)n7(P*2)/(4p74672) _ Hsz/(przaq)nfm(p).



Second, we verify the estimate for Ay. By Proposition 4.1 and Markov’s inequality,
P(|Vyn — 1] > €2) < ||v[|s? Ve 4D p~@-D Hence

i 4(p=1) —4(p—1) ,— (- < (4p—4)/(4p=3) ), —(p—1)/(4p—3)
ha < inf {et [l {7 Ve 100D} < 2 " ,
completing the proof. |
The integer k in (4.1) is a random variable k = k,; : A — {0,...,n} given by
Vn,k S tVn,n < Vn,k+1-

Proposition 4.4 ‘sup[ojl}\k’ - [nt]HQ(pil) < Cnz.

Proof Set Vn,j = nV,; —j. Then \7nk +k < tf/n,n +nt < ‘7n’IH.1 + k 4+ 1, and it
follows that k& — nt satisfies the inequalities

k—nt < tVon — Vg < Vo,

and B B B
k—nt > tvn,n - Vn,k—i—l —-1=> _Vn,k+1 -1
Hence
|k — [nt]] < |k —nt| +1 < max |V, ;]| 4+ 2 =n max |V, — | +2,
Jj<n+1 Jj<n+1 "
and so the result follows from Proposition 4.1. |

4.1 Passing from X, to W,

Proposition 4.5 Let Y, Y’ € CI0,1] be random elements defined on a common
probability space, and let ey, €1 >0, ¢ > 1.

(a) [fIP’(sup[O,l]]Y —Y'| > &) < €1, then m(Y,Y") < max{eo, €1}
(b) If ‘SUP[OJHY - Y’Hq < €, then m (YY) < Eg/(q+1).

Proof (a) This is immediate from the definition of 7.

(b) By Markov’s inequality, P(supj Y — Y'| > €) < e %j. In particular,

P(supp Y = Y'| > e1) < € if ¢ satisfies €, “j = €;. In other words, €; = ed/lat ),

Hence the result follows from part (a). n

oL
1 |ve| o T?"?). Then

Proposition 4.6 3 Forn > 1, define Z, = max
0<if<n?2

3This estimate was suggested to us by Alexey Korepanov.



(a) |0 qvo T < Zy((b—a)(n? —1)71+3) for all0 < a <b < n.
(b) | Znlapery < C'|[0|ly n T for allm > 1.

Proof (a) Choose 0 < ¢; < {5 < \/n greatest such that ¢;[\/n] < a and ly[/n] < b.
Then 05 — 1 < b‘fl + 1. It follows that

un
b—1 b a
\;vow < (bt +2)Z, < (ﬁ_1+3)zm
as required.
(b) We have
2(p—1) 2(p—1) 3 2(p—1)
/IZI Vdpa <Y /£r<n73>/<2 [0e] duA<<n2/ max [0 ua.

< 1/2

By Proposition 3.4,

< fJollynit D

Zukapy < | mac orl|

Jmax |vg|
nl/2

Following [29, Lemma 4.8], we define the linear functional
g:C01] = CO1,  glu)(t) = u(1) — u(l — 1)
Lemma 4.7 7(go W, oma,0X,) < Cn™"®

Proof Define the piecewise constant process V! (t) = nz o f t]l voT7. Then

n—1 k
goW,(t)oma — X, (t) = n2 Z voTVoma —n2 Zm o "I+ E,(t)

j=n—[nt] Jj=1

w\»—A

—1 n—1
Z voTloms —n3( Y womao fi—xo " +xo ")+ Ey(t)

j=n—[nt] j=n—k

Vi) oma +n72(x o f"F = xo f1) + En(t),
where | E,(t)|oo < n"2|v|s. By Proposition 3.1,

- n— n -1 j —-(:-1
‘n 1/2sup[071]|xof k—xof ”pSQn 2|r]r'1<aé(‘xof]—x|‘p<<n (3 P).
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By Propositions 4.4 and 4.6, and Cauchy-Schwarz,

[supyo,y Vi (#) o mal| = [suppo.y Vi)l < 12| Zu(n 2supygy|[nt] — k| +3)|

< n*%|Zn’2(p—1) (nfé ‘SUP[O,l}Hnt] - kH?(p—l) * 3)

1p=2

-1 _(%_ﬁ)— T 4dp—1
L N2 Zplagp-1) €K 1 D) =pn 4p1,

1
1p-1, Now

apply Proposition 4.5(b). |

Combining these estimates, we obtain ‘sup[o’u |goW,oma —0 X, ‘p_l <n

Proof of Theorem 2.2 It is easy to see that g(W) =, W = oB. Since 7 is a
semiconjugacy, W,, o ma =4 W,,. Hence combining Lemma 4.3 and Lemma 4.7,

m1(go Wy, go W) =m(go W, oma,0B)
<m(goW,oma,0X,)+m(0X,,0B) < nTe),
Now go g = 1d. Also, g : C[0,1] — C|0,1] is Lipschitz with Lipg < 2. That is
supyo 1j|9(u) — g(v)| < 2supyg yy|u — v| for all u,v € C[0,1]. Hence it follows from the

Lipschitz mapping theorem [47, Theorem 3.2] that m (W,,, W) = m1(g9(g o W), g(g o
W)) < 2mi(go Wy, go W) < n"®), |

5 Convergence rates for homogenization

In this section, we prove Theorem 2.4. We begin by proving an abstract result,
Theorem 5.1 below, before specializing to the case where 7" is nonuniformly expanding.
Let T : A — A be a map with ergodic invariant probability measure p. Define
y(n) = T™yy where yq is chosen randomly from (A, i), and fix £ € R. We consider
fast-slow systems of the form (1.2) where a. : R x A — R and b : R — R satisfy the
regularity assumptions listed in Section 2.2 and v € L*(A).
Define

a(z) = [yao(z,y)dply),  alz,y) = aolz,y) — a(x).
Let a,(y) = a(u,y). We suppose that there exist C' > 0, ¢ > 1 such that

|Z;.:01 a, o T, < Cnz foralln>1,ueR. (5.1)
]Z?;Ol voT|, < Cnz foralln > 1. (5.2)

When b # 1, we require in addition that
|z;:01 v?oT? —n [, v*duly < Cnz foralln>1. (5.3)

Define W,(t) = evye—2 for t = 0,€%,2¢%,... and linearly interpolate (and restrict
to [0,1]) to obtain W, € C]0,1]. We assume that W, —,, W in C]0,1] where W
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is a one-dimensional Brownian motion with variance o?. Let % (t) = z.(te ?) for
t =0,€% 2¢2, ... and linearly interpolate to obtain #, € C[0, 1]. By [18, Theorem 1.3],
Ze =4 X in C[0, 1] where X is the solution of the Stratonovich SDE (2.2).

Theorem 5.1 Suppose that m (W, W) = O(€") for some r > 0. Then m (2., X) <
C(e + e%qfql(—loge)%).

Remark 5.2 It is easily seen from the proof that in the special case a.(z,y) = a(x),
b =1, we obtain the same rate m (Z., X) = O(€") as in the WIP.

Proof of Theorem 2.4 In the definitions of W,, and W,, notice that ¢ is identified

with n~2. Hence it follows from Theorem 2.2 that m (W,, W) = O(eTPQ).

Next, we verify the moment conditions (5.1)—(5.3) with ¢ = 2(p — 1). Since v and
v? — [, v*dp lie in Cff(A), conditions (5.2) and (5.3) follow from Proposition 3.4. The
assumption on ao implies that a, € C{(A) for all v € R and that sup, ||a.|, < oo,
so (5.1) also follows from Proposition 3.4.

We have now verified all of the hypotheses of Theorem 5.1 and it follows that

(2, X) < C’{e% + e%%(—log e)%(p_l)}. |
In Subsection 5.1, we prove Theorem 5.1 when b = 1. The general case is proved
in Subsection 5.2 by reducing to the case b = 1.

5.1 The caseb=1

In this subsection, we prove Theorem 5.1 in the special case where b = 1. In this
case, the limiting SDE takes the form

dX = a(X)dt+dW.  X(0)=¢. (5.4)

Theorem 5.3 Suppose that m (W, W) = O(€") for some r > 0. Then m (2., X) <
C(e" + e%#’l(—loge)%).

We have the following preliminary calculation: Set M = [e_%].

Proposition 5.4 Suppose that b(x) = 1. Then

T(t) =&+ /Ot a(z(s)) ds + We(t) + De(t) + Ec(t),

where
[t 3]—1 (n+1)M—1
:%ZJ :%Z a(ze(nM), y(5)),
j=nM

and ’sup[()’l]\Equ < Ces.
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Proof Introduce the step function Z.(t) = z.([te ?]). Then

[te=2]—1 [te=2]—1
) =64 ) adz(i) y() +e Y vu().
j=0 Jj=0
Using the estimates
|Zc(t) = Ze(t)|oo < €[aeloc + €]V]oo, We(t) — e 0T 0y (7)) oo < €fv]oo,
€231 T ae(we(5), y(5) — a0 (7). 4(7)) Heo = O(e3),
we obtain
[te_Q]—l
B(t) =+ ) aolae(f), y(j) + Welt) + O(e3) (5.5)
=0
[te=2]—1
=+ Y alide))) + Welt) + F(t) + O(e%),
=0
where F.(t) = e Y10 a(a. (), y())).
If te~? is an integer, then € Z[.’Z)Z}_l a(z fo )) ds, while in general
|2 Z[te g a(z.(e*y)) fo )ds{oo < 62|a0|oo. Hence

T(t) =€+ / a(de(s)) ds + We(t) + F.(t) + O(e3).
0
Next, fornM < j < (n+1)M,y € A,
|a(ze(5),y) — alze(nM, y)| < 2Lip ag [x(j) — zc(nM))|
< 2L1p Qo (6 M|a5|oo + E| Zz nMU(TZyO)D

y (5.2), |2 voTi, = |0 v o T, < (5 — nM)2 < Mz. Hence
@(ze(5),y(j)) — alz(nM.y(j))l, = O(eM?) = O(e3) uniformly in nM < j <
(n+ 1)M. It follows that

[te= 3 M—1 [t 3]—1 (n+1)M -1
~ . 1
ST ED SR CONTEIED DI SR AR | R
t€[0,1] =0 j=nM q
Also,

[t~ 3 5]—-1

F) - > awi)ui)| <t e dlale < de gl

. o0
J=0

Combining these last two estimates, we obtain |sup[O’1]|F6 - D€|‘q — O(e3) and the
result follows. n
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Lemma 5.5 Let Q = (—320%loge)z. Then u(sup[0,1]|ﬁe| > Q) <Ce.
Proof By the reflection principle,

P(supy[W| 2 3Q) < 2P (supy, WV > 3Q) = 4P(W(1) > 3Q)
< [, e dr < Qe @) <

By assumption, m (W, W) = O(€"). In particular, for e sufficiently small,
p(sup [We| > $Q) < P(supy | W| > 3Q) + O(€").
By (5.5), |(t) — We(t)| < |¢] + |aolos + O(€3). Hence for € sufficiently small,

p(suppo e > Q) < p(supp y|We| > 5Q) < P(supp y|W| > Q) + O(e") = O(€"),
as required. [

Let B = {supjg jj|2c| < @} where @ = Q. is as in Lemma 5.5.
Lemma 5.6 |1BEsup[071}\D€|‘q < Ces(—loge)i.

Proof For u € R fixed, define

(n+1)M—1 (n+1)M—1
=~ 4 ~ . 4 ~ 1
Tnu)(yo) = €3 > alu,y() = > au(Ty),
j=nM j=nM

where a,(y) = a(u,y). Note that J.(n,u) = J.(0,u) o T"™. By assumption (5.1),

Wi

|j6(nau)|q = |j€(07u)|q < €3 M2 < €3,

uniformly in n and wu.

We can choose a partition S = S, C [-Q, Q] of finite cardinality |S| such that
dist(x, 5) < 2Q/|S| for all x € [—-Q,Q)]. For z € [—-Q,Q], there exists u, € S such
that for all y € A,

la(z,y) — alug, y)| < 2Lipag2Q/|S| = 4Lipay Q/|S|.

It follows that )
Je(n) - Je(na uxe(nM))l < 4L1p Qo Q/|S|7

1p,

and hence B
Je(n)] <Y eslde(n,u)| +4Lipag Q/]S].

Choosing |S| = [e73(— log €)1],

[1g|J(n)]], < X eslJe(n, u)ly + 4Lipag Q/| S|
< |S|es + (—log€)2/|S| < €3(—loge)i.

1p.
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It follows that

e 3-1

‘1BeSUP[o,1]’Dqu <es Z g, |J.
n=0

|| < e%(—loge)%,

as required.

Corollary 5.7 m (W, + D, + E., W) < C(¢" + e371 (—log €)4).

Proof By Proposition 5.4 and Lemma 5.6, ‘sup[01 15 .D. + E. H < e3(—loge)r.

Hence by Markov’s inequality,
p(sup y |1, D + Ec| > €37%7) < €571 (= log ).
Combining this with Lemma 5.5, we obtain
plsupyo,y|De + B > 677) < ¢ + €375 (~ log ).
By Proposition 4.5(a),
)

T (We+ De + E,W,) < € + €3+t (—loge)%.

Now combine this estimate with the assumption m (W,, W) = O(€").

Proof of Theorem 5.3 Consider the functlonal g : C[O 1] — [0,1] given by

G(u) = v where v is the unique solution to v(t) = & + fo ) ds + u(t).

Since

a is globally Lipschitz, it follows from existence and umqueness of solutions for or-
dinary differential equations that G is well-defined. By Gronwall’s inequality, G is

Lipschitz with Lip G < clipa

By definition, X (¢ f—l—fo ))ds+W (t), so X = G(W). By Proposition 5.4,
=G(W.+ D+ E ) Hence by the Lipschitz mapping theorem [47, Theorem 3.2],

71 (2e, X) = 1 (G(We + D+ E), G(W)) < e“Plr (W, + D, + E., W).

Now apply Corollary 5.7.

5.2 The general case
Let b = 1/¢" and write z.(n) = ¥(z.(n)), Z.(t) = ¥ (Z(t)). Define

15



Lemma 5.8 m(2,2) < C(¢" + eéﬁ(—loge)%) where dZ = A(Z)dt + dW and
Z(0) = (&)

Proof The assumptions on b ensure that ¢ is C® uniformly on R. A calculation as
in [18, 30], using the Taylor expansion of 1), yields

ze(n+1) = ze(n) + Ac(2e(n), y(n)) + ev(y(n),  2(0) = ¥(€),

where

Acz,y) =0 (07 (2))ac( ™ (2),y) + 39" (7 (2)b( 7 (2))*0(y)* + O(e),

uniformly in z, y. By the inverse function theorem, (¢»™') = boy~! € L> and hence
1~ is uniformly Lipschitz on R. It follows easily that A, inherits the regularity
conditions (i)—(iii) from a. By (5.3), A inherits condition (5.1) from ao. Hence we
can apply Theorem 5.3. |

Proof of Theorem 5.1 As in [18], a calculation using the definition of X in (2.2)
shows that Z = ¢(X) satisfies the SDE in Lemma 5.8. The functional x : C[0,1] —
C[0,1], u + ¥~ o, is Lipschitz with Lip x = Lip¥ !, so by the Lipschitz mapping
theorem,

71 (80 X) = m(x(2), X(2)) < (e ).

Now apply Lemma 5.8. |

6 Nonuniformly hyperbolic transformations

In this section, we show how the main results in Section 2 extend from nonuniformly
expanding maps to transformations that are nonuniformly hyperbolic in the sense of
Young [49, 50]. We focus on the parts necessary for this paper, referring to [49, 50| for
further details. (In particular, we do not restrict to systems with physical measures
even though this is the case for most of the examples.)

Let (A, d) be a bounded metric space with Borel probability measure p and let
T : A — A be an ergodic measure-preserving transformation.

Definition 6.1 Let p > 1, n € (0,1]. The transformation 7' : A — A is a nonuni-
Jormly hyperbolic transformation of order p if there exists a nonuniformly expanding
map f: A — A of order p (with ergodic invariant probability measure f1) such that

(a) T : A — Aand f: A — A have a common extension f : A — A with
semiconjugacies ma : A = A, T A = A,

(b) There exists 1/ € (0,1] such that for any v € C"(A), there exists o € C" (A)
and x € L*(A) such that

voma =voT+ Yo f—1.
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(c¢) There is a constant C' > 0 such that for all v € C"(A),

[olly < Cllvlly, and |l < Cllolly.

Remark 6.2 (a) By [30, Propositions 5.3 and 5.4], nonuniformly hyperbolic trans-
formations modelled by Young towers with exponential tails [49] are nonuniformly
hyperbolic of order p (in the sense of Definition 6.1) for all p. Also, transforma-
tions that are modelled by Young tails with polynomial tails [50] are nonuniformly
hyperbolic of order p provided (i) the inducing time in [50] lies in L?, and (ii) the
transformation 7' contracts exponentially along stable leaves (see [30, Remark 5.1]).

(b) By [39], the conclusions in Lemma 2.1 hold for transformations that are nonuni-
formly hyperbolic of order p > 2 and observables v € CJ(A). This result does not
require condition (ii) from part (a) of this remark.

Now define W,,, W € C[0, 1] as in Section 2.

Theorem 6.3 Let T : A — A be nonuniformly hyperbolic of order p > 2 and suppose
that v € CJ(A). Then there is a constant C > 0 such that m(W,,, W) < Cn~"® for

all n > 1, where r(p) = ’%.

Proof Define W, using the observable  from Definition 6.1(b). By Definition 6.1(b),
(Woma—W 0% |0 < 207 1/2|1)| . Hence by Proposition 4.5(a), m (W, 0ma, W,07) <
n~G=9 for all § > 0. In particular, (W, o ma, W, 0 %) < n"®). Since 7a : A — A
and 7 : A — A are semiconjugacies, 71 (W,, W,) < n~"®).

Since f is nonuniformly expanding of order p and v € C’g/(A% it follows from
Theorem 2.2 that 7 (W,,, W) < n~"® . This completes the proof. n

Next, consider a fast-slow system (1.2) satisfying the regularity conditions in Sec-
tion 2.2. Define z., X € C[0, 1] as in Section 2.2.

Theorem 6.4 Let T : A — A be nonuniformly hyperbolic of order p > 2. Suppose
further that v € CJ(A) and that sup,cg |ao(z,-)|, < co. Then there is a constant
C > 0 such that

p—2
Ce2r P < P

Wl({i‘e,X) S { 12p—2 B )

063 2p—1 <_ log 6)%(27_1) p > p*
where p, = 1(11 4 V/73) ~ 4.89.

Proof As in the proof of Theorem 2.4, it suffices to verify the hypotheses of Theo-
rem 5.1. By Theorem 6.3, m (W, W) = O(e%).

Next, v and v* — [, v*dpu lie in Cf(A) so conditions (5.2) and (5.3) follow from
Proposition 3.4 and Definition 6.1(b,c). Also, a, € CJ(A) uniformly in u € R, so (5.1)
follows from Proposition 3.4 and Definition 6.1(b,c). n
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7 Examples

In this section, we list some examples to which our results apply. The simplest class
of examples are uniformly expanding maps, which are nonuniformly expanding with
7 = 1. A specific example is the Gauss map 1" : [0, 1] — [0,1] given by Tz =1 — [2].
Our results hold for all p, so we obtain rates n=(i=% in the WIP and ¢ (¢
homogenization.

Similarly for uniformly hyperbolic maps (including nontrivial basic sets for Ax-
iom A diffeomorphism) we can take 7 = 1 and p arbitrarily large.

More generally, the rates n~(i=9 in the WIP and e~ G~9 for homogenization hold
provided T is nonuniformly expanding/hyperbolic and 7 € L? for all p. In particular,
this covers all systems that are modelled by Young towers with exponential tails [49],
including:

) for

e Planar periodic dispersing billiards with finite horizon [49] and infinite hori-
zon [10], as well as billiards with external forcing and corners [10, 13].

e Unimodal maps T : [—1,1] — [—1,1] given by Tx = 1 —az?, a € [0, 2] satisfying
the Collet-Eckmann condition [12], namely there are constants b, ¢ > 0 such that
[(T™)(1)] > cet™ for all n > 1. By [28, 6], this condition holds for a positive
Lebesgue measure set of parameters a.

e Hénon like attractors. The Hénon map 7T : R? — R? introduced in [26] is given
by (z,y) = (1—ax?+y, bx) where a,b € R. By [7, 8], there is a positive measure
set of parameters a < 2, b small, such that T is modelled by a Young tower
with exponential tails.

Other class of examples for which these rates hold are Viana maps. These maps,
introduced in [46], comprise a C® open class of multidimensional nonuniformly ex-
panding maps. For definiteness, we restrict attention to maps on M = S! x R. Let
Ty : M — M be the map Ty(0,y) = (A mod 1, ag + asin 2w — y?), where A € N with
A\ > 16, ag is chosen so that 0 is a preperiodic point for the quadratic map y — ag—1v?,
and a is sufficiently small. Tt follows from [1, 3] that C® maps sufficiently close to Ty
are nonuniformly expanding of order p for all p. (In fact, they are modelled by Young
towers with stretched exponential tails [21].)

Finally, we mention that the intermittent maps (1.1), with parameter v € (0, 3),
are nonuniformly expanding of order p for any p < %, yielding the rates
Cez(l

% 2

0y >y,
Ce 2

—2 5

= - Y S Y

T (W, W) = O(n_(i(l_%)_‘s)), T (Ze, X) < {

where v, = 1—12(11 — /73).  The classical solenoid construction of Smale and
Williams [44, 48] can be used as in [2] to construct nonuniformly hyperbolic intermit-
tent solenoids with these rates.
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